

This is a repository copy of *Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/175713/

Version: Accepted Version

Article:

Xiao, Y., Sloan, J. orcid.org/0000-0003-0334-3722, Hepworth, C. et al. (4 more authors) (2021) Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves. Plant, Cell & Environment, 44 (5). pp. 1436-1450. ISSN 0140-7791

https://doi.org/10.1111/pce.13995

This is the peer reviewed version of the following article: Xiao, Y, Sloan, J, Hepworth, C, et al. Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves. Plant Cell Environ. 2021; 44: 1436– 1450, which has been published in final form at https://doi.org/10.1111/pce.13995. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Estimating Uncertainty: a Bayesian Approach to Modelling Photosynthesis in C3
2	Leaves
3	
4	Yi Xiao ^{1,4} , Jen Sloan ^{2,4} , Chris Hepworth ² , Colin P. Osborne ² , Andrew J. Fleming ² ,
5	Xingyuan Chen ³ , Xin-Guang Zhu ¹
6	¹ Center of Excellence for Molecular Plant Science, Institute of Plant Physiology and
7	Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
8	² Department of Animal and Plant Sciences, University of Sheffield, Western Bank,
9	Sheffield, UK
10	³ Pacific Northwest National Laboratory, Richland, WA, 99354, USA
11	⁴ Joint first author
12	
13	Author for Correspondence:
14	Xin-Guang Zhu
15	Center of Excellence for Molecular Plant Science, Institute of Plant Physiology and
16	Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
17	Email: <u>zhuxg@sippe.ac.cn</u>
18	Fax:
19	Tel:
20	
21	

22 Abstract

The Farquhar-von Caemmerer-Berry (FvCB) model is extensively used to model 23 24 photosynthesis from gas exchange measurements. Since its publication, many methods 25 have been developed to measure, or more accurately estimate, parameters of this model. 26 Here we have created a tool that uses Bayesian statistics to fit photosynthetic parameters 27 using concurrent gas exchange and chlorophyll fluorescence measurements whilst 28 evaluating the reliability of the parameter estimation. We have tested this tool on synthetic data and experimental data from rice leaves. Our results indicate that reliable 29 30 parameter estimation can be achieved whilst only keeping one parameter, K_m , i.e., 31 Michaelis constant for CO₂ by Rubisco, prefixed. Additionally, we show that including 32 detailed low CO₂ measurements at low light levels increases reliability, and suggest this 33 as a new standard measurement protocol. By providing an estimated distribution of 34 parameter values, the tool can be used to evaluate the quality of data from gas exchange 35 and chlorophyll fluorescence measurement protocols. Compared to earlier model fitting 36 methods, the use of a Bayesian statistics-based tool minimises human interaction during 37 fitting, reducing the subjectivity which is essential to most existing tools. A user friendly, 38 interactive Bayesian tool script is provided. 39 Key Words: leaf photosynthesis, parameter estimation, Bayesian statistics, mesophyll

40 conductance

41 Interactive Bayesian Tool: <u>https://github.com/xiaoyizz78/FvCB-JAGS</u>

42 Introduction

Since its publication in 1980, the Farquhar-von Caemmerer-Berry (FvCB) model has 43 44 been widely used to model leaf photosynthesis in C₃ plants (Farquhar, von Caemmerer 45 & Berry 1980, 2001; von Caemmerer 2013). By assuming leaf photosynthetic rate (A_n) 46 (see Table 1 for definition of terms) is either limited by the Rubisco catalysed 47 carboxylation rate or the regeneration rate of ribulose 1,5-bisphosphate (RuBP), the 48 model derives an elegant and powerful expression of A_n in response to environmental 49 CO₂ conditions. Estimating the parameters in the model brings insight into the processes limiting photosynthetic gas exchange. Parameters such as V_{cmax} , K_m and Γ^* 50 51 improve our understanding of photosynthetic limitations from Rubisco. Calculation of J allows an estimation of the conversion efficiency from light to RuBP regeneration, 52 53 while g_m can be used to quantify the diffusive resistance of CO₂ from the substomatal 54 cavity to the chloroplast stroma. Such modelling is crucial for a number of aspects of 55 photosynthesis research including, for example, understanding acclimation or 56 adaptation of photosynthesis to environmental change (e.g. Bernacchi et al., 2005), and 57 the response of photosynthetic properties to targeted genetic manipulation (e.g. Simkin et al., 2015; Perveen et al., 2020). The accuracy of the estimations made via the FvCB 58 59 model also inform many predictions in ecological studies where the FvCB model has 60 been widely incorporated and used to predict instantaneous CO₂ assimilation at the 61 canopy level or integrated carbon assimilation over an entire growing season 62 (Humphries & Long 1995; Wang et al. 2015; Golaz et al. 2019; Lawrence et al. 2019).

63 The challenges of parameterising the FvCB model

Despite its widespread use, challenges remain in parameterising the model, and various 64 65 analytical and numerical methods have been developed using data from gas exchange 66 and/or chlorophyll fluorescence measurements (Harley, Loreto, Di Marco & Sharkey 67 1992; Ethier & Livingston 2004; Ethier, Livingston, Harrison, Black & Moran 2006; 68 Dubois, Fiscus, Booker, Flowers & Reid 2007; Sharkey, Bernacchi, Farquhar & Singsaas 2007; Yin & Struik 2009; Gu, Pallardy, Tu, Law & Wullschleger 2010; 69 70 Bellasio, Beerling & Griffiths 2015; Sharkey 2016; Moualeu-Ngangue, Chen & Stützel 71 2017). These methods differ in the measurements taken for parameter estimation, the 72 assumptions made during estimation and the fitting strategies used. Basic models use only A_n - C_i curves as input data, with fixed K_m and Γ^* values, requiring 73 74 input from the user on the limitation status for each data point, with many parameters, 75 including V_{cmax}, J and g_m, being fitted (Ethier & Livingston 2004; Ethier et al. 2006; 76 Sharkey et al. 2007; Sharkey 2016). For a more complete estimation, concurrent 77 measurements of Y(II)- C_i curves can be included in the parameter estimation (Bongi & 78 Loreto 1989; Di Marco et al., 1990; Harley et al., 1992). Then the accuracy of parameter 79 estimation is particularly affected by the method used to calculate J from measured 80 Y(II). Harley *et al.* (1992) calibrated the calculation of J with concurrent measurement 81 of A_n and Y(II) under non-photorespiratory conditions; this calibration, which requires 82 additional measurements, was simplified in many subsequent studies (e.g. Bernacchi et al., 2002; Sun et al., 2014) with implicit assumptions. For example, although the leaf 83

light absorption coefficient α can be measured with an integrating sphere, the light partition coefficient β cannot, and is usually fixed at 0.5, i.e., assuming that PSI and PSII each receive half of the absorbed photons. When *s* (α multiplied by β) is measured, values range between 0.35 to 0.45 (Valentini *et al.* 1995) and 0.42 to 0.6 (Laisk & Loreto 1996), depending on the species investigated.

To correct the assumptions made on values of s, K_m and Γ^* , Laisk et al. (2002, 2006) 89 90 made additional measurements of the initial slopes of A_n - C_i and Y(II)- C_i under different 91 O₂ levels, followed by an iterative fitting strategy for the estimation of s, K_m , Γ^* and the 92 estimation of V_{cmax}, J, and g_m. Yin et al. (2009a, 2009b) developed an alternative strategy in which s, K_m and Γ^* were first estimated from concurrent A_n - C_i and Y(II)- C_i 93 94 measurements at a low Ci range under both normal and low O₂ levels. A regression 95 method, similar to Dubois *et al.* (2007), was then applied to fit the concurrent A_n - C_i and 96 Y(II)-C_i measurements under saturating light and normal O₂, thus obtaining the 97 remaining parameters, including V_{cmax} , g_m and J. This pipeline was later incorporated 98 into an Excel worksheet by Bellasio et al. (2015), where input data required both CO2 99 response curves and light response curves from concurrent A_n - C_i and Y(II)- C_i 100 measurements under both ambient and low oxygen levels. These more recent methods 101 clearly improve model accuracy, but data collection becomes increasingly time-102 consuming, limiting their widespread application. Finally, although it has long been recognized that the performance of these different methods is affected by the choices 103 of fixed parameters and the different fitting strategies implemented (Manter & Kerrigan 104

2004; Miao, Xu, Lathrop & Wang 2009; Gu & Sun 2014), to date the reliability and
robustness of parameter estimation of the FvCB model have not been systematically
evaluated.

108 The accuracy of parameter estimation can be tested using synthetic data. For example, 109 Gu *et al.* (2010) generated A_n - C_i data without variation using the FvCB model and 110 applied a parameter fitting technique, demonstrating that their method was able to 111 predict an unbiased parameter estimation from error-free measurements. However, for 112 data with sample variation or error, and for estimation with concurrent A_n - C_i and Y(II)-113 C_i measurements, quantification of the accuracy and robustness of the parameter fitting 114 of different methods has not been performed.

