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Efficiency, Stability, and Commitment in Senior Level Job

Matching Markets∗

Ning Sun† and Zaifu Yang‡

Abstract: We propose a senior level job matching model with multiple hetero-

geneous incumbents and entrants. An agent (firm or worker) can be committed

or uncommitted (i.e., free). A committed agent is bound by her commitment

and cannot unilaterally dissolve her partnership unless her partner agrees to do

so. A free agent can make decisions independently. Every agent has preferences

over multiple contracts and tries to find her best possible partner with contract.

We examine the problem of how to match workers and firms as well as pos-

sible and to set free as many committed agents as possible without violating

any commitments. We show the existence of stable and (strict) core matchings

through a constructive procedure and obtain a lattice result for such outcomes

and incentive compatibility results for the procedure.
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1 Introduction

This paper introduces a new model of senior level job matching market with commitments.

Following the classic work of Gale and Shapley (1962) substantial progress has been made

in understanding entry level labor markets in which all participants are new entries and

firms try to hire workers to fill their positions and workers search for jobs; see e.g., Roth and

Sotomayor (1990). However, there is not much study of senior level job matching markets.

We attempt to fill a gap by investigating such a market. The market under consideration

consists of multiple heterogeneous incumbents and entrants. An incumbent can be a firm

or a worker who has an initial partner (worker or firm) and an entrant can also be a firm

or a worker. A free agent can make decisions independently. A committed agent cannot

unilaterally dissolve her partnership but can do so only with her partner’s consent.

Commitments exist in various forms and contexts and can influence people’s behavior

and affect the performance of the system involved. They can be imposed by law, by custom,

by contract, by convention, or by morality. For instance, universities with a tenure track

system are committed to their tenured faculty members in the sense that they generally

cannot fire a tenured professor unless she/he is willing to leave. But, a tenured professor

can move rather freely without facing this kind of commitment constraint. The civil service

system is another typical example of similar nature where government employees are free

but their employers are committed. US national football league guaranteed contracts are

commitments of clubs to their players. Yet another prominent example of opposite nature

is the non-compete clause or the restrictive covenants in contract law under which an

employee agrees to commit herself to her position for a certain period of time. In all these

cases, commitment lies on one side. The mutual consent divorce law (see e.g., Voena 2015 )

permits divorce only when both husband and wife agree to it. Under this law, both husband

and wife are committed to each other and can divorce if both consent to do so. This is

a typical case of two-sided commitment. In some professions involving highly sensitive

matters, a job contract may explicitly require an employee to commit to the position for

at least a certain period of time. In this environment, commitment is two-sided with one

side being explicit and the other being implicit. Schelling (1956, 1960) is the first to study
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how players may use commitments as tactics to advance their interest in bargaining or

negotiation. Commitment has been further studied in repeated games, contracts, fiscal

and monetary policies, etc; see e.g., Laffont and Martimort (2002), Mailath and Samuelson

(2006), and Lucas and Stokey (1983). The meaning of commitment may, however, vary

from one situation to another.

In our model every firm has preferences over workers with multiple contracts and the

prospect of not hiring any one and every worker has preferences over firms with multiple

contracts and the prospect of being unemployed. Following the two-sided matching models

with wages and relevant job characteristics given by Crawford and Knoer (1981), Kelso

and Crawford (1982), Hatfield and Milgrom (2005), and Ostrovsky (2008), we represent

the relation governing every worker and every firm by contracts. Every contract signifies a

relationship between a firm and a worker and specifies the amount of remuneration to be

paid by the firm, and the service to be supplied by the worker in return for the payment.

There can be multiple contracts between every firm and every worker. When a firm and a

worker haggle over contracts and reach an agreement, only one contract will be taken by

both sides. A free agent makes decisions independently, while a committed agent cannot

unilaterally dissolve her partnership to find a better alternative without the consent of her

partner. Every agent tries to find her best possible partner with contract. The central issue

is how to match workers and firms as well as possible and to set free as many committed

agents as possible without contravening their commitments.

Our analysis focuses on what can be a reasonable and natural solution to this new

matching problem and how to design a mechanism for finding the solution. In the two-

sided matching literature, the notion of (pairwise) stability is the most widely used solution

stemming from Gale and Shapley (1962); see also Roth and Sotomayor (1990). We need to

adapt this concept to our setting which contains not only chains but also cycles induced by

the presence of commitments. The existing literature typically deals with settings without

cycles. In our model we call a firm and a worker a pair if they are matched by a common

contract. A matching is a collection of contracts with their corresponding pairs and singles.

A matching state consists of a matching and an associated set of committed agents. We

say that a matching state is stable if it is individually rational and not blocked by any
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of its chains or cycles. Our second solution concerns the fundamental concept of core

from game theory and equilibrium theory; see e.g., Gillies (1959), Scarf (1967), Shapley

and Scarf (1974), and Predtetchinski and Herings (2004). The core of an economic model

is the set of outcomes that can be achieved collectively by the entire group of market

participants but cannot be improved upon by any agent or coalition of agents, acting by

themselves. Its analogue in the current model is introduced to accommodate the initial

matching and its associated set of committed agents. The core does not coincide with the

set of stable matchings, in a sharp contrast with the Gale-Shapley model for which both

sets are identical. Our first major Theorem 1 establishes the existence of at least one stable

matching state whose matching is in the strict core. This outcome is called a stable core

matching state. At this outcome every committed agent must be committed at the initial

state and there can be less committed agents than at the initial state.

A key step in our analysis is to develop a market mechanism for finding a stable core

matching state and thus to give a constructive proof of our Theorem 1. This mechanism

to be called the Hybrid Procedure is a novel blend of two generalizations of the deferred

acceptance (DA) procedure of Gale and Shapley (1962) and the top trading cycle (TTC)

method of Shapley and Scarf (1974). It should be noted that neither of the two generaliza-

tions is sufficient to reach a stable core matching state but the Hybrid Procedure always

finds it. In our generalized DA procedure, free workers propose their most-preferred con-

tracts to their corresponding firms while any firm which receives any proposals rejects all

proposals but her favorite one subject to the constraint that if she is a committed firm

and receives the initial contract proposed by her initial partner worker, she should rank

this proposal above any other proposal. A committed worker can become free during the

process if his initial partner has been provisionally matched to another worker. In our

modified TTC procedure, each worker in an almost committed set will propose his favorite

contract among all his mutually relatively acceptable contracts to its associated firm and

each firm in the almost committed set points to her initially matched worker. The Hybrid

Procedure implements sequentially the generalized DA procedure and the modified TTC

procedure and produces a stable core matching state as its final outcome. In the process

some committed agents will be set free and so the stable core matching state contains fewer
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committed agents than the initial matching state.

We also examine the important issues concerning the structure of the family of stable

matching states and the strategic behavior of market participants in the Hybrid Procedure.

We show that the family of stable matching states with a common commitment set is a

lattice, generalizing the classical lattice result of Gale and Shapley (1962). We obtain

incentive compatibility results saying that it is a dominant strategy for agents in a certain

group to act truthfully when facing the Hybrid Procedure, extending the well-known result

of Dubins and Freedman (1981) for the Gale-Shapley marriage matching. Furthermore, we

derive results for the case of job-specific commitments.

Blum et al. (1997) are the first to examine a senior level one-to-one labor market with

incumbents and new entries. Each firm has preferences over all workers and herself and

every worker has preferences over all firms and himself. All agents are free and have no

commitment. They show that when the market is destabilized, it can regain stability in the

sense of Gale and Shapley by a decentralized process of offers and acceptances. Our model

contains theirs as a special case. Our model, motivation, solution and procedure differ from

theirs. First, our model incorporates contracts which contain explicitly salaries and other

characteristics concerning each job and each worker and which can be negotiated between

firms and workers. This feature allows us to examine real life competitive markets with

monetary transfers; see Crawford and Knoer (1981), Kelso and Crawford (1982), Crawford

(1991), Hatfield and Milgrom (2005), Ostrovsky (2008), and Hatfield et al. (2013). Second,

we introduce commitments which enable us to handle a variety of practical situations and

make our model markedly different from theirs. Third, while their stability is the traditional

one concerning only pairs, our stability involves chains and circles. Our solution is the

intersection of stability and (strict) core and our process is totally different from theirs.

Abdulkadiroǧlu and Sönmez (1999) study a house allocation model such as college

dormitories or subsidized public houses where there are both existing tenants and new

applicants. They propose a modification of the TTC method that is individually rational,

Pareto-efficient, and strategy-proof. Sun and Yang (2016) consider a marriage matching

model in which there are many single men and single women and married couples. Married

couples are two-sided committed and can divorce under the mutual consent divorce law.
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We show the existence of a stable and core matching between men and women via a

constructive procedure. Diamantoudi et al. (2015) investigate the role of commitment in

a dynamic matching model. Their commitment differs crucially from ours in that if both

parties are committed to each other, they stay together permanently. Combe et al. (2017)

examine a problem of teacher assignment in their independent study. Their model can be

seen as a senior level market with only incumbents. Their teacher optimal block exchange

algorithm modifies the TTC method, is strategy proof for teachers, and yields a two-sided

maximal outcome.1 Their model and solutions are different from ours.

This paper is organized as follows. Section 2 introduces the model and basic concepts.

Section 3 presents the procedures and stable and core matching existence theorems. Section

4 establishes lattice and incentive compatibility results. Section 5 discusses the case of job-

specific commitments. Section 6 concludes. Several proofs are given in the appendix.

2 Model and Basic Concepts

Consider a senior level job matching labor market with many heterogeneous incumbents

and entrants. Let W = {w1, · · · , ws} denote the set of all workers and F = {f1, · · · , ft} the

set of all firms. We use the English letters f , w, f1, w1, x, etc to denote agents (workers

or firms) and A, B, etc to denote sets of agents. We will take several steps to give a full

description of the model. Throughout the paper we treat any worker as male and any firm

as female. When we talk about a generic agent which can be a firm or worker, we treat

the agent as female. We assume that every firm hires at most one worker and every worker

can work for at most one firm.2

Relationships between firms and workers are governed by bilateral contracts. Contracts

1Their model implicitly implies that teachers and schools are two-sided committed in our sense. In

their model each school can hire multiple teachers. A two-sided maximal matching that means individual

rationality and Pareto-efficiency for both teachers and schools is not necessarily in the (strict) core nor

(strongly) stable in our current model.
2This assumption has been used in Koopmans and Beckmann (1957), Gale and Shapley (1962), Shapley

and Shubik (1971), Shapley and Scarf (1974), Crawford and Knoer (1981), Demange et al. (1986), Blum

et al. (1997), Abdulkadiroǧlu and Sönmez (1999), Chung (2000), Andersson and Svensson (2014), etc.
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will be represented by the Greek letters α, β, α1, etc. A contract α usually has several

components including a firm and a worker and what service the worker should provide to

the firm and what the worker should get from the firm in return for the service. The firm

involved in contract α is denoted by αF and the worker is denoted by αW . This way of

describing contracts is inspired by Hatfield and Milgrom (2005) and Ostrovsky (2008). In

particular, if a worker w does not work for any firm or a firm f does not hire any worker,

this state of standing alone will be represented by a simple contract α = {w} or α = {f}.

For simplicity, we also use w and f to denote these two special contracts. If a firm has

multiple contracts with a worker, then every contract has its own terms and conditions

and differs from any other. There are no contracts between any two firms or workers.

Let Σ be the set of all possible but finite contracts given exogenously. Subsets of Σ

will be denoted by Ω, Ψ, etc. Given a subset Ψ of Σ, an agent x ∈ F ∪W and a subset

S of F ∪ W , let Ψ(x) represent the set of contracts in Ψ in which x is involved, and let

Ψ(S) = ∪x∈SΨ(x). Clearly, Σ(x) contains the obvious contract α = {x} for every agent x.

Every worker w has strict preferences over all his possible contracts in Σ(w). This

relationship will be represented by �w and ≻w. If α1 �w α2 for α1, α2 ∈ Σ(w), we say that

he likes contract α1 at least as well as contract α2. If α1 ≻w α2 for α1, α2 ∈ Σ(w), then he

prefers contract α1 to contract α2. Similarly, every firm f has strict preferences over all

her possible contracts in Σ(f). This relationship will be represented by �f and ≻f .

