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Abstract 

Misuse of statistics in medical and sports science research is common and may lead to detrimental 

consequences on health care. Most authors, editors, and peer reviewers of medical papers will not 

have expert knowledge of statistics or may be unconvinced about the importance of applying 

correct statistics in medical research. Although there are guidelines on reporting statistics in 

medical papers, a checklist on the more general and commonly seen aspects of statistics to assess 

when peer-reviewing an article is needed. In this article, we propose a CHecklist for statistical 

Assessment of Medical Papers (CHAMP) comprising 30 items related to the design, conduct, data 

analysis, reporting and presentation, and interpretation of a research paper. Whilst CHAMP is 

primarily aimed at editors and peer reviewers during the statistical assessment of a medical paper, 

we believe it will serve as a useful reference to improve authors' and readers' practice in their use 

of statistics in medical research. We strongly encourage editors and peer reviewers (and readers) 

to consult CHAMP for assessing manuscripts for potential publication, and authors to ensure the 

validity of the general statistical aspects of their papers and reporting medical research. 
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The misuse of statistics by implementing flawed methodology in medical and sports science 

research can lead to unreliable or even incorrect conclusions. The consequences of flawed 

methodology can have undesirable consequences on public health, patient management and athlete 

performance1. Unfortunately, errors in the study design, statistical analysis, reporting, and 

interpretation of results are common in medical journals2 3 and the quality of medical papers has 

been referred to as a scandal4.  

Sound methodology has been prioritized in the past decades, especially in high-impact factor 

journals. This is illustrated by the inclusion of more statistical editors and other methodologists 

(e.g. epidemiologists) in the review process. In addition, stakeholders in research have been 

encouraged to intensify their investments in statistical, epidemiological, and methodological 

education, such as training reviewers, providing online opportunities, developing (and extending) 

guidelines, and including methods content in regular scientific meetings5. There has also been a 

stronger emphasis on adherence to reporting guidelines (e.g., CONSORT, STROBE, STARD, 

REMARK and TRIPOD)6-10.  

Still, many medical and sports science journals do not involve statistical experts in the review 

process. This is unfortunate since the existence of basic statistical errors is more likely when 

authors, editors, and referees do not have sufficient knowledge of statistics and, worse, are 

unconvinced about the importance of correct statistics in medical research. Rarely do clinical 

journals systematically assess the use of statistics in submitted papers11 12. Thus, even after a paper 

is published in a scientific journal, it is necessary to read the content with some caution and pay 

careful attention to whether the statistical design and analysis were appropriate and the conclusions 

justified. Studies published in high-ranked journals are not immune from methodological or 

statistical flaws, which were not identified during the peer review process. Although some journals 

attempt to mitigate against such issues by using statisticians in the review process (as statistical 

reviewers or statistical editors), guidelines to assess methodological or statistical content in 

scientific papers would be useful when expert statistics reviewers are unavailable5 13 14.  

Whilst guidelines on how to report statistics in medical papers exist15 16, we propose a general 

checklist to judge the statistical aspects of a manuscript for peer review. While it is clearly 

impossible to cover everything, we believe it would be useful to have a basic checklist for assessing 

the statistical methods used more broadly within medical and sports science research papers. Based 

on an extensive revision of a previous checklist17, we describe a CHecklist for statistical 

Assessment of Medical Papers (CHAMP; Figure 1) comprising 30 items in the design, analysis, 

reporting and interpretation stages to aid the peer review of a submitted paper18.  