115 **The Bayesian Approach**

116 Bayesian estimation is a powerful statistical approach to address many of the issues described above. It uses prior (already known) data to create a series of possible 117 118 estimations (the posterior), which in turn are used to shape future estimations. 119 Comparing the variability within the estimated parameter range gives an indication of 120 the reliability of the estimation. The popularity of Bayesian inference is linked to the 121 Markov Chain Monte Carlo (MCMC) method, which provides an effective sampling 122 strategy to approximate the posterior distribution (Gelfand & Smith 1990; Smith & 123 Roberts 1993; Tierney & Mira 1999; Andrieu, de Freitas, Doucet & Jordan 2003), 124 especially for models with small sets of parameters, such as the FvCB model. A Bayesian framework with MCMC methods has been applied successfully in many 125

fields (Clark & Gelfand 2006; Chen X., Rubin, Ma & Baldocchi 2008), and it has also been applied in large scale ecological studies which estimate photosynthetic parameters with A_n - C_i and/or A_n -I data collected from tens of species across a growing season (Patrick, Ogle & Tissue 2009; Feng & Dietze 2013; Han et al., 2020). Here we apply the Bayesian approach to the leaf-by-leaf photosynthetic parameter estimation with concurrent A_n - C_i and Y(II)- C_i measurements.

132 In this study, each parameter of the FvCB model is initially constrained to a range of 133 possible values represented by an *a priori* probability distribution, then Bayesian 134 statistics are used to calculate the posterior probability of parameters based on the prior 135 information, the observation, and a probability model of observation. We use synthetic concurrent A_n - C_i and Y(II)- C_i with 5 replicates, as well as experimental data from rice 136 137 leaves, to test the performance of the new Bayesian estimation tool. In particular, using 138 100 synthetic datasets of widely varied photosynthetic parameters, our tool is compared 139 with a simple fitting method to highlight the ability of the new tool to calculate the 140 reliability of the estimated parameters. In addition, we evaluate the trade-off between 141 time-consuming measurements and the accuracy of parameter estimation, comparing 142 estimation using only high light A_n - C_i and Y(II)- C_i data with estimation using additional 143 low CO₂ and low light data. Finally, we report on the number of parameters which must 144 be known and fixed in order to give accurate estimations using the synthetic data. Testing the estimation technique with both synthetic and experimental data not only 145 increases our understanding of how accurate the Bayesian estimation is (given that the 146

147 model is true), but also gives insight into how well the FvCB model reflects reality.

The overall aim of the investigation is to establish a Bayesian framework to estimate parameter values, as well as to evaluate the robustness and reliability of parameter estimation of the FvCB model. Factors limiting the accuracy of estimation are identified. The tool is incorporated into an easy-to-use Bayesian parameter estimation script for use with concurrent A_n - C_i and Y(II)- C_i measurements.

153

154 **Computational Methods:**

The Farquhar-von Caemmerer-Berry model for CO₂ assimilation rate and
 quantum efficiency of PSII

An adapted version of the FvCB model is used, after von-Caemmerer (2000) and Gu et 157 158 al., 2010 (Eqns 1-3). Leaf net photosynthesis rate (A_n) is modeled as the minimum of 159 the Rubisco-limited carboxylation rate (W_c) and the ribulose 1,5-bisphosphate (RuBP) 160 regeneration-limited carboxylation rate (W_i) . To make the analysis of the relationship 161 between Bayesian estimation and the model structure clearer, triose phosphate 162 utilisation (TPU) limitation, which occurs in some plants (McClain & Sharkey, 2019), is not included here. Bayesian estimation of the FvCB model with TPU limitation is 163 164 discussed in more detail later.

165
$$A_n = \min\{W_c, W_j\} \left(1 - \frac{\Gamma^*}{C_c}\right) - R_d$$
 Eqn 1

166
$$W_c = \frac{V_{c \max}}{C_c + K_m}$$
 Eqn 2

167
$$W_j = \frac{J}{4C_c + 8\Gamma^*}$$
 Eqn 3

168 In practice, C_c cannot be measured directly. Instead, a response curve of A_n to 169 intercellular CO₂ concentration (C_i) is usually recorded. To model the A_n - C_i curve, 170 mesophyll conductance (g_m) is introduced to the FvCB model.

171
$$C_c = C_i - A / g_m$$
 Eqn 4

172 Measured Y(II) based on chlorophyll fluorescence has a linear relationship with whole 173 chain electron transport rate J_{f} .

174
$$J_f = I \cdot \alpha \cdot \beta \cdot Y(II) = I \cdot s \cdot Y(II)$$
 Eqn 5

where α is light absorption by PSI and PSII, β is the fraction of the incident irradiance 175 (I) absorbed by PSII, s is α multiplied by β representing a combined effect of light 176 absorption and partitioning. Here we are interested in the robustness and reliability of 177 parameter estimation using the fewest possible model parameters, thus $\alpha \cdot \beta$ is estimated 178 as a whole and represented by s. We assume that true electron transport rate J_A 179 180 calculated from CO_2 assimilation rate (Eqn 6) equals J_f . Therefore other synthetic 181 processes which consume electrons, such as nitrate reduction, the Mehler reaction and 182 malate-oxaloacetate shuttling (von Caemmerer 2000; Yin et al. 2009; Selinski & 183 Scheibe 2019), contribute to the observed fluorescence signal and will be combined into an apparent s. 184

185
$$J_{A} = \frac{(A_{n} + R_{d})(4C_{c} + 8\Gamma^{*})}{C_{c} - \Gamma^{*}}$$
 Eqn 6

186 To synthesise data under different light levels, a non-rectangular hyperbola light

187 response curve of potential electron transport rate J is adopted (Farquhar & Wong,188 1984),

$$J_i = I \cdot s \cdot Y(II)_{IL}$$
 Eqn 7

0
$$J = \frac{(J_i + J_{\text{max}}) - \sqrt{(J_i + J_{\text{max}})^2 - 4\theta J_i J_{\text{max}}}}{2\theta}$$
Eqn 8

191 Where $Y(II)_{LL}$ is the initial slope of Y(II)-*I*·*s* curve, i.e. the maximum quantum efficiency 192 of PSII under low light. θ is the curvature index of the *J*-*I* curve.

193 Synthesise physiological measurements with sample variation and measurement

194 errors

195 Variance of observation $(A_{n(i)}^{o}, Y(II)_{(i)}^{o})$ in the synthetic data is modeled by sample 196 variation and systematic error (Eqn 9, **Fig. 1**). Sample variation corresponds to the 197 variance explained by error-free measurement of each replicate $(A_{n(i)}^{s}, Y(II)_{(i)}^{s})$ used in 198 the experiment, while systematic error $(\varepsilon_{A}, \varepsilon_{Y})$ means the variance of data due to 199 systematic or random factors other than biological variability, such as the accuracy of 190 the Infra-Red Gas Analyser (IRGA), the measurement protocol or human operation.

201
$$\begin{bmatrix} A_{n(i)}^{o} \\ Y(II)_{(i)}^{o} \end{bmatrix} = \begin{bmatrix} A_{n(i)}^{s} \\ Y(II)_{(i)}^{s} \end{bmatrix} + \begin{bmatrix} \varepsilon_{A} \\ \varepsilon_{Y} \end{bmatrix}$$
 Eqn 9

To generate the synthetic data used in this manuscript (**Fig. 1, Fig. 3 & Fig. S4**), errorfree observations $(A_{n(i)}^{s}, Y(II)_{(i)}^{s})$ of the *i*th replicate are randomly generated from the FvCB model with slightly varied input parameters (**Fig. S1**).

205
$$\begin{bmatrix} A_{n(i)}^{s} \\ Y(II)_{(i)}^{s} \end{bmatrix} = FvCB(C_{i}, I, K_{m}, \Gamma^{*}, g_{m}, V_{c \max(i)}, J_{\max(i)}, R_{d(i)}, s_{(i)}, Y_{(II)LL(i)}) \quad \text{Eqn 10}$$

For each replicate, we assume that K_m , Γ^* and g_m are constant across all replicates, and

207 the remaining parameters X (including V_{cmax} , J_{max} , R_d , s and $Y(II)_{LL}$) are randomly 208 generated from a generic (two-sided truncated) normal distribution.

209
$$\boldsymbol{X}_{(i)} \sim TruncNorm(\overline{\boldsymbol{X}}, \sigma_{\boldsymbol{X}})$$
 Eqn 11

The two-sided truncation here is to avoid randomly derived extreme values. Specifically, standard deviation (σ_x) of the normal distribution of any variable *x* is equal to 5% of its mean value (μ_x), then the intervals of truncation are all equal to (μ_x -2 σ_x , μ_x +2 σ_x), i.e. outliers smaller than μ_x -2 σ_x or larger than μ_x +2 σ_x will be discarded.

Systematic error of A_n and Y(II) measurements are also generated from generic (twosided truncated) normal distributions, considering that outliers of measurements will be excluded in practice. The standard deviation of each A_n measurement ($\sigma_{\varepsilon_-}A$) is assumed as 0.1 µmol m⁻² s⁻¹ and the standard deviation of each Y(II) measurement ($\sigma_{\varepsilon_-}Y$) is assumed as 0.01. The intervals of truncation for error of both A_n and Y(II) measurements are from -3 σ to 3 σ .

220
$$\varepsilon_A \sim TruncNorm(0, \sigma_{\varepsilon - A})$$
 Eqn 12

221
$$\varepsilon_{Y} \sim TruncNorm(0, \sigma_{\varepsilon Y})$$
 Eqn 13

It is worth mentioning that although different replicates have varied V_{cmax} , J_{max} , R_d , sand $Y(II)_{LL}$, the purpose of parameter estimation is still to estimate one representative value for each parameter. With a limited number of replicates, the mean values of replicates will likely bias from the mean of generic normal distributions. Here in this paper, we are not going to discuss this layer of biases, therefore the results of Bayesian estimation and traditional fitting are all compared with the mean values of 228 photosynthetic parameters of all replicates.

