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Abstract
Remote sensing technologies are integral to monitoring the mountain cryosphere in a warming world.
Satellite missions and field-based platforms have transformed understanding of the processes driving changes
in mountain glacier dynamics, snow cover, lake evolution, and the associated emergence of hazards (e.g.
avalanches, floods, landslides). Sensors and platforms are becoming more bespoke, with innovation being
driven by the commercial sector, and image repositories are more frequently open access, leading to the
democratisation of data analysis and interpretation. Cloud computing, artificial intelligence, and machine
learning are rapidly transforming our ability to handle this exponential increase in data. This review therefore
provides a timely opportunity to synthesise current capabilities in remote sensing of the mountain cryo-
sphere. Scientific and commercial applications were critically examined, recognising the technologies that
have most advanced the discipline. Low-cost sensors can also be deployed in the field, using microprocessors
and telecommunications equipment to connect mountain glaciers to stakeholders for real-time monitoring.
The potential for novel automated pipelines that can process vast volumes of data is also discussed, from
reimagining historical aerial imagery to produce elevation models, to automatically delineating glacier
boundaries. Finally, the applications of these emerging techniques that will benefit scientific research avenues
and real-world societal programmes are discussed.
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I Introduction

The mountain cryosphere, which we define as

areas within mountainous environments that are

frozen during part or all of the year, including

glaciers, snow, permafrost, and lake ice, repre-

sents a source of fresh water for 1.9 billion peo-

ple worldwide (Immerzeel et al., 2019). Yet,

mountain areas are increasingly threatened by

climate warming, posing a threat to future water

security (Hock et al., 2019; Shugar et al., 2021).

For communities living in mountain environ-

ments, such climate warming also poses an

increased threat of natural hazards from the

cryosphere, such as glacial lake outburst floods

(GLOFs) (Carrivick and Tweed, 2016; Harrison

et al., 2018), avalanches (Ballesteros-Cánovas

et al., 2018; Fischer et al., 2012), slope failures

(Huggel et al., 2012), debris flows (Perov et al.,

2017), or a combination of one or more hazards

in a cascading chain (Kirschbaum et al., 2019).

Given the significance of the mountain cryo-

sphere in water resource and hazard manage-

ment, it is imperative to be able to track its

rapid change, with the goal of being able to

develop predictive capacity. Earth observation

(EO) and field-based techniques are increas-

ingly viewed as being able to play a key role

in securing the sustainable development of

mountain communities (e.g. Murthy et al.,

2014; Veettil and Kamp, 2019). However, there

often remains a disconnect between monitoring

from afar and local co-operation (Nussbaumer

et al., 2017).

Remote sensing has advanced rapidly in

recent years, both in the physical hardware of

the sensors and in the software used to subse-

quently process the data. However, the chal-

lenges associated with imaging areas of high

relief are great, and the success of techniques

that are now routinely applied over ice sheets

(e.g. altimetry, gravimetry) has been limited

(Berthier et al., 2006; Kääb et al., 2005; Prinz

et al., 2018; Racoviteanu et al., 2008). Optical

satellite sensors are particularly hampered by

persistent cloud, frequent and extensive snow

cover, and accessibility of output data. Radar

sensors can penetrate cloud and quantify centi-

metric deformation rates (Joughin et al., 2010),

but are often affected by radar shadow and lay-

over from steep topography, and signal decorr-

elation due to the highly dynamic environment,

which reorganises matching features. Field-

based remote sensing techniques overcome

such problems and can offer very high spatio-

temporal resolution and bespoke data, but only

from individual sites and with more challenging

logistical obstacles, and many areas remain

inaccessible for safety or geopolitical reasons.

Recent innovations in sensor technology and

processing techniques can be applied to remote

observations of the mountain cryosphere.

Upcoming satellite missions, in particular satel-

lite constellations, will increase acquisition

rates over mountain glaciers at an ever improv-

ing spatial, spectral, and radiometric resolution.

Private–public partnerships are becoming

increasingly common, which has seen an asso-

ciated rise in commercial data being incorpo-

rated into research publications (Figure 1).

Field-based techniques are also changing rap-

idly, as bespoke unoccupied aerial vehicles

(UAVs) and low-cost micro-sensors increas-

ingly become part of a glaciologist’s toolkit

(Bhardwaj et al., 2016). Artificial intelligence

(AI) and cloud computing, with the vast

increase in availability of free and open access

data, are beginning to improve the processing of

these new data.

We are therefore in a period of rapid remote

sensing, and consequently modelling, of the

mountain cryosphere, presenting a timely
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opportunity to review the accomplishments to

date and explore future directions for this disci-

pline. The aim of this review was to critically

evaluate the performance of current remote sen-

sing methods, identify limitations and gaps in

current delivery, and discuss what emerging

technologies could offer this research area in

the future.

II Current monitoring of the
mountain cryosphere

There are a number of measurable parameters

that can be used to chart the response of gla-

cierised environments to climatic changes.

Some parameters indicate changes in process

rates (e.g. accumulation, ablation, ice deforma-

tion and sliding, sediment dynamics), while oth-

ers are more pertinent to identifying features

that may threaten downstream communities

(e.g. glacial lakes, oversteepened and thawing

slopes). In this section, we review the methods

currently available for monitoring the mountain

cryosphere, reflect on the key sensors available

to researchers, and consider selected services

available to local authorities.

2.1 Surface mass balance

Surface mass balance, the net sum of accumula-

tion and ablation over a period, often 1 year, is

perhaps the clearest indicator of how a glacier is

responding to a warming climate (Dyurgerov

and Meier, 2000). The overwhelming majority

of remote sensing studies now calculate glacier-

specific and region-wide mass balances using

the geodetic approach.

The geodetic approach describes the process

of differencing time-separated digital elevation

models (DEMs) and summing the glacier-wide

elevation changes, before converting the result-

ing volume to mass (Bamber and Rivera, 2007;

Huss, 2013). It emerged during the late 1990s as

an efficient means of deriving surface elevation

measurements across broad areas within a sin-

gle analysis (e.g. Wingham, 1998). Both the

Shuttle Radar Topography Mission (SRTM;

2000), and ASTER Global Digital Elevation

Model (GDEM; 2009) are typically used as

‘baseline’ datasets to establish the first elevation

epoch (Wu et al., 2018; Zhou et al., 2017). The

second epoch is usually then established by con-

structing a DEM from stereo imagery (e.g.

Figure 1. Scopus searches for the use of earth observation satellites in mountain glacier studies. These data
were generated from a systematic review of available literature from missions described in this manuscript
(given in Appendix A) and then subsequently merged into commercial or public missions.
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SPOT, ASTER) acquired some years later

(Braun et al., 2019; Rabatel et al., 2016). How-

ever, many data sources appropriate for such

analysis remain restricted in access. In particu-

lar, the SPOT family of satellites provides one

of the longest and highest resolution archives

for constructing glacier mass balance, but as a

commercial mission the imagery is costly for

the majority of researchers without a data grant;

ALOS PRISM (2.5 m spatial resolution) and

TerraSAR-X/TanDEM-X data (3 m StripMap

mode and 12 m respectively; Rizzoli et al.,

2017) are similarly only available to classified

users under licence. ASTER imagery provides

stereo DEMs at no-cost, but at medium spatial

resolution (15 m; GDEM 30 m), often with

errors that exceed the magnitude of the change

being detected (Bolch et al., 2008), and is

planned to retire in 2023. Protocols for automat-

ing DEM production (such as fitting a regres-

sion through an ASTER DEM chain to robustly

separate signal from noise) represent a major

step forward, by providing data redundancy in

the form of multiple datasets (Brun et al., 2017).

Longer records of glacier mass change have

exploited archives of aerial imagery or declassi-

fied stereo imagery fromUS reconnaissancemis-

sions (e.g. HEXAGON and Corona), to produce

baseline DEMs, giving rise to 50þ year estima-

tions of glacier mass balance in mountainous

regions (Bolch et al., 2008; Falaschi et al.,

2019; Kjeldsen et al., 2015; Pieczonka et al.,

2013; Surazakov et al., 2007). Coupled with con-

temporary assessments of glacier evolution these

historical records can provide valuable informa-

tion on rates of change (King et al., 2019;Maurer

et al., 2019). After initial processing challenges

brought about by non-conventional frame char-

acteristics and missing location data, these

declassified images are now also routinely fed

into automated processing pipelines to derive

elevation snapshots at multiple epochs (Maurer

and Rupper, 2015) (see Figure 2).

