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THE BIGGER PICTURE Battery health assessment is crucial for future societal sustainability but it requires
extensive and considerable data-sets with a diverse range of usage scenarios. Access to sufficient battery
aging data is challenging due to both the complicated battery operations and also the significantly laborious
and time-consuming battery aging experiments.
We here highlight the potential of combining industrial data with accelerated aging tests for rapid aging data
acquisition. We present a machine learning approach to generate high-fidelity large-volume datasets with
only 1% error, while the required experimental time can be saved by up to 90%. Our new solution can signif-
icantly improve the data-shortage issues for battery aging assessment. The regenerated dataset with repre-
sentative battery aging dynamic information can benefit many data-based applications such as battery
health estimation, lifespan prediction, second-life utilization, and fault diagnostics.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY
Batteries are crucial for building a clean and sustainable society, and their performance is highly affected by
aging status. Reliable battery health assessment, however, is currently restrained by limited access to suffi-
cient aging data, resulting from not only complicated battery operations but also long aging experimental
time (several months or even years). Refining industrial datasets (e.g., the field data from electric vehicle bat-
teries) unlocks opportunities to acquire large-volume aging data with low experimental efforts. We introduce
the potential of combining industrial data with accelerated aging tests to recover high-quality battery aging
datasets, through a migration-based machine learning. A comprehensive dataset containing 8,947 aging cy-
cles with 15 operational modes is collected for evaluation. While saving up to 90% experimental time, aging
data can be recovered with ultra-low error within 1%. It provides an alternative solution to significantly
improve data shortage issues for assessment of battery and energy storage aging.
INTRODUCTION tion and renewable energy storage.3,4 The data-based battery
Lithium-ion (Li-ion) batteries havebeenwidely viewedas a key en-

ergy storage technology to support the transition to a clean and

sustainable society.1,2 However, the battery aging process will

inevitably reduce thebatteryperformanceand reliability, further in-

fluence users’ confidence, and hinder the advancement of the

related battery applications, e.g., in transportation de-carboniza-
This is an open access article under the CC BY-N
aging assessment is emerging as a complementary approach

to address the inherent complexity of battery system modeling,

achieve accurate estimation and prediction of battery capacity,

and accelerate technology transfer from academic research

to industry.5–7 Moreover, it could unlock new opportunities

for the health-aware control/management of batteries. For

examples, fast charging scheme could be designed for different
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aging conditions to balance the charging speed and degradation

rate.8–10 Likewise, users can get early warnings of the battery fail-

ure,11,12 determinewhether a battery should be replaced,13,14 and

if the retired batteries could be adopted for the less-demanding

applications to allow cascade utilization.15–17 Most of these

data-based applications, by nature, require a large amount of

available battery aging data.18 Although the importance of battery

degradation has been well addressed, how to quickly generate

large-scale battery aging datasets is still an open research ques-

tion. This task is critically important given the ever-increasing util-

ities of data-based aging assessment but significantly challenging

due to not only complicated battery operations but also high

experimental cost and long aging time of the batteries.

The state-of-the-art and most straightforward solution to

generate aging data is designing large-scale lab experiments,

where numerous batteries are tested with hundreds or thousands

of equivalent cycles.19,20 However, the aging-related testings in

the lab are intensely laborious and time consuming. For instance,

a battery aging experiment to obtain the entire degraded capacity

trajectory generally requires several months or even years.21,22 In

addition, the aging process can be significantly influenced by the

user’s operating modes, for example, the charging rates. The

coverage of these modes is commonly limited by the laboratory

resources. Even for some highly acclaimed open-access data-

sets, e.g., provided by the Center for Advanced Life Cycle Engi-

neering (CALCE)21 and the National Aeronautics and Space

Administration (NASA),23 the lab experiments could only test

limited battery types with a few load profiles. The resulting data

shortage issue significantly limits the accuracy, reliability, and

scalability of existing data-based approaches.