229 Probability model of physiological measurements and Bayesian estimation

Bayesian theorem (Eqn 14) calculates the joint posterior distribution based on the likelihood of observations and prior information. This equation estimates A_n and Y(II)observations with replicates. Some parameters are prefixed during estimation, with Xrepresenting the remaining parameters.

234
$$p(\boldsymbol{\mathcal{X}} \mid A_{n(i)}^{o}, Y(II)_{(i)}^{o}) \propto p(A_{n(i)}^{o}, Y(II)_{(i)}^{o} \mid \boldsymbol{\mathcal{X}}) p(\boldsymbol{\mathcal{X}})$$
Eqn 14

The Markov Chain Monte Carlo (MCMC) method is used to approximate this joint posterior distribution numerically. Its calculation requires a process model describing the observations, equations of the likelihood of observations, and prior distributions of estimated parameters.

- The process model for both the A_n - C_i and Y(II)- C_i data used in this study is the FvCB model described above. The likelihood of measured A_n - C_i and Y(II)- C_i data is calculated based on the likelihood of each observation. We assumed that A_n and Y(II) signals can be described by a normal distribution. Thus for the *i*th observation (*i* = 1, 2,..., *N*):
- 243 $A_{n(i)}^{o} \sim \operatorname{Normal}(\overline{A}_{n(i)}, \sigma_{obs-A})$ Eqn 15

244
$$Y(II)_{(i)}^{o} \sim \operatorname{Normal}(\overline{Y(II)}_{(i)}, \sigma_{obs_{Y}})$$
 Eqn 16

where $\overline{A}_{n(i)}$ and $\overline{Y(II)}_{(i)}$ are the error-free mean values of A_n and Y(II) signals, and σ_{obs_A} and σ_{obs_Y} are the standard deviations describing variability of observations. A uniform distribution was set as the prior for each parameter in the FvCB model for the Bayesian estimation. V_{cmax} ranged from 10 to 200 µmol m⁻² s⁻¹, J was from 20 to

249	400 µmol m ⁻² s ⁻¹ , R_d was from -5 to 5 µmol m ⁻² s ⁻¹ , K_m was from 100 to 1000 µbar, Γ^*
250	was from 10 to 50 µbar, g_m was from 0.02 to 50 mol m ⁻² s ⁻¹ bar ⁻¹ , and <i>s</i> was from 0.2 to
251	0.8. r_m is the reciprocal of g_m ($r_m = 1/g_m$) and as such is restricted between 0.02 and 50
252	mol ⁻¹ m ² s bar. Using such relatively large ranges as prior allows the convergence of
253	Bayesian estimation, whilst ensuring that the estimated joint posterior distribution is
254	not influenced by these prior distributions. The MCMC method is implemented in a
255	software package JAGS (Just Another Gibbs Sampler, Plummer 2003). The rationale
256	of the MCMC method is to construct a series of sampling points in the parameter space,
257	where each sampling point is an array of possible values for the estimated parameters.
258	A Markov chain is constructed where the next sampling point is dependent on the
259	current sampling point and a transition probability. Three parallel MCMC chains are
260	run for 20,000 iterations each, and the Gelman-Rubin convergence diagnostic (Gelman
261	& Rubin 1992) is used to check the convergence of the MCMC algorithm, i.e. all
262	potential scale reduction factor (Rhat) values from JAGS are smaller than 1.1. This is
263	an indicator of the reliability of the estimation technique. The first 10,000 samples are
264	discarded as burn-in samples and the remaining 10,000 samples are used to approximate
265	the joint posterior distribution.
266	The Bayesian estimation is coded in R. The script is open-source and implemented

267 through a web-based interactive platform, Jupyter Notebook. The details of the fitting 268 method used for comparison with the Bayesian estimation can be found in the 269 Supplementary Methods.

270 Experimental Methods:

271 Plant material and growth conditions

272 Rice (Oryza sativa var. indica; IR64) plants were grown in a controlled growth chamber

- 273 (Controlled Environments Ltd, Winnipeg, MB, Canada) at 1000 μ mol m⁻² s⁻¹
- 274 photosynthetic photon flux density (PPFD), with a 12-h/12-h light/dark cycle, ambient
- 275 CO₂ (410-420ppm), 60% humidity and a day/night temperature of 28/24°C. Seeds were
- 276 germinated on filter paper with 15 ml water, and seedlings transferred after 7 days to
- 13D pots (0.88 l) filled with 71% Kettering Loam (Boughton, UK), 23.5% Vitax John
- 278 Innes No. 3 (Leicester, UK), 5% silica sand and 0.5% Osmocote Extract Standard 5–6
- 279 month slow-release fertilizer (ICL, Ipswich, UK) by volume, saturated with water.

280 Gas exchange and chlorophyll fluorescence measurements

281 Gas exchange and chlorophyll fluorescence were measured simultaneously on the fully expanded 6th true leaf of 28-day old plants using a Licor 6800 (LI-COR Inc., Lincoln, 282 283 NE, USA) and attached Multiphase Flash Fluorometer (6800-01A). For each replicate, 284 the leaf remained in the IRGA chamber for the duration of all high light and low light 285 curves. Relative humidity was maintained at c. 60% with the chamber flow rate set at 300 μ mol s⁻¹ and leaf temperature set at 28°C. For A_n-C_i curves, saturating PPFD was 286 held at 2000 μ mol m⁻² s⁻¹ and the following [CO₂]_{ref} were used: 500, 350, 200, 110, 80, 287 288 60, 30, 500, 700, 900, 1100, 1300, 1500 ppm. Leaves were held at each [CO₂] for a minimum and maximum of 90 and 180 seconds for the first 7 [CO₂] and 180-300 289 seconds for the last 5 [CO2]. For the 8th [CO2], leaves were held until stable. IRGAs 290

291	were matched at every [CO ₂]. Low light curves were performed without unclipping the
292	leaf, under 3 different <i>PPFD</i> levels, 300, 200 and 100 μ mol m ⁻² s ⁻¹ . All of the low light
293	curves used the following [CO2]ref: 110, 90, 80, 70, 50, 30 ppm. Leaves were held at
294	each [CO2] for a minimum and maximum of 90 and 180 seconds. The fluorometer was
295	set to measure Fs Fm' Fo', with a light mod rate of 50kHz, flash mod rate of 250kHz,
296	and flash type: Multiphase.
297	
298	Results
299	Bayesian estimation to evaluate the uncertainty of parameter estimation
300	Having created a new photosynthetic metabolism parameter estimation tool using
301	concurrent A_n - C_i and $Y(II)$ - C_i data (described in Methods and implemented through

- 302 Jupyter Notebook (<u>https://github.com/xiaoyizz78/FvCB-JAGS</u>)), we proceeded to
- 303 analyse the uncertainty under different input data and different prefixed parameters
- 304 during estimation. In particular, we compared the Bayesian estimation method with a
- 305 traditional fitting method developed using the Levenberg-Marquardt algorithm (see
- 306 Supplementary Methods for details on the fitting method).
- 307 We first used synthetic input data to explore the model. Thus, A_n - C_i (Fig. 1 A) and Y(II)-
- 308 C_i (Fig. 1 B) curves under saturating irradiance were created from a set of synthetic
- 309 data, with inbuilt sample variation and systematic error such as that caused by machine
- 310 or human operation during measurement. Data was also synthesised at low CO₂ and
- 311 low light levels (Fig. 1 C, D). For these curves, the joint posterior distribution

312 calculated from Bayesian estimation was approximated by 3 MCMC chains and 10000 313 sampling points for each chain. Each point thus represents an array of possible 314 estimated parameters, creating an estimate of the "true" A_n - C_i and Y(II)- C_i curves. We 315 then used the synthetic data to test the effect of fixing different parameters during 316 Bayesian estimation.

With K_m , Γ^* and s prefixed at their true values, Bayesian estimation was applied to the 317 318 synthetic concurrent A_n - C_i and Y(II)- C_i data under saturating light (Fig. 2 A-B). The 319 marginal posterior distribution of each estimated parameter is shown by the grey 320 regions in Fig. 2 C-F. As can be seen, both the best fitted values and the mode of 321 distribution (or the value with the highest probability) of V_{cmax} , J_{1500} , R_d and r_m are very close to the true values. Grey regions in Fig. 2 A-B show A_n - C_i and Y(II)- C_i curves 322 323 predicted based on the joint posterior distribution. These predicted A_n - C_i and Y(II)- C_i 324 curves only vary within a very small range compared to the synthetic observations with 325 error (red line with error bars). This seems counterintuitive to the deviation of estimated V_{cmax} , J, R_d and r_m (Fig. 2 C-F). However, it is worth mentioning here that estimated 326 327 parameters are not necessarily independent, as shown by the bivariate marginal 328 distributions (Fig. S2).

The standard deviation (std) of the marginal posterior distribution based on 30,000 sampling points gives an indication of the accuracy of the estimation for each estimated parameter (**Table 2**). V_{cmax} and J_{1500} reach a high precision when the K_m , Γ^* and s values are pre-fixed, as shown by the small std values (within 2% of the true value). For R_d

and r_m , std values are equal to 0.22 µmol m⁻² s⁻¹ and 0.43 mol⁻¹ m² s bar respectively,

which is 26% and 8.7% relative to the true values (**Table 2**).

