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A B S T R A C T

Background: Pulmonary arterial hypertension (PAH) is a rare but life shortening disease, the diagnosis of

which is often delayed, and requires an invasive right heart catheterisation. Identifying diagnostic bio-

markers may improve screening to identify patients at risk of PAH earlier and provide new insights into dis-

ease pathogenesis. MicroRNAs are small, non-coding molecules of RNA, previously shown to be dysregulated

in PAH, and contribute to the disease process in animal models.

Methods: Plasma from 64 treatment naïve patients with PAH and 43 disease and healthy controls were pro-

filed for microRNA expression by Agilent Microarray. Following quality control and normalisation, the cohort

was split into training and validation sets. Four separate machine learning feature selection methods were

applied to the training set, along with a univariate analysis.

Findings: 20 microRNAs were identified as putative biomarkers by consensus feature selection from all four

methods. Two microRNAs (miR-636 and miR-187-5p) were selected by all methods and used to predict PAH

diagnosis with high accuracy. Integrating microRNA expression profiles with their associated target mRNA

revealed 61 differentially expressed genes verified in two independent, publicly available PAH lung tissue

data sets. Two of seven potentially novel gene targets were validated as differentially expressed in vitro in

human pulmonary artery smooth muscle cells.

Interpretation: This consensus of multiple machine learning approaches identified two miRNAs that were

able to distinguish PAH from both disease and healthy controls. These circulating miRNA, and their target

genes may provide insight into PAH pathogenesis and reveal novel regulators of disease and putative drug

targets.

© 2021 The University of Sheffield. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Pulmonary arterial hypertension (PAH) is a rare but progressive

cardiopulmonary disease characterised by increased pulmonary vas-

cular resistance driven by a sustained pulmonary arterial

vasoconstriction and pulmonary vascular remodelling that leads to

right heart failure and premature death. PAH pathogenesis is progres-

sive and includes vasoconstriction, endothelial cell dysfunction, vas-

cular cell proliferation and recruitment of circulating inflammatory

cells. PAH can be further sub-categorised into seven sub-groups: Idio-

pathic PAH (IPAH), heritable PAH (HPAH), drug and toxin induced,

PAH associated with other associated diseases, PAH long term res-

ponders to calcium channel blockers, PAH with overt features of

venous/capillary involvement, and persistent PH of the newborn [1].

The molecular mechanisms of PAH are complex and include the
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influence of common [2] and rare genetic variation [3], epigenetic

dysregulation of DNA methylation state, histone acetylation and

microRNA (miRNA) dysregulation [4].

Often insidious at onset, PAH is usually rapidly progressive and

patients frequently experience significant delays between initial symp-

tom onset, diagnosis (right heart catheter) and treatment, with little

improvement to these delays over that past 20 years [5,6]. Screening

for PAH in connective tissue diseases (CTDs), including systemic sclero-

sis (SSc) where up to 10-15% of patients develop PAH has been shown

to be beneficial [7] with several screening tools now available (reviewed

in [5] recommended [8]). Screening for other forms of PAH is required,

and the identification of blood-based biomarkers may help identify

patients at risk earlier and reveal drivers of disease [5,9]. Current clini-

cally used blood based biomarkers are limited to markers of cardiac

stress e.g. N-terminal pro B-type Natriuretic Peptide (NT-proBNP) that

gives little insight into early disease, or the molecular drivers of disease.

MicroRNAs (miRNA) are small, non-coding RNA molecules found

in tissues, blood and plasma. They have been shown to be dysregu-

lated in PAH, and contribute to the disease process in animal models

[10�12]. Blood based miRNA biomarkers can be collected without

the need for invasive tissue biopsy, and are present in plasma and

serum in a stable form. However, with as many as 2300 miRNAs regu-

lating biological processes [13], identifying those relevant for diagno-

sis of PAH can be computationally challenging.

Machine learning as a field has progressively improved our ability to

find relevant features in large and high-dimensional data sets collected

from genomic studies [14]. Supervised machine learning methods have

been used successfully to develop classifiers for disease diagnosis, as

well as to identify potential disease biomarkers [15]. Specifically in PAH

we have previously utilised machine learning approaches to study

molecular drivers of, and biomarkers for PAH [9,16�18]. In this study,

we identify miRNA biomarkers associated with PAH selected using a

consensus of four different supervised machine learning feature selec-

tion techniques. We assess the potential of miRNAs as a diagnostic tool

by creating binary predictive classification models, and assessing the

accuracy of these models. Further insight into the role of miRNAs in the

pathogenesis PAH and potential candidates for therapeutic intervention

is revealed through the analysis of miRNA target genes and pathways

in human lung and whole blood transcriptomes.