A set Ψ of contracts in Σ is said to be a matching if the set Ψ(x) contains exactly

one contract for every agent x ∈ F ∪ W . If a contract α in a matching Ψ involves a

worker w and a firm f , i.e., Ψ(w) = Ψ(f) = {α}, then w and f are called a partner

of each other or matched with contract; if a contract in a matching Ψ involves only one

agent x, then the agent is said to be self-matched or a single. Traditionally, a one-to-one

mapping µ from the set F ∪W onto itself is also called a matching if µ(µ(x)) = x for every

x ∈ F ∪W , µ(f) 6= f implies µ(f) ∈ W for every f ∈ F , and µ(w) 6= w implies µ(w) ∈ F

for every w ∈ W . Clearly, every matching Ψ (of contracts) determines a unique matching

(of one-to-one mapping), denoted by µΨ or simply by µ.
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2.1 Commitment and Matching State

In the classic marriage matching model of Gale and Shapley (1962), marriages are not

binding on either side. In reality, however, marriages, or partnerships between workers

and firms, or contracts between two parties can be binding on both sides, or one side. In

other words, one or two parties involved may have commitments to their partner. We will

incorporate this important feature into our matching model. For a given matching Ψ, let

P (Ψ) = {x ∈ W ∪ F | µΨ(x) 6= x} denote the set of agents who have a partner under

Ψ. An agent x in P (Ψ) is said to be committed if she cannot unilaterally dissolve the

relation with her partner µΨ(x) but can do so with her partner’s consent. In our context,

µΨ(x) = y would agree if doing so does not make y worse off. This also implies that

even if two parties are committed to each other, they can still dissolve their partnership

as long as both consent to do so. Let C(Ψ) = {x ∈ P (Ψ) | x is committed} be the set of

committed individuals under Ψ. Any agent in W ∪F but not in C(Ψ) is said to be free or

uncommitted. A free agent can make decisions independently. Let V (Ψ) = (W ∪F )\C(Ψ)

represent the set of all free agents. A free individual x ∈ P (Ψ) can unilaterally rescind her

relationship with her partner µΨ(x). A matching state consists of a matching Ψ and its

set of committed agents C(Ψ) and is denoted by (Ψ, C(Ψ)). In the Gale-Shapley model,

for any matching Ψ we have C(Ψ) = ∅ and V (Ψ) = W ∪ F .

Commitments introduced here are context-dependent, effective, and general. In addi-

tion to those typical cases mentioned in Section 1 they can also cover the most general case

where some pairs of worker and firm are two-sided committed, some workers are committed

but their partners are not, some firms are committed but their partners are not, and some

agents are free. In Section 5 we will discuss job-specific commitments which are simple

and special but still quite common.

Note that in some environments commitment can be imbedded in a contract and an-

alyzed. In the current paper we treat commitment as an independent constraint in order

to deal with very general and complex situations. This modelling has several obvious ad-

vantages. Firstly, it allows us to accommodate various environments with flexibility and

effectiveness. Secondly, it makes it possible to analyze how commitment can influence the

behaviour of agents and the outcome. Thirdly, as committed agents and free agents play

8



quite different roles, it is necessary to treat commitment as an independent factor in order

to have a clear understanding of its effect.

In contrast to entry level matching models where all agents are entrants and there is

no initial matching between any firm and any worker, our senior level matching model

comprises many incumbents and also many entrants. Incumbents may be committed to

their initial partners and every agent may be associated with multiple contracts. To reflect

this situation, let (Ψ0, C(Ψ0)) denote the initial matching state, which is exogenously

given. An agent x ∈ W ∪ F is said to be an incumbent if µΨ0(x) 6= x. An incumbent must

initially match someone from the opposite group. For an incumbent x, we say that x is an

initial partner of µΨ0(x) and vice versa. An agent x ∈ W ∪ F is an entrant or a single if

µΨ0(x) = x. Singles can be new entries or experienced agents. For instance, a single worker

can be a person who just attains a professional qualification and starts to find a job, or an

experienced worker who just lost or quitted his job. For convenience, let µ0 = µΨ0 denote

the initial matching, P 0 = P (Ψ0) denote the set of all incumbents, C0 = C(Ψ0) denote the

set of all committed incumbents, and V 0 = V (Ψ0) be the set of all free or uncommitted

agents at (Ψ0, C(Ψ0)). Observe that if an incumbent x ∈ P 0 prefers remaining single to

her initial partnership Ψ0(x), i.e., x ≻x Ψ0(x), this agent wants to dissolve this partnership

unconditionally and her partner µ0(x) can act freely. Therefore, for any incumbent x ∈ P 0

with x ≻x Ψ0(x), we can naturally assume that her parter µ0(x) is free, i.e., µ0(x) ∈ V 0.

Let M = (W,F,Ψ0, C0,≻) represent the current model.

Clearly, entrants and free agents will be more likely than committed agents to disturb

and reshape the market. Every individual tries to find the best possible partner for herself

and committed individuals strive to find better partners but have to comply with their

commitment constraints. Naturally, commitment constraints whether imposed upon or

chosen by individuals will certainly restrict the choices of the individuals who face the

constraints. In a society, a state which is stable when every individual makes her choice

under few or no constraints is intrinsically more desirable than a state which is stable when

every individual makes her choice under many constraints. It will therefore be beneficial

to free as many individuals as possible from the shackles of their commitment constraints.

With this in mind we study the problem of how to match workers and firms as well as
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possible and to set free as many committed agents as possible without contravening their

commitments. In particular, we attempt to address two fundamental questions: Given a

matching model M = (W,F,Ψ0, C0,≻), what can be a feasible and desirable outcome in

terms of stability, efficiency and commitment? and how can such an outcome be achieved

by a market mechanism?

2.2 Feasibility

With respect to the market M = (W,F,Ψ0, C0,≻), we say that a contract α ∈ Σ(x) is

acceptable to an agent x ∈ W ∪F if α �x x and that the contract α is relatively acceptable

to the agent if α �x Ψ0(x). Given a matching Ψ, an agent x ∈ W ∪ F is said to be

rematched if the contract Ψ(x) is different from the initial contract Ψ0(x). Observe that

rematching allows x to have the same partner, i.e., µΨ(x) = µ0(x).

As the market starts with the initial state and will be reshaped, one may wonder what

outcome could possibly emerge. The following definition introduces feasible matchings.

Feasibility is a basic condition that a proposed solution should satisfy.

Definition 1 A matching Ψ is feasible if every free agent x ∈ V 0 gets at least an

acceptable contract (i.e., Ψ(x) �x x), if every agent x with a committed partner µ0(x) ∈ C0

gets at least a relatively acceptable contract (i.e., Ψ(x) �x Ψ0(x)), and if every committed

agent x ∈ C0 gets at least an acceptable contract (i.e., Ψ(x) �x x) or a relatively acceptable

contract (i.e., Ψ(x) �x Ψ0(x)).

Observe that a feasible matching Ψ is defined by comparing with the initial matching

state (Ψ0, C0) and has to respect the commitment constraints. The definition is intuitive

and easy to understand. We have the following observation.

Lemma 1 At a feasible matching, an agent with a committed initial partner gets an ac-

ceptable and relatively acceptable contract.

2.3 Stability

(Pairwise) stability introduced by Gale and Shapley (1962) is the most widely used solution

concept in the two-sided matching literature. Their stability concept, however, cannot be
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directly applied to our current model due to the presence of commitments. To see this, let

us consider the following example.

Example 1 There are three workers w0, w1, w2 and two firms f1, f2. We consider the

simplest case in which there is at most one contract between every worker and every firm.

We can therefore represent the preferences of each individual in the standard way as follows:

≻w0
: f1, w0

≻w1
: f2, f1, w1 ≻f1 : w0, w2, w1, f1

≻w2
: f1, f2, w2 ≻f2 : w1, w2, f2

Here we read that w0 prefers f1 to standing alone or himself. All other firms which are not

listed on his preferences are worse than standing alone.

Assume that we have a matching µ given by µ(w0) = w0, µ(w1) = f1, and µ(w2) = f2.

Note that because µ is a matching, it implies µ(f1) = w1 and µ(f2) = w2 so we can omit

them and will always do so. With respect to this matching we consider the following

scenarios: Without commitment and with different commitments.

Case 1: Without any commitment, the pairs of worker and firm {w0, f1}, {w1, f2} and

{w2, f1} would obviously form blocking pairs to the matching µ in the sense of Gale and

Shapley, as doing so would make every individual of every blocking pair better off than

they are at matching µ.

Case 2: Under commitment C(µ) = {w1, w2, f1}, the pair {w0, f1} cannot form a block-

ing pair to the matching µ because f1 is committed to w1 and cannot leave w1 unilaterally.

Nevertheless, it will be perfectly possible for w0, f1, w1, f2 to form a chain so that w0

matches f1, and w1 matches f2. As w0 and f2 are free, they can take the initiative to

form this blocking chain so that everyone on the chain gets better off. Observe that f1 is

committed to w1 and can dissolve his partnership with w1 as w1 finds a better replacement

f2 of f1. Similarly, it is easy to see that {w1, f2} and {w2, f1} cannot form blocking pairs

to µ as w1 is committed to f1 and w2 is committed to f2.

Case 3: Under commitment C ′(µ) = {w1, w2, f1, f2}, the pairs {w0, f1}, {w1, f2} and

{w2, f1} cannot form blocking pairs to the matching µ because f1 is committed to w1 and

cannot leave w1 unilaterally, w1 is committed to f1 and cannot leave f1 unilaterally and f2

is committed to w2 and cannot leave w2 unilaterally. The same reason applies to {w2, f1}.
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Nevertheless, it will be perfectly plausible for w1, f2, w2 and f1 to form a cycle so that

w1 matches f2, and w2 matches f1, as doing so will make everyone on the cycle better off

without violating any commitment.

This discussion motivates us to introduce concepts of blocking chain and blocking cycle

as a necessary and plausible generalization of the Gale-Shapley concept of blocking pair.

Given a matching state (Ψ, C(Ψ)), a chain of the state is an ordered sequence of an

even number of distinct agents
−→
X = (x1, y1, x2, y2, · · · , xK , yK) with K ≥ 1 such that

x1, yK ∈ V (Ψ) and µΨ(yk) = xk+1 for every k = 1, 2, · · · , K − 1. x1 and yK are called end

agents and they are free. A cycle of the state is an ordered sequence of an even number

of distinct agents
−→
X = (x1, y1, x2, y2, · · · , xK , yK) with K ≥ 1 such that µΨ(yk) = xk+1

for every k = 1, 2, · · · , K, where xK+1 becomes x1 by convention. In particular, any

pair (x1, y1) with µΨ(y1) = x1 can be looked as a cycle. For a chain or cycle
−→
X =

(x1, y1, x2, y2, · · · , xK , yK) we will use A(
−→
X ) = {x1, y1, x2, y2, · · · , xK , yK} to denote the

set of all agents in
−→
X . A chain

−→
X = (x1, y1, x2, y2, · · · , xK , yK) of (Ψ, C(Ψ)) is said to be

minimal if A(
−→
X )\{x1, yK} ⊂ C(Ψ), i.e., all but the end agents x1 and yK have commitment

to their partners at µΨ. It is clear that every chain contains at least one minimal chain.3

A cycle of a matching state (Ψ, C(Ψ)) is a pure cycle if it does not contain any chain.

A matching state (Ψ, C(Ψ)) is blocked by a free individual x ∈ V (Ψ) if x ≻x Ψ(x). It

is individually rational if it is not blocked by any of its free individuals. A matching state

(Ψ, C(Ψ)) is blocked by a chain or cycle
−→
X = (x1, y1, x2, y2, · · · , xK , yK), if for every k =

1, · · · , K, there is a mutually acceptable contract αk to xk and yk such that αk ≻xk
Ψ(xk)

and αk ≻yk Ψ(yk), i.e., agents xk and yk prefer contract αk to their respective contract at

Ψ. By definition, all members in a blocking chain of a matching state will be better off

than in the matching state and therefore will have incentives to deviate from the matching

state. The end members are free and may initialize this blocking. The same is true for

all members in a blocking cycle except that there are no end members in the cycle. So

3For any chain
−→
X = (x1, y1, x2, y2, · · · , xK , yK) of a matching state (Ψ, C(Ψ)), we can find one of its

minimal sub-chain as follows. We first find some j ∈ {1, 2, · · · ,K} such that yj ∈ V (Ψ) and yk /∈ V (Ψ)

for all k = 1, · · · , j − 1, and next find some i ∈ {1, 2, · · · , j} such that xi ∈ V (Ψ) and xk /∈ V (Ψ) for all

k = i+ 1, · · · , j. Then, we can show (xi, yi, · · · , xj , yj) is a minimal chain of (Ψ, C(Ψ)).
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blocking chains can be more easily formed than blocking cycles, as the latter do not have

free end members to take the initiative. For our model it can be shown (see the appendix)

that if an individually rational matching state is blocked by a group of agents, it must be

blocked by a chain or by a cycle. So it suffices to focus on chains and cycles.

