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Locally Optimal Unstructured Finite Element Meshes in 3 Dimensions

Rashid Mahmood and Peter K. Jimack

School of Computing, University of Leeds, Leeds LS2 9JT, UK.

Abstract

This paper investigates the adaptive finite element solution of a general class of variational

problems in three dimensions using a combination of node movement, edge swapping, face

swapping and node insertion. The adaptive strategy proposed is a generalization of previous

work in two dimensions and is based upon the construction of ahierarchy of locally optimal

meshes. Results presented, both for a single equation and a system of coupled equations, sug-

gest that this approach is able to produce better meshes of tetrahedra than those obtained by

more conventional adaptive strategies and in a relatively efficient manner.

Keywords: finite elements, variational problems, mesh optimization,tetrahedral elements,

node movement, edge swapping, node insertion.

1 Introduction

In this paper we present an extension of our previous work on mesh optimization, presented

in [7, 8], from two space dimensions to three. The approach that we follow is to consider the

adaptive finite element solution of a general class of variational problems using a combination

of node movement, edge swapping, face swapping and node insertion. The particular adaptive

scheme that is used is based upon the construction of a hierarchy of locally optimal tetrahedral
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meshes starting with a coarse grid for which the location andconnectivity of the nodes is

optimized. This grid is then locally refined and the new mesh is optimized in the same manner.

The class of problem that we consider in this work may be posedin the following form (or

similar, according to the precise nature of the boundary conditions):

�������� �
	���
�������
��
�
������� ��� �"! �
#%$&� (1)

for some energy density function�('*),+.-/)�01-/)�+�230/4 ) . Here 5 is the dimension

of the problem and6 is the dimension of the dependent variable� . Physically this variational

form may be used to model problems in linear and nonlinear elasticity, heat and electrical

conduction, motion by mean curvature and many more. Throughout this paper we restrict our

attention to the three-dimensional case where587:9 .
For variational problems of the form (1), the fact that the exact solution minimizes the en-

ergy functional provides a natural optimality criterion for the design of computational grids

using ; -refinement (defined here to include both node relocation andmesh reconnection). In-

deed, the idea of locally minimising the energy with respectto the location of the vertices of

a mesh of fixed topology has been considered by a number of authors (e.g. [2],[16]), as has

the approach of locally minimising the energy with respect to the connectivity of a mesh with

fixed vertices (e.g. [14]). All of this work has been undertaken in only two space dimensions

however and, to our knowledge, this is the first work in which mesh optimization with respect

to the solution energy has been attempted for unstructured tetrahedral meshes in three space

dimensions.

The algorithm that we use consists of a number of sweeps through each of the nodes in

turn until convergence is achieved. At the beginning of eachsweep the gradient, with respect

to the position of each node, of the energy functional

< 7
�
������� ���>=?�"! �>=&#%$@� (2)

is found (where� = is the latest piecewise linear finite element solution). When each node is

visited the direction of steepest decent is used in order to determine along which line the node
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should be moved. The distance that the node is moved along this line is computed using a

one-dimensional constrained minimization of (2), and oncethis new position for the node has

been found the value of the solution at that node is updated bysolving a local problem. Once

this update is complete the same process is undertaken for the next node and when each node

has been visited the sweep is complete. Provided convergence has not been achieved the next

sweep may then begin.

Once convergence with respect to the position of each node has been achieved a further

reduction in the energy of the solution is sought by the use ofedge and face swapping. In three

dimensions there are a large number of different ways in which the local connectivity of the

nodes may be altered, see for example [3, 5, 9, 10]. In this work we use the same edge and

face swapping stencils as [3, 4], whose work is restricted toimproving the geometric quality

of the mesh rather than minimizing energy as we do here.

Of course the positions of the nodes are likely to be no longerlocally optimal at this point

due to the edge/face swapping. Hence it is necessary to alternate between the node movement

and the swapping algorithms until the whole process has converged (at least approximately).

At this stage we allow the application of local mesh refinement to obtain a new mesh at the

next level which must itself now be optimized. The process iscomplete when either a desired

accuracy has been obtained or a maximum number of nodes or elements has been reached.

Figure 1 illustrates the overall algorithm proposed.