 

Explanation of the 30 items in the checklist 

The 30 items in the checklist were selected based on a previous BMJ checklist17, literature review, 

and experience of reviewing the statistical content of numerous papers submitted to a variety of 
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medical journals. The first author produced the checklist draft, the coauthors  suggested addition 

or removal of the items, and  all authors approved the final version. Other colleagues provided 

extensive comments on the paper and are listed in the Acknowledgments. Our checklist is not 

intended to, nor can it, cover all aspects of medical statistics. Our focus is rather on key issues that 

generally arise in clinical research studies. Therefore only important and common statistical issues 

encountered (including randomized controlled trials for which a separate checklist17 has been 

suggested before) were included in the CHAMP. Using our checklist requires some primary 

knowledge of statistics, however, we provide a brief explanation for each item to shed light upon 

the item, and cite the relevant references for further details. The first six items relate to the design 

and conduct of research, whereas items 7 to 16 deal with data analysis, items 17 to 23 with 

reporting and presentation, and finally items 24 to 30 with interpretation.  

 

ITEMS 1 – 7: DESIGN AND CONDUCT 

Item 1: Clear description of the goal of research, study objective(s), study design, and study 

population 

The research goal, study objectives, study design, and study and target populations must be clearly 

described so the editors of journals and readers can judge internal and external validity 

(generalizability) of the study. 

Being explicit about the goal of research is a prerequisite for good science regardless of the 

scientific discipline. For such clarification, a 3-fold classification of the research goal may be used: 

1) to describe; 2) to predict, which is equivalent to identifying “who” is at greater risk of 
experiencing the outcome; or 3) to draw a causal inference, which attempts to explain “why” the 
outcome occurs (e.g., investigating causal effects)5 19.  

The study objective refers to the rationale behind the study and points to the specific scientific 

question being addressed. For example, the objective of the HEx trial, a randomized controlled 

trial (RCT), was to evaluate the effect of heated water-based exercise training on 24-hour 

ambulatory blood pressure levels among resistant hypertensive patients20.The study objective is 

usually provided in the introduction after the rationale has been established.  

The study design refers to the type of the study, which is explained in the Methods section21. 

Examples of common study design include randomized controlled trials, cohort studies, case-

control studies or cross-sectional studies22. The study design should be described in details. In 

particular, the randomization procedure in randomized controlled trials, follow-up time for cohort 

studies, control selection for case-control designs, and sampling procedure for cross-sectional 

studies should be adequately explained6 7. As a general principle, the study design must be 

explained sufficiently so that another investigator would be able to repeat the study exactly.  
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The study population refers to the source population from which data are collected whereas the 

target population refers to the population to whom we are going to generalize the study results; the 

relationship between these two populations may be characterized using inclusion and exclusion 

criteria and is crucial for assessing generalizability. Returning to the Hex trial, the study population 

was restricted to persons whose ages were between 40 and 65 years with resistant hypertension for 

more than 5 years20. For both trials and observational studies it is very important to know what 

proportion of the source population is studied, and what proportion of the intended data set features 

in the analysis data set. For example, the source population may be all patients admitted to a 

hospital with a certain condition over a certain period of time. However, the analysis data set may 

only be 50% of this, for various reasons such as patents refusing consent, measurements not taken, 

patients dropping out etc. For example in the HEX trial they had to screen 125 hypertensive 

patients to find 32 who met the inclusion criteria. This has some bearing on to whom heated-water 

based exercise training can be given and how likely it is to be relevant to other practitioners20 

Item 2: Clear descriptions of outcomes, exposures/treatments and covariates, and their 

measurement methods 

All variables considered for statistical analysis should be stated clearly in the paper, including 

outcomes, exposures/treatments, predictors and potential confounders/mediators/effect-measure 

modifiers. The measurement method and timing of measurement for each of these variables should 

also be specified. If the goal of the research is to draw a causal inference via observational studies, 

authors should also visualize their causal assumptions in a diagram23 24. To exemplify the concept, 

in an observational cohort study evaluating the effect of physical activity on functional 

performance and knee pain in patients with osteoarthritis25, physical activity (exposure) was 

measured using the Physical Activity Scale for the Elderly, and functional performance and self-

reported knee pain (outcomes) were measured by the Timed 20-meter Walk Test and the Western 

Ontario and McMaster Universities Osteoarthritis Index, respectively. Furthermore, depressive 

symptoms were considered as a potential confounder and measured using the Center for 

Epidemiologic Studies Depression Scale. All variables mentioned were measured at baseline and 

also in three annual follow-up visits25. 