Definition 2 A matching state (Ψ, C(Ψ)) is chain stable if it is not blocked by any of

its free individuals or any of its chains. It is stable if it is not blocked by any of its free

individuals or any of its chains or cycles.

Our chain stability is similar to the chain stability introduced by Ostrovsky (2008) for

his general vertical supply chain model but our motivation and context are different from

his. In particular, unlike his model which contains chains and no cycles, chains and cycles

in our model are induced due to the presence of commitments. Our notion of stability is

defined with respect to not only chains but also cycles and thus strengthens the notion

of (chain) stability defined with respect to chains only. Chain stability is immune to all

possible blocking chains. Stability enhances chain stability by also excluding any possibility

of blocking cycles. We have the following observation.

Lemma 2 A matching state (Ψ, C(Ψ)) is chain stable if and only if it is not blocked by

any of its free agents or any of its minimal chains. A matching state is stable if and only

if it is not blocked by any of its free agents or any of its minimal chains or pure cycles.

Note that for any two matching states (Ψ, C(Ψ)) and (Ψ, C ′(Ψ)) satisfying C(Ψ) ⊆

C ′(Ψ), every chain of (Ψ, C ′(Ψ)) is also a chain of (Ψ, C(Ψ)), a pure cycle of (Ψ, C ′(Ψ))

may also contain a chain of (Ψ, C(Ψ)). Therefore, if (Ψ, C(Ψ)) is a (chain) stable matching

state, then every matching state (Ψ, C ′(Ψ)) with C(Ψ) ⊆ C ′(Ψ) is also (chain) stable. The

converse may not be true.

Let us go back to Example 1. It is easy to verify that (µ,C(µ)) is not chain stable,

because (w0, f1, w1, f2) is a blocking chain. (µ,C
′(µ)) is chain stable but not stable, because

(w1, f2, w2, f1) is a blocking cycle. Nevertheless, the matching state (µ1, C(µ1)) is stable,

where µ1(w0) = w0, µ
1(w1) = f2, µ

1(w2) = f1, and C(µ1) = {f1, f2}.

When applying the notion of stability to the current market M = (W,F,Ψ0, C0,≻),

we will show through a procedure that there exists a stable matching state (Ψ, C(Ψ))
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with a feasible matching Ψ and the set of committed agents C(Ψ) being a subset of the

initial commitment set C0. The stable matching state (Ψ, C(Ψ)) is generated from the

initial matching state (Ψ0, C0) and sets free some committed agents without violating any

commitments. Note that our stability is defined with respect to a given matching state

which is not directly related to the initial matching state.

2.4 Core

The notion of core is one of the most fundamental solution concepts in game theory and

equilibrium theory and can be seen as a generalization of the venerable Edgeworth’s con-

tract curve. We will adapt this solution to our current model. It will be helpful to recall

from Shapley and Scarf (1974) that “The core consists of those outcomes of the game that

are feasible, and that cannot be improved upon by any individual or coalition of individu-

als.” There are three key elements about the core. The first is the initial state (including

certain rights) of every agent and feasibility, the second is the proposed solution-the core-a

set of states being immune to all possible coalition improvements, and thirdly trade takes

place, i.e., agents exchange their goods, only after a core state is reached and agreed by all

agents through certain procedures, negotiations or bargaining.

Analogously, the current market has the initial state (Ψ0, C0). Imagine that “a social

planner” proposes a matching Ω to all workers and firms as a possible (strict) core matching.

Obviously Ω must be a feasible matching. The proposal Ω is a (strict) core matching if it

is robust against any possible coalition improvement. At this moment Ω is just a proposal

under consideration, agents are still at the initial state (Ψ0, C0) and they are each thinking

about who by herself or which coalition of agents by themselves can possibly improve upon

the proposal Ω, i.e., a feasible counter-proposal against the proposal Ω. Clearly, a free

agent can act independently or form freely a coalition with any other free agents when she

considers how to improve her situation at Ω. However, if an agent has an initial partner

and is committed, she cannot act unilaterally but has to ask her partner to cooperate with

her when she contemplates whether she can initiate a coalition or accept an invitation to

form a coalition in order to improve her position at Ω, because a committed agent cannot

abandon her partner without the consent of her partner. This means that unlike Shapley
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and Scarf (1974) or Gale and Shapley (1962), not every coalition in our current market

is permissible or feasible. Note that only after the proposed solution Ω is accepted by all

agents, initial partnerships may cease to exist and new contracts can be signed. Now we

are ready to introduce permissible coalitions and our solution concept. A nonempty subset

S of the set W ∪ F of workers and firms is called a coalition. W ∪ F itself is called the

grand coalition. A coalition S is said to be permissible if x ∈ S ∩ C0 implies her partner

µ0(x) ∈ S. We say that a coalition S improves upon a matching Ψ of the grand coalition

W ∪ F if there exists a matching Φ ⊆ Σ(S) among workers and firms from the coalition

alone such that everyone x in S weakly prefers Φ(x) to Ψ(x) and at least one agent y ∈ S

prefers Φ(y) to Ψ(y). A coalition S strongly improves upon a matching Ψ if there exists

a matching Φ ⊆ Σ(S) among workers and firms from the coalition alone such that every

agent x in S prefers Φ(x) to Ψ(x).

Definition 3 In a matching model M = (W,F,Ψ0, C0,≻), a feasible matching Ψ is in

the strict core, called a strict core matching if it cannot be improved upon by any permissible

coalition. It is in the core if it cannot be strongly improved upon by any permissible coalition.

It should be noted that because the number of permissible coalitions is smaller than

the number of all coalitions of W ∪ F , it appears more likely to enlarge the core, but it

is not the case, because it is less likely for firms and workers to form feasible partnerships

and feasible matchings (thus to shrink the core) due to their commitments.

Observe that the set of all agents in a chain or a cycle of the initial matching state

(Ψ0, C0) is a permissible coalition for the initial matching state. A feasible matching Ψ

is improved upon by a chain or cycle
−→
X = (x1, y1, x2, y2, · · · , xK , yK) of the initial state

(Ψ0, C0) if for every k = 1, · · · , K, there is a contract αk ∈ Σ(xk) ∩ Σ(yk) such that

αk �xk
Ψ(xk) and αk �yk Ψ(yk), and for some k = 1, · · · , K, it holds αk ≻xk

Ψ(xk) or

αk ≻yk Ψ(yk).
−→
X will be called an improvement chain or cycle of Ψ.

Let us check if there is any core matching in Example 1. Suppose that the initial

matching state (µ0, C0) is given by µ0(w0) = w0, µ
0(w1) = f1, µ

0(w2) = f2, and C0 =

{w1, w2, f1, f2}. So w1, w2, f1, and f2 are incumbents and committed, and w0 is an entrant.

In this example, there is a unique strict core matching µ given by µ(w0) = w0, µ(w1) =

15



f2, and µ(w2) = f1. At µ, no agent gets worse off and w1, w2, f1, and f2 all get strictly

better off. The initial partners {w1, f1} and {w2, f2} get dissolved and rematched.

It is easy to see that the matching state (µ,C(µ)) with C(µ) = {f1, f2} ⊂ C0 is stable,

whereas the matching state (µ, Ĉ(µ)) with Ĉ(µ) = {w1, w2, f2} is not even chain stable,

because (w0, f1) forms a blocking chain for the matching state.

Note that different from (µ,C(µ)), (µ2, C(µ2)) is also a stable matching state, where

µ2(w0) = f1, µ
2(w1) = f2, µ

2(w2) = w2, and C(µ2) = ∅. But µ2 is not a core matching as

w2 becomes a single at µ2 and is worse off than her initial state at (µ0, C0) and thus µ2 is

not a feasible matching. This is in contrast to the model of Gale and Shapley (1962) for

which core and stability are identical.

Consider now a different scenario. If agents had no commitment and thus could act

freely, then µ2 above would be the unique stable matching in the sense of Gale and Shapley

(1962). In this case w2 would get fired and be worse off.

The above discussion shows that commitment can affect the behavior of agents as well

as the outcome considerably.

Lemma 3 If a feasible matching Ψ is improved upon by a permissible coalition S, then

it must be improved upon by a chain or cycle of the initial matching state (Ψ0, C0).

The next lemma follows immediately from Lemma 3.

Lemma 4 A feasible matching Ψ is in the strict core if it cannot be improved upon by

any chain or cycle of the initial state (Ψ0, C0).

While stability introduced previously is motivated from a noncooperative viewpoint,

the core ensures (Pareto) efficiency but also reflects a kind of stability from a cooperative

viewpoint. The solution found by our Hybrid Procedure will meet all requirements for

feasibility, stability, and core.

3 Procedures and Existence Results

In this section we present two existence results. Our first result (Lemma 5) establishes

the existence of a chain stable matching state with a feasible matching Ψ in which every
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committed agent at Ψ must be committed at the initial matching Ψ0. This implies that the

number of committed agents at this stable state can be reduced and thus some committed

agents at Ψ0 will be set free. We prove this result through our first procedure which is

a generalization of the deferred acceptance (DA) procedure of Gale and Shapley (1962).

Lemma 5 will be used in the proof of our key existence Theorem 1. This theorem shows

that there exists at least one stable matching state (Ω, C(Ω)) in which the matching Ω

is in the strict core and the family of committed agents C(Ω) is a subset of the initial

commitment set C0. We establish this theorem through our Hybrid Procedure, which is

a combination of our first procedure and our second procedure-a generalization of the top

trading cycle (TTC) method from Shapley and Scarf (1974).

We first introduce the following generalization of the deferred acceptance (DA) proce-

dure of Gale and Shapley (1962). Dubins and Freedman (1981) have shown the strategic

property of the DA procedure. Kojima and Manea (2010) have axiomatized the DA pro-

cedure. Erdil and Ergin (2017) have permitted indifference in every agent’s preferences

and proposed a procedure by using stable worker improvement chains and cycles to find a

worker-optimal stable matching. All these papers deal with entry level markets.

Workers Proposing Deferred Acceptance (WP-DA) Procedure

• At the beginning, every committed worker in C0 is provisionally matched to his

original partner under their initial contract.

• Then at every step, any worker who is currently free4 and has not made any proposal

or who was rejected previously proposes his best-liked contract among those which

are acceptable to him and which he has not yet proposed, to its associated firm.

Every firm rejects all proposed unacceptable contracts and also rejects all but her

most-preferred contract among those proposed acceptable contracts she has received,

as well as the contract she is provisionally matched with, subject to the constraint

that if she is committed in C0 and has received her initial contract at Ψ0 proposed by

4In this procedure, we say that a worker w is currently free, if he is free in V 0 or his partner µ0(w) has

being provisionally matched with a new contract rather than her initial contract at Ψ0.
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her initial partner, she should treat this contract as her unique favourite one and be

provisionally matched to the worker with the contract. Any worker whose proposed

contract has not been rejected is provisionally matched with his proposed contract.

• When there is no new proposal from any worker, we then arrive at a matching state

as follows: The matching Ψ consists of all those contracts that remain in force and are

currently provisionally matched with some firm and some worker, and of those trivial

contracts involving only single agents who are currently not provisionally matched

with any other agent. Let WC denote the set of those workers who are committed

at Ψ0 and have never become free in the procedure, and FC = {f ∈ C0 ∩ F |Ψ(f) =

Ψ0(f)} denote the set of those committed firms which keep the same partner with

the same contract as the initial state (Ψ0, C(Ψ0)). Then let C(Ψ) = WC ∪FC be the

set of committed agents at Ψ. This yields the matching state (Ψ, C(Ψ)).