2. Methods

2.1. Cohort overview and sample collection

We collected 83 unique plasma samples from sequentially con-

sented patients with suspected pulmonary hypertension and con-

trols, obtained according to the Declaration of Helsinki, with local

research ethics committee approval and informed written consent

from all subjects from the Sheffield Teaching Hospitals Observational

study into Pulmonary Hypertension, Cardiovascular and Lung disease

Biobank (STH-Obs, UK REC 18/YH/0441). Patient samples were

obtained from the diagnostic right heart catheter and were PAH-

treatment naïve. From the 83 samples, 18 patients with SSc-associ-

ated PAH (SSc-PAH) and 10 SSc patients without PH (SSc-without

PH) were incorporated into the PAH patient groups and controls

respectively. All patients with SSc were of the limited cutaneous sub-

type. The rest of the Sheffield samples were comprised of 34 IPAH

patients and 21 healthy controls. An additional 24 patient and

healthy control samples were obtained from the Imperial College

London Pulmonary Hypertension sample collection (UK REC 17/LO/

0563) and included in the study to remove a single centre bias. All

samples were collected between 2007 and 2013, then stored in

plasma at -80oC until the miRNA extraction. The cohort comprising

all available samples meeting these criteria at the time of miRNA

extraction, was randomly assigned to training (two-thirds) and vali-

dation (one-third) sets, matched for age, sex and WHO functional

class, with demographics seen in Table 1. The training set was used

to build models, which were evaluated in the validation set to mini-

mise overfitting bias. Principal component analysis showing the clus-

tering of patients can be found in Supplementary Figure 1.

2.1.1. Plasma preparation and RNA isolation

Total RNA was isolated from 1 ml of Citrate plasma using the Nor-

gen total RNA slurry format extraction kit (Norgen Biotek Corp. Can-

ada). RNA was concentrated using the RNA Clean and Concentrate-5

kit (Zymo Research Corp, U.S.A). Detailed methods can be found in

the Supplementary materials.

2.1.2. Microarray profiling and preprocessing

Agilent single colour miRNA arrays miRbase v.19 (Agilent Tech-

nologies, UK), which can detect up to 2006 humanmiRNAs, were per-

formed on purified and concentrated plasma RNA in 2015. Raw

microarray signals were normalised using the quantile method

within the robust mean array (RMA) method from the R package Agi-

Microrna (v.2.14.0) [19], correcting for the background signal. MiR-

NAs were then filtered, keeping only those expressed in at least 10%

of arrays, leaving 393 miRNAs. Expression levels were log2 trans-

formed and all subsequent calculations were performed on this value.

MiRNAs were filtered down to 179 by those which have been qPCR

confirmed to exist by Exiqon, and therefore, we can assume they can

be accurately quantified by the Agilent array. We further eliminated

features with high mean absolute correlation, using a correlation

matrix method. For each feature, the mean absolute correlation based

on pair-wise correlations was calculated. If a pair-wise correlation

was > 0.7, the feature with the greater mean absolute correlation

was removed, using the caret package (v6.0-86) in R. Where two

miRNAs are highly correlated both with each other and disease sta-

tus, and both are kept in the model, there is a danger that both may

Research in context

Evidence before this study

Multiple reports exist on the expression and / or function of

individual miRNAs in PAH, and reports of miRNA signatures in

other disease but when we searched PubMed database using

the terms [(“Pulmonary Arterial Hypertension” OR “PAH”) AND

(“machine learning” OR “ensemble learning”) AND (“micro-

RNA” OR “miRNA” OR “miR”)] for articles before February 20th

2021 and returned 0 results. PAH is a rare disease, and there is

often a significant lag between symptom onset and patient

diagnosis. Current clinically used blood based biomarkers are

limited to markers of cardiac stress e.g. NT-proBNP that gives

little insight into early pulmonary vascular disease, or the

molecular drivers of disease. We hypothesised applying

machine learning to microRNAs in PAH may provide novel

insights.

Added value of this study

This is the largest microRNA profiling of PAH patients with

64 treatment naïve patients (sampled at the time of diagnosis),

and 43 disease and healthy controls. It is also the first machine

learning assessment of microRNAs for PAH.

Implications of all the available evidence

Our findings extend preliminary evidence that microRNAs may

be able to classify PAH patients from controls, and suggest that

a machine learning approach may allow for the detection of

novel disease regulators.
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be considered insignificant, potentially missing an important signal.

We carried forward our downstream analysis with 42 miRNAs after

filtering. The workflow is described in Fig. 1.

We used PCA and t-SNE analysis to visibly explore the data. PCA

analysis was carried out using prcomp in R without scaling the data,

and a t-SNE analysis was run using the Rtsne package.