To tackle the aforementioned open challenges, we propose to

generate the battery aging dataset by exploring field data from

industrial systems, such as electric vehicles (EVs) or smart grid

energy storage facilities. In these applications, parameters,

such as the battery’s voltage or current, aremeasured constantly

by the embedded battery management systems in real time, and

uploaded to big data platforms periodically for the purpose of

data recording and further analysis.24,25 Compared with the

lab-generated aging datasets, the field-acquired ones have

two distinguishable characteristics.

First, these kinds of datasets are often significantly larger than

those collected from laboratory experiments. For instance, the

National Monitoring and Management Center for EVs in

China26,27 can collect the real-time operating data of EVs at a fre-

quency of one sample per 10 s, resulting in an accumulated da-

taset of 20 TB per day. By 2019, the dataset reached 7 PB, which

contained the real-time battery information frommore than 6,700

types of vehicles. This scale is approximately 1,000,000 times

larger than the MIT-Stanford open-access battery aging data-

set19 (7.8 GB, tested on A123 type LiFePO4 [LFP] batteries

only). Excavating the potential utilization of (even a small propor-

tion of) such industrial datasets could, without a doubt, provide

an alternative approach to handle the data shortage issue for

battery and energy storage aging assessment.

Second, the collected real-time data from field applications

are usually not suitable for supervised learning applications

due to the incompleteness of data, which is a primary challenge

to address in this paper. To be specific, the batteries used in in-

dustrial systems, such as EVs, marine propulsion, and grid-tied
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energy storage, are rarely fully charged or discharged.28,29 The

actual capacity of these industry batteries can only be calibrated

when they leave the production line as new batteries or during

periodic maintenance periods.30 In general, Li-ion batteries in in-

dustrial applications need real-time monitoring rather than

frequent offline maintenance.31 The maintenance frequency is

often lower than once a year,32,33 resulting in a lack of capacity

measurement. In this case, a data-driven model for battery aging

assessment is difficult to establish, even though some aging-

related features, such as the incremental capacity (IC) informa-

tion, can be readily extracted from current and voltage signals

collected in real time.34,35 This difficulty is by and large caused

by the inherent nature of the general supervised training algo-

rithms—a training target (battery capacity) is required to map

input features. To the best of our knowledge, how to handle

the field battery capacity data shortage in supervised learning

is still an open question and no solutions have yet been reported.

In this paper, we introduce the potential of combining

industrial datasets with the accelerated aging test to recover

high-quality battery aging datasets, through a migration-based

machine learning approach. Thereby the completeness of a field

dataset can be greatly enhanced by appending the recovered

battery capacity. To test our method in different scenarios, a

comprehensive dataset consisting of 8,947 aging cycles for

three different battery types using 15 load profiles is utilized.

Our solution can subsequently recover the whole battery capac-

ity trajectory with a maximum error of 0.86%, while saving up to

90%of the experimental time comparedwith themainstream so-

lution of carrying out cyclic aging experiments in the lab directly.

The recovered dataset could be further used for training other

data-based battery aging models, with a negligible loss of accu-

racy (<0.5%) in comparison with using the aging dataset

collected from laboratory experiments. In addition, our recov-

ered dataset could also be utilized in data-based approaches

for the broader health-aware applications, such as failure predic-

tions, lifespan evaluations, fast charging optimization, and bat-

tery ‘‘second-life’’ utilization, supporting more complex working

conditions with better generalization performance. This paper

not only provides an alternative solution to the data shortage

issue in aging assessment, but also illustrates the potential of

fusing easier-to-implement accelerated lab experiments with in-

dustrial data to generate large-volume high-quality datasets.

RESULTS

Recovering unmeasured field capacity data
We first consider the scenario of refining the battery aging data-

sets by regenerating the entire capacity degradation trajectories.