Several remarks are in order. Firstly, in this procedure, any committed worker in

C0 can make a proposal only if his initial partner has received some proposal and been

provisionally matched with a new contract rather than her initial contract at Ψ0. Any

committed firm in C0 cannot reject her initial partner if the proposed contract is her initial

contract at Ψ0. Secondly, free workers have no restriction of proposing their most preferred

contracts to their associated firms nor have free firms any restriction of tentatively accepting

their received favorite proposals. Thirdly, when a committed firm receives a proposal of

a better contract than her initial contract, she will reject her initial contract and let her

initial partner free if her initial partner is committed. However, when her initial partner

regardless of being committed or free later comes to propose to her, she will accept her

initial partner’s proposal (i.e., initial contract) and reject all other proposals including the

one she provisionally holds. Finally, a committed worker becomes free when he is set free

in the procedure, and a committed firm becomes also free when she is finally rematched

with a new contract rather than her initial contract. Namely, agents x who are committed

at (Ψ0, C0) and are rematched at Ψ (i.e., Ψ(x) 6= Ψ0(x)) are set free at (Ψ, C(Ψ)). As

WC ⊂ C0 ∩W and FC ⊂ C0 ∩ F , C(Ψ) = WC ∪ FC is a subset of C0.

Analogously one can introduce the firms proposing deferred acceptance (FP-DA) pro-
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cedure. To facilitate a better understanding of the above procedure, we illustrate it by the

following example that is simple but shows several essential features of the procedure.

Example 2 There are six workers w1, w2, · · ·, w6, and six firms f1, f2, · · ·, f6. w6 and

f6 are new entries but the rest are incumbents, and the initially matched pairs are {f1, w1},

{f2, w2}, {f3, w3}, {f4, w4}, and {f5, w5}. We have the initial matching µ0(w1) = f1,

µ0(w2) = f2, µ0(w3) = f3, µ0(w4) = f4, µ0(w5) = f5, µ0(w6) = w6, and µ0(f6) = f6

and the set of committed agents C0 = {f1, f2, f3, f5, w1, w2, w3, w4, w5}. Observe that the

incumbent firm f4 is free. Each agent’s preferences are given by

≻w1
: f2, f1, w1 ≻f1 : w6, w2, w1, f1

≻w2
: f1, f2, w2 ≻f2 : w5, w1, w2, f2

≻w3
: f6, f3, w3 ≻f3 : w6, w3, f3

≻w4
: f5, f4, w4 ≻f4 : w1, w5, w4, f4

≻w5
: f2, f4, f5, w5 ≻f5 : w4, w5, f5

≻w6
: f1, f3, w6 ≻f6 : w3, f6

The steps of the procedure is given as follows: Step 1: Free worker w6 proposes to

f1 who will set w1 free and be provisionally matched to w6. Now w1 is free. Step 2: w1

proposes to f2 who will let w2 free and be provisionally matched to w1. Now w2 is free.

Step 3: w2 proposes to f1. f1 declines w2 and is provisionally matched to w6. Step 4:

w2 proposes to his initial partner f2. Observe that by the rule of the procedure f2 has to

reject w1 and is provisionally matched to w2 because f2 is committed to w2. Step 5: w1

proposes to his initial partner f1. f1 has to reject w6 and is provisionally matched to w1

because f1 is committed to her initial partner w1. Step 6: w6 proposes to f3. f3 sets w3

free and is provisionally matched to w6. Now w3 is free. Step 7: w3 proposes to f6 who

will be provisionally matched to w3.

Step 8: Now there is no new proposal. The procedure terminates with a chain stable

matching state (Ψ, C(Ψ)) where the matching Ψ = µ is given by

µ(w1) = f1, µ(w2) = f2, µ(w3) = f6, µ(w4) = f4, µ(w5) = f5, µ(w6) = f3,

and the set of committed agents is C(Ψ) = {f1, f2, f5, w4, w5}. In the process, w1, w2, and

w3 have been set free, and also f3 has been set free as f3 is rematched to w6 instead of
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w3. So in total we have now seven free agents f3, f4, f6, w1, w2, w3, and w6. Recall that

initially we have only three free agents f4, f6, and w6.

We have the following lemma on the existence of chain stable matching state.

Lemma 5 For the model M = (W,F,Ψ0, C0,≻), the WP-DA procedure finds a chain

stable matching state (Ψ, C(Ψ)), where Ψ is a feasible matching and the commitment set

C(Ψ) is a subset of the initial commitment set C0.

We now turn to present a modification of the top trading cycle (TTC) method of

Shapley and Scarf (1974) which will be an integral part of our Hybrid Procedure for finding

a stable matching state with a strict core matching. Ma (1994) has given an axiomatic

characterization of the TTC procedure. Abdulkadiroǧlu and Sönmez (1999, 2003) have

adapted the procedure to a house allocation model with both existing tenants and new

applicants, and to the school choice. Combe et al. (2017) have transformed the TTC

procedure to the block exchange and teacher optimal block exchange algorithms in order

for teachers and schools to improve their welfare.

A key feature of the TTC procedure and its variants is to generate (top trading) cycles

in which agents can get better offers or positions and thus improve their welfare. In our

modification this feature will be maintained but we need to apply this modified procedure

to an almost committed set which is defined next. This modified procedure will be imple-

mented only after our modified DA procedure is executed. A subset of partners S ⊆ P 0 is

called an almost committed set if for every x ∈ S it holds µ0(x) ∈ S and {x, µ0(x)}∩C0 6= ∅.

It follows that if an incumbent x is in an almost committed set, then her partner µ0(x) must

be also in the almost committed set and at least one of the two agents must be committed.

Clearly, every almost committed set S and its complementary set (W ∪ F ) \ S are both

permissible coalitions for the initial matching state (Ψ0, C0). The following procedure will

be applied to any given almost committed set S. In the procedure, every worker in the

set S points to the firm involved in his favourite contract among all his mutually relatively

acceptable contracts in Σ(S), and each firm f in S points to her partner µ0(f) in S.

Workers Proposing TTC (WP-TTC) Procedure

20



• Every worker in the almost committed set S points to the firm involved in his favourite

contract among all his mutually relatively acceptable contracts in Σ(S)5, and each

firm in S points to her worker partner under µ0.

• There exists at least one directed cycle6. In each directed cycle, match every worker to

his pointed firm under the worker’s favorite mutually relatively acceptable contracts

between them. All such matched work-firm pairs leave the market.

• Repeat this process to every almost committed set formed by the remaining agents,

until no agent is left. Let Π be the matching consisting of all matched contracts.

Similarly we can have the firms proposing top trading cycle (FP-TTC) procedure.

Next we introduce a Hybrid Procedure of the WP-DA and WP-TTC procedures for

finding a stable matching state with a strict core matching.

The Hybrid Procedure

Step 1: Apply the WP-DA procedure to the model M = (W,F,Ψ0, C0,≻) and give a chain

stable matching state (Ψ, C(Ψ)). Let S = {x ∈ P 0 | Ψ(x) = Ψ0(x) and {x, µ0(x)} ∩

C0 6= ∅ } be the almost committed set. Then all agents outside the set S (i.e., singles

and rematched agents in Ψ) leave the market.

Step 2: Apply the WP-TTC procedure to the set S and generate a matching Π.7

Step 3: Based on matchings Ψ and Π, construct a matching Ω by

Ω(x) =







Ψ(x) if x = (W ∪ F ) \ S,

Π(x) if x ∈ S.

5In a decentralized market where each individual knows only their own preferences but not others, a

worker can find such a contract as follows: He first proposes his favourite contract among all his relatively

acceptable contract in Σ(S). If his proposal is not relatively acceptable to his proposed firm, then his

proposal will be rejected. Repeat this process to the remaining contracts that he has not yet proposed

until he will not be rejected.
6We say a cycle (w̄1, f̄1, w̄2, f̄2, · · · , w̄K , f̄K) of the initial state (µ0, C(µ0)) with mutually relatively

acceptable pairs (w̄k, f̄k) (k = 1, · · · ,K) is a directed cycle if each w̄k points to f̄k and each f̄k points to

w̄k+1 = µ0(f̄k) for k = 1, · · · ,K, where w̄K+1 denotes w̄1.
7If the set S is empty, let the matching Π be empty.
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Set C(Ω) = WC ∪ {f ∈ S ∩ F | µ0(f) ∈ WV }, where WV is the set of those workers

who are free at the state (Ψ, C(Ψ)) given at Step 1, andWC is the set of those workers

who are committed at the state (Ψ, C(Ψ)). The procedure stops with the matching

state (Ω, C(Ω)).

In order to have a better understanding of the Hybrid Procedure, we explain how

some committed incumbents will maintain their commitment and how other committed

incumbents can be freed from their commitment. Observe that the almost committed set

S = {x ∈ P 0 | Ψ(x) = Ψ0(x) and {x, µ0(x)} ∩ C0 6= ∅} is the family of agents who have

gone through the WP-DA procedure but still retained the same contracts as they had at

the initial state (Ψ0, C0), and who had partners at (Ψ0, C0) and are committed to their

partners or whose partners are committed. We can decompose the set S into two disjoint

subsets S1 and S2 as follows. Let S1 = {x ∈ S | {x, µ0(x)} ∩ WV 6= ∅} denote the set

of agents in S who did not rematch in the WP-DA procedure but had opportunities to

participate in the rematching process. Clearly, f ∈ S1 ∩ F implies f ∈ C0, i.e., every firm

in S1 is a committed agent in C0. Let S2 = {x ∈ S | {x, µ0(x)} ∩ WC 6= ∅} denote the

set of agents in S who did not have any opportunity to rematch in the WP-DA procedure.

Also w ∈ S2 ∩ W implies w ∈ C0, i.e., every worker in S2 is a committed agent in C0.

Then, we have S1 ∩ S2 = ∅ and S1 ∪ S2 = S. Let S3 = (W ∪ F ) \ S. S3 contains those

agents who leave the market at the end of Step 1 of the Hybrid Procedure. Clearly S1, S2

and S3 form a partition of W ∪ F .

Note that C(Ω) = (S2 ∩W ) ∪ (S1 ∩ F ). So at (Ω, C(Ω)), only workers in S2 and firms

in S1 will maintain their commitment but all other agents are free. This means that at

(Ω, C(Ω)) workers in S1 who are committed at the initial state (Ψ0, C0) are set free, so are

firms in S2 who are committed at the initial state (Ψ0, C0), and so are agents in S3 who

are committed at the initial state (Ψ0, C0). This implies that at the final matching state

(Ω, C(Ω)) only necessary commitments will be kept and other can be removed. Clearly,

C(Ω) is a subset of C0. We will show that (Ω, C(Ω)) is stable and Ω is in the strict core.

By assumption that µ0(x) ∈ V 0 for every x with x ≻x Ψ0(x), we see that Ψ0(w) ≻w w

for every worker w ∈ S1 and Ψ0(f) ≻f f for every firm f ∈ S2. Recall that S2∩W ⊆ C(Ψ),

i.e., no worker w ∈ S2 has become free in the WP-DA procedure at Step 1 of the Hybrid
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Procedure. For every worker w ∈ S1 and every firm f ∈ S2 there is no mutually acceptable

contract α to them such that α ≻w Ψ0(w) ≻w w and α ≻f Ψ0(f) ≻f f . Otherwise firm

f would have received the proposal α from worker w and set his partner µ0(f) ∈ S2 free.

This means that there is no mutually relatively acceptable contract α to f and w. As

a result, in the WP-TTC procedure at Step 2 of the Hybrid Procedure, no worker in S1

points to a firm in S2. That is, every directed cycle is contained either in S1 or in S2 and

cannot be across both S1 and S2. So every matched pair from every directed cycle must

be either in S1 or in S2.

We use again Example 2 to illustrate the Hybrid Procedure. The detailed steps are

given as follows:

Step 1: The WP-DA procedure runs and generates the matching state (Ψ, C(Ψ)) where

Ψ = µ is given by

µ(w1) = f1, µ(w2) = f2, µ(w3) = f6, µ(w4) = f4, µ(w5) = f5, µ(w6) = f3,

and C(Ψ) = {f1, f2, f5, w4, w5}. We get the almost committed set

S = {f1, f2, f4, f5, w1, w2, w4, w5}.

f3 hires w6 and f6 hires w3 and they leave the market as they are rematched. We apply

the WP-TTC procedure to the set S.

Step 2: w1 points to f2, w2 to f1, w4 to f5, and w5 to f2, while f1 points to w1, f2 to w2,

f4 to w4, and f5 to w5. We have a directed cycle (w1, f2, w2, f1) from which two matched

pairs {w1, f2} and {w2, f1} are generated. They leave the market. Step 3: w4 points to f5,

and w5 to f4, while f4 points to w4, and f5 to w5. We have a directed cycle (w4, f5, w5, f4)

from which two matched pairs {w4, f5} and {w5, f4} are made. They leave the market.