2.2. Statistical analysis

2.2.1. Multivariable microRNA selection and model building

All statistical analyses were carried out using R (v4.0.0) [20]. We

used both a multivariable and univariable approach to selecting miR-

NAs. In the multivariable approach, we used four separate feature

selection methods simultaneously to identify candidate biomarkers,

with the intersection amongst the methods considered the significant

miRNAs. In each instance, parameters were tuned using 10-fold

cross-validation (repeated 10 times) on the training set. For each of

the feature selection methods, we subsequently used a supervised

machine learning approach for binary classification to create predic-

tive classification models, based on features selected from the pro-

spective cohort study. For further details on the parameters used, see

the code available on github at https://github.com/niamherrington/

microarray-miRNA. The guidelines of the transparent reporting of a

multivariable prediction model for individual prognosis or diagnosis

(TRIPOD) statement were followed (Supplementary Table 2).

Random forest using Boruta. Boruta is a feature selection random for-

est wrapper algorithm designed to identify all relevant variables in a

classification framework [21]. We performed 300 iterations of the

random forest normalised permutation importance function to

Fig. 1. Machine learning methodology for the identification of miRNAs which may play a role in PAH, and the assessment of their target genes.

Table 1

Basic demographics for a cohort of healthy controls (HC) and patients with PAH from Sheffield and Imperial, profiled for miRNA expression.

Patients with systemic sclerosis (SSc) included in both the HC and PAH classification sets. Not all metrics available for all patients. For missing val-

ues, see Supplementary table 1.

Training Set Validation Set

HC + SSc without PH IPAH + SSc-PAH HC + SSc without PH IPAH + SSc-PAH

No. Sheffield samples 14 + 7 23 + 11 7 + 3 11 + 7

No. Imperial Samples 8 + 0 8 + 0 4 + 0 4 + 0

Total sample no. 29 42 14 22

Mean age at sampling (years) 54.1 (14.5) 56.5 (14.3) 51.6 (11.7) 57.4 (15.3)

Female (%) 12 + 6 (58.1%) 18 + 6 (57.1%) 7 + 3 (71.4%) 8 + 6 (63.6%)

Alive 5 years follow up (%) 28 (97%) 28 (65%) 14 (100%) 9 (43%)

WHO Functional class (1,2,3,4) - (0,6,33,3) - (0,3,17,2)

Patients on immunomodulatory agent at sampling 4 2 2 2

Mean Pulmonary Arterial Pressure (mm Hg) 54.9 (15.6) 49.4 (13.7)

Pulmonary vascular resistance (dynes) 870 (488) 753 (448)

6 minute walk distance: Imperial only (m) 202 (158) 378 (59)

ISWD: Sheffield only (m) 214 (169) 248 (246)

Cardiac Output (L/min) 4.8 (1.4) 5.0 (2.0)

Mean pulmonary arterial wedge pressure (mm Hg) 10.4 (3.8) 10.8 (3.2)

Continuous variables described as mean (standard deviation)

N. Errington et al. / EBioMedicine 69 (2021) 103444 3



obtain attribute importance, using default settings within Boruta

package (v7.0.0) in R, including the confidence level of 0.01. After the

300 runs were complete, miRNAs still not confidently classified as

important variables were rejected along with the miRNAs rejected by

the algorithm. This process was then repeated 100 times, with miR-

NAs selected on at least 10 occasions were carried forward.

We then combined the microRNAs selected by Boruta into a ran-

dom forest model using the randomForest package (v.4.6-14) [22].

We selected a random forest model as they are generally robust to

overfitting, and capable of learning non-linear relationships. How-

ever, the results may not be easily interpretable. The caret package

was used to identify 1000 trees as being optimal among the 100, 250,

500, 750, 1000, 1250 and 1500 trees tested. The number of variables

available for splitting at each tree node was optimised next, with 1

variable per tree node the best out of a range from 1 to 4. A probabil-

ity threshold of > 0.5 was used to determine whether a subject was a

PAH patient or no PH.

Regression partition tree. Classification trees were calculated using

Rpart (v4.1-15) [23] and caret in R. A major advantage of rpart is the

interpretable output, that can be displayed graphically. However, a

disadvantage is that the trees tend to have a lower predictive accu-

racy, due to the fact the trees are less robust. The trees were used by

the greedy feature selection algorithm, recursive binary splitting to

return ordered features, from the root of the tree down.

The fit of the model was controlled by setting the minimum num-

ber of observations that must exist in a node for a split to be

attempted to four, and the minimum number of observations in any

terminal node set to two. The trees were split by minimising the Gini

index at each split. This was then cross-validated using 10-fold,

repeated cross-validation. We considered a variable selected if it was

present in the final tree. A probability threshold of > 0.5 was used to

determine whether a subject was a PAH patient or no PH.