In this scenario, the battery’s voltage and current can be

collected in real time. However, the capacity of each operating

cycle is not available unless calibrated. Here, we start with the

case that the calibrations are conducted, respectively, at 0%,

50%, and 100% of the battery lifespan. The data of these points

could be obtained, respectively, from the factory calibration of

new batteries, battery maintenance during use, and battery per-

formance test before second-life applications. Then, our target

here is to recover hundreds of uncollected capacity values

from only three groups of calibration data, together with the

easily collected voltage and current information.
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Figure 1. Capacity recovering results

(A) Results of the FST-3350-W1 dataset; (B) results of the FST3350-W2 dataset; (C) results of theME-2600-W1 dataset; (D) results of theME-2600-W2 dataset; (E)

results of the SY-2150-W1 dataset; (F) results of the SY-2150-W2 dataset. In all six sub-figures, the blue curves represent the referenced battery capacity, three

groups of labeled data are selected from this curve andmarked with the purple stars. They correspond to the first, last, and 50%point of the aging trajectory. The

red curves represent the recovered capacity using these three labels, and the yellow curve is the fitting results of the empirical exponential curve.

ll
OPEN ACCESSArticle

Please cite this article in press as: Tang et al., Recovering large-scale battery aging dataset with machine learning, Patterns (2021), https://doi.org/
10.1016/j.patter.2021.100302
To verify our designed migration-based capacity recovering

method (as detailed in the experimental procedures), we tested

three commercial battery types (FST-3350, ME-2600, and SY-

2150) and, for each battery type, two different aging methods

(marked by W1 and W2) are conducted. The full details can be

found in Section S1, Table S1, and Figure S1 of the supplemental

information. It is worth noting that accurate laboratory-collected

data have to be adopted in this work because reliable ‘‘refer-

enced values’’ are required to evaluate the accuracy of our

data recovery algorithm. Comparisons between the referenced

and recovered capacity trajectories of the six scenarios are

shown in Figures 1A–1F, respectively. Considering that the

training results of a machine learning method may vary with

the initialization of the neural network,36 in addition to the results

shown in Figure 1, we run our algorithm for another ten iterations

to evaluate the consistency of the method. The root-mean-

square errors (RMSEs) of all tests are summarized in Figure 2,

while the full results can be found in Section S2, Table S2, and

Figures S2–S11 of the supplemental information. To further illus-

trate the superiority of ourmethod, a curve-fitting result of the ca-

pacity to the cycle number is also provided. With only three

groups of labeled data, a popular and widely utilizsed empirical

model with an exponential form fðkÞ= a,expð�b ,kÞ+ c22 is

selected as the fitting function, and the corresponding results

are denoted as ‘‘Exp-1’’. Here a, b, and c are the fitted parame-

ters, and k is the cycle number.
As illustrated in Figure 1, our proposed approach is not only

able to effectively recover the general trend of the aging curves

but also to capture the local fluctuations within the capacity tra-

jectories. Even in the cases where the aging trends present sig-

nificant differences for various battery types and cyclic opera-

tions, the proposed method limits the relevant RMSE to within

0.86%. Such a state-of-the-art accuracy37,38. implies that our

approach can recover the unmeasured capacity values accu-

rately for general industrial datasets that store the partial voltage

and current measurements, as long as only three regular capac-

ity measuring maintenance operations are carried out during the

entire battery lifespan. This in return will enrich the field battery

aging datasets and guarantee their usability for battery aging

assessment. It is worth noting that, when combining the existed

industrial datasets with the accelerated aging tests, the overall

experimental time of our approach is dominated by that of the

accelerated aging tests. As illustrated in Table S1 of the supple-

mental information, the time required by the accelerated aging

test is significantly lower than that of the normal-speed aging

case (the time required by the test marked with ‘‘ME-2600-A’’

is only �3% of that marked with ‘‘ME-2600-W1’’). The detailed

proportion could vary with the applied accelerated and normal-

speed aging conditions, but for the general normal-speed bat-

tery aging profiles with a relatively low current rate (e.g.,

<0.5C), our proposed method could be capable of saving up to

90% of the experimental time.
Patterns 2, 100302, August 13, 2021 3
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Figure 2. The distribution of the RMSE over 11 trials

