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Locally Optimal Unstructured Finite Element Meshes in 3 Bisions

Rashid Mahmood and Peter K. Jimack

School of Computing, University of Leeds, Leeds LS2 9JT, UK.

Abstract

This paper investigates the adaptive finite element selutioa general class of variational
problems in three dimensions using a combination of nodeemewt, edge swapping, face
swapping and node insertion. The adaptive strategy propiesg generalization of previous
work in two dimensions and is based upon the constructionhééarchy of locally optimal

meshes. Results presented, both for a single equation amstieasof coupled equations, sug-
gest that this approach is able to produce better meshegali¢dra than those obtained by

more conventional adaptive strategies and in a relativiilsient manner.

Keywords: finite elements, variational problems, mesh optimizatigtrahedral elements,

node movement, edge swapping, node insertion.

1 Introduction

In this paper we present an extension of our previous work eshnoptimization, presented
in [7, 8], from two space dimensions to three. The approaahwie follow is to consider the
adaptive finite element solution of a general class of vianat problems using a combination
of node movement, edge swapping, face swapping and nodé@ansd he particular adaptive

scheme that is used is based upon the construction of adtigraflocally optimal tetrahedral



meshes starting with a coarse grid for which the location @mthectivity of the nodes is

optimized. This grid is then locally refined and the new masbptimized in the same manner.

The class of problem that we consider in this work may be pos#te following form (or

similar, according to the precise nature of the boundarylitioms):

min /F@m@Mz 1)
wQ(CR™)-R™ Jq

for some energy density functiafi : R™ x R™ x R™*" — R. Herem is the dimension
of the problem ana is the dimension of the dependent variabldPhysically this variational
form may be used to model problems in linear and nonlineastiely, heat and electrical
conduction, motion by mean curvature and many more. Throuiginis paper we restrict our

attention to the three-dimensional case where- 3.

For variational problems of the form (1), the fact that thaasolution minimizes the en-
ergy functional provides a natural optimality criteriorr the design of computational grids
usingr-refinement (defined here to include both node relocationnaesh reconnection). In-
deed, the idea of locally minimising the energy with respgedhe location of the vertices of
a mesh of fixed topology has been considered by a number ofraufb.g. [2],[16]), as has
the approach of locally minimising the energy with respedbhe connectivity of a mesh with
fixed vertices (e.g. [14]). All of this work has been undeeiakn only two space dimensions
however and, to our knowledge, this is the first work in whioksimoptimization with respect
to the solution energy has been attempted for unstructeteahtedral meshes in three space

dimensions.

The algorithm that we use consists of a number of sweepsdhreach of the nodes in
turn until convergence is achieved. At the beginning of eagbep the gradient, with respect

to the position of each node, of the energy functional
B= [ Pt )i @
Q

is found (whereu” is the latest piecewise linear finite element solution). Waach node is

visited the direction of steepest decent is used in ordeet®erchine along which line the node



should be moved. The distance that the node is moved alosdirtki is computed using a
one-dimensional constrained minimization of (2), and ahcenew position for the node has
been found the value of the solution at that node is updatesblwyng a local problem. Once
this update is complete the same process is undertakenefoettt node and when each node
has been visited the sweep is complete. Provided converdesnot been achieved the next

sweep may then begin.

Once convergence with respect to the position of each nogldodan achieved a further
reduction in the energy of the solution is sought by the uslge and face swapping. In three
dimensions there are a large number of different ways in kvthie local connectivity of the
nodes may be altered, see for example [3, 5, 9, 10]. In thik wer use the same edge and
face swapping stencils as [3, 4], whose work is restricteichfwroving the geometric quality

of the mesh rather than minimizing energy as we do here.

Of course the positions of the nodes are likely to be no lofaglly optimal at this point
due to the edge/face swapping. Hence it is necessary toaieoetween the node movement
and the swapping algorithms until the whole process hasergad (at least approximately).
At this stage we allow the application of local mesh refinetrierobtain a new mesh at the
next level which must itself now be optimized. The procesoimiplete when either a desired
accuracy has been obtained or a maximum number of hodesmemde has been reached.