LASSO. Least absolute shrinkage and selection operator (LASSO) on

binomial logistic regression using the glmnet package in R (v4.0) [24]

was used to select relevant miRNAs, by eliminating parameters with a

coefficient of 0. One of the advantages to using a LASSO method is that

coefficients are shrunk and removed, reducing variance without sub-

stantially increasing the bias [25]. Additionally, LASSO models allow for

effectively interpretable output. However, a drawback to LASSO is a

lack of flexibility to fully capture non-linear relationships. We chose the

regularisation parameter, λ, using 10-fold cross-validation with binomial

deviance as the criterion. From the cross validations, the value of λ with

the minimum binomial deviance (λ-min = 0.0502) was selected and

used to refit the model. A probability threshold of > 0.5 was used to

determine whether a subject was a PAH patient or no PH. To ensure

the models were not driven by age and sex, we also attempted to clas-

sify patients using these characteristics in a LASSO model.

XGBoost. The final model we used to fit miRNA features to disease

diagnosis was the gradient boosting method, using the XGBoost pack-

age in R (v1.0.0.1) [26]. We trialled XGBoost as it has been used very

effectively in a range of classification problems, consistently winning

machine learning competitions on Kaggle, as well as providing insights

into biological data sets. However, with many hyperparameters to tune,

computational time is longer than some of the other methods, addition-

ally, the results can be difficult to interpret. XGBoost is an extreme gra-

dient boosting method which ranks the features from most to least

important. To decide on the regularisation parameter settings, we used

a grid search over a range of values, using 10-fold repeated cross-vali-

dation on the training set, selecting the optimal values for the final

model (Supplementary Table 3). The optimisation ranges were selected

by expanding grid searches previously used by other teams on RNAseq

data [27]. The ability to fine-tune these parameters in XGBoost means

the model is more robust to overfitting. Features contributing to more

than a 5% improvement in accuracy to their branches were selected as

‘important’. A probability threshold of > 0.5 was used to determine

whether a subject was a PAH patient or no PH. Once features had been

selected, the model was retrained over the same parameter range, using

just selected miRNAs.

Ensemble. An ensemble of predictions from the above classifiers were

generated by averaging the predicted probabilities from each individ-

ual supervised machine learning approach, and then using a thresh-

old of > 0.5 to call subjects with PAH.

Comparison with NT-proBNP. All patients, and healthy controls from

Sheffield had routine clinical measurements of NT-proBNP. This

information was used to compare the accuracy of the miRNA models

with NT-proBNP as a classifier by retraining each of the models with

NT-proBNP as an additional variable. The performance of standalone

NT-proBNP for the cohort was also measured.

Multivariable classifier performance assessment. We also used a leave-

one-out cross validation approach (LOOCV) to compare miRNAs

selected when the entire dataset was used. All methods above were

attempted across the whole dataset, using a LOOCV approach instead

of repeated cross validations. AUCs were calculated using the average

of the cross validations across the whole dataset, rather than using

training and validation sets.

Classification without SSc. Finally, we repeated the above machine

learning methods to classify patients with IPAH or healthy controls,

using the same training and validation sets described above, without

patients with SSc.

2.2.2. Univariable analysis

Using a Shapiro-Wilk test [28] for the selected miRNAs, a normal-

ity assumption for the majority of miRNAs is violated. As a result, for

each miRNA, we performed a non-parametric Wilcoxon rank-sum

test, comparing expression levels between patients with PAH and the

no PH group, to find a single p-value for each miRNA. These p-values

were then adjusted using the Benjamini Hochberg multiple testing

correction to control the false discovery rate (FDR) with a cutoff of

0.05. We calculated the discriminatory power of each individual

miRNA, using the training set to find an optimal cutpoint by simulta-

neously maximising sensitivity and specificity, then calculating the

accuracy using the validation set. We examined survival using the

Kaplan-Meier method for each selected miRNA and calculated the p-

value for a log-rank test. All participants were followed up for 5 years

after the sample date, or date of death, with no participants lost to

follow up. Cox proportional hazard tests were done using the survival

package (v2.44-1.1)

2.2.3. Combining MicroRNAs

To compare classifiers, we looked at how accurately each classifier

categorised each patient in the validation set. We also looked at the

performance of each feature selection method, by comparing them

using the following evaluation metrics, where TP represents true pos-

itive, FN represents false negative, TN represents true negative, and

FP represents false positive.

� Sensitivity = TP / (TP + FN)
� Specificity = TN / (TN + FP)
� Positive predictive value = TP / (TP + FP)
� Negative predicted value = TN / (TN + FN)
� Correct classification rate =(TP + TN) / (TP + TN + FP + FN)
� Area under the receiver operator characteristic (ROC) curve

(AUC); the confidence interval calculated using the method by

Delong et al [29].
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2.3. Pathway analysis

Gene targets were inferred using DIANA v5.0 microT-CDS [30]

for the miRNAs which appeared in all four features selection meth-

ods, with the threshold for target prediction set to the default of

0.7. We then carried out a network analysis using WebGestalt [31]

and Cytoscape (v3.7.1) [32]. Pathway genes were downloaded

from KEGG [33].