(A) Results of the FST-3350-W1 dataset; (B) results of the FST3350-W1 dataset; (C) results of the ME-2600-W1 dataset; (D) results of the ME-2600-W2 dataset; (E)

results of the SY-2150-W1 dataset; (F) results of the SY-2150-W2 dataset. In all six sub-figures, the x axis is the root-mean-square error of the methods, and the y

axis is the frequency that the error locates in the specific range.
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On the contrary, the performance of the curve-fitting approach

shown as Exp-1 is rather inconsistent with the dataset. In some

cases, such as SY-2150-W2, Exp-1 provides regeneration re-

sults that closely match the referenced aging trajectories. How-

ever, for other cases, such as FST-3350-W1, its deviations to the

referenced values are much larger. This inconsistency is mainly

caused by the inherent limitations of empirical fittings: the fitting

is often only optimized for the given training data, and its gener-

alization to unseen data is often poor. On the other hand, the

fitting results are also determined by the structure of the selected

fitting function and the choice of the input variables.

Influence of the ‘‘reference position’’
As batteries are often operated and maintained differently in

various applications, the maintenance check points may not be

evenly distributed along the aging trajectory (0%, 50%, 100%,

etc.). In light of this, it is also important to evaluate the impact

of different referenced positions on the accuracy of recovered

capacity trajectories with our proposed method. Here, the

FST-3350-W1 dataset is used for illustration as its capacity

degradation trajectory exhibits the highest non-linearity among

all the six cases as shown in Figure 1. The testing results are

shown in Figure 3, and the RMSE of the recovered capacity tra-

jectories are given in Table 1. Further results of the other batte-

ries can be found in Section S3, Table S3, and Figure S12 of

the supplemental information, while Table S4 and Figure S13
4 Patterns 2, 100302, August 13, 2021
list the results when the distribution of the maintenance check

points are heavily unbalanced.

The accuracy of Exp-1, as expected, is low, and its RMSE rea-

ches 4.83%. In addition, the curve-fitting results can vary signif-

icantly with the change of the reference position. In contrast, the

RMSEs of our proposed approach are smaller than 0.5% in all

cases when the maintenance checkpoints are distributed along

the aging trajectory in a close-to-uniform way (RMSEs can be

bounded within 1.5% for heavily unbalanced cases, even though

it is not recommended to use our algorithm in these extreme

cases), once again confirming that this approach is insensitive

to the position of the referenced capacity points. As shown in

Figure 3, the recovered trajectories using the proposed

approach matches sufficiently close to the true values even if

the testing conditions are significantly different. This feature is

critically important, as in real-life applications the timing of bat-

tery maintenance can vary from user to user. The requirement

of the reference capacity values or maintenance points to

recover the whole capacity trajectory is flexible in our proposed

method.

DISCUSSIONS

Summary
Data-based methods are powerful to model and evaluate the

complex battery degradation processes, but their performance
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Figure 3. Influence of the ‘‘reference position’’ tested with FST-3350-W1 dataset

(A) Results of moving the first label from the first cycle to the cycles corresponding to 10%, 20%, and 30%of the aging trajectory; (B) results of moving the second

label from the cycle corresponding to 50% of the aging trajectory to 40%, 60%, and 70%; (C) results of moving the third label from the last cycle to the cycles

corresponding to 80% and 90% of the aging trajectory.
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is quite often limited by the scale of available battery aging data-