Item 3: Validity of study design 

The design should be valid i.e., it should match the research question and also should not introduce 

bias in the study results.  For example, an editor should be able to assess whether the controls in a 

case-control study were adequately representative of the source population of the cases. 

Alternatively, in a clinical trial, it can be asked, first if there was one (or more) control groups and 

if so, if patients were randomized to treatment or control, and if so, whether the randomization 

method and allocation concealment were appropriate? 

Item 4: Clear statement and justification of sample size 
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The manuscript should have a section clearly justifying the sample size26. When a sample size 

calculation is warranted, the sample size section should be described in enough detail to allow 

replication of the estimate, along with a clear rationale (supported by references) on choice of 

values used in the calculation, the outcome for which the calculation is based on, including the 

minimum clinically important effect size27 28 . For example, typical sample size calculations aim 

to ensure the study enjoys a sufficiently large precision for estimates of occurrence measures such 

as risk or association measures like risk ratio29 30, or that there is an adequate power to detect 

genuine effects if they exist (statistical tests). Attrition/lost-to-follow-up/non-response and design 

effects (e.g., due to clustering) should be taken into consideration. Some guidance for sample size 

calculation also exist in other areas, such as prediction model development and validation31-33. 

Item 5: Clear declaration of design violations and acceptability of the design violations 

Design violations frequently occur in practice. Non-response in surveys, censoring (loss-to-follow-

up or competing risks) in prospective studies34, and non-compliance with the study treatments in 

randomized controlled trials should be declared explicitly in the paper35. Given validity of the 

design, the acceptability of violations should be assessed. For example, was an observed non-

response/censoring proportion too high; what were the reasons for data loss, and is this level 

acceptable to achieve the scientific goals of the study? 

Item 6: Consistency between the paper and its previously published protocol 

The reviewer should identify inconsistencies with any published protocol (and where relevant, 

registry information) in terms of important features of the study including sample size, 

primary/secondary/exploratory outcomes, and statistical methods. 

 

ITEMS 7 - 16: DATA ANALYSIS 

Item 7: Correct and complete description of statistical methods 

A separate part in the Methods section of the manuscript should be devoted to the description of 

the statistical procedures. Both descriptive and analytic statistical methods should sufficiently 

described so that the methods can be assessed by a statistical reviewer to judge their suitability and 

completeness in addressing the study objectives. 

Item 8: Valid statistical methods used and assumptions outlined  

The validity of statistical analyses relies on some assumptions. For example, the independent t-

test for the comparison of two means requires three assumptions: independence of the 

observations, Normality, and homogeneity of variance. As another example, all expected values 

for a chi-square test must be more than 1, and at most 20% of the expected values can be less than 

5. These statistical assumptions should be judged as a matter of context or assessed using 

appropriate methods such as a Normal probability plot for checking the Normality assumption36. 

In this regard, an alternative statistical test should be applied if some assumptions are clearly 
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violated. It should be noted that some statistical tests are robust against mild to moderate violations 

of some assumptions. For the t-test, lack of Normality and lack of homogeneity of variance do not 

necessarily invalidate the t-test, whereas lack of independence of the outcome variables will imply 

the results are invalid37. It has been demonstrated that independent t-test can be valid, but 

suboptimal for the Likert ordinal data even with a sample size of 2038. 