2 Node Movement

A necessary condition for the position of each node of the tetrahedral mesh to be optimal is

that the derivative of the energy functional with respect toeach nodal position is zero. Like

the approaches of [7, 16] our algorithm seeks to reduce the energy functional monotonically

by moving each node in turn until the derivative with respectto the position of each node is

zero. Whilst this does not guarantee with absolute certainty that a local minimum (as opposed

to a saddle point or a local maximum) is reached, the presenceof rounding errors combined
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Stop = false

repeat

repeat

undertake node optimization

undertake connectivity optimization

until converged

if (accuracy satisfactory) or (maximum mesh size reached) then

Stop = true

else

refine mesh

solve discrete problem on new mesh

end if

until Stop

Figure 1: Overview of proposed mesh optimization algorithmfor the finite element solution

of (1).
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with the downhill nature of the technique ensures that in practise any other outcome is almost

impossible.

As indicated above the node optimization phase of the overall algorithm in Figure 1 consists

of a number of sweeps through each of the nodes in turn until convergence is achieved. At the

beginning of each sweep the gradient, with respect to the position of each node, of the energy

functional (2) is found. This is done using the same approachas described in [7], based upon

[6]. In [6] it is proved that if � � is the position vector of node
�

then� <� � ��� 7
�
�
���

�
	 ����
 �
� =��
� � ��� � � ���

��� ��
� ��� ����� � � ��� $&�1� (3)

where
� � is the usual local piecewise linear basis function at node

�
, � ��� is the $ th component

of � � ( $ 7�� to 5 ), � �  represents the derivative of� with respect to its! th argument, other

suffices represent components of tensors,	 ��� is the Kronecker delta and repeated suffices imply

summation (" 7#� to 5 and $�7%� to 6 ). Note that using (3) the gradients with respect to all of

the vertices in the mesh may be assembled in a single pass of the elements. These gradients are

then sorted by magnitude and the nodes visited one at a time, starting with the largest gradient.

When each node is visited the direction of steepest descent,

� 7 
 � <� � � � (4)

is used in order to determine along which line the node shouldbe moved. The distance that the

node is moved along this line is computed using a one-dimensional minimization of the energy

subject to the constraint that the node should not move more than a proportion& ( ')(*&%(+� )
of the distance from its initial position to its nearest neighbour. Once a new position for the

node has been found the value of the solution,� � say, at that node must be updated by solving

the local problem

������-,/. 
 � � �0, ����� ��� = �"! � = #%$&� 1 (5)

Here 2 � is the union of all elements which have node
�

as a vertex and Dirichlet conditions

are imposed on
� 2 � using the latest values for� = . All nodes in the sorted list (based upon

the magnitude of the gradient in (4)) are updated in this way in turn in order to complete a
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single sweep of the node optimization step. A number of sweeps are generally taken in order

to converge, at least approximately, to an optimal solution. It should be noted that in general

this simple steepest decent approach will not yield the bestpossible speed of convergence for

the node movement phase, however our purpose here is to demonstrate the effectiveness of the

overall algorithm rather than focus on obtaining the most efficient possible implementation.

Modifications for more sophisticated gradient-based optimization schemes could easily be

made without altering the underlying technique.

Using the above approach the interior nodes may move in any direction however a slight

modification is required for nodes on the boundary of2 . These nodes may only be moved

tangentially along the boundary and even then this is subject to the constraint that the domain

remains unaltered. Where this constraint is not violated the downhill direction of motion

along the boundary is easily computed by projecting� from (4) onto the local tangent of the

boundary. The one-dimensional minimization in this direction is then completed as for any

other node. On Dirichlet boundaries the updated value of� is of course prescribed however on

any other type of boundary it must be computed by solving a local problem of the same form

as (5). In the implementation described here only planar boundaries have been considered.

The extension to curved boundaries could most easily be achieved by treating the boundary as

being locally flat (using the tangent plane for the boundary node being optimized for example)

and then projecting the updated position in the plane onto the true boundary.

3 Optimizing Connectivity

In three dimensions tetrahedral mesh connectivities may bealtered either by undertaking so-

callededge swapsor face swaps. In this work we make use of both of these techniques by

exploiting their implementation within the GRUMMP software package, described in [3, 4].