2.4. External validation in whole blood RNA seq

RNA sequencing was performed on whole-blood samples from

359 patients with PAH, and 72 volunteers, as previously described

[34]. 28 of the Sheffield samples, and 2 Imperial healthy controls

were also included in the miRNA cohort, so we excluded these to

ensure the validation set was independent. We split the cohort

into the same training and validation groups, and then used

XGBoost to classify patients using the gene targets identified using

similar optimisation ranges as above. As this dataset is unbalanced

due to a comparatively small number of healthy controls, we incor-

porated a weighting parameter; number of PAH cases / number of

controls. The final parameters selected can be seen in Supplemen-

tary Table 4. The threshold value was calculated using Youden’s

Index.

2.5. External validation in published lung tissue microarray studies

Two publicly available datasets profiling lung tissue from patients

with PAH were used to validate the gene target lists. In GEO accession

GSE15197 [35], differential expression was measured in 13 normal

lung tissue samples compared to 18 lung tissue samples with PAH.

We excluded seven samples where patients had PH secondary to idi-

opathic pulmonary fibrosis (IPF). The original study found 13,899

genes differentially expressed between patients with PAH and

healthy controls. GEO accession GSE53408 [36] compared 12 samples

of lung tissue from patients with PAH to 11 healthy lung tissue sam-

ples. Basic characteristics of the two cohorts are described in Supple-

mentary Table 5.

The GEOR2 interface was used to import data into R using Biobase

(v2.42.0) and GEOquery (v2.50.5). The limma package (v3.38.3) used

for differential expression analysis with a log2 transform. Gene tar-

gets were extracted and FDR corrected (<0.05) using the Benjamini

Hochberg correction.

2.6. qPCR validation of gene targets

Pulmonary artery smooth muscle cells (PASMCs) purchased from

commercial suppliers (Lonza catalogue # CC-2581) taken from healthy

donors and PASMCs isolated from four separate IPAH patients (donated

from Prof. N Morrell of Cambridge University) as previously described

[37], were grown in culture before being quiesced (0.2% foetal Calf

Serum) for 48 hours, and lysed for the isolation of RNA using Trizol.

Direct-zol RNA mini-prep kits (Zymo research R2050), and Zymospin

column were used to extract RNA as per manufacturer’s instructions.

RNA (n=3 for each condition) was reverse transcribed to cDNA using

RNA to cDNA kit (Applied Biosystems 4387406). Eight genes were

selected for quantitative-PCR (qPCR) and TaqMan probes for FER

(Hs00245497_m1), UCR3 (Hs00419575_m1), MTUS1

(Hs00368183_m1), API5 (Hs00362482_m1), PELI1 (Hs00900505_m1),

HGF (Hs00300159_m1), GLMN (Hs00369634_m1), PARP8

(Hs01065404_m1) were purchased from Thermo Fisher and run in

duplicate. Human ATP5B Hs00969569_m1was used as control. Relative

quantity was calculated using the DDCt method. Analysis was per-

formed using GraphPad Prism v 8.2.

2.7. Role of funding source

The funders had no role in study design, data collection, data anal-

yses, interpretation or writing of the report.

3. Results

We profiled the miRNAs from 64 patients with PAH and 43 com-

bined SSc-without PH and healthy controls (no PH). Initial t-Distrib-

uted Stochastic Neighbour Embedding (t-SNE) and principal

component analysis (Supplementary Figure 1) showed some separa-

tion between groups. Since several of the feature selection methods

utilised later cannot account for multicollinearity, we undertook two

filtration steps to reduce the starting number of miRNAs. Initially the

miRNAs were filtered, removing those failing quality control, and

miRNAs highly correlated to each other, to leave 42 miRNAs (Supple-

mentary Figure 2). Next, we selected the miRNAs most predictive of

PAH vs no PH using four different supervised machine learning

methods.

3.1. miRNAs selected using supervised machine learning approaches

The disease diagnosis (PAH vs no PH) of 72 individuals was

described as a function of the 42 miRNAs using four different machine

learning methods. Feature selection was used to determine the miRNAs

most relevant to the diagnosis. Four different machine learning techni-

ques were used to select miRNAs and model PAH diagnosis; Boruta (an

embedded random forest method), LASSO, regression partition trees,

and XGBoost (an extreme gradient boosting method). The features sub-

sets selected by each method were all different, though there were

overlapping miRNAs in all (Fig. 2). Two miRNAs were selected by all

four methods; miR-636 and miR-187-5p. These 2 miRNAs were the

most consistently selected when different discovery sets were utilised;

a training and validation set approach, leave-one-out cross validated

approach, and a training and validation set approach without patients

with SSc (Supplementary Figure 4).