An important but often ignored aspect in practice is that ratio estimates like the estimated odds 

ratio, risk ratio and rate ratio are biased away from the null value. This bias is amplified with sparse 

data known as sparse-data bias39. A sign of sparse data is an unrealistically large ratio estimate or 

confidence limit which is simply an artifact of sparse data. For example, an OR>10 for a non-

communicable disease should be considered as a warning sign for sparse-data bias. In the extreme, 

an empty cell leads to an absurd OR estimate of infinity, known as separation40. Special statistical 

methods such as penalization or Bayesian methods must be applied to decrease the sparse-data 

bias40 41. Some other important considerations in statistical analysis are: 

i) accounting for correlation in the analysis of correlated data (e.g., variables with repeated 

measurements in longitudinal studies42, cluster randomized trials43, and complex surveys44); 

ii)matching in the analysis of matched case-control and cohort data45 46; 

iii)ordering of several groups in the analysis; 

 iv) censoring in the analysis of survival data; 

v) adjusting for baseline values of the outcome in the analysis of randomized clinical trials27; 

vi)correct calculation and interpretation of population attributable fraction47 48; 

vii) and adjusting for overfitting using shrinkage or penalization methods when developing a 

prediction model49 50. 

Item 9: Appropriate assessment of treatment effect or interaction between treatment and another 

covariate 

Appropriate statistical tests should be used for the assessment of treatment effects and potential 

interactions. Assessment of overlapping treatment group-specific confidence intervals can be 

misleading51-53. Thus, the comparison of the confidence intervals of the treatment groups should 

not be used as an alternative to the statistical test of treatment effect. Moreover, comparing P-

values for the treatment effect at each level of the covariate (e.g., men and women) should not be 

used as an alternative for an interaction test between the treatment and covariate. For example  in 

the case of observing P-value<0.05 and P-value>0.05 in the levels one might incorrectly conclude 

that gender was a statistically significant predictor of outcome54. Similarly, we cannot conclude 

no effect modification if the confidence intervals of the subgroups are overlapping55. 

Item 10: Correct use of correlation and associational statistical testing 
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The misuse of correlation and associational statistical testing is not uncommon. As an example, 

correlation should not be used for assessing the agreement between two methods in methods-

comparison studies56. To see why, two measures of X and Y are perfectly correlated but in poor 

agreement if X=2Y, but they are in poor agreement because X is twice Y. Likewise, we cannot 

infer that two methods agree well because the P-value is large enough using the statistical testing 

of the means such as paired t-test. In fact, a high variance of differences indicates poor agreement 

but also increases the chance that the paired t-test will result in a large P-value and thus the methods 

will appear to agree1.  

Item 11: Appropriate handling of continuous predictors 

Reviewers should be wary of studies that have dichotomized or categorized continuous variables 

– this should be generally avoided.57. Bias, inefficiency and residual confounding may also result 

from dichotomizing/categorizing a continuous variable and using it as a categorical variable in a 

model. Continuous variables should be retained as continuous and their functional form be 

examined, as a linearity assumption may not be correct. Approaches for handling continuous 

predictors include fractional polynomials or regression splines57-60.  

Item 12: Confidence intervals do not include impossible values 

A valid confidence interval should exclude impossible values. For instance, a simple Wald 

confidence interval for a proportion (𝑃 ± 1.96√𝑃(1−𝑃)𝑛  ) is not valid when P is close to 0 or 1, and 

may yield negative values outside the possible range for a proportion (0≤P≤1)61. To remedy such 

conditions, the Wilson score or Agresti-Coull interval can be applied6. 

Item 13: Appropriate comparison of baseline characteristics between the study arms in 

randomized trials 

In a randomized clinical trial, any baseline characteristic difference between groups should be due 

to chance (or unreported bias). Reviewers should look out for any statistical testing at the baseline 

as reporting P-values does not make sense62. The decision on which baseline characteristics 

(prognostic factors) are included in any adjustment should be pre-specified in the protocol and 

based on the subject-matter knowledge, not on P-values. The differences between groups in 

baseline characteristics should be identified by their size and discussed in terms of potential 

implications for the interpretation of the results 

Item 14: Correct assessment and adjustment of confounding 

An important goal of health research is drawing a causal inference. Here, the interest is in the 

causal effect of an exposure on the outcome. The major source of bias threatening causality studies, 

including observational studies as well as randomized studies (with small-to-moderate sample 

size), is confounding63-65. Confounding can be controlled in the design phase (e.g., through 

restriction or matching) or analysis phase (e.g., using regression models or propensity score 
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methods)66 67. Selection of confounders should be based on priori causal knowledge, often 

represented in the causal diagrams23 68-70, not p-values (e.g., using stepwise approaches). 

