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Abstract

We consider a preferential attachment process in which a multigraph is built one node
at a time. The number of edges added at stage t, emanating from the new node, is given by
some prescribed function f(t), generalising a model considered by Kleinberg and Klein-
berg in 2005 where f was presumed constant. We show that if f(t) is asymptotically
bounded above and below by linear functions in t, then with probability 1 the infinite limit
of the process will be isomorphic to the Rado multigraph. This structure is the natural
multigraph analogue of the Rado graph, which we introduce here.
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1 Introduction
In recent decades, there has been much interest in modelling and analysing the many net-
works which appear in the real world, in contexts such as the world wide web or online so-
cial networks. This work has drawn heavily on the mathematical study of random graphs, a
subject with its origins in the 1959 work of Erdős and Rényi, [15]. They principally studied
the graphs which emerge from the following process: begin with a collection of nodes, and
independently connect every pair with an edge, with some fixed probability p.

Erdős-Rényi random graph theory has two distinct facets. First, researchers have anal-
ysed the finite graphs which arise. Here, questions of interest include the emergence of a
giant component and the degree distribution of the nodes, and analyses are typically highly
sensitive to the value of p. In [3], Bollobás provides a comprehensive discussion of such
matters.
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The second angle of approach is to consider this process on a countably infinite set of
nodes. In this case, a remarkable theorem of Erdős and Rényi guarantees that, irrespec-
tive of the value of p ∈ (0, 1), the resulting graph will with probability 1 be isomorphic
to the Rado graph. This famous graph is axiomatised by the following schema: given
any finite disjoint sets of nodes U and V , there exists a node v connected to each node
in V and none in U . This graph exhibits many properties which logicians and combina-
torists enjoy. To start with, it is universal in that it isomorphically embeds every finite and
countably infinite graph. It is also countably categorical, meaning that any two countable
models of the above axioms will be isomorphic. The graph is 1-transitive in that for any
any two nodes v1, v2 there is an automorphism α where α(v1) = v2. It is ultrahomoge-
neous: any isomorphism between finite induced subgraphs extends to an automorphism of
the whole structure. (Analogues of these facts are proved for a new structure, the Rado
multigraph, in Proposition 2.2 below.) The Rado graph continues to attract the attention of
today’s permutation group-theorists; it is known that its automorphism group is simple (in
the group-theoretic sense), and satisfies the strong small-index property. In [5], Cameron
provides a recent survey of such matters. Beyond this, the Rado graph satisfies several
subtler properties, notably rank-1 supersimplicity and 1-basedness, which make it a central
object of study for today’s model theorists. Wagner provides an authoritative account in
[17].

In more recent years, however, network science has grown beyond the Erdős-Rényi
approach, to embrace alternative methods for modelling real-world networks. The most
prominent of these is perhaps the preferential attachment (PA) mechanism introduced by
Barabási and Albert in [2]. Another notable class of models derive from the web-copying
mechanism introduced by Adler and Mitzenmacher in [1].

In PA models, a new node is introduced at each time step, and then connected to each
pre-existing node with a probability depending on the current degree of that node, accord-
ing to a rich-get-richer paradigm. PA processes can exhibit several properties observed in
real-world networks (but absent in Erdős-Rényi graphs), notably scale-freeness meaning
that the proportion of nodes of degree k is asymptotically proportional to k−γ for some
fixed γ and all k.

What can we say of the infinite limits of these processes? Results of Bonato and Janssen
[4] have made significant progress for web-copying models. Less work has been done in
the case of PA processes. The work of Oliveira and Spencer [14] studying the Growing Net-
work model of Krapivsky and Redner [11] and of Drinea, Enachescu, and Mitzenmacher
[7] is a notable exception. Of greatest relevance to the current paper, however, is the work
of Kleinberg and Kleinberg [10]. There the following PA process is considered: at each
time-step, a single node and a constant number C of edges are added. The new edges all
emanate from the new node, with their end-points independently chosen among the pre-
existing nodes, with probabilities proportional to their degrees. The resulting structures are
analysed as directed multigraphs: all edges are directed, two or more may share the same
start and end-points.

Kleinberg and Kleinberg prove that if C = 1 or C = 2, then there exists an infinite
structure, to which, with probability 1, the infinite limit of the process will be isomorphic.
However, the analogous result fails for C ≥ 3: given two instantiations of the process,
there is a positive probability that their infinite limits will fail to be isomorphic.

In this paper we extend the results and methods of [10], by considering a process which
adds f(t) many edges at stage t for some function f : N → N. Again the start-point of
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every edge is the new node, and the end-points are chosen independently with probability
proportional to the nodes’ degrees. It follows easily from the results of [10] that when-
ever f is non-constant, or constant with value ≥ 3, there is a positive probability that the
infinite limiting structures of two instantiations will be non-isomorphic as directed multi-
graphs. However, by forgetting the directions of edges, and looking for isomorphisms as
multigraphs, we are able to recover a new categoricity result. In Theorem 3.2 we rigorously
establish a sufficient criterion for the resulting structure to be isomorphic to the Rado multi-
graph with probability 1. (This structure is the natural multigraph analogue of the Rado
graph, and is defined in Definition 2.1 below.) Our criterion is that f is asymptotically
bounded above and below by positive non-constant linear functions of t.

In [9], the author uses similar machinery to analyse a Preferential Attachment process
in which parallel edges are not permitted, and the new node t+1 is connected to each pre-
existing node u independently with probability du(t)

t . Thus the number of new edges is not
prescribed, but is itself a random variable. It is shown in [9] that, so long as the initial graph
is neither edgeless nor complete, with probability 1 the infinite limit of the process will be
the Rado graph augmented with a finite number of either universal or isolated nodes.

We describe the structure of the remainder of the paper:

• In Section 2 we introduce the infinite Rado Multigraph.