Regional estimates of mass balance are often

more robust indicators of glacier response to

climate change than those focussing on a small

subset. The Gravity Recovery and Climate

Experiment (GRACE) satellites (2002–2017),

and their successor (GRACE-FO; launched

in 2018), offer the possibility to calculate

regional estimations of net mass change and

the subsequent contributions to sea level rise

(Chen et al., 2013). However, their coarse spa-

tial resolution (*300 km), and inability to dis-

aggregate individual contributions of change,

mean that signals of ice loss cannot be sepa-

rated from signals from groundwater storage

depletion or surface lake drainage (Song

et al., 2015; Yi and Sun, 2014). Satellite alti-

metry from ICESat (2003–2010) and CryoSat-2

(2010–) has also been used to produce esti-

mates of glacier mass loss, but only over the

largest glaciers where observations were regu-

larly repeated (Kaab, 2008; Ke et al., 2015;

Neckel et al., 2014; Trantow and Herzfeld,

2016). Altimeters are frequently used as a com-

parison for the accuracy of other DEMs (e.g.

Liu et al., 2019), or as ground control points for

stereo DEMs; yet, there remains a gap in the

current satellite delivery for highly precise ele-

vation measurements over mountain glaciers

from altimeters that may yet be fulfilled by

ICESat-2 (2018–) as it builds an archive of

repeat observations.

At a smaller scale, UAVs are important in the

creation of centimetre-scale (cm-scale) elevation

models for monitoring surface mass balance

through structure-from-motion photogramme-

try. Repeat surveys can be used to monitor

short-term surface melt through differencing

point clouds (Bash et al., 2018; Dall’Asta

et al., 2017). This is particularly important

where melting dynamics are drastically differ-

ent across the year (Che et al., 2020; Rossini

et al., 2018). The cm-scale DEMs can also be

used to measure the microtopography of gla-

cier surfaces – an important component in the

surface energy balance of glaciers (Bash and

Moorman, 2020; Bonekamp et al., 2020;

Chambers et al., 2019).
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Figure 2. Historic and contemporary images can be used to quantify mass change across the Cordillera
Vilcanota, Peru (�13.76�N, �71.03�E). (a) KH-9 HEXAGON image from 3rd August 1980, georeferenced
and overlain on a DEM generated using HEXIMAP (Maurer and Rupper, 2015); (b) Planet imagery from May
2020 as a visual reference for glacier position today; and (c) DEM differencing the KH-9HEXAGONelevation
model against a TanDEM-X DEM from July 2015. Positive values surrounding the glacier are likely to be due
to georeferencing error of the HEXAGON image on very steep slopes.

Taylor et al. 5



936	 Progress in Physical Geography 45(6)

2.2 Ice velocity

Glacier velocity products are important for

determining the long-term response of a glacier

or a region to climate warming (Dehecq et al.,

2019), as well as for assessing likely locations

for emerging hazards and those developing in

the future (Quincey et al., 2007). Generating

distributed velocity fields for mountain glaciers

usually requires one of two approaches: feature

tracking or interferometric synthetic aperture

radar (InSAR). Feature tracking requires two

images separated in time, captured within an

optimal time window such that the features have

moved sufficient distance to be detectable, but

not such that they have deformed beyond rec-

ognition. Most algorithms employ normalised

cross-correlation for matching features (e.g.

Berthier et al., 2005; Copland et al., 2009), but

frequency-based approaches can also yield

robust results (Leprince et al., 2007; Scherler

et al., 2008); see Heid and Kääb (2012) for a

comprehensive review. InSAR requires much

shorter temporal baselines, such that the coher-

ence of the radar signals between the two suc-

cessive images is maintained (Rabus and

Fatland, 2000), dependent therefore on periods

of calm weather and geomorphic stability, nei-

ther of which are common in mountain environ-

ments. Where InSAR is successful, it can detect

cm-scale displacements, at high precision, as

well as performing well over relatively feature-

less (clean-ice or snow-covered) areas where

feature tracking fails (Luckman et al., 2007).

Traditionally, radar imaging sensors have

been used for velocity tracking as radar speckle

results in an image rich in texture over optically

featureless surfaces, and their ability to penetrate

clouds allows for images to be captured regardless

of weather conditions. Today, the European Space

Agency’s Sentinel-1 satellite provides such ima-

gery on a 6-day repeat cycle for deriving glacier

velocity, building upon its predecessors ERS-1/2

(1991 and 1995) (Luckman et al., 2007 ; Quincey

et al., 2007) and Envisat (2002) (Quincey et al.,

2009). Images collected by commercial satellites,

such as RADARSAT and TerraSAR-X, are also

used to derive glacier velocity fields at high tem-

poral frequency and spatial resolution (Abdel

Jaber et al., 2012; Waechter et al., 2015), though

these data are generally only available through

licencing agreements or at great financial cost.

Where successive cloud-free images can be

acquired, velocity products can also be derived

from optical imagery. Medium-resolution ima-

gery (10–30 m) such as ASTER provides broad

coverage for regional assessments (Redpath

et al., 2013), while the long Landsat archive

offers a window into past glacier dynamics and

their current response to changes in climate

(Dehecq et al., 2019). The Operational Land

Imager on board Landsat-8 is particularly

well-suited to this task, offering improved

radiometric resolution and geometric fidelity

compared with its predecessors, making it pos-

sible to produce glacier velocity products that

are comparable in terms of accuracy to InSAR

(Fahnestock et al., 2016; Roy et al., 2014).

Applications such as Cosi-CORR (Leprince

et al., 2007), IMCORR (Scambos et al., 1992),

and auto-RIFT (Gardner et al., 2020) are used

routinely to produce glacier velocity products

from radar and optical data. However, given the

cloudy and steep conditions of mountain gla-

ciers, outputs from a range of correlation appli-

cations and sensors are often required for robust

and complete coverage (Heid and Kääb, 2012).

2.3 Glacial lakes

The growth of lakes as glaciers recede is one of

the most visible reminders of climate warming

impacting the mountain cryosphere (Shugar

et al., 2020). Lakes present opportunities in

hydropower and tourism, but also additional

risk from the threat of larger and more frequent

outburst floods to downstream populations

(Bajracharya and Mool, 2009; Carrivick and

Tweed, 2016; Drenkhan et al., 2019; Haeberli

et al., 2016). Existing glacial lakes can be

6 Progress in Physical Geography XX(X)
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located using a Normalised Difference Water

Index (NDWI) from medium-resolution optical

imagery such as Sentinel-2 or the Landsat

archive (Drenkhan et al., 2018; Watson et al.,

2018). DEMs can also be used to identify glacial

lakes from stereo optical imagery (Ukita et al.,

2011) or higher-resolution synthetic aperture

radar (SAR) (Strozzi et al., 2012).

Establishing lake volume requires bathyme-

try measurements to capture the bed, and there-

fore an in situ component (Fujita et al., 2009). In

the absence of these data, empirical scaling of

the lake area with mean depth (from bathy-

metric maps and published data to avoid auto-

correlation) can be used to provide a first-order

assessment, though high uncertainty may sug-

gest a mixed-model approach is most appropri-

ate for datasets containing varying lake sizes

(Cook and Quincey, 2015; Shugar et al.,

2020). Estimates of glacial lake volume can also

be determined from a depth-reflectance (Fitzpa-

trick et al., 2014) or depth-area relationship, but

in the case of the latter approach, significant

variability exists between sites depending on

their style of formation (Cook and Quincey,

2015; Drenkhan et al., 2018). The recently

launched ICESat-2 (2018) altimeter can obtain

photon returns from both the lake surface and

bed (accounting for refraction) to depths of

around 40 m (Parrish et al., 2019), including

from supraglacial lakes (Fair et al., 2020),

though this is as yet untested in mountainous

environments (Figure 3). Monitoring the chang-

ing lake surface height is theoretically possible

from satellite altimeters or a continuous series

of stereo DEMs. However, the archive for such

measurements, at an appropriate accuracy to

detect change through time, is not long. With

extensive processing, data have been extracted

from the Envisat era (2002–2012), with notable

additions from ICESat (Neckel et al., 2014) and

CryoSat-2 (Crétaux et al., 2016).

Remote sensing of glacier lakes now begins

long before their formation, with bed topography

data and modelling able to indicate their future

extent and volume (Drenkhan et al., 2019) to pro-

vide an early indication that mitigation of an

emerging hazard may be necessary. New lakes

are likely to form in the overdeepenings carved

from the erosive force of glaciers, and so can be

located with high confidence using contemporary

DEMs and the perfect plasticity approach to esti-

mating ice thickness (Kapitsa et al., 2017; Lins-

bauer et al., 2012; Rounce et al., 2017; Viani

et al., 2020). However, the timing of their evolu-

tion still requires numerical modelling of future

rates of ice melt.