Step 4: We obtain the matching π(w1) = f2, π(w2) = f1, π(w4) = f5, and π(w5) = f4.

Step 5: We construct the final matching Ω = ν with

ν(w1) = f2, ν(w2) = f1, ν(w3) = f6, ν(w4) = f5, ν(w5) = f4, ν(w6) = f3,

and a set of committed agents C(Ω) = {f1, f2, w4, w5}. Thus, we obtain a stable

matching state (Ω, C(Ω)) with a strict core matching Ω.
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In this example, we have WC = {w4, w5} and WV = {w1, w2, w3, w6} from (Ψ, C(Ψ)).

Moreover, we have S1 = {f1, f2, w1, w2}, S2 = {f4, f5, w4, w5}, and S3 = {f3, f6, w3, w6}

forming a partition of F ∪W .

We are now ready to establish the following major existence theorem.

Theorem 1 For the model M = (W,F,Ψ0, C0,≻), the Hybrid Procedure finds a stable

matching state (Ω, C(Ω)), where Ω is a strict core matching and the commitment set C(Ω)

is a subset of the initial commitment set C0.

Proof: It is easy to see that the Hybrid Procedure terminates with (Ω, C(Ω)) in a finite

number of steps. We first show that Ω is a strict core matching. In Step 1 of the Hybrid

Procedure, by Lemma 5 the WP-DA procedure produces a chain stable matching state

(Ψ, C(Ψ)). Ψ is a feasible matching. In Step 2 of the Hybrid Procedure, the WP-TTC

procedure generates a matching Π. At Π every agent in the almost committed set S is

matched to a partner through a mutually relatively acceptable contract. Observe that

Ψ0(x) ≻x x for every free agent x ∈ S ∩ V 0 (or else µ0(x) ∈ V 0 as well) and also for every

agent x with µ0(x) ∈ C0. Π(x) is acceptable to every free agent x ∈ S ∩ V 0 and also to

every agent x with µ0(x) ∈ C0. So the matching Ω given at Step 3 of the Hybrid Procedure

is feasible. If S = ∅, then Ω = Ψ and C(Ω) = C(Ψ) = ∅. And Ω = Ψ is stable also in the

sense of Gale and Shapley and is in the strict core.

Now consider the general case of S 6= ∅. Suppose to the contrary that Ω is not

in the strict core. By Lemma 3, Ω must be improved upon by a chain or cycle of

the initial state (Ψ0, C0). Suppose that Ω could be improved upon by a chain
−→
X =

(w̄1, f̄1, w̄2, f̄2, · · · , w̄K , f̄K) of (Ψ
0, C0). This means that (i) for each k = 1, · · · , K, there is

a contract αk ∈ Σ(w̄k) ∩ Σ(f̄k) such that αk �w̄k
Ω(w̄k) and αk �f̄k

Ω(f̄k); and (ii) there

is some k̄ = 1, · · · , K such that αk̄ ≻w̄
k̄
Ω(w̄k̄) or αk̄ ≻f̄

k̄
Ω(f̄k̄). It follows from strict

preferences that αk̄ ≻w̄
k̄
Ω(w̄k̄) and αk̄ ≻f̄

k̄
Ω(f̄k̄). We have the following possibilities:

(i) A(
−→
X ) 6⊂ S3, or else (w̄k̄, f̄k̄) is a blocking pair of the matching state (Ψ, C(Ψ)).

(ii) A(
−→
X ) 6⊂ S1, because there is no firm in S1 who is free at the initial state.
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(iii) A(
−→
X ) 6⊂ S2, because there is no worker in S2 who is free at the initial state. Further-

more, A(
−→
X )∩S2 = ∅, because for any worker w ∈ S1 ∪S3 and any firm f ∈ S2 there

is no contract α ∈ Σ(w) ∩ Σ(f) such that α �w Ψ(w) and α �f Ψ(f) �f Ψ0(f).

We will further show that A(
−→
X ) 6⊂ S1 ∪S3. Suppose to the contrary that A(

−→
X ) ⊂ S1 ∪S3.

Then, because of A(
−→
X ) 6⊂ S1 and A(

−→
X ) 6⊂ S3 we have A(

−→
X )∩S1 6= ∅ and A(

−→
X )∩S3 6= ∅.

From S1 ∩ F ⊂ C(Ω) ⊂ C0, we see f̄K ∈ S3. Thus, there is some k = 1, · · · , K such that

w̄k ∈ S1 ∩W ⊂ V (Ψ) and f̄k ∈ S3 ⊂ V (Ψ). From αk 6= Ω(w̄k) and αk 6= Ω(f̄k), we further

have αk ≻w̄k
Ω(w̄k) �w̄k

Ψ0(w̄k) = Ψ(w̄k) and αk ≻f̄k
Ω(f̄k) = Ψ(f̄k) �f̄k

f̄k. Note that

Ψ0(w̄k) �w̄k
w̄k, or else by assumption his initial parter µ0(w̄k) ∈ S1 ∩ F ⊂ C0 is in V0,

yielding a contradiction. This implies that (w̄k, f̄k) is a blocking pair of (Ψ, C(Ψ)). We

have proved that Ω cannot be improved upon by any chain of the initial state (Ψ0, C0).

Suppose that Ω could be improved upon by a cycle
−→
X = (w̄1, f̄1, w̄2, f̄2, · · · , w̄K , f̄K) of

(Ψ0, C0). This means that (i) for each k = 1, · · · , K, there is a contract αk ∈ Σ(w̄k)∩Σ(f̄k)

such that αk �w̄k
Ω(w̄k) and αk �f̄k

Ω(f̄k); and (ii) there is some k̄ = 1, · · · , K such that

αk̄ ≻w̄
k̄
Ω(w̄k̄) or αk̄ ≻f̄

k̄
Ω(f̄k̄). It follows from strict preferences that αk̄ ≻w̄

k̄
Ω(w̄k̄) and

αk̄ ≻f̄
k̄
Ω(f̄k̄). Obviously, A(

−→
X ) 6⊂ S3, or else (w̄k̄, f̄k̄) is a blocking pair of (Ψ, C(Ψ)).

We claim that A(
−→
X ) 6⊂ S1. Suppose to the contrary that A(

−→
X ) ⊂ S1. Observe that

for every agent x ∈ S1, agents x, µ
0(x), Π(x) and µ0(Π(x)) must be matched and removed

at the same round in the WP-TTC procedure. Let At denote the set of all agents in S1

matched and removed at round t of the WP-TTC procedure. Assume that each worker

w̄k is removed at round tk, i.e., w̄k ∈ Atk . Then f̄k = µ0(w̄k+1) is removed at round

tk+1. Recall that αk is mutually relatively acceptable to w̄k and f̄k, and αk �w̄k
Ω(w̄k),

the WP-TTC procedure matches w̄k ∈ Atk to his pointed firm under the worker’s favorite

mutually relatively acceptable contracts in Σ(∪s≥tkAs). We see that αk ∈ Σ(∪s≤tkAs)

and f̄k ∈ ∪s≤tkAs. Therefore, f̄k and w̄k+1 = µ0(f̄k) must be removed no later than w̄k.

Thus, it must hold tk ≥ tk+1 for all k = 1, 2, · · · , K, where K + 1 denotes 1. This implies

t1 = t2 = · · · = tK . However, αk̄ ≻w̄
k̄
Ω(w̄k̄) = Π(wk̄) implies that αk̄ ∈ Σ(∪s<t

k̄
As) and

tk̄ > tk̄+1. This contradiction shows that A(
−→
X ) 6⊂ S1.

Using exactly the same argument (for proving A(
−→
X ) 6⊂ S1) above, we can show that

A(
−→
X ) 6⊂ S2. Moreover, A(

−→
X ) ∩ S2 = ∅, because for any worker w ∈ S1 ∪ S3 and any firm
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f ∈ S2 there is no contract α ∈ Σ(w)∩Σ(f) such that α �w Ψ(w) and α �f Ψ(f) �f Ψ0(f).

Finally, we will show that A(
−→
X ) 6⊂ S1 ∪ S3. Suppose to the contrary that A(

−→
X ) ⊂

S1∪S3. Recall that A(
−→
X ) 6⊂ S1 and A(

−→
X ) 6⊂ S3. Then, A(

−→
X )∩S1 6= ∅ and A(

−→
X )∩S3 6= ∅.

Thus, there is some k = 1, · · · , K such that w̄k ∈ S1∩W ⊂ V (Ψ) and f̄k ∈ S3∩F ⊂ V (Ψ).

We can again show that (w̄k, f̄k) is a blocking pair of (Ψ, C(Ψ)), leading to a contradiction.

We have so far proved that Ω cannot be improved upon by any chain or cycle of the

initial state (Ψ0, C0). Consequently, Ω must be a strict core matching of the market.

It remains to show that (Ω, C(Ω)) is a stable matching state. By Lemma 2, it suffices

to show that (Ω, C(Ω)) is individually rational and not blocked by any its minimal chain or

pure cycle. First, note from the WP-DA procedure that Ω(x) = Ψ(x) is acceptable to every

agent x ∈ S3. For every w ∈ S1, we have Ω(w) �w Ψ0(w) �w w, i.e., Ω(w) is acceptable

to him. Similarly, Ω(f) is acceptable to every firm f ∈ S2. Thus, Ω(x) is acceptable to

every free agent x ∈ V (Ω), and hence (Ω, C(Ω)) is individually rational. Recall we have

previously shown that C(Ω) is a subset of C0 after the description of the Hybrid Procedure.

Next, note that at matching state (Ω, C(Ω)) there are no mutually committed partners.

Therefore, a minimal chain of (Ω, C(Ω)) must be a free pair of worker and firm (w, f).

Suppose to the contrary that (Ω, C(Ω)) is blocked by a free pair of worker and firm (w, f).

Then, w ∈ S3 ∪S1 and f ∈ S3 ∪S2, and there is a mutually acceptable contract α to them

such that α ≻w Ω(w) and α ≻f Ω(f). Thus, if {w, f} ⊂ S3, then (w, f) is a blocking

pair of the matching state (Ψ, C(Ψ)). If w ∈ S3, f ∈ S2, then α ≻w Ω(w) = Ψ(w) and

α ≻f Ω(f) �f Ψ0(f) = Ψ(f), and (w, f) is a blocking pair of the chain stable matching

state (Ψ, C(Ψ)), yielding a contradiction. Similarly, we can show (w, f) is a blocking pair

of (Ψ, C(Ψ)) for w ∈ S1 and f ∈ S2 ∪ S3. So this concludes that (Ω, C(Ω)) is chain stable.

Finally suppose that (Ω, C(Ω)) is blocked by a pure cycle
−→
X = (w̄1, f̄1, w̄2, f̄2, · · · , w̄K , f̄K)

of (Ω, C(Ω)). We first see that A(
−→
X ) ∩ S3 = ∅, or else

−→
X becomes a blocking chain of

(Ω, C(Ω)). Moreover, cycle
−→
X cannot be across both S1 and S2, or else it becomes a

blocking chain of (Ω, C(Ω)) as well. Thus, it is only possible A(
−→
X ) ⊂ S1 or A(

−→
X ) ⊂ S2.

Assume that A(
−→
X ) ⊂ S1. Let At denote the set of all agents in S1 matched and

removed at round t of the WP-TTC procedure. Suppose that each worker x̄k is removed

at round tk, i.e., w̄k ∈ Atk . Then f̄k = Π(w̄k+1) is removed at round tk+1. Note that
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for each k = 1, · · · , K, there is a mutually acceptable contract αk to w̄k and f̄k such that

αk ≻w̄k
Ω(w̄k) �w̄k

Ψ0(w̄k) and αk ≻f̄k
Ω(f̄k) �f̄k

Ψ0(f̄k), the WP-TTC procedure matches

w̄k ∈ Atk to his pointed firm under the worker’s favorite mutually relatively acceptable

contracts in Σ(∪s≥tkAs). We see that αk ∈ Σ(∪s<tkAs) and f̄k ∈ ∪s<tkAs. Therefore, f̄k

and Π(f̄k) = w̄k+1 must have been removed earlier than w̄k i.e., tk > tk+1. This yields a

contradiction that t1 > t2 > · · · > tK−1 > tK > t1. Similarly, we can show that A(
−→
X ) 6⊂ S2.

Thus, we have proved that (Ω, C(Ω)) cannot be blocked by any pure cycle.