• In Section 3 we introduce MPAf , our main variant of the preferential attachment
process, as well as a secondary variant GPAf . We describe suitable hypotheses on
the function f , and we prove some initial results. We state our main result, Theo-
rem 3.2, which asserts that under appropriate conditions MPAf approaches the Rado
multigraph.

• In Section 4 we develop the theory of martingales for the process MPAf , our main
probabilistic tool.

• In Section 5, we complete the proof of Theorem 3.2.

• In Section 6, we close with some discussion of possible further directions of study.

2 The Rado multigraph
We begin by defining the infinite structure which our finitary processes will be shown to
approach. So far as we are aware, this structure has not previously appeared in the literature.
However the reader familiar with the Rado graph will find little of surprise. (For clarity, we
work with the convention that 0 ∈ N.)

Definition 2.1. A finitary loopless multigraph is a structure (V,E) where V is a set of
vertices, and E is a finitary multiset of unordered pairs from V . That is to say every element
of E is of the form e = {vi, vj} (written vivj) where vi, vj ∈ V are distinct, E is itself
unordered, and each e has a multiplicity me ∈ N describing the number of occurrences of
e within E. (If e does not occur within E we consider it to have multiplicity 0.)

The Rado Multigraph is a finitary loopless multigraph where V is countably infinite
and which additionally satisfies the following axiom:
• For any n ≥ 1, any m1, . . . ,mn ∈ N, and any distinct u1, . . . , un ∈ V there exists
v ∈ V such that the multiplicity of vui is exactly mi.
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We now show that the Rado Multigraph is unique up to isomorphism. We also take the
opportunity to observe that several other familiar properties of the Rado graph hold in our
context although we shall not use them directly:

Proposition 2.2. Let M and M′ be structures satisfying Definition 2.1 of the Rado Multi-
graph. Then the following hold:

1. ℵ0-categoricity: M ∼= M′.

2. 1-transitivity: Given vertices v1, v2 in M there exists some α ∈ Aut(M) where
α(v1) = v2.

3. Ultrahomogeneity: If A,B are finite substructures of M and γ : A ∼= B is a
multigraph-isomorphism, then there exists α ∈ Aut(M) where α ↾A= γ.

(Note: here we treat A and B as induced substructures: for any vertices u, v ∈ A
the multiplicity of uv within A equals that within M).

4. Universality: Any finite or countably infinite finitary loopless multigraph can be iso-
morphically embedded in M.

Proof. We concentrate on proving statement 1. (Statements 2-4 follow from minor al-
terations to our argument. We leave the reader to fill in the details.) We proceed by a
standard back-and-forth argument. First we list the elements of M as a1, a2, a3, . . . and
similarly b1, b2, b3, . . . for M′. Now we argue inductively. Suppose i is even, and suppose
(a′1, . . . , a

′
i)

∼= (b′1, . . . , b
′
i) have been chosen. Let a′i+1 = aj where j is minimum such

that aj ̸∈ {a′1, . . . , a′i}.
Let (m1, . . . ,mi) be the vector counting the edges between a′i+1 and (a′1, . . . , a

′
i).

Notice that each mj ∈ N by the assumption of finitariness. Then by hypothesis there exists
b′i+1 joined to (b′1, . . . , b

′
i) in a fashion described by (m1, . . . ,mi). Hence (a′1, . . . , a

′
i+1)

∼=
(b′1, . . . , b

′
i+1).

Odd steps are identical, exchanging the roles of M and M′. Thus we build an isomor-
phism M ∼= M′.

Our concern in the current work is on PA processes. However, we remark in passing
that the Rado multigraph also arises from the following process in the style of Erdős-Rényi.
We shall not use this result and leave the proof as an easy adaptation of the corresponding
classical result about the Rado graph.

Proposition 2.3. Let (pj)j≥1 be any sequence lying entirely in (0, 1). Let V be a countably
infinite set. Let M be multigraph arising from the following random process.

• At step 0, the structure has no edges.

• At step j ≥ 1, consider every pair of distinct v1, v2 ∈ V where vivj currently
has multiplicity j − 1, and connect v1, v2 with a new jth edge with probability pj ,
independently of the behaviour of all other vertices.

Then with probability 1, M is isomorphic to the Rado multigraph.
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3 Preferential attachment with prescribed edge growth
In this section we shall describe two variants of the preferential attachment process, es-
tablish some of their basic properties, and formally state our main result. The process of
principal interest will be MPAf which builds a directed multigraph. We will also mention
a natural variant GPAf , which builds a directed graph. Each proceeds by adding, at each
time step, a single node along with a prescribed number of directed edges emanating from
it. The number of these edges is determined by some fixed function f : N → N. (In fact the
directions of the edges will play no role in the theory: we shall analyse the resulting struc-
tures as undirected (multi)graphs. However in the interim it will be convenient to refer to
the ‘start-’ and ‘end-points’ of each edge, so we preserve directedness for the time being.)
We shall work over some initial directed (multi)graph G′ containing no isolated nodes (i.e.
nodes of degree 0). However our results will be independent of the choice of G′, so the
reader may choose to focus on the case where G′ is trivial.

Definition 3.1 (The process MPAf ). Let G′ = (V ′, E′) be a finite directed multigraph
containing no isolated nodes (so E′ is a multiset of ordered pairs from V ′). Suppose that
G′ contains |E′| = e′ edges and |V ′| = v′ nodes. We will assume V ′ = {1, . . . , v′}.

Suppose that the function f : N → N satisfies:

• f(0) = e′.

• f(t) = 0 whenever 1 ≤ t ≤ v′ − 1.

• f(t) ≥ 1 for all t ≥ v′.

At each time-step t ≥ 1, we shall construct a multigraph G(t) with vertex set V (t) and
edge multiset E(t).

First we impose G(1) = . . . = G(v′) = G′.
Whenever t ≥ v′, we will have V (t) := {1, . . . , t} and

E(t+ 1) = E(t) ∪ E(t+ 1)

where |E(t+ 1)| = f(t).
The start-point of each edge in E(t + 1) is the new node t + 1. The end-points are

chosen independently from V (t), with probabilities directly proportional to their degrees
in G(t).