2.4 Supraglacial ponds and ice cliffs

Glaciers have highly complex and dynamic sur-

faces, and features such as ponds and cliffs con-

tribute to the surface energy balance and overall

hydrological regime of mountain glaciers ( Brun

et al., 2016; Brun et al., 2018; Miles et al., 2016;

Miles et al., 2018a). Medium-resolution (10–30

m) optical satellite data can classify supragla-

cial lakes (with Sentinel-2 outperforming

Landsat-8 in spectral contrast between debris

and water; Watson et al., 2018) on a regional

scale (Veettil, 2018) and repeat imagery can be

used to follow drainage events to identify asso-

ciated changes in velocity and surface elevation

(Miles et al., 2018b). However, sub-metre reso-

lution data are essential to accurately assess the

dynamics, and classify features, of complex gla-

cier surfaces. Sub-metre resolution imagery and

DEMs are paramount to being able to delineate

features such as ice cliffs, which can contribute

to increased rates of ablation (Buri et al., 2016).

In lieu of satellite sensors being able to resolve

such small-scale features, field-based remote

sensing is frequently deployed. Airborne sen-

sors (Light Detection and Ranging (LiDAR),

photogrammetry) have conducted such surveys

(e.g. Arnold et al., 2006; Baltsavias et al., 2001;

Janke, 2013; Reid and Brock, 2014), but are

sparsely used given the financial cost of mount-

ing such a campaign.
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UAVs have rapidly become the most appro-

priate tool for very high resolution mapping of

glacier surfaces. They are relatively low cost,

yet rival the precision of traditional field-based

surveying methods (e.g. ground mapping with

GPS) (Gaffey and Bhardwaj, 2020), over an

entire glacier surface in a fraction of the time

(Figure 4). Repeat UAV surveys have shown

that the development of ponds and cliffs can

accelerate ice velocity (Immerzeel et al.,

2014), and imagery has been used to produce

quantitative measurements of cliff geometry to

better understand their formation and evolution

(Buri et al., 2016; Kraaijenbrink et al., 2016). A

particular advantage of UAVs is their flexibil-

ity to observe rapidly changing vertical fea-

tures, such as underhanging cliffs, that are

obscured from space and may not be accessible

Figure 3. ICESat-2 Track 567 ATL03 product from 4 August 2019 across Laguna Amayuni (�13.81�N,
�70.99�E) in the Cordillera Vilcanota, Peru. Sediment intrusion in the glacial lake clouds limits the pene-
tration of photons to the bed, which limits its applicability in deriving lake volume to a high confidence in this
environment. Top image from Google Earth and CNES/Airbus, 2020.
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for fixed time-lapse cameras (Scaioni et al.,

2019). The vast quantity of data that are gath-

ered from UAV surveys opens up the opportu-

nity for intelligent learning algorithms to speed

up data processing as well as acquisition. AI

has primarily been used in remote sensing to

classify surface features (Kraaijenbrink et al.,

2016), but embedding AI within UAV systems

has streamlined data processing in other disci-

plines (Gonzalez et al., 2016; Ramirez-Atencia

et al., 2017; Vasuki et al., 2014; Xu et al.,

2018).

Figure 4. UAVs offer a much sharper view of mountain glaciers compared with 3D alternatives from
satellites, allowing a more accurate view of the ice surface, presented here from the western margin of the
Quelccaya ice cap, Peru. (a) Pleiades multispectral image layered over a 3D reconstruction from tri-stereo
images acquired in August 2016; (b) structure-from-motion reconstruction from 528 images of a UAV flight
over the same glacier in September 2019; (c) and (d) show closer views of the UAV-derived structure-from-
motion model to highlight the primary advantages of using UAVs for 3D reconstruction of mountain glaciers.
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2.5 Snow

Snow cover in mountainous regions is impor-

tant for hydropower, tourism, irrigation, and

water resource management and can represent

a natural hazard for surrounding communities

(Hock et al., 2019; Xiao et al., 2015). Detecting

snow with optical satellites is long established

using band ratioing (Lopez et al., 2008; Rastner

et al., 2014) and the Normalised Difference

Snow Index (NDSI) (Gascoin et al., 2019; Sal-

omonson and Appel, 2004). With these data in

cloud computing platforms, global-scale snow

cover maps are now being produced regularly at

a medium spatial resolution (Dietz et al., 2015;

Gascoin et al., 2019; Mityók et al., 2018). Snow

cover on glaciers can be indicative of equili-

brium line altitude (Rabatel et al., 2012). With

the addition of a DEM, optical imagery can be

autonomously processed to detect the snow-line

altitude to an 80% accuracy, though clouds,

shadows, and significant fresh snow remain

key limitations (Rastner et al., 2019). Daily

PlanetScope imagery could be used to detect

snow-line altitude at a much higher temporal

resolution (Racoviteanu et al., 2019).

Accurate quantification of snow depth is

important for water resource management, to

enable planning on short to medium time-

scales. Typically these data come from in situ

snow gauges (Egli and Jonas, 2009) or terres-

trial laser scanners (Prokop, 2008). Digital

photogrammetry can measure snow depth to

avoid potentially dangerous field excursions

to gather data using UAVs (Bühler et al.,

2016) and even high resolution stereo satellite

imagery by comparison to snow-free images

(Marti et al., 2016) – a method that can offer

sub-metre root mean squared error when com-

pared with airborne LiDAR measurements

(Deschamps-Berger et al., 2020). Passive

microwave satellites can quantify snow water

equivalent (SWE) and indicate melting of

snow on large glaciers (Smith and Bookhagen,

2018), but wide sensor footprints (tens of

kilometres squared) can limit this over smaller

glaciers (Clifford, 2010). SAR sensors have

commonly been used for monitoring snow in

the mountain cryosphere to identify wet snow

(and thus indicate melt), from SeaSat (Rott,

1984) to Sentinel-1 (Tsai et al., 2019a). A com-

prehensive review of the role of SAR sensors in

monitoring snow is available from Tsai et al.

(2019b).

III Upcoming innovations in sensor
technology

Current trends and future forecasts both point

towards a rapid rise in the launch of EO satel-

lites, particularly from the commercial sector,

over the next decade. Innovations will also have

a positive impact on field-based remote sensing

as UAVs become increasingly accessible and

interdisciplinary research leads to searching for

solutions from outside of the mountain cryo-

sphere. In this section, we review some of the

upcoming planned missions that could address

research gaps in observing the mountain cryo-

sphere, and identify where gaps still remain.

3.1 Optical sensors

Established civilian programmes (Landsat,

Copernicus) are facing increased competition

in a world where innovation is being rapidly

driven by the commercial sector. Landsat-9

(launching 2021) is designed with virtually

identical sensors to its predecessor as a data

continuity mission (Markham et al., 2016).

Landsat-9 will acquire imagery at 14-bit depth

resolution, which allows for a quadrupled radio-

metric sensitivity (and thus better feature depic-

tion) over bright targets such as snow and ice

when compared with 12-bit sensors on board

Landsat-8, Sentinel-2, and Planet Labs’ Dove

satellites. This unbroken series of 50þ years

from Landsat is particularly vital to the moun-

tain cryosphere, where year-to-year changes in

ice extent, surface albedo or lake growth can be
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observed. Looking to the future, user demands

of Landsat-10 include greater spectral range,

narrower bands, and higher spatial resolution

to retain relevance (beyond its long record) as

competition grows from constellations and

SmallSats (spacecraft with a mass less than

180 kg) (Wu et al., 2019; Wulder et al., 2019).

Satellite constellations designed for near

real-time imaging (data distribution within

hours of acquisition) are becoming more popu-

lar and promise to shape the coming decade of

EO (Table 1). Having multiple satellites work-

ing together clearly offers numerous advantages

over single satellite missions, but the trade-off

may be in terms of uneven instrument degrada-

tion. Although Planet Labs’ Doves are radiome-

trically calibrated against Landsat-8, RapidEye,

and monthly lunar acquisitions, image quality

and signal-to-noise ratio still varies between

sensors (Leach et al., 2019). Noise within opti-

cal data usually arises from atmospheric inter-

ference (Daniel Jorge et al., 2017), which is

typically corrected with shortwave infrared

(SWIR) bands that SmallSats are lacking (Van-

hellemont and Ruddick, 2018). These missing

SWIR bands are also critical in distinguishing

between the spectral signatures of ice and water

(Dozier, 1989). Day-to-day changes observed

by constellation imagery should therefore be

approached cautiously, as they may reflect dif-

ferences between satellites rather than on-the-

ground change (Cooley et al., 2017; Poursanidis

et al., 2019). Landsat and Sentinel may have

medium spatiotemporal resolution, but they

compensate for this with their consistent data

quality.

Compared with long-standing satellite sen-

sors such as Landsat and Sentinel, SmallSat

constellations offer reduced radiometric resolu-

tion, geometric fidelity, and spectral resolution,

but the trade-off can be found in the vast volume

of data they acquire. Planet Labs were one of the

first organisations to mass produce multispec-

tral SmallSats with their Dove satellites, which

today provide global daily sub-3 m imagery.