In summary we have shown that (Ω, C(Ω)) is individually rational and cannot be

blocked by any minimal chain or pure cycle. By Lemma 2, (Ω, C(Ω)) is stable. ✷

4 Lattice and Incentive Results

It is well-known for the Gale-Shapley marriage market that when all men and women have

strict preferences, the set of stable matchings is a lattice. Dubins and Freedman (1981)

have shown that it is optimal for every man to act truthfully in the face of the deferred

acceptance procedure with men proposing provided that women are honest.

We will examine to what extent lattice and incentive results can be obtained for our

current market. We first discuss the lattice property of stable matching states. For any

two matchings Ψ and Φ, and any agent x ∈ W ∪ F , let

Ψ(x)∨xΦ(x) =







Ψ(x) if Ψ(x)�xΦ(x)

Φ(x) otherwise
andΨ(x)∧xΦ(x) =







Ψ(x) if Φ(x)�xΨ(x),

Φ(x) otherwise.

Then we define two sets Ψ∨WΦ = Ψ∧FΦ and Ψ∧WΦ = Ψ∨FΦ of contracts in Σ as

Ψ∨WΦ = Ψ∧FΦ = {Ψ(w)∨wΦ(w) |w ∈ W} ∪ {Ψ(f)∧fΦ(f) | f ∈ F},

Ψ∧WΦ = Ψ∨FΦ = {Ψ(w)∧wΦ(w) |w ∈ W} ∪ {Ψ(f)∨fΦ(f) | f ∈ F}.

Note that Ψ∨WΦ and Ψ∧WΦ may not be matchings. For the traditional matching models

(i.e., C(Ψ) = C(Φ) = ∅), if Ψ and Φ are stable matchings, then they are not only matchings

but also stable. In our current market, even if Ψ and Φ under some commitments C(Ψ)

and C(Φ) are (chain) stable matching states, their join and meet Ψ∨WΦ and Ψ∧W may not
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yield a matching. To see this, let us revisit Example 1 in Section 2. Recall that (µ,C(µ))

and (µ1, C(µ1)) are chain stable matching states, where µ(w0) = w0, µ(w1) = f1, µ(f1) =

w1, µ(w2) = f2, µ(f2) = w2, and C(µ) = {w1, w2, f1, f2}, µ
1(w0) = w0, µ

1(w1) = f2,

µ1(f2) = w1, µ
1(w2) = f1, µ

1(f1) = w2, and C(µ1) = {f1, f2}. We see µ(w1)∨w1
µ1(w1) = f2

and µ(f2)∧f2µ
1(f2) = w2 6= w1. So µ∨Wµ1 is not a matching. However, when two stable

matching states share a common commitment set, we have the following lattice theorem

generalizing the traditional one. Clearly, the conclusion holds true also for chain stability.

Theorem 2 Let (Ψ, C(Ψ)) and (Φ, C(Φ)) be stable matching states. If C(Ψ) = C(Φ)

and Ψ(x) = Φ(x) for every x ∈ C(Ψ), then Ψ∨WΦ and Ψ∧WΦ are both matchings. Fur-

thermore, matching states (Ψ∨WΦ, C(Ψ)) and (Ψ∧WΦ, C(Ψ)) are both stable.

That the operations ∨W and ∧W (∨F and ∧F ) each generate a stable matching state from

a pair of stable matching states implies that the family of stable matching states forms a

lattice. From Theorems 1 and 2 we immediately have

Corollary 1 The market model M = (W,F,Ψ0, C0,≻) has a nonempty lattice of stable

matching states.

We turn now to the strategic question. Specifically, we want to know how we should

expect individual agents to act in the face of our proposed procedure. It is already known

from Ostrosky (2008, p.914) that in general incentive compatibility cannot be achieved in

a setting involving chains. The presence of both chains and cycles in the current market

makes it even harder to obtain such a result. Nevertheless, we will show that it is a

dominant strategy for “certain individuals” to behave honestly in the face of our Hybrid

Procedure. As in Dubins and Freedman (1981), Roth and Sotomayor (1990), and Hatfield

and Milgrom (2005), it is common to examine the behavior of agents on one side of the

market who make proposals by assuming that agents on the other side are honest.

To approach the issue, we need to analyze our proposed procedures. With regard to

the WP-DA procedure, let Pw(t) denote the set of those contracts which are just proposed

by worker w at step t. Let P (t) = ∪w∈WPw(t) be the union of the sets Pw(t) of all workers.

Furthermore, let Rf (t) denote the set of proposed contracts which are rejected by firm
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f at step t and may include the initial contract. Let R(t) = ∪f∈FRf (t) be the union of

the sets Rf (t) of all firms. If P (T ) = ∅ or R(T ) = ∅ at some step T , then the WP-DA

procedure terminates. Therefore this sequence generated by the WP-DA procedure can be

represented by an ordered list DA =< (P (1), R(1)), · · · , (P (T ), R(T )) >, where P (t) 6= ∅

and R(t) 6= ∅ for all t = 1, · · · , T − 1, but P (T ) = ∅ or R(T ) = ∅. Observe that the

outcome of the WP-DA procedure is determined by the set of all proposals ∪t=1,···,TP (t)

and the set of all rejections ∪t=1,···,TR(t).

In the current market, every worker takes only one job and every firm hires only

one worker and all agents have strict preferences over contracts. This means that bi-

lateral substitutability and irrelevance of rejected contracts are satisfied; see Hirata and

Kasuya (2014). The above WP-DA procedure is order-independent. As a result, when

investigating the strategic behavior of any given worker w∗ ∈ W , we can always as-

sume that worker w∗ makes his first proposal only at the last step in the sense that

the procedure will end without his participation if he does not act. So from now on

we can focus on the following WP-DA procedure which generates a WP-DA sequence

DA(w∗) =< (P (1), R(1)), · · · , (P (T ), R(T )) > satisfying the three conditions: (i) there is

a step t∗ such that Pw∗(t) = ∅ for all t = 1, · · · , t∗ − 1; (ii) for every t = t∗, · · · , T − 1, there

are two contracts αt and βt such that P (t) = {αt}, R(t) = {βt}, αt∗

W = w∗, αt
F = βt

F , and

αt+1
W = βt

W ; (iii) there is a contract αT such that P (T ) = {αT} and αT
W = βT−1

W if P (T ) 6= ∅.

If P (T ) = ∅, let αT
W equal ∅. Let DA1(w

∗) =< (P (1), R(1)), · · · , (P (t∗ − 1), R(t∗ − 1)) >

denote the first part of the sequence before worker w∗ takes part in the procedure. Let

DA2(w
∗) =< (P (t∗), R(t∗)), · · · , (P (T ), R(T )) >=< (αt∗ , βt∗), · · · , (αT , ∅) > represent

the second part of the sequence after worker w∗ participates in the procedure. Observe

that at every step t = t∗, · · · , T , only one worker makes a proposal and only the firm who

receives the proposal can make a rejection. And when no worker makes a proposal or no

firm rejects, the procedure stops.

Lemma 6 Take any worker w∗ ∈ W . Let Ψ′ and Ψ′′ be the matchings generated by the

above WP-DA procedure for the markets (W,F,Ψ0, C0,≻′) and (W,F,Ψ0, C0,≻′′), respec-

tively, where ≻′
x=≻′′

x for all agents x except worker w∗ and Ψ′(w∗) is the first choice for

worker w∗ in ≻′′
w∗. Then we have Ψ′′(w∗) = Ψ′(w∗).
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The following result generalizes the classical result of Dubins and Freedman (1981)

without commitment to the current market with commitment and holds true for all workers.

Lemma 7 When facing the WP-DA procedure, it is a dominant strategy for every

worker to behave truthfully.

We also know from Roth (1982) that when facing the WP-TTC procedure, it is a

dominant strategy for every worker to act truthfully. However, when facing the Hybrid

Procedure, i.e., the combination of the WP-DA procedure and the WP-TTC procedure,

it is possible for some worker to gain by acting strategically. Let us illustrate this point

through the next example.

Example 3 There are three workers w0, w1, w2 and three firms f0, f1, f2. Consider the

simplest case in which there is at most one contract between every worker and every firm.

The preferences of all individuals are given below:

≻w0
: f1, w0 ≻f0 : w1, f0

≻w1
: f2, f0, f1, w1 ≻f1 : w0, w2, w1, f1

≻w2
: f1, f2, w2 ≻f2 : w1, w2, f2

The initial matching state (µ0, C0) is given by µ0(w0) = w0, µ
0(w1) = f1, µ

0(w2) = f2,

µ0(f0) = f0, and C0 = {w1, w2, f1, f2}.

When all agents act honestly, the Hybrid Procedure yields the matching state (Ω, C(Ω)),

where Ω = µ, µ(w0) = f1, µ(w1) = f0, µ(w2) = f2, and C(µ) = {f2}.

Now assume that all agents except worker w1 behave honestly in the Hybrid Procedure,

while worker w1 acts instead according to the preferences ≻w1
: f2, f1, w1. Then the Hybrid

Procedure yields the matching state (Ω′, C(Ω′)), where Ω′ = µ′, µ′(w0) = w0, µ
′(w1) = f2,

µ′(w2) = f1, µ
′(f0) = f0, and C(µ′) = {f2}. Clearly, µ

′(w1) = f2 ≻w1
f0 = µ(w1) and

worker w1 gains in benefit by acting strategically rather than honestly.

This example shows that in the Hybrid Procedure an incumbent worker who has a

committed initial partner and could participate in the WP-TTC procedure would possibly

gain by manipulation if he should have the full knowledge of other agents and be confident

that others would be honest.
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Now we are ready to establish a basic incentive compatibility result for the Hybrid

Procedure. By Lemma 7 and the strategy-proofness of TTC mechanism, we see that in the

Hybrid Procedure, for any worker who can only influence either the WP-DA procedure or

exclusively the WP-TTC procedure, it is a dominant strategy to act truthfully. Clearly,

when facing the Hybrid Procedure, it is a dominant strategy for every entrant worker to

behave honestly as he has no chance to participate in the WP-TTC procedure. We will

show that acting truthfully is also a dominant strategy for every worker w who has a free

initial partner f . We need to consider two cases. Firstly, when w is also free, then both w

and f are free. In the Hybrid Procedure, these agents will immediately leave the market

after the WP-DA procedure. By Lemma 7 it is a dominant strategy for the worker to act

truthfully. Secondly, when w is committed, there are two possibilities. The first possibility

is that when his partner f receives a better proposal in the WP-DA procedure-the first

phase of the Hybrid Procedure, f dissolves her partnership with w and w becomes free. In

this case, both w and f will immediately leave the market after the WP-DA procedure. By

Lemma 7 it is a dominant strategy for the worker to act truthfully. The second possibility

is that when worker w’s partner f does not receive any proposal better than the one with

worker w in the WP-DA procedure-the first phase of the Hybrid Procedure, then w will

never become free thus having no influence in the WP-DA procedure and both w and f go

through the WP-TTC procedure-the second phase of the Hybrid Procedure. In this case,

it is a dominant strategy for worker w to behave honestly facing the WP-TTC procedure.

The above discussion has proved the following result.

Theorem 3 When facing the Hybrid Procedure, for every worker who is an entrant or

has a free initial partner, it is a dominant strategy to act truthfully.

This theorem extends the classical result of Dubins and Freedman (1981) but cannot cover

those incumbent workers whose initial parters are committed, because these workers may

be able to manipulate when they have the information of the other agents, as shown in

the example above. Nevertheless, it is important to know that in practice as long as the

number of participants is relatively large, it would be extremely difficult for any participant

to manipulate in order to make a profitable gain even in two-sided job matching markets
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(see Kojima and Pathak 2009).

5 Job-Specific Commitments

We examine a market where commitments are job-specific. In other words, commitments

are inherent properties of the jobs or positions offered by firms, regardless of whether these

jobs are currently occupied or not. In the market, jobs or positions are exogenously clas-

sified into commitment required positions and no-commitment required ones, committed

positions and non-committed ones. Many sensitive positions such as defense or security

related ones are commitment required jobs in the sense that any person who accepts such

a job must agree to be committed to the job. In fact, non or less sensitive jobs can be com-

mitment required jobs as well, such as those jobs which require costly training or are less

popular but offer particular benefits. Commitment required jobs demand workers taking

these positions to be committed. Committed positions require that firms be committed to

their hired workers like many tenured positions and civil service positions.