Figure 1 illustrates the overall algorithm proposed.

2 Node Movement

A necessary condition for the position of each node of thabetdral mesh to be optimal is
that the derivative of the energy functional with respeceach nodal position is zero. Like
the approaches of [7, 16] our algorithm seeks to reduce tbeggriunctional monotonically

by moving each node in turn until the derivative with resgecthe position of each node is
zero. Whilst this does not guarantee with absolute cewtdinatt a local minimum (as opposed

to a saddle point or a local maximum) is reached, the preseihminding errors combined



Stop = false
repeat
repeat
undertake node optimization
undertake connectivity optimization
until converged
if (accuracy satisfactory) or (maximum mesh size reacheel)|t
Stop = true
else
refine mesh
solve discrete problem on new mesh
end if

until Stop

Figure 1: Overview of proposed mesh optimization algoritlemthe finite element solution

of (1).



with the downhill nature of the technigue ensures that ictiza any other outcome is almost
impossible.

As indicated above the node optimization phase of the cdvagadrithm in Figure 1 consists
of a number of sweeps through each of the nodes in turn umilesgence is achieved. At the
beginning of each sweep the gradient, with respect to theiqosf each node, of the energy
functional (2) is found. This is done using the same appr@actiescribed in [7], based upon

[6]. In [6] it is proved that ifs; is the position vector of nodethen

OFE oul Oa
= Fég — —EFqp | — + Figai
D5y ; { [ 0gj Py ,3k:j:| oz, + F 40 }diﬂ ; 3

whereq; is the usual local piecewise linear basis function at nodg; is thedh component

of s; (d = 1tom), F), represents the derivative &f with respect to itgoth

argument, other

suffices represent components of tens@jysis the Kronecker delta and repeated suffices imply
summation { = 1tom andk = 1 ton). Note that using (3) the gradients with respect to all of
the vertices in the mesh may be assembled in a single pass eitiments. These gradients are

then sorted by magnitude and the nodes visited one at a tiargng with the largest gradient.

When each node is visited the direction of steepest descent,

is used in order to determine along which line the node shioelichoved. The distance that the
node is moved along this line is computed using a one-diroeabminimization of the energy
subject to the constraint that the node should not move rhared proportions (0 < w < 1)

of the distance from its initial position to its nearest iigur. Once a new position for the
node has been found the value of the solutignsay, at that node must be updated by solving
the local problem

i F(z,u", VuM)dz .
in [ Pl e (5)

Here(); is the union of all elements which have nodas a vertex and Dirichlet conditions
are imposed o@2; using the latest values far. All nodes in the sorted list (based upon

the magnitude of the gradient in (4)) are updated in this waluin in order to complete a



single sweep of the node optimization step. A number of seeep generally taken in order
to converge, at least approximately, to an optimal solutibshould be noted that in general
this simple steepest decent approach will not yield the pessible speed of convergence for
the node movement phase, however our purpose here is to deaterthe effectiveness of the
overall algorithm rather than focus on obtaining the moBtieht possible implementation.

Modifications for more sophisticated gradient-based optaition schemes could easily be

made without altering the underlying technique.

Using the above approach the interior nodes may move in aegttin however a slight
modification is required for nodes on the boundary)f These nodes may only be moved
tangentially along the boundary and even then this is stitpebe constraint that the domain
remains unaltered. Where this constraint is not violatedl dbwnhill direction of motion
along the boundary is easily computed by projectiffigpom (4) onto the local tangent of the
boundary. The one-dimensional minimization in this di@ctis then completed as for any
other node. On Dirichlet boundaries the updated valueisfof course prescribed however on
any other type of boundary it must be computed by solving allpmblem of the same form
as (5). In the implementation described here only plananbaries have been considered.
The extension to curved boundaries could most easily beasthiby treating the boundary as
being locally flat (using the tangent plane for the boundayenbeing optimized for example)

and then projecting the updated position in the plane orgdrtle boundary.