This software seeks to optimize three-dimensional mesh connectivity based upon geometric

criteria such as angle conditions and similar qualitative mesh quality measures. Since the

source code is publicly available it is possible to modify this in order to undertake optimization
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of the mesh connectivity based upon our own criteria: specifically minimization of the energy

functional (2) on the patches of elements surrounding an edge or a face respectively. The two

algorithms used for edge and face swapping are now briefly described.

3.1 Edge Swapping

Edge swapping in three dimensions is not really a swap but a removal of an edge followed

by its replacement by one, two or many edges depending upon how many elements surround

that edge (see Figure 2 for example). Edge swapping reconfigures the
<

tetrahedra incident

on an edge of the mesh by removing that edge and replacing these
<

tetrahedra by� < 
��
new tetrahedra. As an example, consider an initial configuration with five tetrahedra incident

to an edge. The left side of Figure 2 shows five tetrahedra incident to an edge OP and the

right side shows one possible reconfiguration of this sub-mesh into six tetrahedra. This new

configuration is specified by defining three “equatorial triangles”, i.e. which are not incident

on either of vertices� and � . In Figure 2 these triangles are� ��� � , ����9 � and � � �	� . There

are four other possible configurations for this case (each corresponding to a different set of

equatorial triangles), which can be obtained by rotating the interior triangle in Figure 2. As

edge swapping replaces
<

original tetrahedra into� < 

� tetrahedra, when
<�� � more

elements are created than are removed. For all of the figures in this section solid lines are used

to show the front view of the diagram, lines with dashes show the back of the diagram and

dotted lines are used in the interior of the convex hull of thepoints.

In addition, the number of possible ways that elements can bereconnected after deleting

an edge increases with
<

and is given by


�� 7 � �
< 
�� # �

�
< 
 � # � � < 
 � # � (6)

(see [5]). When
< 7 � this gives the five possibilities noted in the previous paragraph. How-

ever, as
<

grows the number of possible configurations grows very rapidly and so, following

[3, 4], only edges with
< (�� are considered as candidates for edge swapping. The possi-

ble configurations for��� < ��� are shown diagrammatically in Figure 3, where equatorial
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T6 = P234

T1 = O12P
T2 = O1P5
T3 = O2P3
T4 = OP34
T5 = OP45 T5 = P124

4
5

T1 = O145
T2 = O124
T3 = O234
T4 = P145

Figure 2: Edge swapping for 5 tetrahedra to 6, where edge� � is surrounded by 5 tetrahedra.

triangles are shown along with the number of unique rotations for each configuration. An opti-

mization method therefore has to search through a large number of connectivity permutations

for large
<

in order to determine which reconfiguration of the original
<

tetrahedra has the

lowest energy. For this it is necessary to compute the energyfor each tetrahedron in each con-

figuration. Fortunately, when
<

is large, the number of unique tetrahedra is much smaller than

the number of configurations times the number of tetrahedra since many tetrahedra appear in

more than one configuration. This is shown in Table 1 (taken from [3]) and means that the cost

of performing a local mesh optimization is not quite as high as (6) initially suggests.

Tets before Tets after Configurations Tets - configs Unique tets

4 4 2 8 8

5 6 5 30 20

6 8 14 112 40

7 10 42 420 70

Table 1: Number of unique tetrahedra and possible configurations for edge swapping (taken

from [3]).
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Figure 3: Equatorial triangles after swapping edge OP, surrounded by 4,5,6 and 7 tetrahedra,

including the number of unique rotations for each configuration shown.

3.2 Face Swapping

Face swapping is cheaper to execute, although possibly morecomplicated to implement, than

edge swapping in three dimensions. It is based upon the possible configurations of sets of five

distinct non-coplanar points [9, 11] (since each interior face in a tetrahedral mesh separates

two tetrahedra, which contain a total of five points between them). Five such configurations

may arise, as described below and illustrated in Figures 4 and 5.

1. No four of the five points are coplanar and none of the pointsis in the interior of the

convex hull of the other four. In this case the five points may be connected as either two

tetrahedra (denoted as configuration 1A) or three tetrahedra (denoted as configuration

1B). This is the most common configuration to arise and both types of connectivity are
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illustrated in Figure 4.