sets. Aiming at this typical but challenging issue, we have made

an attempt to explore the potential of field datasets by proposing

a rapid approach to effectively recover the unmeasured capacity

information from industrial applications, for the first time. Using

only three groups of training data, an accurate recovery result

with 0.86% RMSE has been achieved for three commercial bat-

tery types that have undergone thousands of cycles, while the

required experimental time can be significantly reduced by up

to 90%. The highly accurate capacity values recovered from

our approach could be used for training data-based battery ag-

ingmodels, with a negligible loss of accuracy (<0.5%) in compar-

ison with using the aging dataset collected from laboratory ex-

periments. (The corresponding comparative results are given in

Section S4, Table S5, and Figure S14 of the supplemental

information.) These results illustrate that, for general data-based

battery health assessments, our recovered datasets can com-

plement the ones acquired from the large-scale aging experi-

ments carried out in the laboratory. By augmenting large-volume

field datasets (commonly collected in a data center) with our pro-

posed solution, the data shortage issue in the area of battery

and energy storage health assessment can be significantly

improved. It will directly support the advancement of the data-

based battery health diagnostics and prognostics and, in turn,

significantly enhance the safety, lifespan, and efficiency of in-

dustrial systems, such as EVs or energy storage power

stations. From a broader point of view, this work highlights the

promise of combining industrial calibration data and accelerated

lab experiments to generate high-quality datasets with ultra-low

experimental effort, and this strategy can also used in other in-

dustrial applications for generating useful large-volume

datasets.
Table 1. RMSE of the recovered capacity (in %) with different place

Location [10, 50, 100] [20, 50, 100] [30, 50, 100] [0, 40

Proposed 0.21 0.22 0.21 0.20

Exponential 4.12 4.03 4.09 4.83

‘‘Location’’ refers to the placement of the three labels along the battery’s a
Research limitations and future works
Due to the lack of fully labeled battery aging datasets caused by

complicated battery operations and long aging experimental

time, the aim of this study is to recover high-quality battery aging

datasets rather than predicting battery lifetime. This is important

as it could significantly improve data shortage issues for assess-

ment of battery and energy storage aging. Although developing

data-driven strategies to carry out battery lifetime prognostic

actually lies beyond the scope of this particular work, we also

believe it is another key and challenging topic in the battery com-

munity. In this context, some related topics, such as the discov-

ery of new health indicators and the establishment of advanced

battery data-driven aging models, are important and considered

as other valuable research directions to avoid extending the

scope of the paper unnecessarily.

In addition, following the fact that battery charging in industrial

applications is usually implemented in a relatively stable environ-

ment with a standard current rate, we assumed that the charging

conditions of target battery for data recovery remain similar

along its life. Although uncommon, if the battery of interest

does violate this assumption, the proposed migration-based

data recovering strategy could still be implemented, by devel-

oping a more comprehensive base model (the concept of

‘‘base model’’ is introduced in the experimental procedures)

that considers the impact of different charging conditions. Given

the safety requirement of real-life applications, we also assumed

that battery systems should be trimmed before releasing to the

market, maintained at least one time during their lifespan, and

tested again before second-life usage, making it possible to

collect data from at least three maintenance checkpoints. How-

ever, recovering the data with only two or even one checkpoint(s)

is still an interesting future research topic.
ment of the labels

, 100] [0, 60, 100] [0, 70, 100] [0, 50, 80] [0, 50, 90]

0.32 0.42 0.34 0.32

2.83 2.55 4.50 3.20

ging trajectory (in %).
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Figure 4. The diagram of the proposed data-regeneration method
The method consists of three main steps. First, aging-related features are extracted from the field data collected from industrial applications. Second, a base

model is utilized to predict the intermediate battery capacity valueswith respect to these features. Finally, the intermediate capacity values obtained in the second

step are migrated to generate the target capacity data. Here, the base model is trained using the data acquired from the lab experiments, and accelerated aging

strategies could be used to reduce the experimental effort. The last migration step is used to compensate for the model mismatch between the base model and

the target process of interest. The number of data samples required for training the migration rule is reduced to three even if the battery’s lifespan exceeds

hundreds or thousands of cycles.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Please contact the lead contact, K. Liu (kailong.liu@warwick.ac.uk, kliu02@

qub.ac.uk), for information related to the data and code described in the

following section.