3 Optimizing Connectivity

In three dimensions tetrahedral mesh connectivities maglteead either by undertaking so-
callededge swap®r face swaps In this work we make use of both of these techniques by
exploiting their implementation within the GRUMMP softweapackage, described in [3, 4].
This software seeks to optimize three-dimensional meshexdivity based upon geometric
criteria such as angle conditions and similar qualitativesmquality measures. Since the

source code is publicly available it is possible to modifig th order to undertake optimization



of the mesh connectivity based upon our own criteria: spadifi minimization of the energy
functional (2) on the patches of elements surrounding ae ed@ face respectively. The two

algorithms used for edge and face swapping are now briefisrithesl.

3.1 Edge Swapping

Edge swapping in three dimensions is not really a swap buimaval of an edge followed
by its replacement by one, two or many edges depending upemtany elements surround
that edge (see Figure 2 for example). Edge swapping recoefigheF tetrahedra incident
on an edge of the mesh by removing that edge and replacing Br¢strahedra b E — 4
new tetrahedra. As an example, consider an initial configuravith five tetrahedra incident
to an edge. The left side of Figure 2 shows five tetrahedralémtito an edge OP and the
right side shows one possible reconfiguration of this subhmeto six tetrahedra. This new
configuration is specified by defining three “equatorialrigles”, i.e. which are not incident
on either of vertice®) and P. In Figure 2 these triangles ar®124, A234 andA145. There
are four other possible configurations for this case (eactesponding to a different set of
equatorial triangles), which can be obtained by rotatirggititerior triangle in Figure 2. As
edge swapping replacds original tetrahedra int@F — 4 tetrahedra, whe®® > 4 more
elements are created than are removed. For all of the figutassisection solid lines are used
to show the front view of the diagram, lines with dashes shusviiack of the diagram and

dotted lines are used in the interior of the convex hull ofgbants.

In addition, the number of possible ways that elements camd@nnected after deleting
an edge increases wifi and is given by

(2E — 4)!

Cr = (E—-1)(E - 2)!

(6)

(see [5]). Wher® = 5 this gives the five possibilities noted in the previous peapQy. How-
ever, ask’ grows the number of possible configurations grows very tg@dd so, following
[3, 4], only edges withE < 8 are considered as candidates for edge swapping. The possi-

ble configurations fod < E < 7 are shown diagrammatically in Figure 3, where equatorial



T1=012P T1=0145
T2=01P5 T2=0124
T3=02P3 T3=0234
T4=0P34 T4 =P145
1 T5=0P45 5.6 14 -, T5=P124
4 e 4 T6=P234
2 2
p P

Figure 2: Edge swapping for 5 tetrahedra to 6, where é2Bds surrounded by 5 tetrahedra.

triangles are shown along with the number of unique rotationeach configuration. An opti-
mization method therefore has to search through a large euailtonnectivity permutations
for large E in order to determine which reconfiguration of the origidatetrahedra has the
lowest energy. For this it is necessary to compute the erfergach tetrahedron in each con-
figuration. Fortunately, wheR is large, the number of unique tetrahedra is much smaller tha
the number of configurations times the number of tetrahddr snany tetrahedra appear in
more than one configuration. This is shown in Table 1 (takemfi3]) and means that the cost

of performing a local mesh optimization is not quite as high{@ initially suggests.

Tets before| Tets after| Configurations| Tetsx configs | Unique tets
4 4 2 8 8
5 6 5 30 20
6 8 14 112 40
7 10 42 420 70

Table 1: Number of unique tetrahedra and possible configmsafor edge swapping (taken

from [3]).
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Figure 3: Equatorial triangles after swapping edge OPpsuded by 4,5,6 and 7 tetrahedra,

including the number of unique rotations for each configarashown.
3.2 Face Swapping

Face swapping is cheaper to execute, although possibly coonglicated to implement, than
edge swapping in three dimensions. It is based upon thelpp@ssinfigurations of sets of five
distinct non-coplanar points [9, 11] (since each interaef in a tetrahedral mesh separates
two tetrahedra, which contain a total of five points betwdent). Five such configurations

may arise, as described below and illustrated in Figuresidban

1. No four of the five points are coplanar and none of the pasis the interior of the
convex hull of the other four. In this case the five points magbnnected as either two
tetrahedra (denoted as configuration 1A) or three tetrah@bimoted as configuration

1B). This is the most common configuration to arise and bgtkegyof connectivity are



illustrated in Figure 4.