335 Bayesian estimation was also applied to the same synthetic data with different prefixed 336 parameters, with the stds of the marginal posterior distributions listed in Table 2. We found that if we loosened the constraint of s while still keeping the prefixed K_m and Γ^* 337 338 at the true values, std of estimated s was still reasonable (1.2% relative to its true value) 339 with little change in the stds of the other estimated parameters. However, if we further loosened the constraints of Γ^* and/or K_m , much larger stds were observed (**Table 2**). 340 341 It seems that the synthetic A_n - C_i and Y(II)- C_i data cannot support the identifiability of all photosynthetic parameters in the FvCB model (a model is identifiable if it is 342 343 theoretically possible to learn the true values of this model's underlying parameters after 344 obtaining an infinite number of observations from it). This identifiability issue of parameter estimation is not evident from the fitted A_n - C_i curve, where fitness is usually 345 346 the focus rather than uncertainty of fitted values. Taking the scenario with no prefixed 347 values as an example, we found that the corresponding A_n - C_i curves calculated based 348 on the joint posterior distribution also fit the A_n - C_i curve well. However, the best estimated values are strongly biased from the true values (Table 2, Fig. S3). 349

350

Bayesian estimation, verified with synthetic data with inbuilt error, provides an uncertainty analysis which is unavailable in traditional fitting methods

353 It is a good practice to verify new methods of parameter estimation with synthetic data.

Therefore, we further tested the Bayesian estimation on more synthetic datasets with inbuilt error, and compared the estimation with fitting using a traditional method. Thus, having characterised the model with the synthetic dataset described in **Fig. 1**, we synthesised a further 100 datasets with varying photosynthetic parameters to mimic the natural variation and systematic error in biological data. In each dataset, concurrent A_n - C_i and Y(II)- C_i measurements similar to **Fig. 1 A, B** were generated. We then compared the performance of the Bayesian estimation with a fitting method (Dubois *et al.* 2007;

361 Supplementary Methods).

362 In the initial comparison, we kept only K_m prefixed at the true values and focused on R_d 363 (Fig. 3 A-D) and r_m (Fig. 3 E-H) as they are the most difficult parameters to fit or estimate (other estimated parameters - Fig. S4 A-P). Significant biases to the true values 364 365 of R_d and r_m were observed for both the traditional fitting method and Bayesian 366 estimation (Fig. 3 A-B, E-F). When the true values for these parameters were very small, 367 the best fitted values for these parameters were particularly inaccurate, with bias from 368 the true value as high as 100% to 160% (Fig. 3 C-D, G-H). The Bayesian estimation 369 method also showed a high deviation at low true values (up to 350% and 100% for R_d 370 and r_m , respectively), and the accuracy of estimation dramatically improved as the true 371 value of R_d and r_m increased (Fig. 3 C, G). The z-score of the true values, measured in 372 terms of standard deviations from the mean, was within 1.5 standard deviations of the 373 mean of the posterior distribution across the range of true values (Fig. 3 D, H), implying that the value estimated by the Bayesian method is highly related to the true value. The 374

remaining parameters were more accurately fitted and estimated than R_d and r_m (Fig.

377 When both Km and Γ^* were prefixed in the traditional fitting and Bayesian estimation, 378 the best fitted values and the mean of the marginal posterior distribution were much 379 less biased from the true values, both for R_d and r_m (Fig. 3 I-L, M-P) and the other 380 parameters estimated (Fig. S4 Q-AB). Indeed, fitted values for V_{cmax}, J and s were less 381 than 1% biased relative to the true values (Fig. S4 R, V & Z). Overall, the stds of 382 posterior distributions from Bayesian estimation with K_m and Γ^* prefixed were much 383 smaller than the results with only K_m prefixed (Fig. 3 and Fig. S4), with Z-scores of 384 true values lying mostly within -0.5 and 0.5 (Fig. 3 L&P, Fig. S4 T, X&AB). Parameter 385 estimation is often very sensitive to biological variation and error in data collection. 386 The uncertainty analysis provided by std values in the Bayesian estimation tool allows 387 quantification of this sensitivity, a capacity that is lacking in traditional fitting methods. 388

Including additional concurrent A_n-C_i and Y(II)-C_i measurements at low CO₂ and light levels improves estimation of photosynthetic parameters

Inspired by Laisk's method for the estimation of Γ^* and R_d (Laisk, 1977; Brooks & Farquhar, 1985) and to improve the parameter estimation (especially of R_d and r_m), we synthesised additional detailed low CO₂ concurrent A_n - C_i and Y(II)- C_i curves under three different low light levels based on the FvCB model (**Fig. 1 C-D**) for each replication. Bayesian estimation can deal with data from different signals and 396 conditions to calculate the joint posterior distribution (Table 3). With K_m prefixed at its 397 true value, these additional low light measurements improved the identifiability of Γ^* . 398 Moreover, they decreased the variability of estimated R_d and r_m from 72% and 23% of 399 the true value to much smaller ranges (16% and 14%, respectively) (Table 2, Table 3). 400 Although these additional low light, low CO₂ experimental measurements improved 401 parameter estimation, they are time consuming and rely heavily on the stability of the 402 instrument. It also involves having the leaf clamped in the IRGA chamber for a long 403 time, potentially causing stress to the plant. Therefore, we explored the reliability of 404 Bayesian estimation using fewer low light measurements (Table 3). The results showed 405 that parameter estimation using data from low CO₂ curves at two low light levels gave an estimation of similar accuracy to that obtained using three low light levels. 406 407 Specifically, the combination of light at PPFD of 50 & 200 µmol m⁻² s⁻¹ performs better than the combination of 50 & 100 μ mol m⁻² s⁻¹ or 100 & 200 μ mol m⁻² s⁻¹. With 100 & 408 200 μ mol m⁻² s⁻¹ as low light levels, the std of R_d increases from 16% of its true value 409 410 (data from three low light curves) to 27%. With only the lowest light level, 50 μ mol m⁻ ² s⁻¹, in combination with the high light A_n - C_i and Y(II)- C_i data, estimation of R_d is 411 actually more accurate, with a std of 21%, but using only 100 µmol m⁻² s⁻¹or 200 µmol 412 $m^{-2} s^{-1}$ increases the std of the estimated parameters further (Table 3). 413

414

415 Sensitivity analysis of error in the synthetic data with prefixed parameters

416 There are two different types of error modelled in the synthetic data, which include

417	sample variation and systematic error (see Methods for more details). We conducted a
418	sensitivity analysis of the effect of sample variation in the synthetic concurrent A_n - C_i
419	and $Y(II)-C_i$ data (with K_m prefixed at its true value) on the accuracy of parameter
420	estimation. Synthetic data with different levels of sample variation were generated by
421	scaling up the difference of photosynthetic parameters to the true values in each
422	replicate (Eqn 10 & 11). Bayesian estimation was then conducted on this data (Fig. 4).
423	For a given scale factor, new photosynthetic parameters X_i of <i>i</i> th replicate were
424	calculated from the original X_i by scaling the deviation (Eqn. 10 & 11). The marginal
425	posterior distribution is plotted as a column of pixels in Fig. 4, with different colours
426	representing the probability density. The lower the scale factor of sample variation, the
427	closer the approximations of different replicates are to the true values. As can be seen
428	in Fig. 4, stds of the marginal posterior distribution increase linearly with increasing
429	scale factor of sample variability, however, the mean value of the marginal posterior
430	distribution approximated the true value at all levels of variability. Using data without
431	sample variation (represented by a single replicate; Rep No.1 of the synthetic
432	concurrent A_n - C_i and $Y(II)$ - C_i data from Fig. 1) as input observations to Bayesian
433	estimation dramatically decreased the stds of all estimated parameters (Table 3).
434	As we have shown, parameter identifiability by Bayesian estimation is only possible
435	with a prefixed K_m value. We therefore conducted a sensitivity analysis on the effect of
436	decreasing and increasing the prefixed K_m value by 50% from its true value (Fig. S5).
437	The estimated marginal posterior distribution of V_{cmax} was very sensitive to the prefixed

438	value of K_m . The other parameters were less sensitive, with good parameter
439	identifiability, especially with K_m values prefixed higher than the true value (Fig. S5).
440	We also tested the effect of systematic error on the accuracy of parameter estimation.
441	Here only synthetic data of replicate No.1 were used and its systematic error was
442	manually controlled (ε_A and ε_Y in Eqn 9). For a given scale factor, new observations of
443	replicate No.1 were calculated from default observation by scaling the deviation ϵ_A and
444	$\epsilon_{\rm Y}$ in Eqn 9. Results of the Bayesian estimation showed that stds of the marginal
445	posterior distributions increased linearly with increased systematic error (Fig. S6).
446	
447	Parameter estimation with experimental data from rice leaves under several light
448	levels

449 To further characterise the utility of the Bayesian tool for photosynthetic parameter 450 estimation, experimental datasets comprising concurrent A_n - C_i and Y(II)- C_i measurements under several light levels were taken from rice leaves from four 451 452 (Experimental available independent plants Dataset on https://github.com/xiaoyizz78/FvCB-JAGS; replicates are numbered from 1 to 4). 453 454 Bayesian estimation was conducted with data for each of the four replicates separately 455 and with all data combined. The marginal posterior distributions of each estimated parameter from these five scenarios showed different values and probabilities of each 456 peak, suggesting that these different replicates result in different levels of estimation 457 uncertainty (Fig. 5). The corresponding means and stds are shown in Table 4. 458

459	Estimation using data from sample No. 3 consistently had the smallest stds of all of the
460	individual datasets, while parameter values estimated from sample No. 4 were generally
461	closer to that estimated from analysis of the combined datasets. Bayesian estimation
462	with the combined datasets showed a higher accuracy than most individual estimations,
463	with the exception of sample No. 3. Fig. 6 shows the Bayesian estimation for sample
464	No. 3 calculated from the joint posterior distributions (see Fig. S7-9 for the remaining
465	three replicates). The curves under saturating light (Fig. 6 A,B) showed less bias than
466	the curves at the three low light levels (Fig. 6 C,D), possibly reflecting the use of normal
467	distributions in the error term of the probability model during Bayesian estimation (Eqn
468	15&16). Interestingly, the $Y(II)$ - C_i data showed a slight discrepancy between measured
469	values and estimation (panel D in Fig. 6, Fig. S7-S9), with measured values going up
470	with increasing C_i but estimated values remaining level.