Notice that, the degrees used to calculate the probabilities are taken from G(t), which
is to say the model does not notice any incremental updating of degrees between G(t)
and G(t + 1). One can imagine the endpoints of the f(t) many new edges being selected
simultaneously, and independently of each other.

Notice too that our assumption that f(t) ̸= 0 for t ≥ v′ (along with our assumption on
G′) serves to ensure that there are never any isolated nodes.

We may now state our main result. (Recall the asymptotic notation g1 = Θ(g2) for
functions g1, g2 as meaning that there exist c2 ≥ c1 > 0 so that for all large enough t we
have c1 · g2(t) ≤ g1(t) ≤ c2 · g2(t).)

Theorem 3.2. Suppose that G′ is a finite directed multigraph containing no isolated nodes,
that f satisfies the requirements from Definition 3.1, and also that f(t) = Θ(t). Then, with
probability 1, the infinite limit of MPAf (G

′) is isomorphic, as an undirected multigraph, to
the Rado multigraph.
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Before we commence the proof of this theorem, we remark that we expect that a similar
result to apply to a graph variant of the process, which we briefly introduce:

Definition 3.3 (The process GPAf ). Let G′ = (V ′, E′) be a finite directed graph contain-
ing no isolated nodes. Suppose that G′ contains |E′| = e′ edges and |V ′| = v′ nodes. We
will assume V ′ = {1, . . . , v′}.

Suppose that the function f : N → N satisfies:

• f(0) = e′.

• f(t) = 0 whenever 1 ≤ t ≤ v′ − 1.

• 1 ≤ f(t) ≤ t for all t ≥ v′.

At each time-step t ≥ 1, we shall construct a graph G(t) with vertex set V (t) and edge
set E(t).

First we impose G(1) = . . . = G(v′) = G′.
Whenever t ≥ v′, we will have V (t) := {1, . . . , t} and

E(t+ 1) = E(t) ∪ E(t+ 1)

where |E(t+ 1)| = f(t).
The start-point of each edge in E(t + 1) is the new node t + 1. The end-points of

the edges are selected sequentially from V (t), without replacement, with the choice at
each step made from the remaining unselected elements of V (t) with probabilities directly
proportional to their degrees in G(t).

Conjecture 3.4. Suppose that G′ = (V ′, E′) be a finite directed graph containing no
isolated nodes, that f satisfies the conditions in Definition 3.3, and further that there are
constants 0 < c1 ≤ c2 < 1 where c1 · t ≤ f(t) ≤ c2 · t for all large enough t. Then, with
probability 1, the infinite limit of GPAf (G

′) is isomorphic as an undirected graph to the
Rado graph.

Our arguments will be independent of G′, and thus we shall largely suppress mention
of it. Let us now consider the distribution of edges at stage t+1. First notice that |E(t)| =
F (t) :=

∑t−1
i=0 f(i). Hence in MPAf , at stage t+ 1 given any pre-existing node u ≤ t, the

probability that any given edge in E(t + 1) has its end-point at u is exactly du(t)
2F (t) , where

du(t) is the degree of u in G(t). Thus the expected number of edges in E(t + 1) with
endpoint at u is f(t)·du(t)

2F (t) .
In GPAf this probability distribution is more complicated, and the expected number

of edges u receives at stage t + 1 depends in a more detailed way upon G(t). This is the
primary obstacle to extending the current work to a proof of Conjecture 3.4.

Our standing assumption will be that we are working in MPAf . We shall leave the case
of GPAf open, but make some remarks about it as we proceed.

Our assumption in Theorem 3.2 is that f(t) = Θ(t). However we shall be able to
develop much of the theory under the following weaker hypotheses:

Assumption 3.5.
∞∑
s=0

f(s)

F (s)
= ∞. (3.1)
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∞∑
s=0

(
f(s)

F (s)

)2

< ∞. (3.2)

We briefly discuss this. Assumption 3.5 easily follows in full, for instance, if f(t) =
Θ(tα) for some α ≥ 0.

However part (2) fails in general for polynomially bounded functions, an example be-
ing:

f(t) =

{
t when t = 2n for n ∈ N

1 otherwise.

On the other hand, both parts do hold for some exponential functions, such as f(t) =
⌊ 1
4 t

− 3
4 e

1
4 t⌋.

In all cases, it will be useful to extend the domain of f to R≥0. We choose to do
this as a step function, via f(t) := f (⌊t⌋). (Of course there may be more natural ways
to achieve the same thing, however this choice will be convenient, as the fourth point in
the following Lemma makes clear.) We now gather together some observations about the
extended function f . These follow immediately from our previous conditions.

Corollary 3.6. The following hold:

• f(t) = e′ for 0 ≤ t < 1.

• f(t) = 0 whenever 1 ≤ t < v′.

• f(t) ≥ 1 for all t ≥ v′.

• f is Lebesgue-measurable with antiderivative
∫ t

0
f(s)ds =: F (t). (This notation is

consistent with the previous interpretation of F since the two functions coincide at
integer points.)

• F is monotonic increasing everywhere and strictly so for t ≥ v′.

Under our additional hypothesis we can say a little more:

Lemma 3.7. Suppose that Assumption 3.5(2) holds. Then for any β ≥ 1, there exists
Kβ > 0 so that for any t ≥ m ≥ 0:∣∣∣∣∣

∫ t

m

f(s)

F (s)β
ds−

t∑
s=m

f(s)

F (s)β

∣∣∣∣∣ < Kβ .

Proof. Let M be such that whenever s ≥ M then f(s) < F (s). Such a value must exist
by Assumption 3.5(2).