Automated statistical procedures, such as stepwise regression, do not discriminate between 

confounders and other covariates like mediators or colliders which should not be adjusted for in 

the analysis. Moreover, stepwise regression is only based on the association between confounders 

and outcome, and disregards the association between the confounders and exposure. Thus, 

stepwise procedures should not be used for confounder selection. In practice, many confounders 

(and exposures and outcomes)71 72 are time-varying, and the so-called “causal methods” should be 

applied for the appropriate adjustment of time-varying confounders73. Similarly, in studies 

evaluating the prognostic effect of a new variable, adjustment for existing prognostic factors 

should be routinely performed, and variable selection of the existing factors is not generally 

needed49. 

 

Item 15: On-support inference i.e., no model extrapolation to the region not supported by data 

The goal of interest in many health studies is predicting an outcome from one or more explanatory 

variables using a regression model. The model is valid only within the range of observed data on 

the explanatory variables, and we cannot make prediction for people outside the range. This is 

known as model extrapolation74. Suppose we have found a linear relation between body mass index 

(BMI) and blood pressure (BP) based on the following equation: 𝐵𝑃 = 𝐴 + 𝐵 ∗ (𝐵𝑀𝐼) 
Now the intercept, A, cannot be interpreted since it corresponds to the blood pressure for a person 

with BMI of zero! The remedy is centering BMI and including the centered variable (BMI – 

average BMI) in the model so that the intercept refers to the blood pressure for a person with the 

average BMI in the population. 

As another example, suppose the following linear relation holds in a randomized controlled trial: 𝐵𝑃 = 𝐴 + 𝐵 ∗ (𝑇𝑅𝑇) + 𝐶 ∗ (𝐵𝑀𝐼) + 𝐷 ∗ (𝑇𝑅𝑇 ∗ 𝐵𝑀𝐼) 
where TRT denotes treatment (1: intervention, 0: placebo) and TRT*BMI is the product term 

(interaction term) between treatment and BMI. In this model, the parameter B cannot be interpreted  

on its own because it is the mean difference in blood pressure between two treatment groups for a 

person with BMI of zero. Again, the solution is centering BMI and including centered BMI, and 

product term between TRT and centered BMI in the model so that the B′ (coefficient of TRT in 

the new model) refers to the mean difference in blood pressure for a person with the average BMI 

in the population. 

Item 16: Adequate handling of missing data 
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The methods used for handling missing data should be described and justified in relation to stated 

assumptions about the missing data (missing completely at random, missing at random, and 

missing not at random), and sensitivity analyses must be done if appropriate. Missing data75 can 

introduce selection bias and should be handled using appropriate methods such as multiple 

imputation76 and inverse probability weighting77. Naïve methods such as complete-case analysis, 

single imputation using the mean of the observed data, last observation carried forward, and the 

missing indicator method are statistically invalid in general and they can lead to serious bias78. 

 

ITEMS 17 - 23: REPORTING AND PRESENTATION 

Item 17: Adequate and correct description of the data 

, The mean and standard deviation provide a satisfactory summary of data for continuous variables 

that have reasonably a symmetric distribution. The standard error (SE) is not a sound choice to be 

used in place of SD79.  A useful memory aid is to use standard Deviation to Describe Data and 

standard Error to Estimate parameters (Campbell MJ and Swinscow,TDV  Statistics st Square One, 

London: BMJ Books 2009)  Besides, “mean ± SD” is not suitable since it implies the range in 

which 68% of data are, not a relevant concept we are looking for, and “mean(SD)” should be 

reported instead1. In case of having highly skewed quantitative data, median and interquartile range 

(IQR) are more informative summary statistics for description. It should be noted that the mean/SD 

ratio<2 for positive variables is a sign of skewness80. Categorical data should be summarized as 

number and percentage81. For cohort data, a summary of follow-up time such as median and IQR 

should be reported. 