472 **Discussion**

473 Most methods developed for parameter estimation of the Farquhar-von Caemmerer-474 Berry model lack evaluation of robustness and reliability of the estimated parameters. 475 In this paper, we report a Bayesian parameter estimation framework which not only 476 estimates the photosynthetic parameters of the FvCB model, but also gives the standard 477 deviation of the parameters, which represents their robustness and reliability. Using 478 synthetic concurrent A_n - C_i and Y(II)- C_i measurements at high light, we show that 479 multiple prefixed parameters are needed to enable accurate estimation of the parameter

480 mean and to estimate the standard deviation. We dramatically improved the accuracy 481 of prediction of the mean and decreased the std of the estimated parameters by including 482 additional detailed low CO₂ concurrent A_n - C_i and Y(II)- C_i measurements under low 483 light, keeping only K_m prefixed.

Sensitivity analysis showed that sample variation and systematic error (from human mistakes or technical issues) are the major limits to the accuracy of parameter estimation. We have shown that using the correct prefixed value for K_m is crucial to robust estimations. We have tested these ideas and the Bayesian framework *in planta*, on rice leaves, with the corresponding pipeline of Bayesian estimation provided as a user-friendly interactive script in Jupyter Notebook (see supplementary code or https://github.com/xiaoyizz78/FvCB-JAGS).

491

492 Bayesian estimation enables objective evaluation of robustness and reliability of

493 the estimated parameters

The performance of various methods of photosynthetic parameter estimation is usually evaluated by r^2 of the fitted values or the sum of squared error between observation and prediction. However, an r^2 close to 1 or a predicted curve very close to the observation does not necessarily imply that the estimated values are accurate. This is evident in our Bayesian estimation with the synthetic A_n - C_i and Y(II)- C_i data under saturating light in **Fig. 1 A & B**. Even with no parameters prefixed, the predicted A_n - C_i curve appears to be very close to the true curve (**Fig. S3 A**). However, the parameter estimations are

501	clearly biased from the true values, as shown by the posterior distributions and
502	difference between the true value and the mode of the posterior distribution (Table 2,
503	Fig. S3 C-I). Extending this parameter estimation to 100 synthetic datasets, comparison
504	of a traditional fitting method and our Bayesian estimation confirmed that while neither
505	method can accurately estimate the parameter values without sufficient prefixed
506	parameters (Fig. 3 A-H, Fig. S4 A-P), the Bayesian framework is able to accurately
507	estimate the reliability of parameters through the posterior distributions.
508	
509	Factors influencing identifiability and accuracy of parameter estimation of FvCB
510	model
511	Accuracy of parameter estimation is generally affected by how well the model reflects
512	the observations, the calibre of the data, and the quality of the estimation assuming the
513	model to be perfect. We analysed factors influencing the accuracy of current
514	photosynthetic parameter estimation with the FvCB model using synthetic datasets.
515	First, for given synthesised measurements, reasonable prefixed parameters are required
516	to estimate the remaining parameters in the FvCB model (Table 2 & 3). We have shown
517	that identifiability of photosynthetic parameters from saturating light A_n - C_i and $Y(II)$ -
518	C_i data is only possible if K_m and Γ^* are prefixed at their true value (Table 2). With
519	concurrent A_n - C_i and $Y(II)$ - C_i data under saturating light, and additional focused low
520	CO_2 data from multiple low light levels, a comparable accuracy of parameter estimation

522	Secondly, we have shown that bias in these prefixed parameters also affects the
523	parameter estimation. To obtain an accurate parameter estimation using all of the
524	synthetic measurements in Fig. 1, K_m needs to be prefixed. Without a known K_m ,
525	sensitivity analysis of prefixed K_m values demonstrated that V_{cmax} estimation is very
526	sensitive to a biased prefixed K_m , while J , R_d and Γ^* are much less sensitive (Fig. S6).
527	Technically, in vivo determinations of K_m should be done with transgenic plants with
528	decreased amounts of Rubisco (von Caemmerer et al., 1994). A small number of
529	measurements from one location on a normal leaf, where only a fraction of the A_n - C_i
530	curve is Rubisco-limited, is not sufficient to support the estimation of K_m .
531	Thirdly, we show that the accuracy of parameter estimation in the FvCB model was
532	greatly affected by sample variation and systematic error in the data. Sample variation
533	is especially poorly acknowledged in many previous studies. In practice, errors due to
534	sample variation are inevitable, given the heterogeneity existing among biological
535	replicates and even at different positions along the same leaf (Chen C.P., Zhu & Long
536	2008; Xiong <i>et al.</i> 2015). Among all the photosynthetic parameters, R_d and r_m are most
537	sensitive to these errors in the data. If Bayesian estimation is applied to one synthetic
538	replicate (data with no sample variation) instead of all replicates, the std of the estimated
539	R_d decreased from 16% to 6.3% relative to the true value, while the std of the estimated
540	r_m decreased from 14% to 4.5% relative to the true value (Table 3). These remaining
541	stds (6.3% and 4.5%) are still large considering the fact that the systematic error of the
542	A_n signal and the Y(II) signal was very small in the synthetic data ($\sigma_{\varepsilon_A} = 0.1 \ \mu \text{mol m}^{-2}$

543	s ⁻¹ and $\sigma_{\varepsilon_{-}Y} = 0.01$ in Eqn. 15 & 16). Previously, Gu <i>et al.</i> (2010) showed that their
544	optimum fitting method predicts unbiased photosynthetic parameters using completely
545	error-free synthetic A_n - C_i data. Our sensitivity analysis of the sample variation (Fig. 4)
546	and systematic error (Fig. S6) leads to a similar conclusion, i.e., that with a decrease of
547	both types of error, marginal posterior distributions converge to the true values. The
548	high sensitivity of estimation of R_d and r_m to these errors is a property of the structure
549	of the FvCB model.

551 Evaluating the quality of experimental data and the experimental protocols

552 Using the std values as an indicator of estimation accuracy, it is possible to use the Bayesian tool to instantly analyse data quality. With the above analysis, concurrent 553 554 measurements of A_n - C_i and Y(II)- C_i under high light and three low light levels were conducted on rice leaves (Fig. 5) with four replicates. It is possible to compare the stds 555 556 of parameters from each replication to assess whether the data is robust. The range of 557 stds in the above data, where Bayesian estimation with the combined dataset led to 558 smaller predicted stds for all estimated parameters compared with estimation using data 559 from individual samples No.1, 2 or 4 (Fig. 5, Table 4), but using only data from sample 560 No.3 led to smaller stds for all estimated parameters than with combined data, 561 demonstrates this potential (Table 4, Supplementary code). Since this Bayesian approach can be used to estimate parameters from a single sample 562

563 and provide an estimate of the confidence interval, our Bayesian tool also allows for

564	rapid assessment of protocol quality. There are many options in Infra-Red Gas Analysis
565	that can be varied during data collection for A_n - C_i and $Y(II)$ - C_i curves, such as the
566	number and spacing of [CO2]ref values in the curves, maximum and minimum wait
567	times for stability at each [CO2]ref point, and low light levels used. This capacity of the
568	tool can be used in the initial planning stages of an experiment, which could potentially
569	eliminate many time-consuming and unnecessary measurements.