2. No four of the five points are coplanar however one of thatsdies in the interior of
the convex hull of the other four. In this case the five poinés/ine connected uniquely
into four tetrahedra, which each have the interior point asrgex. This is illustrated in

Figure 4 where point B in configuration 2 is the interior verte

3. Four of the five points are coplanar and none of these foutgbes inside the convex
hull of the other three. In this case the five points may be eoted as two tetrahedra in
two different ways (denoted here as configurations 3A ande3Bactively). These two

possible connectivities are shown in Figure 5.

4. Three of the five points are colinear. In this case the fivatpanay be connected

uniguely as two tetrahedra, as shown in Figure 5 (configurat).

5. Four of the five points are coplanar and one of these fourtpdies inside the convex
hull of the other three. In this case the five points may be eotad uniquely as three
tetrahedra. This is illustrated in Figure 5 where point Banftguration 5 is in the plane

formed by ACD and in the interior of their convex hull.

It should be noted that face swapping is only possible foséraets of five points which are in

configurations 1 or 3.

o (o}
T1=ABCO T1=ABDO o T1=ABCD
T2=ABCD T2=BCDO - T2=ABCO
T3=A0CD T3=ABOD

T4=BDCO

D D

Configuration 1A Configuration 1B Configuration 2

Figure 4. Possible configurations of five points where no fduhe five points are coplanar.
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T1=ACBO T1=ADBO
T2=ADCO T2=BDCO
2:2
A -
c c
D
Configuration 3A Configuration 3B
o

T1=ADBO T1=ADBO

T2=BDCO T2=ABCO
T3=BDCO

Configuration 5
Configuration 4 gurati

Figure 5: Possible configurations of five points where foutheffive points are coplanar.

Unlike with edge swapping, where many possible reconfiguratare possible, if a face
swap is possible (configuratiodnsand3 in Figures 4 and 5 respectively) then only two possible
choices need to be compared. This allows a simple and quitanson to find the one with
the lower energy. Details of the way in which the face swagpsn be implemented in practise
can be found in [10, 11]. In [3, 4] face swapping is the primaigorithm for reconnecting the
mesh and edge swapping is used as a supplement to it. Thewdgpisg routines are also
used as part of a separate procedure specifically designedntave poor quality tetrahedra
but we do not make use of this procedure in this work since werativated only by energy

reduction.
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4 Nodelnsertion

The main difficulty with the node movement and edge/face pivapstrategies above is that it
is impossible to knova priori how many nodes or elements will be required in order to get a
sufficiently accurate finite element solution to any givenat&gonal problem. Even an optimal
mesh with a given number of nodes may not be adequate fomofgea solution of a desired

accuracy. For this reason some form of mesh refinement iatesse

In this work we use the regular refinement algorithm impletaénn [15]. This divides
each tetrahedral element that is to be refined into eighdlieml by introducing nodes at the
mid-points of each edge. Each new node is then connectee twthier two new nodes lying
on each face as illustrated in Figure 6. The three new edgesdnface may be seen to cut
off four child elements at the corners of the parent tetredredeaving an octahedron at the
centre. This may be divided into four more child tetrahedraatdding a further edge (LJ in
Figure 6) connecting two opposite vertices. The choice atiwinternal diagonal to insert
is important: the approach used in [15] is to choose the lsingee but other approaches are
possible (see, for example, [13]). It should be noted thiatréfinement technique produces
child tetrahedra that are of different shapes to their gasehich may be an issue for some
mesh generators. This is not an issue for this algorithm tiemnsince we are not concerned
with geometric mesh quality and since both node movementedgd/face swapping are also

used anyway.