It is enough to prove the result this for all m ≥ M , since one can then add

max

{∫ M

0

f(s)

F (s)β
ds,

M∑
s=0

f(s)

F (s)β

}

to Kβ to obtain the result for all m. Thus we shall assume m ≥ M .
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Firstly, it is immediate by consideration of F ↾[s,s+1] that

t∑
s=m

f(s)

F (s+ 1)β
<

∫ t

m

f(s)

F (s)β
ds <

t∑
s=m

f(s)

F (s)β
.

Next we shall appeal to Newton’s generalised binomial theorem, that whenever a, b, β ∈
C with 0 < |b| < |a|, then (a + b)β =

∑∞
j=0 C(β, j)aβ−jbj , where C(β, j) are the

generalised binomial coefficients.
When a = 1, the series has radius of convergence 1 in b. We shall also use the fact that

the series remains convergent for |b| = 1, so long as Re(β) > 0, which of course holds in
the context of this Lemma. (See [6] p.17, for example.) Now,

t∑
s=m

f(s)

F (s)β
−

t∑
s=m

f(s)

F (s+ 1)β
=

t∑
s=m

f(s)

F (s)β
− f(s)

(F (s) + f(s))
β

<

t∑
s=m

f(s) (F (s) + f(s))
β − f(s)F (s)β

F (s)2β

=

t∑
s=m

f(s)
(∑∞

j=1 C(β, j)F (s)β−jf(s)j
)

F (s)2β

<

t∑
s=m

∑∞
j=1 C(β, j)F (s)β−1f(s)2

F (s)2β

<

t∑
s=m

2βf(s)2

F (s)1+β
≤ 2β

t∑
s=m

f(s)2

F (s)2
< 2β ·K := Kβ

where K is the finite bound provided in Assumption 3.5(2).

The next two results hold in GPAf as well as MPAf :

Lemma 3.8. Suppose that Assumption 3.5(1) holds. Then for any node u, any stage t0,
and any state of the graph G(t0), the probability that v never receives another edge is 0.

Proof. Suppose that du(t0) = N ≥ 1. The probability that u never receives a further edge
is therefore given by (or in GPAf is bounded above by)

∞∏
t=t0

(
1− N

2F (t)

)f(t)

.

We shall show that this is 0. It is clearly enough to do so in the case N = 1. Taking
logarithms, it is therefore enough to show that

∞∑
t=t0

f(t) ln

(
1 +

1

2F (t)− 1

)
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diverges to ∞. Now as for small enough x, we know ln(1 + x) > 1
2x. Thus for large

enough t,

ln

(
1 +

1

2F (t)− 1

)
>

1

4F (t)
.

Thus the result follows from Assumption 3.5(1).

Corollary 3.9. Suppose that Assumption 3.5(1) holds. Then for any node u, given any
state of the graph G(t0), with probability 1 it will be true that d(t) → ∞ as t → ∞.

Proof. This follows automatically from Lemma 3.8 by the countable additivity of the prob-
ability measure.

4 Martingale theory
In this section, we apply some machinery from the theory of martingales to the process
MPAf , generalising the theory developed in [10]. We shall assume throughout that we
are working in MPAf , and begin with the following easy result, which does not transfer
immediately to GPAf .

Remark 4.1. Given any node u, define Uu(t + 1) := du(t + 1) − du(t) and µu(t) :=
E
(
Uu(t+ 1)

∣∣∣∣du(t)) . Then
µu(t)

du(t)
=

f(t)

2F (t)
.

In particular, if f(t) = Θ (tα) where α ≥ 0 then µu(t) = Θ

(
du(t)

t

)
.

The next two results are the key to our analysis, and generalise Proposition 3.1 of [10]

Proposition 4.2. Suppose that Assumption 3.5(2) holds. For any node u, define

A(t) = Au(t) :=

t−1∏
j=1

(
1 +

f(j)

2F (j)

)

and X(t) := Xu(t) =
du(t)
Au(t)

. Then

(i) X(t) is a martingale.

(ii) Thus, for any node u, with probability 1, there exists xu ≥ 0 such that

lim
t→∞

du(t)

A(t)
= xu.

(iii) A(t) = Θ
(
F (t)

1
2

)
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Proof. Employing Remark 4.1, the first part is straightforward:

E(X(t+ 1)||X(t)) =
1

A(t+ 1)
E(d(t+ 1)||d(t))

=
1

A(t+ 1)
(d(t) + µ(t))

=
1

A(t+ 1)
d(t)

(
1 +

µ(t)

d(t)

)
=

1

A(t)
d(t) = X(t).

Part (ii) follows from (i) via Doob’s convergence theorem, which gives us that X(t) →
X for some random variable X .

Hence all that remains to understand the behaviour of A(t) for large t, to establish (iii).
By taking logarithms and employing the standard bounds x − 1

2x
2 < ln(1 + x) < x, we

see:
1

2

t−1∑
s=1

f(s)

F (s)
− 1

8

t−1∑
s=1

f(s)2

F (s)2
< lnA(t) <

1

2

t−1∑
s=1

f(s)

F (s)
.

Therefore by Assumption 3.5 and Lemma 3.7, it follows that

1

2

∫ t−1

s=1

f(s)

F (s)
ds−K < lnA(t) <

1

2

∫ t−1

s=1

f(s)

F (s)
ds+K ′

for some constants K and K ′ from which the result follows.

We need a little more information about the distribution of the xu provided by the
preceding result:

Proposition 4.3. Suppose that f satisfies Assumption 3.5 in full. Given any time t0, state
G0(t0), and node u, P (xu > 0) = 1.

Proof. Our proof closely follows that of Proposition 3.1 of [10].
We take u as fixed and shall suppress mention of it, writing X(n) for Xu(n), etc.,

throughout.
Given any n > m > 0 define X̃m(n) := (X(n)−X(m))

2. Then for fixed m, it is
an elementary fact that the sequence X̃m(n) forms a submartingale. We now proceed via a
sequence of claims.