Since the first launch of their Doves in 2016,

Planet Labs have expanded their market niche

to releasing over 300 SmallSats at varying alti-

tudes for improved spatiotemporal resolution.

This has obvious benefits for hazard manage-

ment where events can be sudden in their onset

(such as lake outburst events (Miles et al.,

2018b) or glacier surges (Rashid et al., 2020)),

and where weather windows for successful

observations may be short-lived. Studies of

short-term (diurnal) variations in ice surface

albedo (e.g. Naeimi et al., 2018) will also ben-

efit from more frequent data capture (Altena

and Kääb, 2017). Future optical satellites will

improve both timeliness and flexibility of ima-

ging – Pléiades Neo (planned launch in 2021)

will revisit the same mid-latitude area up to 15

times per day (Airbus, 2020), while

WorldView-Legion (2021) claims to be able

to provide data to the user within an hour of the

satellite being tasked (Maxar Technologies,

2020). Other upcoming constellations, such as

UrtheDaily (planned for launch in 2022), prom-

ise to reconcile the long-standing trade-off

between data quality and quantity, by producing

sensors similar in radiometric resolution and

fidelity to Sentinel-2 and capable of delivering

daily, 5 m resolution imagery, for better fore-

casting of glacier hazards (Yan et al., 2017).

These satellites are predominantly for-profit

commercial missions, as opposed to open-

source civilian missions (Copernicus, Landsat),

and the data access to researchers or civilians

for studies of the mountain cryosphere is as yet

unknown.

Similar advances are being made with multi-

sensor missions. OptiSAR is an upcoming con-

stellation from UrtheCast that will launch eight

optical and eight SAR satellites in tandem orbit

pairs, capturing image pairs seconds apart (Fox

et al., 2017). Onboard intelligence, with com-

munication from the leading SAR satellite, will

enable the optical satellite to only acquire over

cloud-free areas to improve satellite efficiency

(Beckett et al., 2017). Multisensor approaches

Taylor et al. 11
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such as this have already overcome inherent

limitations of a single-sensor mission (Markert

et al., 2018), providing further insights into sur-

face mass balance (such as using SAR backscat-

ter to monitor snowlines, glacier facies, and firn

development) (Winsvold et al., 2018), as well as

having the potential for maintaining coherence

between image pairs by reducing their temporal

baseline.

3.2 Radar sensors

The weight and power requirements of radar sen-

sors have thus far limited the emergence of small

SAR satellites, at least when compared with the

rapid evolution of optical sensor constellations

(Sandau et al., 2010). Micro-SAR satellites are

often forced to compromise on antenna size and

power output, resulting in lower overall quality

(Seguin and Geudtner, 2018), and aperture

widths that are*10% that of larger single satel-

lites (Rosen et al., 2017). Indeed, small satellites

are frequently ‘tasked’ to preserve power, mean-

ing sudden-onset events such as avalanches,

landslides, or GLOFs, may not be captured, and

imagery showing conditions immediately

preceding the event may need to be filled by

alternative freely available data sources (Higman

et al., 2018). Nevertheless, the next decade

will deliver commercial constellations such as

ICEYE, Capella Space, and SAR-XL, which

promise to provide imagery at sub-daily repeat

time, albeit with a possible compromise on image

quality. Table 2 outlines upcoming radar sensors,

in the context of other (current) satellite missions.

Proposed candidate missions to expand the

Copernicus mission show that ESA will con-

tinue to focus on the cryosphere, but with

dual-frequency missions (e.g. CRISTAL)

designed for polar regions rather than mountain

glaciers (Kern et al., 2020). In satellite-based

radar systems, two upcoming L-band missions

look to reintroduce subsurface imaging to the

forefront of glacier remote sensing. ESA’s

ROSE-L (Pierdicca et al., 2019) and NASA’s

NISAR (Rosen et al., 2017) will complement

existing radar missions by offering the ability

to examine surface velocity and glacier mass

balance with reduced temporal decorrelation

from deeper penetration into the ice (Strozzi

et al., 2008), as well as permafrost

Table 2. Radar satellites and their applications tomonitoring the mountain cryosphere. *Denotes confirmed
future mission not yet launched as of June 2021; ydenotes mission that is no longer in operation.

SAR
Band

Wavelength
(cm)

Frequency
(GHz) Missions Applications

P 30–100 0.3–1.0 Biomass*, ICESAR2012y Tomography
L 15–30 1.0–2.0 NISAR*, ROSE-L*, SeaSaty,

SRTMy, JERS-1y, ALOSy
Tomography, velocity mapping,
displacement mapping, snow water
equivalent

S 7.5–15 2.0–4.0 NISAR*, NovaSAR-S, Envisaty Snow hydrology
C 3.75–7.5 4.0–8.0 Sentinel-1, Sentinel-3,

Radarsat, ERSy, Envisaty,
SRTMy

Classifying wet/dry snow, firn line
mapping, snow line mapping, velocity

X 2.4–3.75 8.0–12.5 TerraSAR-X, ICEYE, Capella
Space, SRTMy

3D capabilities, elevation change, glacier
velocity, mass dynamics

Ku 1.67–2.4 12.5–18.0 CryoSat-2, Sentinel-3,
ERS-1/2y, Envisaty

Surface elevation, volume change, mass
dynamics

Ka 0.75–1.13 26.5–40.0 SWOT*, SARAL AltiKa Surface elevation, continental surface
water storage changes
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displacement and SWE. ROSE-L will work in

association with other Copernicus missions

(e.g. Sentinel-1) to offer new insights into the

mountain cryosphere. For example, Sentinel-1

could delineate wet and dry snow, then ROSE-

L could quantify the SWE of the dry snow

(Davidson et al., 2019). The synergy of L-

band and S-band sensors on board NISAR will

allow for a more holistic view of glacier

dynamics, focussing on glacier velocity and

snow hydrology simultaneously. In a break

from convention, these satellite sensors are

being designed explicitly with mountain gla-

ciology in mind and, as civilian missions, data

will be freely available.

Developments in satellite altimetry have thus

far mostly benefitted routine monitoring of ice-

sheet surface elevations, where large measure-

ment footprints and non-uniform repeat tracks

can be compensated for, in contrast to mountain

regions where the highly variable surface topo-

graphy precludes robust interpolation between

observations. The upcoming launches of

Sentinel-3C and -3D, which will complete the

Sentinel-3 constellation, include plans for

higher resolution onboard tracking commands

to capture meaningful data over mountain gla-

ciers. With six laser beams to reduce the dis-

tance between ground tracks and a rapid pulse

rate to measure elevation up to every 90 cm on

the ground, ICESat-2 offers vastly more data

than its predecessor. It will be challenged in

mountainous environments with its 91-day

repeat time and inability to penetrate clouds –

potentially leaving significant data gaps. Initial

data from ICESat-2 show that the satellite per-

forms well over mountain glaciers (Figure 5),

with high precision elevation measurements of

the glacier surface. The upcoming Surface

Water and Ocean Topography (SWOT) mission

(2022) seeks to further innovate radar altimetry,

but for the mountain cryosphere its application

will likely be limited to low-resolution products

(Biancamaria et al., 2016).

3.3 UAVs

The flexible nature of UAVs allows for custom-

built mountable sensors to address site-specific

research questions. Hyperspectral imaging from

UAVs in other geoscience disciplines have

shown success in producing structure-from-

motion 3D models in over 100 spectral bands

(Honkavaara et al., 2017). Over mountain gla-

ciers, hyperspectral imagers on UAVs could be

used to study contaminants and pollutants at a

much higher resolution than has hitherto been

possible. For example identifying the compo-

nents of cryoconite (Di Mauro et al., 2017), the

presence of organic matter, or the origin and

impact of dust on albedo (Di Mauro et al.,

2015) in a more efficient way than can be

achieved from spot measurements. In landmine

detection, ground penetrating SAR instruments

have been mounted on UAVs to accelerate

clearance (Schartel et al., 2018), which could

be applied to measuring snow depth or charac-

terising englacial conditions.