571 Using Bayesian statistics to quantify more accurate respiration and mesophyll 572 conductance *in planta*

573 The Bayesian estimation with data from the "best" biological sample in our analysis 574 had a standard deviation of the marginal posterior distribution of estimated r_m equal to 0.46 mol m⁻² s⁻¹ bar⁻¹, which is about 44% of the mean value (Table 4). This uncertainty 575 576 is much larger than that predicted using the synthetic data (Table 3), where estimation of r_m from one replicate has a std of 0.23 mol m⁻² s⁻¹ bar⁻¹ (4.5% of the mean). As we 577 discussed above, systematic error is part of the reason for this difference. Meanwhile, 578 579 biological systems tend to be inherently complex and noisy, which cannot be fully 580 represented by the simplified model used to synthesise this data. For example, r_m 581 potentially varies in a real leaf under different light or CO₂ levels, variation of which is 582 embedded in the measurements and estimation (Flexas et al. 2007; Tholen & Zhu 2011; Tholen, Ethier, Genty, Pepin & Zhu 2012; Tholen, Éthier & Genty 2014; Evans & von 583 Caemmerer 2013; Xiao & Zhu 2017). 584

585	From the A_n - C_i and $Y(II)$ - C_i curves calculated based on posterior distribution, the FvCB
586	model with a constant r_m generally fitted well with the experimental data (Fig. 6, Fig.
587	87-89). However, an interesting observation from using the experimental data for
588	Bayesian estimation is an apparent mismatch between predicted and measured $Y(II)$ - C_i
589	curves under low light (panel D in Fig. 6, Fig. S7-S9). Specifically, the measured $Y(II)$ -
590	C_i curves under low light showed a slight trend to increase with C_i , while the FvCB
591	model predicted a constant $Y(II)$ under different C_i . As we use the variable J method for
592	calculating r_m , this discrepancy is most likely attributed to a varying r_m (Flexas <i>et al.</i>
593	2007; Tholen & Zhu 2011; Tholen, Ethier, Genty, Pepin & Zhu 2012; Tholen, Éthier &
594	Genty 2014; Evans & von Caemmerer 2013; Xiao & Zhu 2017). However, there are
595	several additional factors or processes related to this mismatch: 1) a varying V_{cmax} due
596	to activation of Rubisco under low light (von Caemmerer & Edmondson 1986); 2) a
597	larger R_d under low light due to the Kok effect (Kok 1948, 1956; Hoch, Owens & Kok
598	1963); 3) a varying s due to change of cyclic or alternative electron transport in the
599	whole electron transport chain (Yin <i>et al.</i> 2004, 2009b); 4) a varying expression of $4C_c$
600	+ $8\Gamma^*$ in Eqn. 3 due to RuBP regeneration being limited by insufficient NADPH or by
601	insufficient ATP (von Caemmerer 2000); 5) a varying Γ^* due to competition of electron
602	flow from nitrogen fixation with carboxylation and photorespiration (Busch, Sage &
603	Farquhar 2018).

Together, these six factors are pertinent when dissecting factors underlying the slight increasing trend of low light Y(II)- C_i curves (Fig. 6 D, Fig. S7-S9). Practically, from

606	the perspective of Bayesian estimation, an accurate quantification of the varying r_m
607	would require extending the current FvCB model or developing new models to include
608	these factors, both of which have been attempted a number of times (e.g. Yin et al. 2004,
609	2009b; Tholen et al. 2012; Busch et al. 2018). At the same time, it would also require
610	that variables representing these factors or processes are identifiable from experimental
611	data, which could be evaluated by using the same Bayesian statistical framework.

A generic framework of uncertainty evaluation for estimating photosynthetic parameters with various physiological measurements and models

615 In this paper, the identifiability issue and accuracy of parameter estimation shown in 616 the analysis is limited by the FvCB model used (Eqns 1-5) and corresponding 617 physiological measurements taken. However, many variants of the FvCB model and 618 various related experimental protocols have been developed during the past decades. For example, measurements under low oxygen achieve a non-photorespiratory 619 condition under which Γ^* and R_d are better estimated compared to Laisk's method 620 621 (Laisk et al. 2002, 2006; Yin et al. 2009b, 2011; Bellasio et al. 2015). In addition to 622 Rubisco and RuBP regeneration, photosynthesis can be limited by triose phosphate 623 utilisation (TPU) in many species (McClain and Sharkey, 2019). Our measured An-Ci 624 and Y(II)- C_i curves in rice also seems to show a decreasing trend especially under high 625 C_i (Panel A,B in Fig. 6, Fig. S7-S9) which implies potential TPU limitation, this is not reflected in the estimated data. An alternative process model could be used to better 626

627 incorporate TPU limitation, perhaps improving the identifiability of the model 628 parameters. The number of data points falling within the range of C_i whereby this 629 limitation is relevant would also need to be increased. The Bayesian statistics shown in 630 our study would still apply to scenarios such as this with different physiological 631 measurements and different variants of the FvCB model.

632 When comparing the performance of multiple identifiable models, in Bayesian statistics, 633 information criterion is calculated for each model based on the posterior distribution 634 approximated by MCMC, quantifying the likelihood of a model with penalty to its 635 complexity, i.e. number of parameters. There are several information criteria proposed (Gelman, Hwang & Vehtari, 2014), such as AIC (Akaike information criterion), DIC 636 (deviance information criterion) and WAIC (Watanabe-Akaike information criterion), 637 638 among which DIC is computed by default in the software JAGS used here (Plummer, 639 2003). Alternative code, for other scenarios with different experimental measurements 640 or models is available in the Jupyter Notebook.

641

642 Using the new Bayesian parameter estimation tool

The interactive Bayesian tool includes full instructions on how to download the prerequisites and run the program: <u>https://github.com/xiaoyizz78/FvCB-JAGS</u>. Three optional K_m values for rice, tobacco and Arabidopsis are provided. Consideration should be given to the low light levels used. Ideally all low light curves should be RuBP regeneration limited, and each should be separate from the others. Data is inputted in 648 one csv file of all replicates for each treatment. Bayesian estimation is performed on 649 each individual replicate (for quality control) and on all replicates (combined data) for 650 parameter estimation. The output is a series of graphs of the raw data, the Bayesian 651 posterior distributions for each estimated parameter, a table of estimated parameters 652 (including the stds of posterior distributions for each parameter), traceplots to ensure 653 the estimation is stable, and posterior distribution C_i response curves. Compared to 654 many existing parameter fitting tools, this is extremely simple to use and has a user-655 friendly output. The tool is able to handle a large amount of data extremely quickly and 656 removes much of the human interaction which can potentially affect parameter 657 estimation.

658

659 Conclusion

660 Bayesian estimation not only predicts the most likely parameter values, but also 661 provides the standard deviation of marginal posterior distributions, a measure of 662 estimation accuracy. Systematic analyses with synthetic data have highlighted 663 important factors influencing this. The Bayesian system enables evaluation of the quality of experimental data and the reliability of experimental protocols. The addition 664 of concurrent measurements of A_n - C_i and Y(II)- C_i curves within a focused low CO₂ 665 666 range, at two or more low light levels produces much more reliable parameter 667 estimation than saturating light concurrent A_n - C_i and Y(II)- C_i curves alone, which should be considered in future experimental protocol development. Ultimately, accurate 668

estimation of photosynthetic parameters is limited by physiological parameter
variability within the samples and measurement error introduced by human or machine.
We have highlighted the importance of striving to minimise these sources of error.
Finally, Bayesian estimation can capture the mismatch between theoretical models and
experimental data, which can help to direct systems level studies towards more accurate
quantification of photosynthetic related processes.

675

676 Acknowledgements

677 This work was supported in part by Chinese Strategic Leading project category B 678 (XDB27020105), National Natural Science Foundation of China (31700201, 31900304) 679 to XGZ and YX; BBSRC (BB/N013719/1) Newton Fund Rice Research and Royal 680 Society (CH\R1\180027) Challenge-led grant to AJF. XYC is supported by the U.S. 681 Department of Energy (DOE), Office of Biological and Environmental Research 682 (BER), as part of BER's Subsurface Biogeochemical Research Program (SBR), through 683 the SBR Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory 684 (PNNL). PNNL is operated for the DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. The authors also thank Dr Matthew Wilson for comments on 685 686 the manuscript and declare no competing interests. 687

688 References

689 Andrieu C., de Freitas N., Doucet A. & Jordan M.I. (2003) An introduction to MCMC

for machine learning. *Machine Learning* **50**, 5–43.

- Bellasio C., Beerling D.J. & Griffiths H. (2015) An Excel tool for deriving key
 photosynthetic parameters from combined gas exchange and chlorophyll
- 693 fluorescence: Theory and practice. *Plant, Cell & Environment*.
- 694 Bernacchi C.J., Morgan P.B., Ort D.R. & Long S.P. (2005) The growth of soybean
- 695 under free air CO₂ enrichment (FACE) stimulates photosynthesis while decreasing
 696 in vivo Rubisco capacity. *Planta* 220.
- 697 Bernacchi C.J., Portis A.R., Nakano H., von Caemmerer S. & Long S.P. (2002)
- Temperature response of mesophyll conductance. Implications for the
 determination of Rubisco enzyme kinetics and for limitations to photosynthesis in
 vivo. *Plant Physiology* 130, 1992–1998.
- Bongi G. & Loreto F. (1989) Gas-exchange properties of salt-stressed Olive (*Olea europea L.*) leaves. *Plant Physiology* 90, 1408–1416.
- 703 Brooks A. & Farquhar G.D. (1985) Effect of temperature on the CO₂/O₂ specificity of

ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the

- 705 light: Estimates from gas-exchange measurements on spinach. *Planta* **165**, 397–
- 706
 406.

- 707 Busch F.A., Sage R.F. & Farquhar G.D. (2018) Plants increase CO₂ uptake by
- assimilating nitrogen via the photorespiratory pathway. *Nature Plants* **4**, 46–54.
- von Caemmerer S. (2000) Biochemical models of leaf photosynthesis. CSIRO
- 710 Publishing, Collingwood, VIC, Australia.

711	von Caemmerer S	5. (2013)	Steady-state	models	of	photosynthesis.	Plant,	Cell	k
712	Environment 3	36 , 1617–1	1630.						