Claim 1

E
(
X̃m(n)

∣∣∣∣X(m)
)
=

n−1∑
t=m

E
(
X(t+ 1)2

∣∣∣∣X(m)
)
−E

(
X(t)2

∣∣∣∣X(m)
)
.

Proof of Claim 1.

E
(
X̃m(n)

∣∣∣∣X(m)
)
= E

(
X(n)2 − 2X(n)X(m) +X(m)2

∣∣∣∣X(m)
)

= E
(
X(n)2

∣∣∣∣X(m)
)
− 2X(m)E

(
X(n)

∣∣∣∣X(m)
)
+X(m)2

= E
(
X(n)2

∣∣∣∣X(m)
)
−X(m)2.

Unpacking the sum in the statement of the claim gives the same result.
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Claim 2 There exists K > 0 such that for all large enough m and all n > m

E(X̃m(n)||X(m)) < X(m) · K

F (m)
1
2

.

Proof of Claim 2

Proof of Claim 2. Recall U(t + 1) := d(t + 1) − d(t). Now U(t + 1) is binomially
distributed via b

(
f(t), d(t)

2F (t)

)
meaning, as already observed, that E(U(t + 1)||d(t) =

d) = µ(t) = d·f(t)
2F (t) and also Var(U(t + 1)||d(t) = d) = d·f(t)

2F (t)

(
1− d

2F (t)

)
. Thus,

writing f and F for f(t) and F (t) respectively,

E
(
U(t+ 1)2||d(t) = d

)
=

(
df

2F

)2

+
df

2F

(
2F − d

2F

)
<

fd

2F
+

f2d2

4F 2
.

At the same time,

E
(
d(t+ 1)2||d(t) = d

)
= E

(
(U(t+ 1) + d)

2 ||d(t) = d
)

= E(U(t+ 1)2||d(t) = d) + 2dE(U(t+ 1)||d(t) = d) + d2

<
fd

2F
+

f2d2

4F 2
+ 2d · df

2F
+ d2

=
fd

2F
+

(
1 +

f

2F

)2

d2.

Recall the definition of the martingale X(t) := d(t)
A(t) . Thus

E
(
X(t+ 1)2

∣∣∣∣∣∣d(t) = d
)
=

(
1

A(t+ 1)2

)
·E
(
d(t+ 1)2

∣∣∣∣∣∣ d(t) = d
)

<
1

A(t+ 1)2

(
fd

2F
+

(
1 +

f

2F

)2

d2

)

=
fA(t)

2F ·A(t+ 1)2
X(t) +

(
1 +

f

2F

)2(
A(t)

A(t+ 1)

)2

X(t)2

<
f

2F ·A(t)
X(t) +X(t)2.

Hence, by the law of total expectation,

E(X(t+ 1)2||X(m))−E(X(t)2||X(m)) <
f

2F ·A(t)
X(m).
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Summing this up over successive terms (and appealing to Claim 1, Proposition 4.2(ii) and
Lemma 3.7) we get

E(X̃m(n)||X(m)) < X(m) ·
n−1∑
t=m

f

2FA(t)

< X(m) ·
n−1∑
t=m

f

2FA(t)

= O

(
X(m) ·

n−1∑
t=m

f

F
3
2

)

= O

(
X(m) ·

∫ n−1

t=m

f(t)

F (t)
3
2

dt

)
< X(m) · K

F (m)
1
2

for some K > 0.

Proof of Proposition 4.3, continued: We may now prove the proposition. We proceed by
defining a sequence of times: n0 = t0. Let ni+1 be the least n (if any exists) such that
X(n) < 1

2X (ni). Otherwise ni+1 = ∞.
The trick is to apply the Kolmogorov-Doob inequality (see for instance [10]) to X̃ni(n):

P(ni+1 < ∞||ni < ∞) = P

(
min
n≥ni

X(n) <
1

2
X(ni)

∣∣∣∣∣∣X(ni)

)
≤ P

(
max
n≥ni

X̃ni
(n) >

1

4
X(ni)

2
∣∣∣∣∣∣X(ni)

)
= lim

N→∞
P

(
max

n:N≥n≥ni

X̃ni
(n) >

1

4
X(ni)

2
∣∣∣∣∣∣X(ni)

)
≤ 4

X(ni)2
· lim
N→∞

E(X̃ni
(N)||X(ni))

= O

(
4

X(ni)2
· 1

F (ni)
1
2

·X(ni)

)
= O

(
1

d(ni)

)
.

It follows from Corollary 3.9 that P(ni+1 < ∞||ni < ∞) → 0 as i → ∞, from which
the result follows.

We record one more result regarding the martingale X(t):

Corollary 4.4. Suppose that Assumption 3.5(2) holds. Then the martingale X(t) is bounded
in L2, that is to say supt E

(
X(t)2

)
< ∞.

Proof. By a standard result (see for example Theorem 12.1 of [18]), it is sufficient to show
that

∑∞
j=0 E

(
|Xj+1 −Xj |2

)
< ∞.
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Notice that by Remark 4.1

|X(t+ 1)−X(t)| =
d(t+ 1)−

(
1 + µ(t)

d(t)

)
d(t)

A(t+ 1)

=
U(t+ 1)− µ(t)

A(t+ 1)

Hence

E
(
|X(t+ 1)−X(t)|2

)
=

Var(U(t+ 1))

A(t+ 1)2

= O

(
d(t)f(t)

2F (t)

(
1− d(t)

2F (t)

)
· 1

A(t+ 1)2

)
= O

(
d(t)

A(t+ 1)
· f(t)

F (t)A(t+ 1)

)
= O

(
X(t) · f(t)

F (t)A(t+ 1)

)
= O

(
f(t)

F (t)A(t+ 1)

)
= O

(
f(t)

F (t)
3
2

)
.

Thus
t∑

j=0

E
(
|Xj+1 −Xj |2

)
= O

(∫ t

j=0

f(j)

F (j)
3
2

dj

)
= O

(
K − F (t)−

1
2

)
= O(K).