In theory, there are no technical limitations

to the deployment of regularly repeating auton-

omous UAV surveys. UAVs have already been

designed to return ‘home’ to a wireless charg-

ing pad when their battery runs low (Campi

et al., 2019; Junaid et al., 2016; Junaid et al.,

2017), and solar panels could keep a constant

energy supply to a battery pad, with autono-

mous de-icing (Sorensen et al., 2015). With

an onboard microcontroller to detect weather

patterns, control flight paths, data acquisition,

and transmission, UAVs could potentially be

designed to conduct surveys completely inde-

pendent of any pilot or physically present oper-

ator. Such an autonomous system would have

obvious benefits where change is rapid and

early warning of a developing hazard would

be beneficial, although the legal obstacles to

uncrewed flights in this way may become pro-

blematic as most countries look to tighten,

rather than relax, their UAV regulations

(Stöcker et al., 2017).
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3.4 Other field-based innovations

The principles and main applications of photo-

grammetry are now well-established within the

geosciences (Smith et al., 2016), allowing the

reconstruction of 3D models from an array of

2D images, and the production of very high-

resolution models (cm-scale) from off-the-shelf

cameras (Giordan et al., 2020; James and Robson,

2012;Mallalieu et al., 2017).We envisage that the

future of this technique will be in sensors built

with low-cost microprocessors (Figure 6), and in

its autonomy: from capture to subsequent process-

ing for real-time 3D of the mountain cryosphere.

As satellite internet expands coverage and

connectivity in remote regions, and decreases

in cost through the launch of constellations such

as Starlink (SpaceX) and OneWeb, sensors that

are left in situ will become routinely program-

mable such that they transmit recorded data

autonomously for subsequent cloud storage

and/or processing over satellite internet. Such

technology already exists over cellular connec-

tions, but the lack of a suitable infrastructure in

much of the mountain cryosphere currently

makes this an unfeasible option. Autonomous

structure-from-motion photogrammetry has

been proven in studies of soil displacement (Elt-

ner et al., 2017), landslides (Kromer et al., 2017)

and rockfalls (Blanch et al., 2019), which indi-

cates it could also be a lucrative line of

Figure 5. Comparison of elevation retrievals from ICESat-2 with those of the HMA-2 DEM (Shean et al.,
2020) over the Everest region of Nepal: (a) available ground tracks of ICESat-2 data for the region, with the
yellow track indicating data selected in below panel. Image from Google Earth and Maxar technologies 2020.
(b) Comparison of ICESAT-2 ATL06 product relative to the High Mountain Asia 8 m DEM.
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investigation for glaciology. In a similar vein,

webcam images from ski resorts have been used

to create snow cover classification maps in the

Alps (Portenier et al., 2020), removing the need

for physical visits by researchers altogether.

Advances in robotics and robot design may

offer insights into mountain glaciers that could

open a significant new sub-branch of the disci-

pline. Presently, the englacial system of a gla-

cier remains somewhat of an enigma, with

Figure 6. The potential of small low-cost sensors in mountain glaciology: (a) low-cost in-field remote sensing
could be expanded with the use of low-cost sensors to include camera networks, weather stations, seismic
stations, acoustic sensors and more communicating in a local network or connected to the internet through
4G/5G networks or satellite internet; (b) Raspberry Pi camera setup costing less than $USD 50 at a glacial
margin at the Quelccaya ice cap, Peru.
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access limited to conduits that are safe and

accessible enough for physical exploration

(Gulley and Benn, 2007), using ground pene-

trating radar (Church et al., 2019) or the drilling

of boreholes (Miles et al., 2019a; Miles et al.,

2021). In the mining industry, robots and auto-

mated UAVs have been used to explore andmap

underground conduits (Mitchell and Marshall,

2017) – similar to the englacial systems of a

glacier. Systems that make use of relay and

‘sacrifice’ robots enable constant communica-

tion, regardless of the complexity of the under-

ground system (Cesare et al., 2015). While this

technology is still in its infancy (Mitchell and

Marshall, 2020), its adaptation for subsurface

glacier exploration would make significant

steps towards answering questions on the char-

acteristics, dynamics and evolution of the

hydrological networks that influence ice flow

as well as the timing and magnitude of progla-

cial discharge (Miles, et al., 2019b). Sensors

embedded in the ice via boreholes can also indi-

cate surface melting, ice velocity, water pres-

sure (Hart et al., 2019a) and (when reaching

the bed) till deformation and basal icequakes

(Hart et al., 2019b). Similarly, sensors deployed

around an ice-dammed lake in Canada were

used to infer its englacial hydrology (Bigelow

et al., 2020).

IV Computational innovations to
address research gaps

In many cases, knowledge gaps can be

addressed using one or more of the data sources

currently available to researchers and stake-

holders. Here, we argue that computational

innovations may create the biggest difference

in the next decade of observing the mountain

cryosphere (Gomes et al., 2020). We introduce

some of the computational innovations that

have driven the discipline in the last 5 years in

order to assess their future trajectory. We

explore how research gaps could be addressed

with techniques, such as deep learning and

cloud computing, and offer suggestions on

future directions.

4.1 Cloud computing and big data

Cloud computing platforms, which allow for

wide area geospatial analysis, offer a step-

change in processing potential for the discipline

as processing moves to the area of data storage.

While cloud computing is not ‘new’, as high

performance computing (clustering hardware

together to boost computational power) has

been used in remote sensing for decades (Lee

et al., 2011), the differentiator of cloud comput-

ing shifts the financial burden of the hardware

for such power. Freely available cloud comput-

ing interfaces, such as Google Earth Engine

(Gorelick et al., 2017), Climate Engine (Hun-

tington et al., 2017), pipsCloud (Wang et al.,

2018), and Sentinel Hub (Sinergise, Ltd.) allow

for batch processing and regional-scale investi-

gations without compromising on the spatial

resolution being studied (Figure 7). The plat-

forms allow for spectral investigations, such as

NDSI and NDWI (e.g. Kraaijenbrink et al.,

2017; Zhang et al., 2018; Shugar et al., 2020),

and tap into freely available archives such as

Landsat, Sentinel, and SRTM, as well as user-

imported data. Most importantly, the interfaces

are designed to be user-friendly to appeal to the

growing EO market (Denis et al., 2017) while

also providing scope for complex analysis to

suit a broad array of applications.

The potential applications of cloud comput-

ing to accelerate research in the mountain cryo-

sphere are vast. Autonomously, and rapidly,

large volumes of near real-time satellite data

can be downloaded and processed into a user-

friendly output for management, stakeholders

and communities to digest. Research can be

conducted at a regional scale benefiting from

petabytes of data to inform international policy

by combining multispectral imagery, elevation

data, climate modelling and ice thickness data.

For example, in the Himalayas, this approach
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has been used to predict the future of all glaciers

under a 1.5�C warmer climate (Kraaijenbrink

et al., 2017). Conventional computing infra-

structure is inefficient at storing, processing and

transferring such large volumes of data. A par-

ticular benefit for the mountain cryosphere is

that cloud masking and mountain shadowing

of optical imagery is easily incorporated into

the analysis flow chain for accurate digitisation

of glacial lakes (Chen et al., 2017; Shugar et al.,

2020) and calving fronts (Lea, 2018) at a global

scale. Vast quantities of Sentinel-1 SAR ima-

gery can be ingested for change-over-time

studies, for example, to map glacial lakes across

the Tibetan Plateau (Zhang et al., 2020) or

assess snowmelt across the Alps and Iceland

(Nagler et al., 2016) every 6 days. Furthermore,

the advent of freely available cloud computing,

together with public data and extensive docu-

mentation, means processing does not have to

be limited to funded scientists or highly trained

specialists.

Increased synchronisation between EO data

can benefit mountain glaciology via open-

source pipelines and packages that can be

embedded into coding platforms and linked to

Figure 7. The EO Browser (https://apps.sentinel-hub.com/eo-browser/) allows analytical cloud computing
of sentinel data in a user-friendly interface that can display (a) true-colour imagery, (b) false colour com-
posites, (c) Normalised Difference Water Index, and (d) Normalised Difference Snow Index, and other
analytical analyses. In this figure, sentinel-2 data are displayed over Bering Glacier, Alaska. Such platforms
open remote sensing of the high mountain cryosphere to stakeholders, non-governmental organisations and
mountain communities with little prior experience.
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cloud computing for performance. While these

packages and pipelines may lack a user-friendly

interface, they have the potential to answer

unique research questions. The AMES Stereo

Pipeline by NASA (Beyer et al., 2018), for

example, is now widely used to produce 3D

stereo data from thousands of ASTER images

for regional glacial mass balance reconstruc-

tions (Brun et al., 2017; Dussaillant et al.,

2019; Menounos et al., 2019; Shean et al.,

2020). Over the next few years, similar free

packages will provide greater accessibility to

satellite data. For example, sPyMicMac

(McNabb et al., 2020) will automate the pre-

processing of nuances from the HEXAGON

US reconnaissance mission from the 1970s, pro-

viding easier access to these historic data for

quantifying the regional mass balance over 50

years ago. PyTrx (How et al., 2020) will ingest

terrestrial time-lapse data and perform calibra-

tion, registration, georectification, feature

tracking and change detection to speed up

monotonous pre-processing of in situ camera

data. ITS_LIVE (NASA; Gardner et al., 2018)

will continue to create glacier velocity products,

as it has done from the 1980s to present day, at

high temporal frequency by collating measure-

ments from multiple sensors (e.g. data from the

Landsat and Sentinel-1 missions are all used).