3.2. Performance of PAH classification using miRNAs

To compare the performance of each feature selection method, we

looked at how each model performed as a classifier on the validation

set. The classification of each subject by each model can be seen in

Supplementary Table 6. Boruta random forest had the highest overall

accuracy, with 30 out of 35 subjects in the validation set correctly

identified.

The performance of each feature selection method on the valida-

tion set was also variable (Table 2). The cross validated performance

for the training set can be seen in Supplementary Table 7. The Ran-

dom Forest model had the highest AUC (0.84), but the XGBoost model

had a higher accuracy (0.83). The LASSO model had the poorest per-

formance, with an accuracy of 0.72. The number of miRNAs selected

by each method also differed, with LASSO selecting the most (13 miR-

NAs), and the Rpart model behaving more stringently by selecting

just four miRNAs. The AUCs for models trained using a leave-one-out

cross-validation approach showed similar results (Fig. 3).

As multivariable methods are known to select different candidate

biomarkers, often with equal accuracy [37], we focused on the over-

lapping miRNAs selected by the four different machine learning

methods. From the 20 miRNAs selected across all four methods,

seven miRNAs are found in more than one model, of these, two were

selected by every model; miR-636 and miR-187-5p (Fig. 2A).

For a subset of patients from Sheffield, NT-proBNP levels were

assayed at routine clinical appointments. We then used these to com-

pare the models’ performances when NT-proBNP levels were included

(Supplementary Figure 3). Although the best performing miRNA model

(RandomForest) did not perform significantly different to the NT-
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proBNP classifier alone (miRNA AUC 95% CI = 0.69 - 1 vs NT-proBNP

AUC 95% CI = 0.84 - 1), all miRNA models with NT-proBNP saw an

improved performance with AUCs (Supplementary Figure 3). Random

forest increased from 0.84 to 0.97, rpart from 0.79 to 0.81, LASSO

increased from 0.78 to 0.93, and the XGBoost model increased from

0.82 to 0.95, though not significantly larger according to the DeLong

test. A clear association of miRNAs with PAH diagnosis may warrant

future investigation of specific miRNAs for therapeutic intervention.

3.3. Importance of individual miRNAs in PAH classification

To ensure no individual miRNA was driving the classification

models, a univariable analysis was carried out (Supplementary Table

8). For each miRNA, the expression levels of patients and controls

were compared using a wilcoxon signed-rank test, then controlled

for multiple testing using the Benjamini Hochberg correction (38) at

0.05. The mean centered expression values for miRNAs selected by at

least two feature selection methods can be seen in Fig. 4a. Ten of the

miRNAs identified in the feature selection methods had an adjusted

p-value <0.05. We also looked at the univariate discriminatory

power of each miRNA individually. MiR-187-5p had an accuracy of

0.78 on the validation set, whereas miR-636 had an accuracy of 0.69.

To assess the potential impact of individual miRNAs on disease pro-

gression, we also looked at the survival difference in patients when

stratifying them based on the median fitted risk of different miRNAs.

However, no miRNA had a significant cox proportional hazard p-

value (Supplementary Table 9).

3.4. PAH classification performs similarly well using miRNA targets

Two miRNAs were identified by all four feature selection

methods: miR-187-5p and miR-636. These miRNA were also

ranked highest in a variable importance analysis (Fig. 4b). In

order to investigate the novel role these miRNAs play in PAH, we

predicted their target genes. The two miRNAs had 20 predicted

gene targets in common (listed in the supplementary), with 630

targets in total.

Feature selection methods can be unstable when there are few

samples for training. To counter this we verified the selected miRNAs

gene targets in a previously published whole blood RNA seq data set

[34], as well as two independent expression studies [35,36] .

The whole blood RNA seq data set contained 54 independent

healthy volunteers and 347 PAH patients. Utilising the miRNA target

gene set in this RNA seq data set (of which 548 target genes were

present), an XGBoost model was used to classify PAH from non-PH,

using a cutoff of 0.841. We used XGBoost as a classifier, as the

XGBoost model had the highest correct classification rate for the

miRNA set. This produced a model with 0.86 AUC (95% CI 0.78-0.94),

Table 2

Model performance of four classifiers on the validation set; a random forest wrapper method (Boruta), regression partition trees (Rpart),

LASSO, and extreme gradient boosting (XGBoost).