5 Proof of main result
Definition 5.1. A witness request W is a set of pairs of the form W = {(ui,mi) |
1 ≤ i ≤ n} where (u1, . . . , un) is a sequence of nodes and (m1, . . . ,mn) an accom-
panying sequence of non-negative integers.

A witness for W is a node connected to each ui with multiplicity mi.
We write the event W [t] to mean that W is satisfied by some witness by time t.

Observe from the structure of the process that W [t] ⇒ W [t′] for all t′ ≥ t. The
following is the major step towards our goal:

Proposition 5.2. Suppose that f(t) = Θ(t), and that G(t0) is a state of the graph at
time t0. Let W be a witness request. Let ε > 0. Then there exist t1 > t0 such that
P
(
W [t1]

∣∣∣∣ G(t0)
)
> 1− ε.

Proof. We consider only stages from t0 + 1 onwards, and everything that occurs is condi-
tioned upon G(t0), which we shall therefore suppress.

Suppose W = {(ui,mi) | 1 ≤ i ≤ n}. We shall write m =
∑n

i=1 mi, and, abusing
notation, Ui = Uui

(t+1), meaning the number of new edges which ui gains at the t+1st
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stage, taking the dependency on t as given when the intended value is obvious. Similarly
we write di for dui

(t). (We shall not consider dj for any j other than the ui, so this will
not cause confusion.)

We shall employ vector notation, writing U(t + 1) := U = (U1, . . . , Un) and m :=
(m1, . . . ,mn). Thus our focus is the event U = m. Let us first compute the probability of
this event in terms of the di. The relevant distribution is multinomial M(f, pi, . . . , pn, q)
where pi =

di

2F and q = 1−
∑

pi (again omitting the dependencies on t). Therefore

P
(
U = m

∣∣∣∣ d1, . . . dn) = f !

m1! · . . .mn! · (f −m)!
· qf−m ·

∏
i

pi
mi

= Θ

((
1−

∑
i di
2F

)f−m

·
(

f

2F

)m

·
∏
i

d mi
i

)

noticing that f !
(f−m)! ∼ fm.

Now we employ our assumption that f(t) = Θ(t) from which it also follows that
1
2F = Θ

(
1
t2

)
and f

2F = Θ
(
1
t

)
. Thus there exist constants c1, c2, C0, N > 0 depending

only on G0(t0) such that for all t ≥ N ,

P
(
U = m

∣∣∣∣ d1, . . . dn) ≥ C0 ·
(
1−

∑
i di

c1t2

)c2t−m

· t−m ·
∏
i

d mi
i . (5.1)

Our aim is to bound this probability below, away from 0 over a long enough range of t.
We write Xi =

di

Ai
for the martingale supplied by Proposition 4.2, with xi := xui

> 0 for
its limit supplied by Proposition 4.2 and Lemma 4.3. We will not attempt to condition on
the actual values xi, but only on the fact that these values are not extreme (NE).

First, choose κ1, κ2 > 0 such that

κ1t < A(t) < κ2t

for all large enough t. This is guaranteed to occur by Proposition 4.2(iii) since
F (t)

1
2 = Θ(t). We increase N if necessary to ensure that this holds. Notice that since

A(t) is entirely predictable in advance, the value of N remains dependent only on G0(t0).
Now, for any y2 > y1 > 0, define the following event:

NE(y1, y2) :

(
n∧

i=1

y1 < xi < y2

)
.

We shall apply this in the following case: given δ > 0 choose y2(δ) > y1(δ) > 0 so
that P(¬NE(y1, y2)) < δ. (We shall specify δ later, and will only need to consider one
such value. Thus we shall consider δ fixed for the purposes of what follows.)

By Corollary 4.4, Xi(t) → xi in expectation, and thus in probability. More precisely,
for any η > 0, we may increase N > 0 by some quantity depending only on η so that for
all t ≥ N and all i ≤ n

E
(
|Xi(t)− xi|

)
<
( η
n

)2
.

Thus, by Markov’s inequality

P
(
|Xi(t)− xi| >

η

n

)
<

η

n
.
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Hence defining the event that all the Xi(t) are close (Cl) to their respective xi

Cl(t, η) :=
n∧

i=1

(
|Xi(t)− xi| <

η

n

)
we have for all t ≥ N

P (Cl(t, η)) > 1− η. (5.2)

Again, we shall pick a value of η later. Notice also that

P (Cl(t, η)) < P
(
Cl(t, η)

∣∣∣∣ NE(y1, y2)
)
+ δ.

So
P
(
Cl(t, η)

∣∣∣∣ NE(y1, y2)
)
> 1− η − δ. (5.3)

Next, we define a bound for di(t). Given δ, η > 0 as before, let b1(η) = b1(δ, η) :=
κ1 ·

(
y1 − η

n

)
and b2(η) = b2(δ, η) := κ2 ·

(
y2 +

η
n

)
, insisting that η is small enough that

b1 > 0. Then we define the event

Bo(t, b1, b2) :=
n∧

i=1

(b1 · t < di(t) < b2 · t) .

Observe now that for t ≥ N

(NE(y1(δ), y2(δ)) & Cl(t, η)) ⇒ Bo(t, b1(η), b2(η)). (5.4)

Hence
P
(

Bo(t, b1, b2)
∣∣∣∣∣∣NE(y1(δ), y2(δ))

)
≥ 1− η − δ.

Thus we obtain the unconditional bound:

P (Bo(t, b1, b2)) ≥ (1− η − δ)(1− δ). (5.5)

Now we use the bound obtained in (5.1) and see that whenever b1 ≤ b′1 < b′2 ≤ b2

P
(

U = m
∣∣∣∣∣∣ Bo(t, b′1, b

′
2)
)
> C0 ·

(
1− n · b2 · t

c1t2

)c2t−m

· t−m · (b1 · t)m

= C0 · bm1 ·
(
1− nb2

c1t

)c2t−m

= C0 · bm1 ·
(
1− nb2c2

c1
· 1

c2t

)c2t

·
(
1− nb2

c1t

)−m

→ C0 · bm1 · e−
nb2c2

c1 := C3 > 0.