We will represent this market by M = (W,F = Fcr ∪ Fnc = Ftp ∪ Ftt,Ψ
0,≻) and

show how it fits in with the model in Section 2. Here Fcr is the set of firms which offer

commitment required positions. Fnc is a set of firms whose positions are not commitment

required, namely, Fnc is the complement of Fcr in F . So Fcr and Fnc form a partition of

F . Ftp is the set of firms whose positions are committed to employees such as tenured

positions. Ftt is the set of firms whose positions are not committed like non-tenured or

tenure-track ones, i.e., Ftt is the complement of Ftp in F . Note that we use firms, jobs or

positions interchangeably.

To put the current market into the framework given in Section 2, we need to know

what are matching states here. Recall that we define every matching state in a general but

also economical and effective way. That is, the commitment set C(Ψ) of every matching Ψ

records only those commitments currently in force at Ψ, i.e., those agents who are currently

matched at Ψ (i.e., workers have taken positions and firms have hired workers at Ψ) and

are committed. More precisely, C(Ψ) = {w ∈ W |µΨ(w) ∈ Fcr} ∪ {f ∈ Ftp |µΨ(f) ∈ W},

where µΨ is the one-to-one mapping or matching from W ∪ F onto itself induced by
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Ψ. Because commitments are job-specific and fixed here, every matching state (Ψ, C(Ψ))

(including the initial matching state (Ψ0, C0)) and its committed set C(Ψ) can be easily

determined by Ψ, Fcr and Ftp. To see this, consider the following example.

Example 4 Reconsider Example 1 which has three workers w0, w1 and w2, two firms f1

and f2. Their preferences are given in Section 2. Suppose now that Fcr = {f1}, Fnc = {f2},

Ftp = {f1, f2}, and Ftt = ∅, and that the initial matching Ψ0 = µ0 is given by µ0(w0) = w0,

µ0(w1) = f1, and µ0(w2) = f2.

From µ0, Fcr and Ftp we get the initial commitment set C0 = {w1, f1, f2} and the initial

matching state (Ψ0, C0). Applying the Hybrid Procedure to this example gives a strict core

matching µ given by µ(w0) = w0, µ(w1) = f2, and µ(w2) = f1 and a stable matching state

(µ,C(µ)) with C(µ) = {f1, f2}. Using µ, Fcr and Ftp again we obtain the commitment set

Ĉ(µ) = {w2, f1, f2}. Because C(µ) is a subset of Ĉ(µ), (µ, Ĉ(µ)) is also stable. We see

(µ, Ĉ(µ)) has an unnecessary or redundant commitment constraint on w2.

Compared with context-dependent commitments discussed in Section 2 job-specific

commitments are simple so every matching state can be easily obtained from its matching,

Fcr and Ftp. Recall that stability is defined with respect to matching states and core is

defined by comparing with the initial matching state. So both solutions are at the ready

for the current market. How does the Hybrid Procedure apply here? The Procedure starts

with the initial matching state (Ψ0, C0). All agents in C0 are committed and follow the

same rule as described in the Procedure. Every agent x in F ∪W but not in C0 (i.e., x is

initially a single) acts as a free agent in the Procedure.

We can now establish the following result. Note that in the theorem although both

(Ω, C(Ω)) and (Ω, Ĉ(Ω)) are stable, C(Ω) contains fewer commitment constraints than

Ĉ(Ω) (i.e., C(Ω) ⊂ Ĉ(Ω)). This reveals an important feature of our solution concept and

the Hybrid Procedure that they can achieve not only stability and efficiency but also reduce

the number of commitment constraints, as in a society a state which is stable under few

or no constraints is inherently more desirable than a state which is stable under a lot of

constraints. In particular, the Procedure can identify which commitments are necessary or

essential and which are not.
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Theorem 4 For the model M = (W,F = Fcr ∪ Fnc = Ftp ∪ Ftt,Ψ
0,≻), starting with

the initial matching state (Ψ0, C0) the Hybrid Procedure generates a stable matching state

(Ω, C(Ω)) with a strict core matching Ω and C(Ω) ⊆ C0. Furthermore, C(Ω) is a subset

of Ĉ(Ω) derived from Ω, Fcr, and Ftp, and (Ω, Ĉ(Ω)) is also stable.

In our profession, it is widely observed that if a tenured professor moves to another

university, his new post is usually a tenured position. One may wonder if this property

can be maintained in our Procedure. The following gives a positive answer.

Proposition 1 If a person who has a tenured (i.e., committed) position at Ψ0 ranks ev-

ery tenured position above every non-tenured (i.e., non-committed) position, he will receive

a tenured position at the strict core matching generated by the Hybrid Procedure.

It is worth pointing out that our current model and the procedure can handle another

interesting case as well: It is not unusual to observe that a tenured professor from a less

prestigious university may be willing to give up his current job to accept a tenure track

position at a prestigious university.

6 Conclusion

Entry level two-sided matching markets have been extensively studied since Gale and

Shapley (1962). In such a market all firms and workers are new entries and they each try

to find a best possible partner to match. In this paper we have developed a senior level

two-sided matching model with commitments. There are many heterogeneous incumbents

and new entries. A free agent makes her decisions independently, while a committed agent

is bound by her commitment and cannot unilaterally dissolve her partnership unless her

partner agrees to do so. Every agent has preferences over multiple contracts and tries

to find her best possible partner with contract. Every contract specifies its terms and

conditions between a firm and a worker. There are multiple different contracts between

every firm and every worker. When a firm reaches a deal with a worker, they are both

agreed on a common contract to implement. Going beyond traditional ones, our model
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covers a variety of practical job matching settings such as tenure track systems, civil service

systems and non-compete clauses in contract law, etc.

We have examined the question of how to match workers and firms with contracts as

well as possible and to free as many committed agents as possible without violating their

commitments. Two basic and independent solutions-stability and core-are introduced.

Our first major result shows that there exists at least one stable matching state whose

matching is in the strict core, and moreover the family of committed agents in this matching

state is contained by the family of committed agents at the initial matching state and

therefore some committed agents at the initial state will be freed in this final state. We

have proposed a market mechanism-the Hybrid Procedure-for finding this solution. The

procedure is a novel combination of two generalizations of the deferred acceptance (DA)

procedure and the top trading cycle (TTC) method. We have shown that neither of the

two generalizations suffices to find a desired solution but the Hybrid Procedure guarantees

to discover one. Furthermore, we have established a lattice theorem for stable matching

states with a common commitment set and two incentive compatibility results for the

Hybrid Procedure and examined job-specific commitments.

The current paper has focused on a senior level one-to-one job matching model. It would

be interesting to extend the current arguments and results to the more general many-to-one

setting. The entry level many-to-one matching models include Kelso and Crawford (1982),

Hatfield and Milgrom (2005), Ostrovsky (2008), Kojima and Pathak (2009), and Hatfield

et al. (2013) among others. Fu et al. (2017) introduce job security into the model of Kelso

and Crawford (1982) and examine an allocation problem when firms hire new workers but

have to keep all their previously employed workers permanently.

We hope that the current study has shed some new insights into senior level job match-

ing markets.

The Appendix

Proof of Lemma 1: By definition, Ψ(x) is relatively acceptable to x when her partner

µ0(x) is committed. By the assumption that µ0(x) ∈ V 0 for every x with x ≻x Ψ0(x), we

know by negation that µ0(x) ∈ C0 implies Ψ0(x) �x x. Then x cannot be made worse
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than being single. So Ψ(x) must be both acceptable and relatively acceptable to x when

µ0(x) is committed. ✷

Recall that in the marriage matching model of Gale and Shapley (1962), it is sufficient

to concentrate on individuals and pairs of man and woman, because if a matching is blocked

by a group of men and women, it must be blocked by some individual or some pair. In

the more general supply chain model of Ostrovsky (2008), it suffices to focus on chains, as

the model does not contain any cycle. Analogously, in our current model which contains

chains and cycles, it will be sufficient to concentrate on chains and cycles. We will show

this point here. A matching state (Ψ, C(Ψ)) is said to be blocked by a group of agents A if

the following two conditions are satisfied: (i) if an agent x ∈ A ∩ C(Ψ) is committed, her

partner must be also a member of the group A, i.e., µΨ(x) ∈ A; (ii) there exists a matching

Φ ⊆ Σ(A) among agents from A alone such that for every x ∈ A, the contract Φ(x) is

acceptable and Φ(x)≻xΨ(x). Then we have the following result.

Proposition 2 If an individually rational matching state is blocked by a group of agents,

it must be blocked by a chain or by a cycle.

Proof: Let (Ψ, C(Ψ)) be an individually rational matching state. In the first case A \

C(Ψ) 6= ∅, pick any free agent in A \C(Ψ) as x1. Since (Ψ, C(Ψ)) is individually rational,

we have µΦ(x1) 6= x1. Let y1 = µΦ(x1) ∈ A. If y1 is free, then (x1, y1) is a blocking chain

(pair) of (Ψ, C(Ψ)). If y1 is committed, then his partner µΨ(y1) at matching Ψ is in A. Let

x2 = µΨ(y1). If x2 = x1 then (x1, y1) is a blocking cycle of (Ψ, C(Ψ)). If x2 6= x1, we can

define y2 in exactly the same way. Since there are only finite number of agents in A, we

can iteratively find a blocking chain or cycle (x1, y1, x2, y2, · · · , xk, yK) in group A. In the

second case A ⊂ C(Ψ), pick any agent in A as x1. Then, we can use the above method to

find a blocking cycle (x1, y1, · · · , xk, yK) of (Ψ, C(Ψ)) in group A. ✷

Proof of Lemma 3: By definition, there exists a matching Φ among agents from the

coalition S alone such that every agent x in S weakly prefers Φ(x) to Ψ(x) and at least

one agent y ∈ S prefers Φ(y) to Ψ(y). Using these two matchings Ψ0 and Φ, we define a
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directed bipartite graph G = (S,E) on S by setting

E =
{

(w, f) |w ∈ W ∩ S, f ∈ F ∩ S,Φ(w) = Φ(f)
}

∪
{

(f, w) |w ∈ W ∩ S, f ∈ F ∩ S,Ψ0(w) = Ψ0(f)
}

.

That is, there is a directed arc from a worker w ∈ S to a firm f ∈ S if and only if they are

partners under Φ, and there is a directed arc from a firm f ∈ S to a worker w ∈ S if and

only if they are partners under Ψ0.

Choose any individual y ∈ S such that Φ(y) ≻y Ψ(y). Note that in this graph G every

vertex’s degree is less than or equal to 2. Let G′ denote the component (the maximal

connected subgraph) of G which contains y. Then, G′ is a directed chain or cycle. If G′

is a directed cycle, then it is an improvement cycle of Ψ. If G′ is a directed chain, then

every its end vertex must be one of the following three cases: (i) a single agent under Ψ0;

(ii) a free incumbent in the initial state (Ψ0, C0) whose initial partner is not in S; (iii)

a committed agent in the initial state (Ψ0, C0) who becomes a single under Φ. Consider

Case (iii). In this case for an end agent x ∈ C0 ∩ S with x = Φ(x) �x Ψ(x), it satisfies

µ0(x) ∈ V 0 ∩ S. This is because Ψ0(x) ≻x x implies Ψ0(x) ≻x x = Φ(x) �x Ψ(x). By

definition of feasible matching we see µ0(x) ∈ V 0. Otherwise, from x ≻x Ψ0(x) and by

assumption we see µ0(x) ∈ V 0. In all these three cases we can find an improvement chain

of Ψ contained in the directed chain G′. So we can always find an improvement chain or

cycle of Ψ contained in G′. ✷

Proof of Lemma 5: The WP-DA procedure will generate a matching state (Ψ, C(Ψ)) in

a finite number of rounds because there is only a finite number of contracts, and no worker

proposes one contract to any firm more than once. In the procedure every worker who has

become free proposes only acceptable contracts, and every firm rejects all unacceptable

contracts that she has received except that she is a committed firm and has received her

initial contract proposed by her initial partner. So no agent is provisionally matched with

a new but unacceptable contract. By assumption that µ0(x) ∈ V 0 for every incumbent x

with x ≻x Ψ0(x), the matching Ψ is feasible and (Ψ, C(Ψ)) is individually rational.