2. No four of the five points are coplanar however one of the points lies in the interior of

the convex hull of the other four. In this case the five points may be connected uniquely

into four tetrahedra, which each have the interior point as avertex. This is illustrated in

Figure 4 where point B in configuration 2 is the interior vertex.

3. Four of the five points are coplanar and none of these four points lies inside the convex

hull of the other three. In this case the five points may be connected as two tetrahedra in

two different ways (denoted here as configurations 3A and 3B respectively). These two

possible connectivities are shown in Figure 5.

4. Three of the five points are colinear. In this case the five points may be connected

uniquely as two tetrahedra, as shown in Figure 5 (configuration 4).

5. Four of the five points are coplanar and one of these four points lies inside the convex

hull of the other three. In this case the five points may be connected uniquely as three

tetrahedra. This is illustrated in Figure 5 where point B in configuration 5 is in the plane

formed by ACD and in the interior of their convex hull.

It should be noted that face swapping is only possible for those sets of five points which are in

configurations 1 or 3.

B

C B

C

D

D

             

           

T1 = ABCD

A

B

C A

T1 = ABDO
T2 = BCDO T2 = ABCO

T3 = ABOD
T4 = BDCO

T3 = AOCD

T1 = ABCO
T2 = ABCD

Configuration 2 

     2 : 3

O O

O

        

Configuration  1A Configuration 1B 

A

D

     

Figure 4: Possible configurations of five points where no fourof the five points are coplanar.
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A

D

C

B

B

C

D

A

B

           
B

A

C

C

D

A

D

Configuration  4

T1 = ADBO
T2 = ABCO
T3 = BDCO

T1 = ADBO

       2 : 2

T2 = ADCO
T1 = ACBO

T2 = BDCO

T2 = BDCO

Configuration  5

Configuration  3BConfiguration  3A

O

T1 = ADBO

OO

O             

        

     

Figure 5: Possible configurations of five points where four ofthe five points are coplanar.

Unlike with edge swapping, where many possible reconfigurations are possible, if a face

swap is possible (configurations� and 9 in Figures 4 and 5 respectively) then only two possible

choices need to be compared. This allows a simple and quick comparison to find the one with

the lower energy. Details of the way in which the face swapping can be implemented in practise

can be found in [10, 11]. In [3, 4] face swapping is the primaryalgorithm for reconnecting the

mesh and edge swapping is used as a supplement to it. The edge swapping routines are also

used as part of a separate procedure specifically designed toremove poor quality tetrahedra

but we do not make use of this procedure in this work since we are motivated only by energy

reduction.
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4 Node Insertion

The main difficulty with the node movement and edge/face swapping strategies above is that it

is impossible to knowa priori how many nodes or elements will be required in order to get a

sufficiently accurate finite element solution to any given variational problem. Even an optimal

mesh with a given number of nodes may not be adequate for obtaining a solution of a desired

accuracy. For this reason some form of mesh refinement is essential.

In this work we use the regular refinement algorithm implemented in [15]. This divides

each tetrahedral element that is to be refined into eight children by introducing nodes at the

mid-points of each edge. Each new node is then connected to the other two new nodes lying

on each face as illustrated in Figure 6. The three new edges oneach face may be seen to cut

off four child elements at the corners of the parent tetrahedron, leaving an octahedron at the

centre. This may be divided into four more child tetrahedra by adding a further edge (LJ in

Figure 6) connecting two opposite vertices. The choice of which internal diagonal to insert

is important: the approach used in [15] is to choose the longest one but other approaches are

possible (see, for example, [13]). It should be noted that this refinement technique produces

child tetrahedra that are of different shapes to their parent, which may be an issue for some

mesh generators. This is not an issue for this algorithm however since we are not concerned

with geometric mesh quality and since both node movement andedge/face swapping are also

used anyway.

M

N

T1 =  OIJN

A B A

L

I J

K

O

C

T4 =  NMLC

T7 =  LIJK
T8 =  LMJN

1 : 8

O

B

T2 =  IKAL
T3 =  JBKM

T5 =  JMKL
T6 =  LIJN

C

��

��

����

������

	�	
�


��

Figure 6: Regular refinement of a tetrahedron into 8 child tetrahedra, by bisecting all of the

edges.
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For the results that are presented in the following section both global and local refinement

examples are included. In the former case the regular refinement algorithm alone is sufficient

however, when local mesh refinement is used, an additional refinement scheme is required

to deal with thehanging nodesthat are left on an unrefined element which has one or more

neighbour that has been refined. In [15] these cases are dealtwith through the use of a number

of so-calledgreen refinementstencils which deal with elements that have one or more hanging

node.