Random forest Rpart LASSO XGBoost Ensemble

miRNAs selected by model, n 10 4 13 8 20

Sensitivity

(95% CI)

0.86 (0.65-0.97) 0.91 (0.71-0.99) 0.77 (0.55-0.92) 0.91 (0.71-0.99) 0.91 (0.71-0.99)

Specificity

(95% CI)

0.71(0.42-0.92) 0.64 (0.35-0.87) 0.64 (0.35-0.87) 0.71 (0.42-0.92) 0.64 (0.35-0.87)

Positive predictive value (95% CI) 0.83 (0.61-0.95) 0.80 (0.59-0.93) 0.77 (0.55-0.92) 0.83 (0.63-0.95) 0.80 (0.59-0.93)

Negative predictive value (95% CI) 0.77 (0.46-0.95) 0.82 (0.48-0.92) 0.64 (0.35-0.86) 0.83 (0.52-0.98) 0.82 (0.48-0.92)

Correct classification rate (95% CI) 0.81 (0.64-0.92) 0.81 (0.64-0.92) 0.72 (0.55-0.86) 0.83 (0.67-0.94) 0.81 (0.64-0.92)

AUC

(95% CI)

0.84 (0.69-1) 0.79 (0.63-0.95) 0.79 (0.63-0.94) 0.82 (0.66-0.99) 0.85 (0.70-1)

Fig. 2. Expression correlation (Spearman) matrix between miRNAs selected by machine learning methods (side-bar). Dendrogram orders miRNAs by hierarchical clustering.

XGBoost: Extreme gradient boosting method. Rpart: a regression partition tree method. Boruta: a random forest wrapper method for feature selection.
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and an accuracy of 0.89 for the validation set. This classification

model also allowed us to rank the genes contributing the most to the

model. The top 15 gene targets are shown in Fig. 5.

From the list of 630 target genes, 592 were found in at least one

lung tissue dataset. GSE15197 contained 587 of the gene targets,

with 281 found to be differentially expressed (adjusted p-value

<0.05). All133 predicted gene targets that were profiled in

GSE53408 were differentially expressed. Narrowing this down, 61

genes were differentially expressed in the same direction in both

datasets. Basic characteristics of the two cohorts are described in

Supplementary Table 4. A pathway analysis of all 630 gene targets

showed four enriched KEGG pathways: proteoglycans in cancer,

rennin secretion, melanogenesis, and prolactin signaling pathway

(Fig. 5c). Widening the network to include miRNAs selected by at

least two feature selection methods showed that of these miRNAs,

miR-3613, miR-671 and miR-18b-5p also targeted genes from all

of these pathways, with miR-572 targeting genes in the proteogly-

cans in cancer pathway.

From the pathways identified and putative links to PAH pathogen-

esis, seven gene targets (FER, GLMN, PARP8, MTUS1, HGF, PELI1 and

UBR3) were selected for qPCR validation using 4 control human pul-

monary artery smooth muscle cells (PASMC) and 4 with IPAH [37].

Fig. 4. (a) Comparison of mean centered expression values for both training and validation groups (n = 107) of miRNAs for patients with pulmonary arterial hypertension (PAH) and

no PH controls (Control) selected by 2 or more feature selection methods. * microRNAs with a significant difference between groups (adjusted p-value for Wilcoxon rank-sum test <

0.05). (b) Variable importance scores for the miRNAs selected by the feature selection methods, scaled between 0 - 100 per method.

Fig. 3. Solid lines indicate ROC for the validation set (n = 35), where the model was trained on a separate set. Dashed lines indicate miRNA models trained using a leave-one-out

cross validation approach across the whole data set. (a) extreme gradient boosting (XGBoost) utilising 8 miRNAs; (b) LASSO utilising 13 miRNAs; (c) regression partition trees (Rpart)

utilising 4 miRNAs; (d) a random forest wrapper method (Boruta) utilising 10 miRNAs; (e) Ensemble approach utilising 20 miRNAs (f) Average cross validated ROC for miRNA-187-

5p and miRNA-636 on the training set.
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Two genes in particular, MTUS1 and UBR3 showed a significant

increase in expression in patient derived PASMCs compared to inde-

pendent control cells (Fig. 6). There were no significant differences in

expression for the other genes.

4. Discussion

There is increasing evidence that changes in miRNA expression lev-

els are associated with progression of PAH. Here, we used miRNA

expression profiles and a consensus machine learning approach to iden-

tify two consistently prioritised miRNAs with high accuracy at identify-

ing PAH from no PH controls, as candidates for further investigation.

We subsequently identified putative miRNA gene targets and integrated

public lung tissue RNA datasets to validate differential regulation of key

miRNA targeted genes, again identifying candidates for further investi-

gation. An extreme gradient boosting method of classifying patients

based on the putative gene targets in an overlapping cohort had a simi-

lar AUC, providing further validation. This data suggests that combining

different approaches for selecting miRNAs can reveal diagnostic bio-

markers and insights into regulators of disease.

Of the supervised machine learning approaches we tested, we

found that a random forest approach identified patients with PAH

with the highest sensitivity, although an XGBoost approach had a

similarly high AUC. Adding NT-proBNP to the random forest model

resulted in a model with a higher classification accuracy compared to

NT-proBNP alone. This shows NT-proBNP and miRNAs may provide

complementary phenotypic information and therefore both should

be incorporated in future prospective validation analyses.