T1= OIN

T2= IKAL
T3= JBKM
T4= NMLC
T5= JMKL
T6= LIJN
T7=LIJK
T8= LMJN

Figure 6: Regular refinement of a tetrahedron into 8 chilchbetdra, by bisecting all of the

edges.
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For the results that are presented in the following sectah Blobal and local refinement
examples are included. In the former case the regular re@neaigorithm alone is sufficient
however, when local mesh refinement is used, an additiofiakeraent scheme is required
to deal with thehanging nodeshat are left on an unrefined element which has one or more
neighbour that has been refined. In [15] these cases arendttathrough the use of a number
of so-calledgreen refinemergtencils which deal with elements that have one or more hgngi

node.

5 Numerical Results

In this section we consider two example problems of the fdnThe first of these is a single

equation (i.en = 1), and the second of these is a system for which m = 3.

51 Problem One
For an initial test problem we consider the following eqoati
—Au+8l2u=o, 2eQ=(0,1)x (0,1) x (0,1), )
subject to the Dirichlet boundary conditions
u=e "/° (8)

throughouto2. This is chosen so that (8) is the exact solution of (7) thhoug2. Hence,
for any given value of the analytic solution, and therefore the true energy minmnare both

known (in this case = 0.01 is chosen and the optimal value for the energ¥ is= 50.0000).

Following the approach used in [7] for testing the two-disienal algorithm, we begin by
assessing the performance of three-dimensional multileesh optimization when combined
with global h-refinement. Initially the test problem is solved on a regulaarse grid o884
tetrahedral elements. This mesh is then optimized locallygunode movement and edge/face

swapping and the total energy of the solution reduces 88862763 to 62.113265. However

13



the number of elements increases fre&d to 407 due to the application of edge/face swap-
ping. Three levels of uniform refinement, each followed btirajzation, then yield solutions
with energies 061.223148, 50.200687 and50.048211 on meshes d3330, 27346 and220769
elements respectively. For each of these three levels th#bauof elements increased by

slightly more than a factor of eight due to the edge/face pivap

To see that this final mesh is superior to one obtained withautilevel optimization the
problem is then solved on a three level uniform refinemenhefinitial mesh, (with1 96608
elements therefore), to yield a solution with ene6dy278957. When this mesh is optimized
however the energy only decreases to a valug2d38504, with an increase in the number of

elements td 97070 due to edge/face swapping.

We now demonstrate the potential advantages of using leiaement with the multilevel
optimization. Starting with the locally optim8B4 element grid, a sequence of three further
meshes is obtained through lodatefinement (by refining those elements whose local energy
exceeded0% of the maximum local energy on any element) followed by lagatimization.
These meshes conta931, 18741 and 110170 tetrahedral elements and the corresponding

solutions have energies 8f.226773, 50.200292 and50.043149 respectively.

Finally, we demonstrate the superiority of this final meskroene obtained using only
local h-refinement followed by local optimization at the end. Thasnes from the observation
that a grid 0f232140 elements obtained using only lodarefinement yields a solution energy
of 54.813215 and, when this is optimized, the solution energy only reduoé1.443760. A
summary of all of these computational results is providet@iable 2 and an illustration of the

meshes obtained using multilevel optimization with loeakfinement is given in Figure 7.

5.2 Problem Two

The second problem that we consider involves the calculaifahe displacement field for a

three dimensional linear elastic model of an overhangimgilezer beam with domain

Q={(zr,9,2) :0<z<4,0<y<1,0<2<1}

14



Elements| Energy | Description

384 378.62763| Initial mesh.

407 62.113265
3330 | 51.223148| Multilevel optimization and
27346 | 50.200687| global h-refinement.
220769 | 50.048211

196608 | 67.278957| Global h-refinement followed

197070 | 52.338504| by optimization.

407 62.113263
2931 | 51.226773| Multilevel optimization and
18741 | 50.200292| local h-refinement.