- von Caemmerer S. & Edmondson D.L. (1986) Relationship between steady-state gas
- exchange, in vivo ribulose bisphosphate carboxylase activity and some carbon
- reduction cycle intermediates in *Raphanus sativus*. *Functional Plant Biology* 13,
 669–688.
- 717 Caemmerer S., Evans J.R., Hudson G.S. & Andrews T.J.J. (1994) The kinetics of
- ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from
 measurements of photosynthesis in leaves of transgenic tobacco. *Planta* 195, 88–
- 720 97.
- 721 Chen C.P., Zhu X.-G. & Long S.P. (2008) The effect of leaf-level spatial variability in
- 722 photosynthetic capacity on biochemical parameter estimates using the Farquhar

model: a theoretical analysis. *Plant Physiology* **148**, 1139–47.

- 724 Chen X., Rubin Y., Ma S. & Baldocchi D. (2008) Observations and stochastic modeling
- 725 of soil moisture control on evapotranspiration in a Californian oak savanna. *Water*726 *Resources Research* 44.
- Clark J.S. & Gelfand A.E. (2006) A future for models and data in environmental science.
 Trends in Ecology & Evolution 21, 375–380.
- 729 Di Marco G., Manes F., Tricoli D. & Vitale E. (1990) Fluorescence parameters
- measured concurrently with net photosynthesis to investigate chloroplastic CO₂
- concentration in leaves of *Quercus ilex* L. *Journal of Plant Physiology* **136**, 538–

732 543.

- 733 Dubois J.-J.B., Fiscus E.L., Booker F.L., Flowers M.D. & Reid C.D. (2007) Optimizing
- the statistical estimation of the parameters of the Farquhar–von Caemmerer–Berry
 model of photosynthesis. *New Phytologist* 176, 402–414.
- 736 Ethier G.J. & Livingston N.J. (2004) On the need to incorporate sensitivity to CO₂
- transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis
 model. *Plant, Cell & Environment* 27, 137–153.
- 739 Ethier G.J., Livingston N.J., Harrison D.L., Black T.A. & Moran J.A. (2006) Low
- stomatal and internal conductance to CO₂ versus Rubisco deactivation as
- 741 determinants of the photosynthetic decline of ageing evergreen leaves. *Plant, Cell*
- 742 & Environment **29**, 2168–2184.
- Evans J.R. & von Caemmerer S. (2013) Temperature response of carbon isotope
 discrimination and mesophyll conductance in tobacco. *Plant, Cell & Environment*36, 745–756.
- 746 Farquhar G.D., von Caemmerer S. & Berry J. (1980) A biochemical model of
- photosynthetic CO₂ assimilation in leaves of C₃ species. *Planta* **149**, 78–90.
- 748 Farquhar G.D., von Caemmerer S. & Berry J. (2001) Models of photosynthesis. *Plant*
- 749 *Physiology* **125**, 42–45.
- 750 Farquhar G.D. & Wong S.C. (1984) An empirical model of stomatal conductance.
- 751 *Australian Journal of Plant Physiology* **11**, 191.
- 752 Feng X. & Dietze M. (2013) Scale dependence in the effects of leaf ecophysiological

- traits on photosynthesis: Bayesian parameterization of photosynthesis models.
- *New Phytologist* **200**, 1132–1144.
- 755 Flexas J., Diaz-Espejo A., Galmés J., Kaldenhoff R., Medrano H. & Ribas-Carbo M.
- 756 (2007) Rapid variations of mesophyll conductance in response to changes in CO₂
- concentration around leaves. *Plant, Cell & Environment* **30**, 1284–1298.
- Gelfand A.E. & Smith A.F.M. (1990) Sampling-based approaches to calculating
 marginal densities. *Journal of the American Statistical Association* 85, 398–409.
- 760 Gelman A., Hwang J. & Vehtari A. (2014) Understanding predictive information
- criteria for Bayesian models. *Statistics and Computing* **24**, 997–1016.
- Gelman A. & Rubin D.B. (1992) Inference from iterative simulation using multiple
 sequences. *Statistical Science* 7, 457–472.
- 764 Golaz J.-C., Caldwell P.M., Van Roekel L.P., Petersen M.R., Tang Q., Wolfe J.D., ...
- 765 Zhu Q. (2019) The DOE E3SM coupled model version 1: Overview and
 766 evaluation at standard resolution. *Journal of Advances in Modeling Earth Systems*
- **11**, 2089–2129.
- 768 Gu L., Pallardy S.G., Tu K., Law B.E. & Wullschleger S.D. (2010) Reliable estimation
- of biochemical parameters from C₃ leaf photosynthesis-intercellular carbon
 dioxide response curves. *Plant, Cell & Environment* 33, 1852–1874.
- 771 Gu L. & Sun Y. (2014) Artefactual responses of mesophyll conductance to CO₂ and
- irradiance estimated with the variable J and online isotope discrimination methods.
- 773 *Plant, Cell & Environment* **37**, 1231–1249.

774	Han T., Zhu G., Ma J., Wang S., Zhang K., Liu X., Huang C. (2020) Sensitivity
775	analysis and estimation using a hierarchical Bayesian method for the parameters
776	of the FvCB biochemical photosynthetic model. Photosynthesis Research 143,
777	45–66.
778	Harley P.C., Loreto F., Di Marco G. & Sharkey T.D. (1992) Theoretical considerations
779	when estimating the mesophyll conductance to CO2 flux by analysis of the
780	response of photosynthesis to CO ₂ . <i>Plant Physiology</i> 98 , 1429–36.
781	Hoch G., Owens O. v. H. & Kok B. (1963) Photosynthesis and respiration. Archives of
782	biochemistry and biophysics 101, 171–180.
783	Humphries S.W. & Long S.P. (1995) WIMOVAC: a software package for modelling
784	the dynamics of plant leaf and canopy photosynthesis. Computer applications in
785	the biosciences : CABIOS 11, 361—371.
786	Kok B. (1948) A Critical consideration of the quantum yield of Chlorella-
787	photosynthesis. Enzymologia 13, 1–56.
788	Kok B. (1956) On the inhibition of photosynthesis by intense light. Biochimica et
789	<i>Biophysica Acta</i> 21 , 234–244.
790	Laisk A.K. (1977) Kinetics of photosynthesis and photorespiration of C_3 in plants.
791	Moscow, Russia; Nauka
792	Laisk A., Eichelmann H., Oja V., Rasulov B. & Rämma H. (2006) Photosystem II cycle
793	and alternative electron flow in leaves. Plant and Cell Physiology 47, 972–983.
794	Laisk A. & Loreto F. (1996) Determining photosynthetic parameters from leaf CO ₂

- exchange and chlorophyll fluorescence. *Plant Physiology* **110**, 903–912.
- 796 Laisk A., Oja V., Rasulov B., Rämma H., Eichelmann H., Kasparova I., ... Vapaavuori
- E. (2002) A computer-operated routine of gas exchange and optical measurements
 to diagnose photosynthetic apparatus in leaves. *Plant, Cell & Environment* 25,
- *923–943.*
- 800 Lawrence D.M., Fisher R.A., Koven C.D., Oleson K.W., Swenson S.C., Bonan G., ...
- 801 Zeng X. (2019) The Community Land Model version 5: description of new
- 802 features, benchmarking, and impact of forcing uncertainty. *Journal of Advances*
- 803 *in Modeling Earth Systems* **11**, 4245–4287.
- Manter D.K. & Kerrigan J. (2004) *A/C_i* curve analysis across a range of woody plant
 species: influence of regression analysis parameters and mesophyll conductance. *Journal of Experimental Botany* 55, 2581–2588.
- McClain A.M. & Sharkey T.D. (2019) Triose phosphate utilization and beyond: From
 photosynthesis to end product synthesis. *Journal of Experimental Botany* 70,
 1755–1766.
- Miao Z., Xu M., Lathrop R.G. & Wang Y. (2009) Comparison of the *A-Cc* curve fitting
 methods in determining maximum ribulose 1.5-bisphosphate
 carboxylase/oxygenase carboxylation rate, potential light saturated electron
 transport rate and leaf dark respiration. *Plant, Cell & Environment* 32, 109–22.
- 814 Moualeu-Ngangue D.P., Chen T.-W. & Stützel H. (2017) A new method to estimate
- 815 photosynthetic parameters through net assimilation rate-intercellular space CO₂

- 816 concentration $(A-C_i)$ curve and chlorophyll fluorescence measurements. *New* 817 *Phytologist* **213**, 1543–1554.
- 818 Patrick L.D., Ogle K. & Tissue D.T. (2009) A hierarchical Bayesian approach for
- 819 estimation of photosynthetic parameters of C₃ plants. *Plant, Cell & Environment*820 **32**, 1695–1709.
- 821 Perveen S., Qu M., Chen F., Essemine J., Khan N., Lv M.A., Chang T., Song Q., Chen
- 822 G-Y, and Zhu X-G (2020) Over-expression of maize transcription factor mEmBP-
- 823 1 increases photosynthesis, biomass and yield in rice. *Journal of Experimental*824 *Botany* 71, 4944-4957.
- 825 Plummer M. (2003) JAGS : A program for analysis of Bayesian graphical models.
- 826 Proceedings of the 3rd International Workshop on Distributed Statistical
 827 Computing (DSC 2003).
- Selinski J. & Scheibe R. (2019) Malate valves: old shuttles with new perspectives. *Plant Biology* 21, 21–30.
- 830 Simkin A.J., McAusland L., Headland L.R., Lawson T. & Raines C.A. (2015)
- Multigene manipulation of photosynthetic carbon assimilation increases CO₂
 fixation and biomass yield in tobacco. *Journal of Experimental Botany* 66, 4075–
- 833 4090.
- Sharkey T.D. (2016) What gas exchange data can tell us about photosynthesis. *Plant, Cell & Environment* **39**, 1161–1163.
- 836 Sharkey T.D., Bernacchi C.J., Farquhar G.D. & Singsaas E.L. (2007) Fitting