5 Numerical Results

In this section we consider two example problems of the form (1). The first of these is a single

equation (i.e.617#� ), and the second of these is a system for which617 587:9 .

5.1 Problem One

For an initial test problem we consider the following equation:


 � � � ���� � 7 ' � � � 2 7 � ' � � # - � ' � � # - � ' � � # � (7)

subject to the Dirichlet boundary conditions

� 7����
	��
��


(8)

throughout
� 2 . This is chosen so that (8) is the exact solution of (7) throughout 2 . Hence,

for any given value of� the analytic solution, and therefore the true energy minimum, are both

known (in this case� 7 ' 1 ' � is chosen and the optimal value for the energy is
< 7 � ' 1 ' ' ' ' ).

Following the approach used in [7] for testing the two-dimensional algorithm, we begin by

assessing the performance of three-dimensional multilevel mesh optimization when combined

with global � -refinement. Initially the test problem is solved on a regular coarse grid of9 � �
tetrahedral elements. This mesh is then optimized locally using node movement and edge/face

swapping and the total energy of the solution reduces from9 � � 1 � � � � 9 to
� � 1 � � 9 � � � . However
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the number of elements increases from9 � � to � ' � due to the application of edge/face swap-

ping. Three levels of uniform refinement, each followed by optimization, then yield solutions

with energies of� � 1 � ��9 � � � , � ' 1 � ' ' � � � and � ' 1 ' � � � � � on meshes of9�9�9 ' , � � 9 � �
and � � ' � ���

elements respectively. For each of these three levels the number of elements increased by

slightly more than a factor of eight due to the edge/face swapping.

To see that this final mesh is superior to one obtained withoutmultilevel optimization the

problem is then solved on a three level uniform refinement of the initial mesh, (with� � � � ' �
elements therefore), to yield a solution with energy

� � 1 � � � � � � . When this mesh is optimized

however the energy only decreases to a value of� � 1 9�9 � � ' � , with an increase in the number of

elements to� � � ' � ' due to edge/face swapping.

We now demonstrate the potential advantages of using local refinement with the multilevel

optimization. Starting with the locally optimal9 � � element grid, a sequence of three further

meshes is obtained through local� -refinement (by refining those elements whose local energy

exceeded
� '�� of the maximum local energy on any element) followed by localoptimization.

These meshes contain� � 9 � , ��� � � � and � � ' � � ' tetrahedral elements and the corresponding

solutions have energies of� � 1 � � � � � 9 , � ' 1 � ' ' � � � and � ' 1 ' � 9 � � � respectively.

Finally, we demonstrate the superiority of this final mesh over one obtained using only

local � -refinement followed by local optimization at the end. This comes from the observation

that a grid of��9 � � � ' elements obtained using only local� -refinement yields a solution energy

of � � 1 � � 9 � � � and, when this is optimized, the solution energy only reduces to � � 1 � � 9 � � ' . A

summary of all of these computational results is provided inTable 2 and an illustration of the

meshes obtained using multilevel optimization with local� -refinement is given in Figure 7.

5.2 Problem Two

The second problem that we consider involves the calculation of the displacement field for a

three dimensional linear elastic model of an overhanging cantilever beam with domain

2 7�� ��� ���>�	�3# ' ')( � ( � � ' ( � (+� � ')( � (+��
 1
14



Elements Energy Description

384 378.62763 Initial mesh.

407 62.113265

3330 51.223148 Multilevel optimization and

27346 50.200687 global � -refinement.

220769 50.048211

196608 67.278957 Global � -refinement followed

197070 52.338504 by optimization.

407 62.113263

2931 51.226773 Multilevel optimization and

18741 50.200292 local � -refinement.

110170 50.043149

232140 54.813215 Local � -refinement followed

233506 51.443760 by optimization.