Item 18: Descriptive results provided as occurrence measures with confidence intervals, and 

analytic results provided as association measures and confidence intervals along with P-values 

The point estimates of the occurrence measures, for instance, prevalence, risk and incidence rate 

with 95% confidence intervals should be reported for descriptive objectives81. Alternatively, the 

point estimates of the association measures, for instance odds ratio, risk ratio and rate ratio with 

95% confidence intervals along with P-values should be reported for analytic objectives as part of 

the results section82. 

Item 19: Confidence intervals provided for the contrast between groups rather than for each group 

For analytic studies like randomized controlled trials, the 95% confidence intervals should be 

given for the contrast between groups rather than for each group6. For the blood pressure example 

mentioned above20, the authors reported  the mean of blood pressure with 95% confidence interval 

in each group but they should also have given themean difference in 24-hour ambulatory blood 

pressure levels between groups with 95% confidence interval since the aim of the trial was to 

compare treatment with control, not just report treatment and control outcomese. 

Item 20: Avoiding selective reporting of analyses and P-hacking 
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All statistical analyses performed should be reported regardless of the results. P-hacking, playing 

with data to produce desired P-value (upward as well as downward), must be avoided83-85. This is 

probably difficult to assess as a reader/reviewer, but usually one would be clued in if there are 

many more analyses than those stated in the objectives or only statistically significant comparisons 

are presented when a larger pool of variables were identified in the methods. 

Item 21: Appropriate and consistent numerical precisions for effect sizes, test statistics, and P-

values, and reporting the P-values rather their range 

P-values should be reported directly with one or two significant figures even if they are greater 

than 0.05, e.g., as P-value=0.09 or P-value=0.28. One should not focus on “statistical significance” 
or dichotomize P-values (eg p<0.05)86-88 or express them as “0.000” or “NS”. Nonetheless, 
spurious precision, too many decimals, in numerical presentation should be avoided89 90. For 

example, typically P-values less than 0.001 can be written as <0.001 without harm, and it does not 

make sense to present percentages with more than one decimal when the sample size is much less 

than 100. 

 

 

Item 22: Providing sufficient numerical results that could be included in a subsequent meta-

analysis 

Meta-analyses of randomized trials and observational studies provide high levels of evidence in 

health research. Providing numerical results in individual studies contributing to subsequent meta-

analysis is of special importance. Follow-up score and change score from the baseline are two 

possible approaches which can be applied to estimate treatment effect in randomized controlled 

trials91. While the follow-up score meta-analysis requires after-intervention mean and SD in two 

groups of intervention and placebo, the mean and SD of differences from the baseline are 

prerequisite for performing change-score meta-analysis. However, authors often only report mean 

and SD before and after intervention. The mean of the difference in each group can be calculated 

from the difference of the means, but calculating the SD of differences needs a guessed group-

specific correlation between baseline and follow-up scores besides before- and after-intervention 

SD. 

Item 23: Acceptable presentation of the figures and tables 

Tables and figures are effective data presentation that should be properly managed92-95. Figures 

should be selected based on the type of variable(s) and appropriately scaled. The error bar graph 

as an illustration, can be used for displaying the mean and confidence interval. It is inappropriate 

to give s bar chart with a SE bar superimposed instead ( a so called ‘dynamite plunger plot94) . 