110170 | 50.043149

232140 | 54.813215| Local h-refinement followed

233506 | 51.443760| by optimization.

Table 2: Summary of the results obtained for the first tedtlpra (the global energy minimum

is 50.0000).

The bottom half of the beam is fixed as illustrated by the stiadgion in Figure 8 and the

energy functional is given by,

1 c’)u, Buk /
E=— —Chike—— — iU .
2 /g 811,‘]' CZ]kZ 914 dz 0 pbiu; dz )

Here, all repeated suffices are summed fiioim 3, C is the usual fourth order elasticity tensor,
chosen to correspond to an isotropic material with a noredsionalized Young's modulus
FE = 100 and a Poisson ratio = 0.001, pb provides the external body forces due to gravity.
The small value of Poisson’s ratio is chosen to ensure tleabdam deforms significantly

under its own weight. This makes the problem suitable formaeaptivity.

As before we begin by solving the problem on a uniform coarsshmthis time containing

192 elements. This mesh is then optimized using the node moveamehedge/face swap-

15



ping algorithms to reduce the total energy fre.168295 to —0.208546. For this particular
mesh the edge/face swapping keeps the number of elemenes Jdmee levels of uniform
refinement, each followed by mesh optimization, are unlertaThis produces meshes with
1548, 12415 and 99349 elements and solutions with energies-a§.262773, —0.280849 and

—0.285704 respectively.

We consider two further meshes #8304 and 98370 elements. The first of these is ob-
tained by global refinement of the initial uniform mesh aneldbcond by optimizing this mesh
directly. The energies of the solutions on these meshes@®y2196 and—0.283207 respec-
tively and so we again observe the superiority of the hiéieat approach when-refinement

is combined with globak-refinement.

As with the previous example, our goal is to assess the hybgiorithm that combines-
refinement with locah-refinement hence we now consider a sequence of mesheseasbiain
this manner. The first mesh is the same optimized mesh, camydi92 elements, used as the
basis for the global refinement results. The energy of thatisol on this mesh is-0.208546.
Four further locally optimal meshes are then obtained, ¢aoh via the use of local refine-
ment (of those elements whose local energy excééts of the maximum local energy on
any element) followed by mesh optimization. These meshasn958, 4529, 15315 and
48403 elements and yield solutions with energies-of.252279, —0.267699, —0.281052 and

—0.286102 respectively.

We again conclude our example by illustrating the advantdggpplying the hybrid ap-
proach hierarchically by contrasting it with the use of lokaefinement alone, possibly fol-
lowed by a single application of-refinement. We refine locally the initial mesh 4f2 ele-
ments in five levels to achieve a meshi82698 elements (again using a thresholds6% for
the local refinement). The total energy of the solution os thesh is—0.278015. The mesh
is then optimized to reduce the total stored energy-6a284321, with an increased number
of elements;132958, due to edge/face swapping. As before it is clear that théitgud the

locally optimal meshes obtained in this manner is inferthat of meshes obtained using

16



the hierarchical approach. A summary of all of the compatatimade for this test problem
is provided in Table 3 and an illustration of the meshes akthusing multilevel optimization

with local h-refinement is given in Figure 9.

Elements| Energy | Description

192 -0.168295| Initial mesh

192 -0.208546
1548 -0.26773 | Multilevel optimization and
12415 | -0.280849| global h-refinement.

99349 | -0.285704

98304 | -0.272196| Global h-refinement followed

98370 | -0.283207| by optimization.

192 -0.208546
958 -0.252279| Multilevel optimization and
4529 | -0.267699| local h-refinement.

15315 | -0.281052

48403 | -0.286102

132698 | -0.278015| Local h-refinement followed

132958 | -0.284321| by optimization.

Table 3: Summary of the results obtained for Problem Two ¢lobal energy minimum is

unknown).