Each of these freely available packages either

performs their analysis using cloud computing,

or supports adaptation into a cloud computing

environment in order to efficiently process vast

volumes of data. Over the mountain cryosphere,

cloud computing could therefore lead to near

real-time processing of ice surface dynamics

or detection of hazardous events.

4.2 Artificial intelligence and machine
learning

The broad field of AI includes machine learn-

ing (ML) (whereby systems autonomously

learn from themselves without prior program-

ming), which is a powerful tool in solving the

various challenges of EO. Deep learning

(DL) algorithms are a subset of ML, using

multiple layers of neural networks to increase

their complexity and accuracy (Hoeser and

Kuenzer, 2020; Zhu et al., 2017). For the

mountain cryosphere, ML and DL models can

be applied to classification, feature spotting,

automatic mapping, and visual interpretation

tasks as well as time series reconstruction and

simulation (Bolibar et al., 2020; Brenning,

2009; Lary et al., 2016; Paul et al., 2004; Zhu

et al., 2017). The application of DL algorithms

for the cryosphere is still scarce. Only 2% of

studies dealing with DL-based image segmen-

tation and object detection have investigated

cryosphere-related topics (Hoeser and Kuenzer,

2020). This highlights the unused potential of

DL-based applications on the mountain cryo-

sphere (Figure 8).

For the first time, ML has allowed classifying

wet and dry snow in SAR data by applying a

random forest classifier. High classification

accuracies (F1-score over 90%) in mountainous

areas were achieved regardless of underlying

land cover (Tsai et al., 2019b). Snow cover

mapping was improved by creating a hybrid

model including DL (Alex-Net), ML (random

forest) and hand-crafted (manually designed)

features. Classification accuracies of 98% were

reached based on medium-resolution optical

and radar Sentinel-1/2 images when combined

with a DEM (Nijhawan et al., 2019). Mapping

snow cover extent from high-resolution optical

imagery was performed by Guo et al. (2020).

They used pre-trained weights of a

DeepLabv3þ model for Landsat-8 true-colour

imagery to create accurate results with a small

dataset of GaoFen-2 imagery. In addition to clas-

sification tasks, a random forest regressor can be

applied to reconstruct incomplete time series.

Current challenges for snow-related AI applica-

tions include quantifying the SWE and estimat-

ing the snow depth (Kopp et al., 2019;Odry et al.,

2020).
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They used pre-trained weights of a

DeepLabv3þ model for Landsat-8 true-colour

imagery to create accurate results with a small

dataset of GaoFen-2 imagery. In addition to clas-

sification tasks, a random forest regressor can be

applied to reconstruct incomplete time series.

Current challenges for snow-related AI applica-

tions include quantifying the SWE and estimat-

ing the snow depth (Kopp et al., 2019;Odry et al.,
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ML applications on mountain glaciers

focus on the determination of the glacier

extent by either extracting the calving front

(Baumhoer et al., 2019; Cheng et al., 2020;

Mohajerani et al., 2019) or detecting the gla-

cier boundary of debris covered glaciers

(Khan et al., 2020; Nijhawan et al., 2018; Xie

et al., 2020). In addition, DL algorithms can

be used to simulate time series. For example,

Bolibar et al. (2020) modelled glacier evolu-

tion by simulating glacier-wide surface mass

balance time series by an artificial neutral

network. However, even common and simple

ML algorithms (e.g. random forest) can yield

better results than DL-based approaches,

emphasising the importance of choosing the

right AI model for each specific task. In gla-

ciology, the potential that DL can offer, in

automation, efficient processing, and removal

of traditionally laborious manual tasks, is

slowly being realised and still has

unexploited potential.

Intelligent learning does not have to be

solely analytical. Embedding AI into sensor

design could create powerful tools for in-

field glacier monitoring. With data transmis-

sion via high-gain antennae (e.g. Carvallo

et al., 2017) or satellite internet, we

hypothesise that low-cost sensors, embedded

within an AI framework, could revolutionise

mountain glacier monitoring, as it has done

in many other geoscience disciplines (Chan

et al., 2020). For example, such sensors could

include Arduinos or Raspberry Pis (Vujovic

and Maksimovic, 2014) that could act as a

webcam, capture infrared images at night,

detect thermal signatures, record acoustic

events, detect ground displacement or tre-

mors from calving, track velocity with GPS,

or communicate with satellites for real-time

ground-truthing. Each bespoke sensor can

‘talk’ intelligently to another, such the net-

work could respond to real-time changes such

as calving events, surges, or supraglacial

pond drainage. In the wider literature, these

intelligent systems have been called the

‘Internet of Things’ (Alzahrani, 2017; Gubbi

et al., 2013; Khalil et al., 2014). There are

vastly more complex logistical challenges in

the mountain cryosphere, but none of these

individual ideas are new. The interconnected-

ness, intelligent design, and autonomy that

can be offered by such an approach marks a

step-change in our understanding of the geo-

morphic processes currently shaping the

world’s mountain environments.

Figure 8. Potential artificial intelligence applications to the mountain cryosphere.
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4.3 Open science

One of the most limiting factors in the use of

remote sensing data over mountain glaciers is

data availability and, even where data are avail-

able, they are not necessarily accessible (Pope

et al., 2014). Hazard assessment plans produced

for the mountain cryosphere require routine and

open information on landslides, slope stability

and future glacial lake expansion (Ambrosi

et al., 2018; Emmer and Vilı́mek, 2013; Kirsch-

baum et al., 2019; Linsbauer et al., 2016;

Schaub et al., 2013). Such data can provide a

critical role in informing planning decisions

being made by stakeholders in mountain

regions. An increasing number of research pro-

grammes are committing to making their out-

puts open access, such as NASA’s High

Mountain Asia Program, which combines a

variety of remotely sensed derivatives (DEMs,

glacier thickness, landslide inventories, mass

balance) with in situ data (wind, precipitation,

temperature, irradiance) for free download

through an open access portal (https://nsid

c.org/data/highmountainasia). This follows a

precedent set by civilian programmes (e.g.

Landsat and Copernicus) that public funded

missions should be open source at delivery.

Citizen science programmes have great

potential to radically transform remote sensing

of the mountain cryosphere (Carey et al., 2016).

Strengthening local collaborations is vital for

the successful mitigation of hazard risks and

adaptation to the impacts of climate change in

mountains (Huggel et al., 2020; Nussbaumer

et al., 2017). Knowledge should be co-

produced to better understand the concerns and

identifying adaptation solutions that work best

for each community (Klenk et al., 2017). This is

particularly true of remote sensing work, where

it is easy to perform and publish data analysis

without ever entering the place we study. There

is a dearth of studies that combine remote sen-

sing data over mountain glaciers with local

knowledge, and we should learn fromwhere this

has proved effective in other disciplines – such

as landslide risk management (Holcombe et al.,

2021), land degradation analysis (Yiran et al.,

2012) and ecology (Eddy et al., 2017).

Remote sensing data require in situ calibra-

tion and can lead to erroneous results and dama-

ging policy suggestions if relied upon in

isolation (such as NASA’s infamous false

reporting of imminent danger at Lake Palcaco-

cha, Peru; Kaser and Georges, 2003). At the

same time, many DL algorithms require a large

training set (Zhang et al., 2019), which is often

produced manually. Engaging citizens to clas-

sify features works well in disaster management

projects such as Missing Maps (Scholz et al.,

2018). Geotagged photos from social media can

also be harvested for damage assessment fol-

lowing flood events (Cervone et al., 2016),

identifying tourism and the popularity of pro-

tected sites (Walden-Schreiner et al., 2018),

assessing land cover change (Xing et al.,

2017) and reconstructing 3D structures (The-

mistocleous, 2017), each of which could be

applied to the mountain cryosphere. In moun-

tain glaciology, local communities are working

alongside researchers in setting up basic equip-

ment such as webcams (Portenier et al., 2020),

and mountaineers are increasingly collecting

data and observations to report on changes

(Watson and King, 2018) as well as to assess

the true risk of hazards observed from space

(Carey et al., 2016).

Interactive data viewing portals can be an

effective way to showcase research outputs,

rather than static scientific figures that may alie-

nate non-specialists. Initiatives such as the

GLIMS Glacier Viewer (http://www.glim

s.org/maps/glims), ArcGIS Living Atlas

(https://livingatlas.arcgis.com/en/home/), Sen-

tinel Hub (https://apps.sentinel-hub.com/eo-

browser/), or NASA ITS_LIVE (https://nsid

c.org/apps/itslive/; Gardner et al., 2018) are

easy to access, understand and extract informa-

tion from. When this is the case, data are more

readily used (Pope et al., 2014) and offer an
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effective conduit for engaging stakeholders out-

side of academia.