Table 2: Summary of the results obtained for the first test problem (the global energy minimum

is � ' 1 ' ' ' ' ).

The bottom half of the beam is fixed as illustrated by the shaded region in Figure 8 and the

energy functional is given by,

< 7 �
�
�
�

�
� ��
� � 
 � � ��� �

� ��
� � $&� 
 �

� ��� � � � $&� 1 (9)

Here, all repeated suffices are summed from� to 9 , C is the usual fourth order elasticity tensor,

chosen to correspond to an isotropic material with a non-dimensionalized Young’s modulus

< 7 � ' ' and a Poisson ratio� 7 ' 1 ' ' � , ��� provides the external body forces due to gravity.

The small value of Poisson’s ratio is chosen to ensure that the beam deforms significantly

under its own weight. This makes the problem suitable for mesh adaptivity.

As before we begin by solving the problem on a uniform coarse mesh, this time containing

� � � elements. This mesh is then optimized using the node movement and edge/face swap-
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ping algorithms to reduce the total energy from
 ' 1 � � � � � � to 
 ' 1 � ' � � � �
. For this particular

mesh the edge/face swapping keeps the number of elements same. Three levels of uniform

refinement, each followed by mesh optimization, are undertaken. This produces meshes with

� � � � , ��� � � � and
��� 9 � � elements and solutions with energies of
 ' 1 � � � � � 9 , 
 ' 1 � � ' � � � and


 ' 1 � � � � ' � respectively.

We consider two further meshes of
� ��9 ' � and

� ��9 � ' elements. The first of these is ob-

tained by global refinement of the initial uniform mesh and the second by optimizing this mesh

directly. The energies of the solutions on these meshes are
 ' 1 � � � � � �
and 
 ' 1 � ��9 � ' � respec-

tively and so we again observe the superiority of the hierarchical approach when; -refinement

is combined with global� -refinement.

As with the previous example, our goal is to assess the hybridalgorithm that combines; -
refinement with local� -refinement hence we now consider a sequence of meshes obtained in

this manner. The first mesh is the same optimized mesh, containing � � � elements, used as the

basis for the global refinement results. The energy of the solution on this mesh is
 ' 1 � ' � � � �
.

Four further locally optimal meshes are then obtained, eachtime via the use of local refine-

ment (of those elements whose local energy exceeds
� '�� of the maximum local energy on

any element) followed by mesh optimization. These meshes contain
� � � , �	� � � , � � 9 � � and

� � � '@9 elements and yield solutions with energies of
 ' 1 � � � � � � , 
 ' 1 � � � �����
, 
 ' 1 � � � ' � � and


 ' 1 � � � � ' � respectively.

We again conclude our example by illustrating the advantageof applying the hybrid ap-

proach hierarchically by contrasting it with the use of local � -refinement alone, possibly fol-

lowed by a single application of; -refinement. We refine locally the initial mesh of� � � ele-

ments in five levels to achieve a mesh of� 9 � ��� � elements (again using a threshold of
� '�� for

the local refinement). The total energy of the solution on this mesh is
 ' 1 � � � ' � � . The mesh

is then optimized to reduce the total stored energy to
 ' 1 � � � 9 � � , with an increased number

of elements,� 9 � � � � , due to edge/face swapping. As before it is clear that the quality of the

locally optimal meshes obtained in this manner is inferior to that of meshes obtained using
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the hierarchical approach. A summary of all of the computations made for this test problem

is provided in Table 3 and an illustration of the meshes obtained using multilevel optimization

with local � -refinement is given in Figure 9.

Elements Energy Description

192 -0.168295 Initial mesh

192 -0.208546

1548 -0.26773 Multilevel optimization and

12415 -0.280849 global � -refinement.

99349 -0.285704

98304 -0.272196 Global � -refinement followed

98370 -0.283207 by optimization.

192 -0.208546

958 -0.252279 Multilevel optimization and

4529 -0.267699 local � -refinement.

15315 -0.281052

48403 -0.286102

132698 -0.278015 Local � -refinement followed

132958 -0.284321 by optimization.

Table 3: Summary of the results obtained for Problem Two (theglobal energy minimum is

unknown).