We will show that (Ψ, C(Ψ)) is chain stable. Suppose to the contrary that the matching

state (Ψ, C(Ψ)) is blocked by one of its minimal chain (w̄1, f̄1, w̄2, f̄2, · · · , w̄K , f̄K). Then,
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for each k = 1, · · · , K, there exists a mutually acceptable contract αk to w̄k and f̄k such that

αk ≻w̄k
Ψ(w̄k) and αk ≻f̄k

Ψ(f̄k), i.e., both w̄k and f̄k prefer contract αk to their contracts

under Ψ. Since w̄1 ∈ WV and α1 ≻w̄1
Ψ(w̄1), worker w̄1 must have previously proposed the

contract α1 to firm f̄1. If K = 1, then f̄1 is a free firm or a rematched firm. In both cases,

f̄1 should not have rejected the proposal α1 from worker w̄1, yielding a contradiction. In

the case of K ≥ 2, a minimal chain implies that f̄1 and w̄2 are in C(Ψ). Thus, f̄1 ∈ C0 and

Ψ(f̄1) = Ψ0(f̄1), and so w̄2 = µΨ(f̄1) = µ0(f̄1). Note that α1 ≻f̄1
Ψ(f̄1) = Ψ0(f̄1). Thus α1

is both acceptable and relatively acceptable to firm f̄1. This implies that firm f̄1 should

have freed her initial partner w̄2 = µ0(f̄1) at some step in the procedure, namely, w̄2 must

be in V (Ψ), leading to a contradiction as well.

This shows that (Ψ, C(Ψ)) cannot be blocked by any minimal chain. By Lemma 2,

(Ψ, C(Ψ)) is chain stable. ✷

Proof of Theorem 2: Let (Ψ, C(Ψ)) and (Φ, C(Φ)) be stable matching states. By

assumption, we have µΨ(x) = µΦ(x) for every x ∈ C(Ψ) = C(Φ). Let Ĉ(Ψ) = {µΨ(x) | x ∈

C(Ψ)} be the set of partners of committed agents in the matching state (Ψ, C(Ψ)) and

Ĉ(Φ) = {µΦ(x) | x ∈ C(Φ)} the set of partners of committed agents in the matching state

(Φ, C(Φ)). Clearly Ĉ(Ψ) = Ĉ(Φ). We also have (Ψ∨WΦ)(x) = Ψ(x) = Φ(x) for every

x ∈ C(Ψ) ∪ Ĉ(Ψ) = C(Φ) ∪ Ĉ(Φ).

Consider the set Â = (W ∪F ) \ (C(Ψ)∪ Ĉ(Ψ)). With respect to the truncating agents

in Â and the corresponding contracts in Σ(Â), we obtain a standard matching model with

contract with agents Â and contracts Σ(Â). It is easy to check that Ψ∩Σ(Â) and Φ∩Σ(Â)

are stable matchings. So (Ψ∨WΦ)∩Σ(Â) is also a stable matching in the truncated model.

This means that for every x ∈ Â, (Ψ∨WΦ)(x) is a singleton. We have proved that, for every

agent x ∈ W ∪ F , (Ψ∨WΦ)(x) contains exactly one contract. So Ψ∨WΦ is a matching.

We first show that the matching state (Ψ∨WΦ, C(Ψ)) is chain stable. It follows easily

from the assumption that (Ψ∨WΦ, C(Ψ)) is individually rational. Suppose by way of

contradiction that (Ψ∨WΦ, C(Ψ)) is blocked by a minimal chain
−→
X = (w1, f1, · · · , wK , fK).

Then, for every k = 1, · · · , K, there is a mutually acceptable contract αk to wk and fk such

that αk ≻wk
(Ψ∨WΦ)(wk) and αk ≻fk (Ψ∨WΦ)(fk). Observe that {f1, w2, · · · , fK−1, wK} ⊆

C(Ψ) = C(Φ) and {w1, fK} ⊆ V (Ψ) = V (Φ). For every k = 1, · · · , K − 1, we have
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αk+1 ≻wk+1
(Ψ∨WΦ)(wk+1) = Ψ(wk+1) = Φ(wk+1), and αk ≻fk (Ψ∨WΦ)(fk) = Ψ(fk) =

Φ(fk). For the free worker w1, it holds that α1 ≻w1
Ψ(w1) and α1 ≻w1

Φ(w1). Thus, if

(Ψ∨WΦ)(fK) = Ψ(fK), then
−→
X is a blocking chain of the stable matching state (Ψ, C(Ψ)).

Otherwise,
−→
X is a blocking chain of the stable matching state (Ψ, C(Φ)). This yields a

contradiction. We have shown that (Ψ∨WΦ, C(Ψ)) is chain stable.

Next, suppose to the contrary that (Ψ∨WΦ, C(Ψ)) is blocked by a pure cycle
−→
X =

(w1, f1, · · · , wK , fK). Note that if there are some free worker and free firm in a cycle, then

this cycle must contain some chain. Therefore, in a pure cycle
−→
X = (w1, f1, · · · , wK , fK),

all workers or all firms must be in C(Ψ) = C(Φ). This implies that Ψ(x) = Φ(x) =

Ψ(x)∨WΦ(x) for every agent x in this blocking cycle. Thus,
−→
X is also a blocking cycle

of the stable matching states (Ψ, C(Ψ)) and (Φ, C(Φ)), yielding a contradiction. This

concludes that (Ψ∨WΦ, C(Ψ)) is stable.

Analogously, one can prove that (Ψ∨FΦ, C(Ψ)) is also stable. By definition, because

Ψ∧WΦ = Ψ∨FΦ, then (Ψ∧WΦ, C(Ψ)) must be stable. ✷

Proof of Lemma 6: Let DA′(w∗) =< (P ′(1), R′(1)), · · · , (P ′(T ′), R′(T ′)) > and

DA′′(w∗) =< (P ′′(1), R′′(1)), · · · , (P ′′(T ′′), R′′(T ′′)) > denote the corresponding WP-DA

sequences for (W,F,Ψ0, C0,≻′) and (W,F,Ψ0, C0,≻′′). Note that P ′′(t) ⊂ ∪T ′

t′=1P
′(t′) for

all t = 1, · · · , T ′′. We therefore have Ψ′′(w∗) = Ψ′(w∗). ✷

Proof of Lemma 7: Firstly, consider any worker who has never become free in the

process. Such a worker clearly has no opportunity to make a proposal and therefore has no

influence. Obviously, acting honestly is an optimal strategy for such a worker. Secondly,

consider any worker w∗ who will make proposals in the process. Assume that worker w∗

acts according to preferences ≻′
w∗ which may be different from his true preferences ≻w∗ but

all other agents act according to any fixed (strict) preferences ≻′
−w∗ . Let Ψ and Ψ′ be the

matchings generated by the WP-DA procedure for the markets (W,F,Ψ0, C0,≻w∗ ,≻′
−w∗)

and (W,F,Ψ0, C0,≻′
w∗ ,≻′

−w∗), respectively. By Lemma 6, we can further assume that

Ψ′(w∗) is the first choice for worker w∗ in ≻′
w∗ . We will show that Ψ(w∗) �w∗ Ψ′(w∗).

Let DA(w∗) =< (P (1), R(1)), · · · , (P (T ), R(T )) > and DA′(w∗) =< (P ′(1), R′(1)), · · · ,

(P ′(T ′),R′(T ′)) > denote the corresponding sequences generated by the WP-DA procedure
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for (W,F,Ψ0, C0,≻w∗ ,≻′
−w∗) and (W,F,Ψ0, C0,≻′

w∗ ,≻′
−w∗), respectively. It follows from

the WP-DA procedure that DA1(w
∗) = DA′

1(w
∗). In the sub-sequence DA2(w

∗), worker

w∗ acts according to his true preferences ≻w∗ . But in the sub-sequence DA′
2(w

∗), worker

w∗ makes the proposal Ψ′(w∗) and finally gets it by Lemma 6. Thus, in DA′
2(w

∗), there

are two possible cases: The firm which receives w∗’s proposal and accepts it did not receive

any proposal previously; and the firm which receives w∗’s proposal and accepts it has to

reject her provisionally accepted contract from some worker. In the latter case, there exists

another worker ŵ at the end of the sequence DA′
2(w

∗) who either leaves the market with

no job or makes a proposal to some firm which accepts it as its final contract.

Consider when worker w∗ acts truthfully, namely, the sub-sequenceDA2(w
∗). IfDA2(w

∗)

ends before worker w∗ making the proposal Ψ′(w∗), clearly we have Ψ(w∗) ≻w∗ Ψ′(w∗).

Next consider the case in which worker w∗ makes the proposal Ψ′(w∗) in DA2(w
∗). There

are two cases as indicated previously. In the first case, the firm which receives w∗’s proposal

and accepts it did not receive any proposal previously. Thus the sequence DA(w∗) ends

immediately and so Ψ(w∗) = Ψ′(w∗). In the second case, we will show that this proposal

Ψ′(w∗) is not rejected by firm Ψ′
F (w

∗) in DA2(w
∗).

Suppose to the contrary that the proposal Ψ′(w∗) is rejected by firm Ψ′
F (w

∗) at step t̄ in

DA2(w
∗). We will show by induction that in each step t = 1, · · · , T ′ of DA′(w∗), it satisfies

P ′(t) ⊆ ∪t̄−1
t′=1P (t′) and so ∪T ′

t=1P
′(t) ⊆ ∪t̄−1

t′=1P (t′). Recall that all other agents act according

to exactly the same preferences ≻′
−w∗ in both DA(w∗) and DA′(w∗), DA1(w

∗) = DA′
1(w

∗),

and at the first step t = t∗ in DA′
2(w

∗) worker w∗ makes the proposal Ψ′(w∗), i.e., P ′(t∗) =

P ′
w∗(t∗) = {Ψ′(w∗)}. Thus, we first have P ′(t) ⊆ ∪t̄−1

t′=1P (t′) for all t = 1, · · · , t∗. Now

assume by induction that P ′(t) ⊆ ∪t̄−1
t′=1P (t′) for all t = 1, · · · , t̂, where t̂ ∈ {t∗, · · · , T ′ − 1}.

Assume that worker w′ is rejected by firm f ′ at step t̂ in DA′
2(w

∗), and worker w′ makes a

proposal α′ at step t̂+1. This proposal α′ must be in ∪t̄−1
t′=1P (t′), or else firm f ′ should have

received some proposal not in ∪t̄−1
t′=1P (t′). Then, P ′(t̂+1) ⊆ ∪t̄−1

t′=1P (t′). Thus, by induction

we know ∪T ′

t=1P
′(t) ⊆ ∪t̄−1

t′=1P (t′). This implies that in DA2(w
∗) the worker ŵ (who either

leaves the market with no job or makes a proposal to some firm which accepts it as its final

contract at the end of DA′
2(w

∗)) has left the market with no job or has found a job from

a firm who does not reject any one before step t̄. In other words, the sequence DA2(w
∗)

40



must have ended before step t̄, contradicting the hypothesis. This shows that worker w∗’s

proposal Ψ′(w∗) is not rejected by firm Ψ′
F (w

∗). Thus Ψ(w∗) = Ψ′(w∗). ✷

Proof of Theorem 4: The first statement follows immediately from Theorem 1. Next,

recall that the Hybrid Procedure splits all workers and firms in W ∪F into S1, S2 and S3.

S3 contains all agents who leave the market immediately after the WP-DA procedure-the

first phase of the Hybrid Procedure. S1 ∪ S2 = S is the almost committed set formed

by the remaining agents. The Procedure generates the matching state (Ω, C(Ω)). Let µΩ

be the one-to-one mapping or matching from F ∪W onto itself induced by Ω. It is easy

to see that S1 ∩ F ⊂ Ftp, S2 ∩ F ⊂ Fcr, µΩ(f) ∈ S1 ∩ W for every firm f ∈ S1, and

µΩ(w) ∈ S2 ∩F for every worker w ∈ S2. Thus, we have S2 ∩W ⊂ {w ∈ W |µΩ(w) ∈ Fcr}

and S1∩F ⊂ {f ∈ Ftp |µΩ(f) ∈ W}. Recall that C(Ω) = (S2∩W )∪(S1∩F ). We therefore

have C(Ω) ⊂ {w ∈ W |µΩ(w) ∈ Fcr} ∪ {f ∈ Ftp |µΩ(f) ∈ W} = Ĉ(Ω). Finally, because

(Ω, C(Ω)) is a stable matching state and Ĉ(Ω) contains C(Ω), (Ω, Ĉ(Ω)) is obviously a

stable matching state. See also the discussion right after Lemma 2. ✷
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