V Summary

In this review, we sought to provide an assess-

ment of the current capabilities of remote sen-

sing over the mountain cryosphere, with a view

to identifying future avenues of research.

Remote sensing has been crucial to understand-

ing and monitoring the mountain cryosphere.

Satellite missions have been used to monitor

lakes, quantify ice melt, classify snow and

detect natural hazards. Civilian missions offer

science-grade sensors with long archives, while

newer commercial constellations offer rapid

revisit time at a higher spatial resolution. In the

rapidly expanding sector of EO satellites, inno-

vation in sensor design over the next decade

will produce higher quality data, expand the

offering of complementary sensor technology,

and create sub-daily repeat periods. Such vast

quantities of data require cloud computing

infrastructure to efficiently process, and AI will

shape the next decade of processing as mono-

tonous tasks are replaced by automation. DL

will further the potential of AI by drawing upon

the expanding pool of data available to address

outstanding research questions in glaciology.

The expanding breadth of sensor options avail-

able to UAVs is also now beginning to be rea-

lised in mountain glaciology. Furthermore,

low-cost sensors could create affordable science

for community monitoring systems. It is

imperative that data and processing capabilities

continue along the road to becoming freely

available, so that communities who will be

adversely affected by future changes to the

mountain cryosphere can use remote sensing

as an effective tool in planning their response.
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(2016) Lake volume monitoring from space. Surveys in

Geophysics 37(2): 269–305.

Dall’Asta E, Forlani G, Roncella R, et al. (2017)

Unmanned aerial systems and DSM matching for rock

glacier monitoring. ISPRS Journal of Photogrammetry

and Remote Sensing 127: 102–114.

Davidson M, Chini M, Dierking W, et al. (2019) Coper-

nicus L-band SAR mission requirements document.

Noordwijk, the Netherlands: European Space Agency.

Available at: https://esamultimedia.esa.int/docs/Earth

Observation/Copernicus_L-band_SAR_mission_

ROSE-L_MRD_v2.0_issued.pdf (accessed 30 April

2020).

Dehecq A, Gourmelen N, Gardner AS, et al. (2019)

Twenty-first century glacier slowdown driven by mass

loss in High Mountain Asia. Nature Geoscience 12(1):

22–27.

Taylor et al. 25



956	 Progress in Physical Geography 45(6)

Denis G, Claverie A, Pasco X, et al. (2017) Towards dis-

ruptions in Earth observation? New Earth Observation

systems and markets evolution: Possible scenarios and

impacts. Acta Astronautica 137: 415–433.

Deschamps-Berger C, Gascoin S, Berthier E, et al. (2020)

Snow depth mapping from stereo satellite imagery in

mountainous terrain: Evaluation using airborne laser-

scanning data. The Cryosphere 14(9): 2925–2940.

Di Mauro B, Baccolo G, Garzonio R, et al. (2017) Impact

of impurities and cryoconite on the optical properties of

the Morteratsch Glacier (Swiss Alps). The Cryosphere

11(6): 2393–2409.

Di Mauro B, Fava F, Ferrero L, et al. (2015) Mineral dust

impact on snow radiative properties in the European Alps

combining ground, UAV, and satellite observations:

Mineral dust on snow in the Alps. Journal of Geophysical

Research: Atmospheres 120(12): 6080–6097.

Dietz AJ, Kuenzer C and Dech S (2015) Global SnowPack:

A new set of snow cover parameters for studying status

and dynamics of the planetary snow cover extent.

Remote Sensing Letters 6(11): 844–853.

Dozier J (1989) Spectral signature of alpine snow cover

from the Landsat Thematic Mapper. Remote Sensing of

Environment 28: 9–22.

Drenkhan F, Guardamino L, Huggel C, et al. (2018) Cur-

rent and future glacier and lake assessment in the

deglaciating Vilcanota-Urubamba basin, Peruvian

Andes. Global and Planetary Change 169: 105–118.

Drenkhan F, Huggel C, Guardamino L, et al. (2019)

Managing risks and future options from new lakes in

the deglaciating Andes of Peru: The example of the

Vilcanota-Urubamba Basin. Science of The Total

Environment 665: 465–483.

Dussaillant I, Berthier E, Brun F, et al. (2019) Two decades

of glacier mass loss along the Andes. Nature

Geoscience 12(10): 802–808.

Dyurgerov MB and Meier MF (2000) Twentieth century

climate change: Evidence from small glaciers. Pro-

ceedings of the National Academy of Sciences 97(4):

1406–1411.

Eddy IMS, Gergel SE, Coops NC, et al. (2017) Integrating

remote sensing and local ecological knowledge to

monitor rangeland dynamics. Ecological Indicators 82:

106–116.

Egli L and Jonas T (2009) Hysteretic dynamics of seasonal

snow depth distribution in the Swiss Alps: Hysteretic

dynamics of snow distribution. Geophysical Research

Letters 36(2): L02501.

Eltner A, Kaiser A, Abellan A, et al. (2017) Time lapse

structure-from-motion photogrammetry for continuous

geomorphic monitoring. Earth Surface Processes and

Landforms 42(14): 2240–2253.

Emmer A and Vilı́mek V (2013) Review article: Lake

and breach hazard assessment for moraine-dammed

lakes: An example from the Cordillera Blanca

(Peru). Natural Hazards and Earth System Sciences

13(6): 1551–1565.

Fahnestock M, Scambos T, Moon T, et al. (2016) Rapid

large-area mapping of ice flow using Landsat 8.Remote

Sensing of Environment 185: 84–94.

Fair Z, Flanner M, Brunt KM, et al. (2020) Using ICESat-2

and Operation IceBridge altimetry for supraglacial lake

depth retrievals. The Cryosphere 14(11): 4253–4263.

Falaschi D, Lenzano MG, Villalba R, et al. (2019) Six

decades (1958–2018) of geodetic glacier mass balance

in Monte San Lorenzo, Patagonian Andes. Frontiers in

Earth Science 7: 326.

Fischer L, Purves RS, Huggel C, et al. (2012) On the

influence of topographic, geological and cryospheric

factors on rock avalanches and rockfalls in high-

mountain areas. Natural Hazards and Earth System

Sciences 12(1): 241–254.

Fitzpatrick AAW, Hubbard AL, Box JE, et al. (2014) A

decade (2002–2012) of supraglacial lake volume esti-

mates across Russell Glacier, West Greenland. The

Cryosphere 8(1): 107–121.

Fox P, Tyc G and Beckett K (2017) The UrtheCast SAR-

XL multi-band, multi-aperture spaceborne SAR sys-

tem. In: 2017 IEEE radar conference (RadarConf), 26

September. Seattle, WA, USA: IEEE. Available at:

http://ieeexplore.ieee.org/document/7944492/ (acces-

sed 28 April 2020).

Fujita K, Sakai A, Nuimura T, et al. (2009) Recent changes

in Imja Glacial Lake and its damming moraine in the

Nepal Himalaya revealed by in situ surveys and multi-

temporal ASTER imagery. Environmental Research

Letters 4(4): 045205.

Gaffey C and Bhardwaj A (2020) Applications of unman-

ned aerial vehicles in cryosphere: Latest advances and

prospects. Remote Sensing 12(6): 948.

Gardner A, Lei Y and Agram PS (2020) autoRIFT (auton-

omous Repeat Image Feature Tracking). Zenodo.

Available at: https://zenodo.org/record/3756192#.Xse-

TjpKhPY (accessed 22 May 2020).

Gardner AS, Fahnestock MA, Agram PS, et al. (2018)

ITS_LIVE: A new NASA MEaSUREs initiative to

26 Progress in Physical Geography XX(X)



Taylor et al.	 957

Denis G, Claverie A, Pasco X, et al. (2017) Towards dis-

ruptions in Earth observation? New Earth Observation

systems and markets evolution: Possible scenarios and

impacts. Acta Astronautica 137: 415–433.

Deschamps-Berger C, Gascoin S, Berthier E, et al. (2020)

Snow depth mapping from stereo satellite imagery in

mountainous terrain: Evaluation using airborne laser-

scanning data. The Cryosphere 14(9): 2925–2940.

Di Mauro B, Baccolo G, Garzonio R, et al. (2017) Impact

of impurities and cryoconite on the optical properties of

the Morteratsch Glacier (Swiss Alps). The Cryosphere

11(6): 2393–2409.