Hence, by letting C4 = C4(δ, η) := 1
2C3 and increasing N again if necessary (and

again by some predictable amount), we have for all t ≥ N

P
(

U = m
∣∣∣∣∣∣ Bo(t, b′1, b

′
2)
)
> C4. (5.6)

Now for any ζ > 0, we may let M = M(ζ, δ, η) be large enough that (1− C4)
M

< ζ.
The goal therefore is to locate M places where Bo(t, b1(η), b2(η)) holds, and argue that
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the probability that all of them fail to produce an instance of U = m is bounded above by
ζ.

Notice that bound (5.6) holds independently for all t ≥ N : the arguments are unaffected
by previous values of U so long as Bo(t, b′1, b′2) holds. However, the same is not true
for bound (5.5). By conditioning on whether or not U(t′) = m holds, we risk affecting
P (Bo(t, b1(η), b2(η))) for t > t′.

To navigate this obstacle, we shall locate a range [t2, t2 +M) within which the bound
Bo(t, b1(η), b2(η)) is guaranteed to hold, barring a certain extreme event ¬Sh defined be-
low, which will have a probability bounded above by θ for arbitrarily small θ.

We wish t2 to satisfy the tighter bound Bo(t2, b1(η2 ), b2(
η
2 )). Notice that appropriate

adaptations of (5.2), (5.4), and (5.5) above guarantee that for large enough t2,

P
(
¬Bo

(
t2, b1

(
η
2

)
, b2
(
η
2

)))
< η

2 + 2δ. (5.7)

However, as already indicated, Bo
(
t2, b1

(
η
2

)
, b2
(
η
2

))
on its own is not quite enough to

guarantee Bo(t2 + j, b1(η), b2(η)) for j ≤ M . So let us describe the extra ingredient we
require. Notice that Ui(t) is a binomial distribution with a long right tail, since the number
of trials f(t) is of the order of t, and the probability of success per trial is di(t)

2F (t) which is
of order 1

t . We shall show that we may ignore the extremity of this tail, thus allowing us to
impose a tighter upper bound than f(t) on Ui(t) for all t ∈ [t2, t2 +M).

In Theorem 1.1 from [3], we find a useful bound for the right-tail of a binomial distri-
bution U ∼ b(f, p): if u > 1 and 1 ≤ S := ⌈ufp⌉ ≤ f − 1 then

P(U ≥ S) <

(
u

u− 1

)
·P(U = S).

Let us apply this in the case S = ⌈tα⌉ for some fixed α ∈
(
1
2 , 1
)
. (Its exact value does

not matter.) Then

u = u(t) =
tα

pf
=

tα2F (t)

d(t)f(t)
.

Assembling the bounds c1t ≤ f(t) ≤ c2t and c1t
2 ≤ 2F (t) ≤ c2t

2 and Bo(t, b′1, b′2)
where b1 ≤ b′1 < b′2 ≤ b2 and employing the standard bound for the binomial coefficiant(
f
S

)
≤
(
f · e
S

)S

, we find

P
(
Ui ≥ tα

∣∣∣∣∣∣ Bo(t, b′1, b
′
2)
)

<

(
c2

c1b1
tα

c1
c2b2

tα − 1

)
·
(
(ec2 + 1) · t1−α

)tα ·
(

b2
c1t

)tα

·
(
1− b1

c2t

)t−⌈tα⌉

<

(
B

tα

)tα

.

for some B > 0. Notice again that this holds independently of the specific values of b′1 and
b′2, so long as b1 ≤ b′1 < b′2 ≤ b2. Now we define a new event, that the tails are short (sh):

sh(t) :=
n∧

i=1

Ui(t+ 1) < tα.
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After increasing B to allow for the non-independence of the n different Ui we now see
that:

P
(
¬sh(t)

∣∣∣∣∣∣ Bo(t, b1(η), b2(η))
)
< n ·

(
B

tα

)tα

. (5.8)

Putting these events together, define

Sh(t2) := ∀t ∈ [t2, t2 +M) sh(t).

To obtain a similar bound for P
(
¬Sh(t2)||Bo

(
t2, b1

(
η
2

)
, b2
(
η
2

)))
we first show that

for j ≤ M (
Bo
(
t2, b1

(
η
2

)
, b2
(
η
2

))
&

j−1∧
i=0

sh(t2 + j − 1)

)
(5.9)

⇒ Bo(t2 + j, b1(η), b2(η)).

Suppose that Bo
(
t2, b1

(
η
2

)
, b2
(
η
2

))
holds. We address the lower bound first, for which

we do not require the hypothesis on sh. Instead, for all j ≤ M , clearly

d(t2 + j) ≥ d(t2) ≥ b1
(
η
2

)
· t2 = κ1 ·

(
y1 −

η

2n

)
· t2.

If additionally t2 ≥ 2nMy1

η , then the final term above exceeds

κ1 ·
(
y1 −

η

n

)
· (t2 +M) ≥ b1(η) · (t2 + j).

Now we obtain the corresponding upper bound. By our assumption on sh,

d(t2 + j) ≤ d(t2) +M · (t2 +M)α

≤ κ2 ·
(
y2 +

η

2n

)
· t2 +M · (t2 +M)α

≤ κ2 ·
(
y2 +

η

n

)
· t2

if t2 ≥ max

{
M,
(

4Mn
κ2η

) 1
1−α

}
, which completes the proof of Implication (5.9).