Fig. 6. qPCR RQ relative quantification box plots for (a) FER, (b) GLMN, (c) PARP8, (d) MTUS1, (e) HGF, (f) PELI1, (g) UBR3.

Fig. 5. (a) Top 15 genes ranked with the highest importance in classifying patients in an RNAseq dataset (n = 401), scaled between 0 and 100. (b) Mean centered gene expression for

top 15 genes (c) Significantly enriched KEGG pathways of the gene targets from miR-636 and miR-187-5p present in the validation RNA seq dataset. Down regulated genes in pink,

up-regulated in blue.
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It is important to consider whether the features selected at each

point are true biomarkers or false positives. Machine learning pro-

vides an unbiased approach to predicting patient status, but also the

potential to identify previously unknown interactions and identify

novel biological features [39,40]. Our approach of investigating the

biomarkers identified through multiple feature selection techniques

increases confidence in the generation of reproducible biomarker

panels, and reduces the number of miRNAs for potential clinical

investigation. The selected miRNAs ranked highly in terms of variable

importance (Fig. 4B).

Both miRNAs selected have previously been linked to PAH. MiR-187

has previously been identified as significantly upregulated in endoarte-

rial biopsy samples in a porcine model [41], and in human lung tissue

[42], in concordance with our findings. However, one study on cardiac

tissue from the sugen5416 plus hypoxia rat model found miR-187-5p

to be significantly downregulated [43]. MiR-636 has been reported to

correlate with maximum change in pulmonary vascular resistance

(PVR) in a small study on a paediatric PAH population [44]. The above

literature reports support the evidence that miR-187-5p and miR-636,

identified here as candidate biomarkers may be associated with disease

progression of PAH providing validation that our machine learning

approach identified miRNA biomarkers of relevance. Several other miR-

NAs identified as having a high importance score by the feature selec-

tion methods have also previously been seen in PAH, for example MiR-

4707-5p has been identified as a potential target for PH [45]. Addition-

ally, miR-34 has been seen to have decreased expression in PAH

[46,47], and let-7d, which has been identified as a potential biomarker

for the presence and severity of PH in patients with SSc [48]. Similarly,

the target genes driving the classification in an independent RNAseq

dataset, TCF7L2, which ranked highest in importance has previously

been seen to be differentially expressed in the lung tissue of IPAH

patients [49] as well as in the cardiac muscle tissue in a rat model [50]

Some of these target genes also showed weak to moderate correlation

with available clinical features, such as lung function forced vital capac-

ity (Supplementary Table 10).

Our main aim in this study was to investigate the relationship

between miRNAs and clinical classifications, not to develop a diagnostic

tool. ML methods can capture more complex, non-linear relationships,

where a straightforward univariable analysis cannot. A limitation to this

study is the relatively small sample size used to both generate and vali-

date the miRNAs as classifiers. This may have resulted in some model

overfitting and therefore a possible overestimation of effect size. In

order to mitigate this, we validated the gene targets in separate pub-

lished datasets, and used qPCR to validate potentially interesting genes.

The target gene data contained a far larger number of variables, with

548 genes for each of the 401 subjects, necessitating our use of ML in

this dataset. As a result, future studies based on larger retrospective and

prospective clinical cohorts are warranted, and currently underway

(ClinicalTrials.gov NCT04193046) to corroborate the utility of these, and

potentially other miRNAs as classifiers and biomarkers. In such a small

cohort, there was a danger the models could have been driven by fac-

tors such as age and sex, but classification using only these factors

yielded an accuracy of 0.57 in the validation set. We also noted that the

AUC confidence intervals for males and females on the training and val-

idation sets overlapped. Additionally, both SSc and PAH, as individual

diseases can be heterogeneous [51]. As such within our cohorts of

mixed IPAH and SSc-PAH there are likely to be variations between

patients, and equally, our control group included 10 disease controls

and 33 healthy volunteers. We also attempted a leave one out cross val-

idation approach across the whole dataset, which resulted in similar

miRNAs being selected (Supplementary Figure 4). These mixed groups

likely reduce the risk of overfitting to a specific patient phenotype, and

increase the chance that this analysis could be replicated in other PAH

cohorts. The two candidate miRNAs selected from the microarray study

have not been further quantified by PCR. However, correlations

between miRNA microarray expression and PCR have been shown to

have very high correlation coefficients [52]. Consequently, further vali-

dation of the two miRNAs identified in a larger, independent cohort are

necessary before a clinical application can be considered.

In summary, our approach using four machine learning feature

selection algorithms identified a two miR-signature for PAH from

patient plasma. These circulating miRNAs, and their target genes may

provide a novel PAH signature, reveal novel disease mechanisms and

highlight future putative drug targets.
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