Tables should be able to stand on their own and include sufficient details such as labels, units, and 

values, 
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ITEMS 24 - 30: INTERPRETATION 

Item 24: Interpreting the results based on association measures and 95% confidence intervals 

along with P-values, and correctly interpreting large P-values as indecisive results, not evidence 

of absence of an effect 

The study results should be interpreted in light of the point estimate and appropriate association 

measures such as mean difference and 95% confidence interval as well as precise P-values. When 

testing a null hypothesis of no treatment effect, the P-value is the probability the statistical 

association would be as extreme as observed or more extreme, assuming that null hypothesis and 

all assumptions used for the test are correct. P-values for non-null effect sizes can also be 

computed. The point estimate is the effect size most compatible with the data in that it has P-

value=1.00, while the 95% confidence interval shows the range of effect sizes reasonably 

compatible with the data in the sense of having P-value>0.0587. We should judge the clinical 

importance and statistical reliability of the results by examining both of the 95% confidence limits 

as well as looking at precise P-values, not just whether a P-value crosses a threshold or not27 96. It 

is incorrect to interpret P-value>0.05 as showing no treatment effect; instead it represents an 

ambiguous outcome97 98. It is not evidence that the effect is unimportant (“absence of evidence is 

not evidence of absence”); inferring unimportance requires that every effect size inside the 

confidence interval be considered unimportant87. 

Item 25: Using confidence intervals rather than post-hoc power analysis for interpreting the 

results of studies 

Conceptually, it is not valid to interpret power as if it pertains to the observed study results99-101. 

Rather, power should be treated as part of study rationale and design before actual conduct begins, 

e.g., as in sample size calculations. Power does not correctly account for the observations that 

follow; for example, a study could have high power and observe a high P-value, yet still favor the 

alternative hypothesis over the null hypothesis101. The precision of results should be gauged using 

confidence intervals.  

Item 26: Correctly interpreting occurrence or association measures 

It will be crucial to interpret occurrence and association measures correctly. Odds ratios commonly 

provide examples of misinterpretation: if the event is rare, they can approximate risk ratios but 

they are not conceptually the same and will differ considerably if the event is common102. In a 

study with a risk of 60% in an exposed group and 40% in an unexposed group, the error in 

interpreting the odds ratio (2.25) as a risk ratio (1.5) is considerable. Prevalence in cross-sectional 

studies is another example, which sometimes has been incorrectly called ‘risk’. 

Item 27: Distinguishing causation from association and correlation 
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We should be cautious about the correct use of the technical terms such as effect, association and 

correlation. Association, meaning no independence, does not imply causation (and effect). Causal 

effect estimation requires measurement of exposure before outcome (temporality) as well as 

confounding adjustment. The correlation refers to a monotonic association between two variables. 

Therefore, no correlation does not imply no association. 

Item 28: Results of pre-specified analyses are distinguished from the results of exploratory 

analyses in the interpretation 

The results obtained from the pre-specified (a priori) analyses which have been already designed 

and mentioned in a protocol are much more reliable than the results obtained after data dredging 

(data-derived or post-hoc analyses). 

Item 29: Appropriate discussion of the study methodological limitations 

The methodological limitations of the study design and analysis should be discussed. Ideally, the 

probabilistic bias analysis, in which a probability distribution is assumed for the bias parameters, 

and bias is probabilistically accounted for using Monte-Carlo sensitivity or Bayesian analysis, 

should be performed for adjustment of uncontrolled confounding (e.g., due to an unmeasured 

confounder), selection bias (e.g., through missing outcome data) and measurement bias (e.g., 

subsequent to measurement error in the exposure)103-105. The authors should at least qualitatively 

discuss the main sources of bias and their impact on the study results106 107.  

Item 30: Drawing only conclusions supported by the statistical analysis and no generalization of 

the results to subjects outside the target population 

The study interpretation must be based not only on the results but also in the light of the study 

population as well as any limitation in the design and analysis74. For example, if the study has been 

done in women, it cannot be necessarily generalized to the population of men and women. 