Materials availability

This study did not generate new unique materials.

Data and code availability

All data and code related to this work would be found at https://github.com/

xtangai/Ageing-Data-Set or https://doi.org/10.5281/zenodo.4867041 and

upon request to the lead contact. Alternatively, the file could be downloaded

from the supplemental information—Data S1.

Method overview

Given the challenges of directly building amodel with a high degree of freedom

using only three data points, an alternative ‘‘base + migration’’ strategy is de-

signed here with the diagram shown in Figure 4. Specifically, a basemodel that

maps the selected features to the battery capacity is first built offline from the

accelerated aging experiments in the laboratory (our designed accelerated ag-

ing experiments are detailed in Section S1 of the supplemental information).

Then, a migration model is established, such that the intermediate outputs

from base model could be transferred to the desired target. Such a migration

model can be trained using only three capacity measurements obtained from

related maintenance checkpoints. Finally, the unmeasured capacities in be-

tween the checkup instances can be recovered by using our base + migration
6 Patterns 2, 100302, August 13, 2021
method. The following discussions start with the feature extraction and estab-

lishment of the base model.

Feature extraction and base model establishment

In the general model training phase, it is preferred to choose input features with

low noise sensitivity and high correlations to battery capacity as the inputs of

the base model. Motivated by the fact that the IC-based features have several

key merits, such as containing electrode thermodynamic information,19,35 and

having the potential to exhibit close-to-linear relationship with battery aging,34

we develop an IC-based neural network model as the base model. For a con-

stant current charging process, the IC is defined as:

ICk =
dQ

dV

����
k

z
Qk �Qk�Dk

Vk � Vk�Dk

; (Equation 1)

where Q refers to the capacity charged into the battery in a specific charging

process, V stands for the terminal voltage, Dk is the interval of finite difference,

and k represents the time index within the charging cycle. The raw IC value

calculated from Equation 1 usually contains noise. Therefore, a Gaussian mov-

ing average filter is then employed to smooth the IC curves. Detailed specifica-

tions for the filters can be found in Section S5 of the supplemental information.

From the smooth IC curve characteristic, four features are selected as the

inputs of the neural network. To facilitate the description, these features are

illustrated in Figure 5A. Here the first feature is the peak value of the IC curve,

also known as the IC peak, ICpk . The second feature is the voltage correspond-

ing to the IC peak, also known as the peak voltage, Vpk . The third feature is the

capacity contained in ‘‘Area 1’’ with a boundary of Vpk ±15 mV, as shown in

mailto:kailong.liu@warwick.ac.uk
mailto:kliu02@qub.ac.uk
mailto:kliu02@qub.ac.uk
https://github.com/xtangai/Ageing-Data-Set
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https://doi.org/10.5281/zenodo.4867041
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Figure 5. Methodology

(A) Illustration of the selected features, including the peak of the IC trajectory ICpk , the voltage corresponding to the peak Vpk , the capacity contained in the Areas 1

and 2,CA1 and CA2. (B) The three-layer feedforward neural network for establishing the base model. (C) Illustration of the capacity regeneration procedure. When

using the base model to estimate capacity, its related results (blue curve) would be biased. A strategy is required, which can shift the biased output (solid blue

curve) to the actual capacity (dotted red curve) by using only three data points (red stars).
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Figure 5A. In other words, the capacity change corresponding to the period

when the battery’s terminal voltage rises from ðVpk �15Þ mV to ðVpk + 15Þ
mV is defined as the third feature, which is termed as the ‘‘interval capacity-

A1,’’ CA1. Accordingly, the fourth feature is the capacity contained in ‘‘Area

2’’ of Figure 5A, whose boundary is defined as the intersection point between

the IC trajectory and a horizontal line y = 85%3 ICpk . For simplicity, the last

feature is termed as ‘‘interval capacity-A2,’’ CA2.