It is interesting to note that for the optimal meshes shown inboth this example (Figure 9)

and the previous (Figure 7) there are a large number of elements that would be rejected if the

usual geometric quality criteria (e.g. [3, 10]) had been employed. Using the energy criterion

however these elements are perfectly acceptable.
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6 Discussion

The two examples of the previous section have clearly illustrated that the quality of the final

mesh produced when using the proposed algorithm is better, in the sense that the finite element

solution has a lower energy, than that obtained by either� -refinement or; -refinement alone.

Furthermore it is demonstrated that combining the mesh optimization with local� -refinement

is superior to combining it with global� -refinement. Finally, the advantage of using the hierar-

chical approach, whereby intermediate level mesh are optimized, is also apparent: an excellent

combination of small mesh sizes and low energies for the corresponding finite element solu-

tions being achieved.

It should be noted that, although quite complex to implementin 9 -d, the edge/face swap-

ping component of the hybrid algorithm is crucial. This may be demonstrated, for example, by

contrasting the results of Table 2 with those obtained for the same test problem but without the

connectivity optimization step included in Figure 1 (see [8] for further details). Such modified

results are presented in Table 4 and clearly demonstrate thelimitations of the adaptive algo-

rithm when edge/face swapping is neglected. The differencein the solution quality between

an energy of� ' 1 � � and � ' 1 ' � (where the true optimal value is� ' 1 ' ' ) is really quite substan-

tial. In fact much greater accuracy (energy =� ' 1 � ' ) is obtained on a coarser mesh when edge

and face swapping are used. The difference in accuracy between the � ' 1 ' � solution and the

� ' 1 � ' solution is less pronounced but this additional level of local refinement does provide a

significant improvement nevertheless.

It should also be noted that cpu times have not been included in this paper since our goal has

been to investigate mesh optimality rather than to study thefastest way of obtaining a solution

of a give accuracy. However some sample solution times are provided in [12, chapter 4] for a

variety of different parameters that occur in the algorithmof Figure 1. It is clear that in general

it will not pay to spend an excessive amount of time obtainingthe very best possible mesh

compared to obtaining a good, but slightly sub-optimal, mesh (i.e. requiring more elements

to achieve the same accuracy) at a significantly reduced cost. Furthermore, on those optimal
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Elements Energy Description

384 378.62763 Initial mesh.

384 104.85725

3072 59.907732 Multilevel optimization and

24576 52.398871 global � -refinement.

196608 50.755212

196608 67.279033 Global � -refinement followed

196608 52.434265 by optimization.

384 104.85704

2655 59.902412 Multilevel optimization and

16933 52.381223 local � -refinement.

100866 50.746025

573834 54.885230 Local � -refinement followed

573834 51.332477 by optimization.

Table 4: Summary of the results obtained for the first test problemwithoutedge/face swapping

(the global energy minimum is� ' 1 ' ' ' ' ).

meshes that have highly distorted elements the condition number of the corresponding discrete

equations can be very large and so it will generally require more computational work to solve

these equations than those obtained from an inferior, but less distorted, mesh. These twin

considerations of time spent obtaining the discrete equations and time spent solving them mean

that the problem of obtaining the fastest possible solutionof a given accuracy is a lot more

complex than the optimal mesh problem considered here. Thishighly challenging problem is

clearly deserving of significant continued research.

To conclude this paper we observe that only two numerical examples have been included

here and that further work is likely to be required to ensure the robustness of the proposed

algorithm for a wide variety of application problems. In particular, it is likely that the mesh
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refinement technique used here will be sub-optimal for problems with highly anisotropic so-

lutions, which may well benefit from a more anisotropic9 -d refinement algorithm, such as

[1] for example. It is also possible that different criteriacould be used for deciding which

elements should be locally refined (e.g. based upon energy gradients rather than energy val-

ues) in order to enhance the technique further. Nevertheless, the provisional implementation

and results presented here suggest that this approach has significant potential and that further

research is indeed likely to be fruitful.
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Figure 7: An initial locally optimised mesh (top left) followed by a sequence of meshes ob-

tained by combinations of local� -refinement with; -refinement for the first test problem.
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Figure 8: An illustration of the overhanging cantilever beam
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Figure 9: A sequence of meshes obtained by combinations of local � -refinement with; -

refinement for the second test problem.
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