 

Conclusion 

The importance role of good statistic and sound methodology in medical research cannot be 

overstated. We strongly encourage authors to adhere to CHAMP for carrying out and reporting 

medical research, and to editors and reviewers for well-evaluating manuscripts for potential 

publication. We have only covered some basic items, and each type of study or statistical model 

(e.g., randomized trial, prediction model) has their own issues that ideally require statistical 

expertise. We appreciate that for some items in the checklist there is no unequivocal answer, and 

thus assessing the statistics of a paper may involve some subjectivity. Moreover, the questions in 

the checklist are not equally important e.g., papers with serious errors in design are statistically 

unacceptable regardless of how the data were analyzed, and aspects of presentations are clearly 

less important than other aspects. It is important to note that, statistical review, carried out by 

experienced statisticians, is the preferred way of reviewing statistics in research papers, more so 
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than what any checklist can achieve. We hope CHAMP improves authors' practice in their use 

of statistics in medical research and serve as a useful handy reference for editors and referees during 

the statistical assessment of medical papers. 
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Design and conduct  

1. Clear description of the goal of research, study objective(s), study 

design, and study population 
Yes Unclear No 

2. Clear descriptions of outcomes, exposures/treatments and 

covariates, and their measurement methods 
Yes Unclear No 

3. Validity of study design Yes Unclear No 

4. Clear statement and justification of sample size Yes Unclear No 

5. Clear declaration of design violations and acceptability of the 

design violations  
Yes Unclear No 

6. Consistency between the paper and its previously published 

protocol 
Yes Unclear No 

Data analysis     

7. Correct and complete description of statistical methods Yes Unclear No 

8. Valid statistical methods used and   assumptions outlined Yes Unclear No 

9. Appropriate assessment of treatment effect or interaction between 

treatment and another covariate 
Yes Unclear No 

10. Correct use of correlation and associational statistical testing  Yes Unclear No 

11. Appropriate handling of continuous predictors  Yes Unclear No 

12. Confidence intervals do not include impossible values Yes Unclear No 

13. Appropriate comparison of baseline characteristics between the 

study arms in randomized trials  
Yes Unclear No 

14. Correct assessment and adjustment of confounding  Yes Unclear No 

15. On-support inference i.e., no model extrapolation to the region not 

supported by data 
Yes Unclear No 

16. Adequate handling of missing data Yes Unclear No 

Reporting and presentation    

17. Adequate and correct description of the data Yes Unclear No 

18. Descriptive results provided as occurrence measures with 

confidence intervals, and analytic results provided as association 

measures and confidence intervals along with P-values 

Yes Unclear No 

19. Confidence intervals provided for the contrast between groups 

rather than for each group  
Yes Unclear No 

20. Avoiding selective reporting of analyses and P-hacking Yes Unclear No 
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21. Appropriate and consistent numerical precisions for effect sizes, 

test statistics, and P-values, and reporting the P-values rather their 

range 

Yes Unclear No 

22. Providing sufficient numerical results that could be included in a 

subsequent meta-analysis  
Yes Unclear No 

23. Acceptable presentation of the figures and tables  Yes Unclear No 

Interpretation    

24. Interpreting the results based on association measures and 95% 

confidence intervals along with P-values, and correctly interpreting 

large P-values as indecisive results, not evidence of absence of an 

effect  

Yes Unclear No 

25. Using confidence intervals rather than post-hoc power analysis for 

interpreting the results of studies 
Yes Unclear No 

26. Correctly interpreting occurrence or association measures Yes Unclear No 

27. Distinguishing causation from association and correlation  Yes Unclear No 

28. Results of pre-specified analyses are distinguished from the results 

of exploratory analyses in the interpretation 
Yes Unclear No 

29. Appropriate discussion of the study methodological limitations Yes Unclear No 

30. Drawing only conclusions supported by the statistical analysis and 

no generalization of the results to subjects outside the target 

population 

Yes Unclear No 

                

Fig 1. Checklist for Statistical Assessment of Medical Papers  
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