Implication (5.9) allows us to take the M -fold sum of (5.8), finding

P
(
¬Sh(t2)

∣∣∣∣∣∣ Bo
(
t2, b1

(
η
2

)
, b2
(
η
2

)))
<

t2+M∑
t=t2

n

(
B

tα

)tα

→ 0

as t2 → ∞. Thus for any θ > 0 for all large enough t2 we have

P
(
¬Sh(t2)

∣∣∣∣∣∣ Bo
(
t2, b1

(
η
2

)
, b2
(
η
2

)))
< θ. (5.10)

Finally, we may complete the argument, setting δ = ε
8 and θ = ζ = ε

4 and η = ε
2 and

t1 := t2 +M . For large enough t, we may update bound (5.6) to get

P
(
(¬U(t2 + 1) = m) & sh(t2)

∣∣∣∣∣∣ Bo
(
t2, b1

(
η
2

)
, b2
(
η
2

)))
< 1− C4.
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Similarly,

P
((

¬U(t2 + j + 1) = m
)
& sh(t2 + j)∣∣∣∣∣∣ j−1∧

i=0

sh(t2 + i) & Bo
(
t2, b1

(
η
2

)
, b2
(
η
2

)) )
< 1− C4.

As observed earlier, these bounds hold independently of the previous values of U, meaning
that

P
((

¬U(t2 + j + 1) = m
)
& sh(t2 + j)∣∣∣∣∣∣ j∧

i=0

¬U(t2 + i) &

j−1∧
i=0

sh(t2 + i) & Bo
(
t2, b1

(
η
2

)
, b2
(
η
2

)) )
< 1− C4.

Taking the product of these bounds, and denoting the failure of our desired result by
Fa(t2) := ∀t ∈ [t2, t2 +M) (U(t+ 1) ̸= m), we see that

P
(

Fa(t2) & Sh(t2)
∣∣∣∣∣∣ Bo(t2, b1

(
η
2

)
, b2
(
η
2

) )
< ζ

and so by bounds (5.7) and (5.10)

P
(

Fa(t2)
)
< ζ + θ + η

2 + 2δ = ε.

We may now complete the proof of our main result, which we first restate for the
reader’s convenience:

Theorem 5.3. Suppose that G′ is a finite directed multigraph containing no isolated nodes,
that f satisfies the requirements from Definition 3.1, and also that f(t) = Θ(t). Then, with
probability 1, the infinite limit of MPAf (G

′) is isomorphic, as an undirected multigraph, to
the Rado multigraph.

Proof. First notice that there are countably many witness requests. Thus we may organise
them into a list (Wj : j ≥ 1).

Let ε > 0. Again everything that occurs is conditioned upon G0(t0). We shall show
that the probability of all witness requests eventually being satisfied exceeds 1−ε. Suppose
inductively that we have found time tj so that so that P(

∧j
i=1 Wi[tj ]) > 1−

(
1− 1

2j

)
ε.

Let G = Gj be the set of all states G = G(tj) of the graph at time tj consistent with
G0(t0) and with

∧j
i=1 Wi[tj ]. Notice that G is a finite set, that P

(
G(tj)

∣∣∣∣ G0(t0)
)
> 0

for each G ∈ G, and by assumption that
∑

G∈G P
(
G(tj)

∣∣∣∣ G(t0)
)
> 1−

(
1− 1

2j

)
ε.

Consider now Wj+1 and let ε′ < 1
2j+1 ε. Now given each G(k) ∈ G, by Proposition 5.2

there exist t(k) ≥ tj such that

P
(
Wj+1

[
t(k)
] ∣∣∣∣ G(k)(tj)

)
> 1− ε′.
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Let tj+1 := max{t(k) | G(k) ∈ G}. Then

P

(
j+1∧
i=1

Wi[tj+1]
∣∣∣∣ G0(t0)

)

≥
∑
k

P

(
j+1∧
i=1

Wi[tj+1]
∣∣∣∣ G(k)(tj)

)
·P
(
G(k)(tj)

∣∣∣∣ G0(t0)
)

=
∑
k

P
(
Wj+1[tj+1]

∣∣∣∣ G(k)(tj)
)
·P
(
G(k)(tj)

∣∣∣∣ G0(t0)
)

>
∑
k

(1− ε′) ·P
(
G(k)(tj)

∣∣∣∣ G0(t0)
)

> (1− ε′)

(
1−

(
1− 1

2j

)
ε

)
> 1−

(
1− 1

2j+1

)
ε.

6 Future work
We close this paper with a short discussion of possible future directions of study. As noted
earlier, one goal is to translate the current work into the domain of graphs (rather than
multigraphs) by proving Conjecture 3.4, which we restate:

Conjecture 6.1. Suppose that G′ = (V ′, E′) be a finite directed graph containing no
isolated nodes, that f satisfies the conditions in Definition 3.3, and further that there are
constants 0 < c1 ≤ c2 < 1 where c1 · t ≤ f(t) ≤ c2 · t for all large enough t. Then, with
probability 1, the infinite limit of GPAf (G

′) is isomorphic as an undirected graph to the
Rado graph.

A second avenue to investigate is the limit of an MPAf process when f is strictly be-
tween the constant case (considered by Kleinberg and Kleinberg in [10]) and the linear
growth rate analysed here. A natural starting point would be the case f(t) = Θ

(√
t
)
.

One might hope somewhere within this regime to identify a connection to (a multigraph
analogue of) the theory of Shelah-Spencer sparse random graphs as elucidated in [16]. The
author recently established a connection between Shelah-Spencer graphs and the limits of
finitary random processes in [8], albeit in a context rather simpler than preferential attach-
ment.

Thirdly, a central role in the contemporary study of graph limits is played by the theory
of graphons, as developed, for instance, by Lovász in [13]. Thus it is natural to seek to
connect the current work to that body of knowledge. Although graphons as originally
conceived do not allow for multi-edges, in [12] a theory of convergence of sequences of
multigraphs is developed within the broader setting of decorated graphs and Banach space
valued graphons, so this is an initial point of contact to consider. (I am grateful to the
anonymous reviewer for bringing this to my attention.)
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