It is interesting to note that for the optimal meshes showinath this example (Figure 9)
and the previous (Figure 7) there are a large number of elesntiest would be rejected if the
usual geometric quality criteria (e.g. [3, 10]) had been leygal. Using the energy criterion

however these elements are perfectly acceptable.
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6 Discussion

The two examples of the previous section have clearly st that the quality of the final
mesh produced when using the proposed algorithm is bettifreisense that the finite element
solution has a lower energy, than that obtained by eithefinement or--refinement alone.
Furthermore it is demonstrated that combining the meskmupdition with localh-refinement

is superior to combining it with globai-refinement. Finally, the advantage of using the hierar-
chical approach, whereby intermediate level mesh are gp#his also apparent: an excellent
combination of small mesh sizes and low energies for theespaonding finite element solu-

tions being achieved.

It should be noted that, although quite complex to impleniestd, the edge/face swap-
ping component of the hybrid algorithm is crucial. This maydemonstrated, for example, by
contrasting the results of Table 2 with those obtained feistime test problem but without the
connectivity optimization step included in Figure 1 (segf¢8 further details). Such modified
results are presented in Table 4 and clearly demonstratinthations of the adaptive algo-
rithm when edge/face swapping is neglected. The differém¢lee solution quality between
an energy 060.75 and50.04 (where the true optimal value i).00) is really quite substan-
tial. In fact much greater accuracy (energ$G=20) is obtained on a coarser mesh when edge
and face swapping are used. The difference in accuracy betie50.04 solution and the
50.20 solution is less pronounced but this additional level oalaefinement does provide a

significant improvement nevertheless.

It should also be noted that cpu times have not been includgisi paper since our goal has
been to investigate mesh optimality rather than to studyasiest way of obtaining a solution
of a give accuracy. However some sample solution times aréded in [12, chapter 4] for a
variety of different parameters that occur in the algoritbirrigure 1. Itis clear that in general
it will not pay to spend an excessive amount of time obtairilmg very best possible mesh
compared to obtaining a good, but slightly sub-optimal, im@®. requiring more elements

to achieve the same accuracy) at a significantly reduced Easthermore, on those optimal

18



Elements| Energy | Description

384 378.62763| Initial mesh.

384 104.85725
3072 | 59.907732| Multilevel optimization and
24576 | 52.398871| global h-refinement.

196608 | 50.755212

196608 | 67.279033| Global h-refinement followed

196608 | 52.434265| by optimization.

384 104.85704
2655 | 59.902412| Multilevel optimization and
16933 | 52.381223| local h-refinement.

100866 | 50.746025

573834 | 54.885230| Local h-refinement followed

573834 | 51.332477| by optimization.

Table 4. Summary of the results obtained for the first tedblprowithoutedge/face swapping

(the global energy minimum i50.0000).

meshes that have highly distorted elements the conditiarbeu of the corresponding discrete
equations can be very large and so it will generally requioeentcomputational work to solve
these equations than those obtained from an inferior, lagt déstorted, mesh. These twin
considerations of time spent obtaining the discrete egusitind time spent solving them mean
that the problem of obtaining the fastest possible solutiba given accuracy is a lot more
complex than the optimal mesh problem considered here. higidy challenging problem is

clearly deserving of significant continued research.

To conclude this paper we observe that only two numericaingkas have been included
here and that further work is likely to be required to ensime robustness of the proposed

algorithm for a wide variety of application problems. In fpawlar, it is likely that the mesh
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refinement technique used here will be sub-optimal for gmwisl with highly anisotropic so-

lutions, which may well benefit from a more anisotrogid refinement algorithm, such as

[1] for example. It is also possible that different critedauld be used for deciding which

elements should be locally refined (e.g. based upon eneegiiemts rather than energy val-

ues) in order to enhance the technique further. Neverthelks provisional implementation

and results presented here suggest that this approachgh#gant potential and that further

research is indeed likely to be fruitful.
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Figure 7. An initial locally optimised mesh (top left) folleed by a sequence of meshes ob-

tained by combinations of locétrefinement with--refinement for the first test problem.

Figure 8: An illustration of the overhanging cantilever trea
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of meshes obtained by combinationscaf lerefinement withr-

Figure 9: A sequence

nd test problem.

refinement for the seco

23