Di Mauro B, Fava F, Ferrero L, et al. (2015) Mineral dust

impact on snow radiative properties in the European Alps

combining ground, UAV, and satellite observations:

Mineral dust on snow in the Alps. Journal of Geophysical

Research: Atmospheres 120(12): 6080–6097.

Dietz AJ, Kuenzer C and Dech S (2015) Global SnowPack:

A new set of snow cover parameters for studying status

and dynamics of the planetary snow cover extent.

Remote Sensing Letters 6(11): 844–853.

Dozier J (1989) Spectral signature of alpine snow cover

from the Landsat Thematic Mapper. Remote Sensing of

Environment 28: 9–22.

Drenkhan F, Guardamino L, Huggel C, et al. (2018) Cur-

rent and future glacier and lake assessment in the

deglaciating Vilcanota-Urubamba basin, Peruvian

Andes. Global and Planetary Change 169: 105–118.

Drenkhan F, Huggel C, Guardamino L, et al. (2019)

Managing risks and future options from new lakes in

the deglaciating Andes of Peru: The example of the

Vilcanota-Urubamba Basin. Science of The Total

Environment 665: 465–483.

Dussaillant I, Berthier E, Brun F, et al. (2019) Two decades

of glacier mass loss along the Andes. Nature

Geoscience 12(10): 802–808.

Dyurgerov MB and Meier MF (2000) Twentieth century

climate change: Evidence from small glaciers. Pro-

ceedings of the National Academy of Sciences 97(4):

1406–1411.

Eddy IMS, Gergel SE, Coops NC, et al. (2017) Integrating

remote sensing and local ecological knowledge to

monitor rangeland dynamics. Ecological Indicators 82:

106–116.

Egli L and Jonas T (2009) Hysteretic dynamics of seasonal

snow depth distribution in the Swiss Alps: Hysteretic

dynamics of snow distribution. Geophysical Research

Letters 36(2): L02501.

Eltner A, Kaiser A, Abellan A, et al. (2017) Time lapse

structure-from-motion photogrammetry for continuous

geomorphic monitoring. Earth Surface Processes and

Landforms 42(14): 2240–2253.

Emmer A and Vilı́mek V (2013) Review article: Lake

and breach hazard assessment for moraine-dammed

lakes: An example from the Cordillera Blanca

(Peru). Natural Hazards and Earth System Sciences

13(6): 1551–1565.

Fahnestock M, Scambos T, Moon T, et al. (2016) Rapid

large-area mapping of ice flow using Landsat 8.Remote

Sensing of Environment 185: 84–94.

Fair Z, Flanner M, Brunt KM, et al. (2020) Using ICESat-2

and Operation IceBridge altimetry for supraglacial lake

depth retrievals. The Cryosphere 14(11): 4253–4263.

Falaschi D, Lenzano MG, Villalba R, et al. (2019) Six

decades (1958–2018) of geodetic glacier mass balance

in Monte San Lorenzo, Patagonian Andes. Frontiers in

Earth Science 7: 326.

Fischer L, Purves RS, Huggel C, et al. (2012) On the

influence of topographic, geological and cryospheric

factors on rock avalanches and rockfalls in high-

mountain areas. Natural Hazards and Earth System

Sciences 12(1): 241–254.

Fitzpatrick AAW, Hubbard AL, Box JE, et al. (2014) A

decade (2002–2012) of supraglacial lake volume esti-

mates across Russell Glacier, West Greenland. The

Cryosphere 8(1): 107–121.

Fox P, Tyc G and Beckett K (2017) The UrtheCast SAR-

XL multi-band, multi-aperture spaceborne SAR sys-

tem. In: 2017 IEEE radar conference (RadarConf), 26

September. Seattle, WA, USA: IEEE. Available at:

http://ieeexplore.ieee.org/document/7944492/ (acces-

sed 28 April 2020).

Fujita K, Sakai A, Nuimura T, et al. (2009) Recent changes

in Imja Glacial Lake and its damming moraine in the

Nepal Himalaya revealed by in situ surveys and multi-

temporal ASTER imagery. Environmental Research

Letters 4(4): 045205.

Gaffey C and Bhardwaj A (2020) Applications of unman-

ned aerial vehicles in cryosphere: Latest advances and

prospects. Remote Sensing 12(6): 948.

Gardner A, Lei Y and Agram PS (2020) autoRIFT (auton-

omous Repeat Image Feature Tracking). Zenodo.

Available at: https://zenodo.org/record/3756192#.Xse-

TjpKhPY (accessed 22 May 2020).

Gardner AS, Fahnestock MA, Agram PS, et al. (2018)

ITS_LIVE: A new NASA MEaSUREs initiative to

26 Progress in Physical Geography XX(X)

track the movement of the world’s ice. AGU Fall

Meeting Abstract: C14A–02B. Available at: https://

ui.adsabs.harvard.edu/abs/2018AGUFM.C14A..02G/

abstract (accessed 5 December 2020).

Gascoin S, Grizonnet M, Bouchet M, et al. (2019) Theia

Snow collection: High-resolution operational snow

cover maps from Sentinel-2 and Landsat-8 data. Earth

System Science Data 11(2): 493–514.

Giordan D, Dematteis N, Allasia P, et al. (2020) Classifi-

cation and kinematics of the Planpincieux Glacier

break-offs using photographic time-lapse analysis.

Journal of Glaciology 66(256): 1–15.

Gomes V, Queiroz G and Ferreira K (2020) An overview

of platforms for big earth observation data management

and analysis. Remote Sensing 12(8): 1253.

Gonzalez L, Montes G, Puig E, et al. (2016) unmanned

aerial vehicles (uavs) and artificial intelligence revo-

lutionizing wildlife monitoring and conservation. Sen-

sors 16(1): 97.

Gorelick N, Hancher M, Dixon M, et al. (2017) Google

Earth Engine: Planetary-scale geospatial analysis for

everyone. Remote Sensing of Environment 202(3):

18–27.

Gubbi J, Buyya R, Marusic S, et al. (2013) Internet of

Things (IoT): A vision, architectural elements, and

future directions. Future Generation Computer Sys-

tems 29(7): 1645–1660.

Gulley J and Benn DI (2007) Structural control of engla-

cial drainage systems in Himalayan debris-covered

glaciers. Journal of Glaciology 53(182): 399–412.

Guo X, Chen Y, Liu X, et al. (2020) Extraction of snow

cover from high-resolution remote sensing imagery

using deep learning on a small dataset. Remote Sensing

Letters 11(1): 66–75.

Haeberli W, Buetler M, Huggel C, et al. (2016) New lakes

in deglaciating high-mountain regions – opportunities

and risks. Climatic Change 139(2): 201–214.

Harrison S, Kargel JS, Huggel C, et al. (2018) Climate

change and the global pattern of moraine-dammed

glacial lake outburst floods. The Cryosphere 12(4):

1195–1209.

Hart JK, Martinez K, Basford PJ, et al. (2019a) Surface

melt-driven seasonal behaviour (englacial and sub-

glacial) from a soft-bedded temperate glacier recorded

by in situ wireless probes. Earth Surface Processes and

Landforms 44(9): 1769–1782.

Hart JK, Martinez K, Basford PJ, et al. (2019b) Surface

melt driven summer diurnal and winter multi-day stick-

slip motion and till sedimentology. Nature Communi-

cations 10(1): 1599.
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Paul F, Huggel C and Kääb A (2004) Combining satellite

multispectral image data and a digital elevation model

for mapping debris-covered glaciers. Remote Sensing

of Environment 89(4): 510–518.

Perov V, Chernomorets S, Budarina O, et al. (2017) Debris

flow hazards for mountain regions of Russia: Regional

30 Progress in Physical Geography XX(X)

features and key events. Natural Hazards 88(S1):

199–235.

Pieczonka T, Bolch T, Junfeng W, et al. (2013) Hetero-

geneous mass loss of glaciers in the Aksu-Tarim

Catchment (Central Tien Shan) revealed by 1976

KH-9 Hexagon and 2009 SPOT-5 stereo imagery.

Remote Sensing of Environment 130: 233–244.

Pierdicca N, Davidson M, Chini M, et al. (2019) The

Copernicus L-band SAR mission ROSE-L (Radar

Observing System for Europe). In: Notarnicola C,

Pierdicca N, Bovenga F and Santi E (eds) Active and

Passive Microwave Remote Sensing for Environmental

Monitoring III. Strasbourg: SPIE, 13. Available at:

https://www.spiedigitallibrary.org/conference-proceed

ings-of-spie/11154/2534743/The-Copernicus-L-band-

SAR-mission-ROSE-L-Radar-Observing/10.1117/

12.2534743.full (accessed 29 April 2020).

Pope A, Rees W, Fox A, et al. (2014) Open access data in

polar and cryospheric remote sensing. Remote Sensing

6(7): 6183–6220.
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