Next, these features are mapped to the referenced battery capacity through

a three-layer neural network withN hidden neurons, as illustrated in Figure 5B.

Under this framework, the overall output is expressed by Fb
NETð ,Þ as:

y = bCb
=Fb

NETðxÞ= h

 XN
i = 1

W
ð1;iÞ
2 , f

 X4
k = 1

W
ði;kÞ
1 , xi + W

ði;5Þ
1

!
+ W

ð1;N+1Þ
2

!
;

(Equation 2)

where x = ½ICpk ;Vpk ;CA1;CA2�.
Without loss of generality, the activation function of the hidden layer is

selected as the positive linear function (poslinð ,Þ), while a pure linear function

(purlinð ,Þ) is chosen for the output layer as:

fðxÞ = poslinðxÞ=maxf0; xg; (Equation 3)

hðxÞ = purlinðxÞ= x: (Equation 4)

For the purpose of simplifying the algorithm implementation, the MATLAB

nftool toolbox is used for the network training in this study. Please refer to

Section S5.2 of the supplemental information for details. It is also worth

mentioning that a traditional feedforward neural network is sufficient to describe

the relationship between the selected IC-based features and the battery’s ca-

pacities in this work. But readers may also use more advanced recurrent neural

network39 or convolutional neural network40 for enhanced performances.

Remark 1. The detailed selection of the features will not affect the logic of

our base + migration framework, and multiple aging-related parameters could

be used. However, noting that a battery is rarely fully charged or discharged in

real-life industrial applications, the selected features should be extracted

without using the data segments of high or low state-of-charge (SoC). In addi-

tion, as the battery SoC is inconvenient to be estimated when considering the

joint influence of aging and temperature,41,42 the features that are strongly

coupled with battery SoC should be avoided.

Interpolation-based migration

Since the basemodel is built on the accelerated aging dataset performed in the

laboratory, when using it to predict battery capacities during field operations,

where the degradation rate is lower, an error caused by the model mismatch

can exist, as illustrated in Figure 5C. Therefore, it is necessary to define a
migration rule for the base model to efficiently transfer its outputs to the actual

battery capacity trajectories for the field operations.

As only limited capacity reference points from the field operation are avail-

able, an electrochemical-based migration rule with tens of parameters is diffi-

cult to establish. To handle this issue, an interpolation-based corrector is uti-

lized as the easy-to-implement alternative. Here, we assume N referenced

capacity points are available and denote these capacities as Cref
½l1:N �, where

l1; l2;/; lN are the corresponding cycle when the capacity is calibrated.

Accordingly, the intermediate output points predicted by the base model at

lth1:N cycles can be denoted as bCb

½l1:N �. The interpolation-based migration can

then be described by:

LðxÞ = p1ðxÞ,Cref
l1

+p2ðxÞ,Cref
l2

+/+pNðxÞ,Cref
lN
; (Equation 5)

where

pkðxÞ =

�
x � bCb

l1

�
/

�
x � bCb

lk�1

��
x � bCb

lk + 1

�
/

�
x � bCb

lN

�
� bCb

lk
� bCb

l1

�
/

� bCb

lk
� bCb

lk�1

�� bCb

lk
� bCb

lk +1

�
/

� bCb

lk
� bCb

lN

�
(Equation 6)

holds for k˛½1;N�.
With the established migration rule Lð ,Þ and the features x extracted from

the battery’s charging voltage curves of a certain cycle, we can use Equation 7

to estimate the referenced battery’s capacity (denoted as bCm
) for this spe-

cific cycle:

bCm
= L
� bCb

�
= L
�
Fb
NETðxÞ

�
: (Equation 7)

Remark 2.With the joint effects of the piece-wise linear migration rule (Equa-

tion 5), the positive linear activation in (Equation 3), and the pure linear function in

(Equation 4), higher capacity regeneration accuracy could be achieved if the

selected features in the above-mentioned featureextraction andbasemodel es-

tablishmentsection have close-to-linear relationships with the capacity.
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