- photosynthetic carbon dioxide response curves for C₃ leaves. *Plant, Cell & Environment* 30, 1035–40.
- 839 Smith A.F.M. & Roberts G.O. (1993) Bayesian computation via the Gibbs sampler and
- 840 related Markov Chain Monte Carlo methods. *Journal of the Royal Statistical*841 *Society. Series B (Methodological)* 55, 3–23.
- 842 Sun Y., Gu L., Dickinson R.E., Pallardy S.G., Baker J., Cao Y., ... Winter K. (2014)
- 843 Asymmetrical effects of mesophyll conductance on fundamental photosynthetic
- parameters and their relationships estimated from leaf gas exchange measurements.
- 845 *Plant, Cell & Environment* **37**, 978–994.
- Tholen D., Éthier G. & Genty B. (2014) Mesophyll conductance with a twist. *Plant, Cell & Environment* 37, 2456–2458.
- 848 Tholen D., Ethier G., Genty B., Pepin S. & Zhu X.-G. (2012) Variable mesophyll
- conductance revisited: theoretical background and experimental implications. *Plant, Cell & Environment* 35, 2087–103.
- Tholen D. & Zhu X.-G. (2011) The mechanistic basis of internal conductance: A
 theoretical analysis of mesophyll cell photosynthesis and CO₂ diffusion. *Plant Physiology* 156, 90–105.
- 854 Tierney L. & Mira A. (1999) Some adaptive Monte Carlo methods for Bayesian
 855 inference. *Statistics in Medicine* 18, 2507–2515.
- 856 Valentini R., Epron D., De Angelis P., Matteucci G. & Dreyer E. (1995) In situ
 857 estimation of net CO₂ assimilation, photosynthetic electron flow and

- photorespiration in Turkey oak (*Q. cerris* L.) leaves: diurnal cycles under different
 levels of water supply. *Plant, Cell & Environment* 18, 631–640.
- 860 Wang D., Jaiswal D., Lebauer D.S., Wertin T.M., Bollero G.A., Leakey A.D.B. & Long
- 861 S.P. (2015) A physiological and biophysical model of coppice willow (*Salix* spp.)
- production yields for the contiguous USA in current and future climate scenarios.
- 863 *Plant, Cell & Environment* **38**, 1850–1865.
- Xiao Y. & Zhu X.-G. (2017) Components of mesophyll resistance and their
 environmental responses: A theoretical modelling analysis. *Plant, Cell & Environment* 40, 2729–2742.
- Xiong D., Yu T., Liu X., Li Y., Peng S. & Huang J. (2015) Heterogeneity of
 photosynthesis within leaves is associated with alteration of leaf structural features
- and leaf N content per leaf area in rice. *Functional Plant Biology* **42**, 687–696.
- 870 Yin X., Van Oijen M. & Schapendonk a. H.C.M. (2004) Extension of a biochemical
- model for the generalized stoichiometry of electron transport limited C₃
 photosynthesis. *Plant, Cell & Environment* 27, 1211–1222.
- Yin X. & Struik P.C. (2009a) Theoretical reconsiderations when estimating the
 mesophyll conductance to CO₂ diffusion in leaves of C₃ plants by analysis of
 combined gas exchange and chlorophyll fluorescence measurements. *Plant, Cell & Environment* **32**, 1513–1524.
- 877 Yin X., Struik P.C., Romero P., Harbinson J., Evers J.B., Van Der Putten P.E.L. & Vos
- J. (2009b) Using combined measurements of gas exchange and chlorophyll

879	fluorescence to estimate parameters of a biochemical C ₃ photosynthesis model: A
880	critical appraisal and a new integrated approach applied to leaves in a wheat
881	(Triticum aestivum) canopy. Plant, Cell & Environment 32, 448-464.
882	Yin X., Sun Z., Struik P.C. & Gu J. (2011) Evaluating a new method to estimate the rate
883	of leaf respiration in the light by analysis of combined gas exchange and
884	chlorophyll fluorescence measurements. Journal of Experimental Botany 62,
885	3489–3499.
886	
887	
888	

890 Tables

Variables	Definition	Units
A_n	Net photosynthesis rate	µmol m ⁻² s ⁻¹
A_c	Rubisco limited net photosynthesis rate	µmol m ⁻² s ⁻¹
A_j	RuBP regeneration limited net photosynthesis rate	µmol m ⁻² s ⁻¹
C_i	Intercellular CO ₂ partial pressure	μbar
Cc	Chloroplastic CO ₂ partial pressure	μbar
g_m	Mesophyll conductance	mol m ⁻² s ⁻¹ bar ⁻¹
Ι	Incident irradiance	µmol m ⁻² s ⁻¹
J	Potential linear electron transport rate through PSII	µmol m ⁻² s ⁻¹
J_i	Maximum electron transport rate through PSII limited by I	µmol m ⁻² s ⁻¹
J_A	Electron transport rate calculated from CO ₂ assimilation rate	µmol m ⁻² s ⁻¹
J_f	Electron transport rate calculated from chlorophyll	µmol m ⁻² s ⁻¹
J_m	Maximum electron transport rate through PSII limited by capacity of photosystem	µmol m ⁻² s ⁻¹
K _m	Michaelis-Menten constant of Rubisco for CO_2 in the presence of O_2	μbar
R_d	Day respiration	µmol m ⁻² s ⁻¹
r_m	Mesophyll resistance, i.e. the reciprocal of g_m	mol ⁻¹ m ² s bar
S	Product of α and β ; a combined parameter of light absorption and partition to PSII	Unitless
V _{cmax}	CO ₂ saturated Rubisco carboxylation rate	µmol m ⁻² s ⁻¹
Wc	Rubisco limited carboxylation rate	µmol m ⁻² s ⁻¹
W_{j}	RuBP regeneration limited carboxylation rate	µmol m ⁻² s ⁻¹
Y(II)	Quantum efficiency of absorbed photons on PSII	Unitless
$Y(II)_{LL}$	Initial slope of <i>Y(II)-I</i> ·s curve	Unitless
θ	Curvature index of <i>J</i> to <i>I</i>	Unitless
α	Light absorption	Unitless
β	Partition of total absorbed light to PSII	Unitless
Γ^*	C_c -based CO ₂ compensation point in the presence of R_d	μbar

Table 1. List of model variables and their units

Table 2. Standard deviations (std) of the marginal posterior distributions of estimated parameters using the synthetic concurrent A_n - C_i and Y(II)- C_i data shown in Fig. 1 A & B. Four scenarios with different prefixed parameters are conducted here. Prefixed parameters are fixed at the true values used to generate the synthetic data. The remaining parameters are estimated with Bayesian estimation. Numbers in brackets show the std as a percentage of the true values. ** indicates parameter values with sample variation.

Prefixed		V _{cmax}	J_{1500}	R_d	r _m	K_m	Γ^*	S
parameters		(µmol m ⁻² s ⁻¹)	(µmol m ⁻² s ⁻¹)	(µmol m ⁻² s ⁻¹)	(mol ⁻¹ m ² s bar)	(µbar)	(µbar)	(unitless)
	true	73.0**	142.3**	0.84**	5.0	535.3	38.5	0.368**
<i>И</i> . Г [*]	mean	73.2	142.0	0.81	5.1	/	/	/
$\mathbf{\Lambda}_m, \mathbf{I}$, S	std	1.3 (1.7%)	0.8 (0.5%)	0.22 (26%)	0.43 (8.7%)	0 (0%)	0 (0%)	0 (0%)
<i>V</i> Г*	mean	73.4	142.1	0.83	5.1	/	/	0.369
$\mathbf{\Lambda}_m, I$	std	1.6 (2.2%)	1.3 (0.9%)	0.28 (33%)	0.43 (8.7%)	0 (0%)	0 (0%)	0.0044 (1.2%)
V	mean	72.7	142.1	0.76	4.9	/	39.7	0.369
$\mathbf{\Lambda}_m$	std	6.5 (8.9%)	1.6 (1.2%)	0.60 (72%)	1.2 (23%)	0 (0%)	4.5 (12%)	0.0054 (1.5%)
	mean	75.4	142.2	0.84	5.2	551	/	0.369
\varGamma^*	std	9.5 (13.0%)	1.4 (1.0%)	0.30 (36%)	0.59 (12%)	77 (14%)	0 (0%)	0.0044 (1.2%)
/	mean	77.1	142.0	0.62	4.8	590	40.8	0.369
	std	10.3 (14.9%)	1.9 (1.4%)	0.87 (104%)	1.2 (24%)	112 (21%)	6.0 (16%)	0.0057 (1.6%)

Table 3. Standard deviations (std) of the marginal posterior distributions of estimated902parameters with synthetic concurrent A_n - C_i and Y(II)- C_i data under one saturating903light (1500 PPFD) and three low light levels (50, 100 and 200 PPFD) in Fig. 1A-D.904Bayesian estimation is applied to data with different low light (LL) measurements.905Data from Rep. No. 1 alone is also shown. All these estimations prefix K_m at the true906value used to generate the synthetic data. ** indicates parameter values with sample

907 variation.

In must data		V _{cmax}	J_{1500}	R_d	r_m	K_m	Γ^*	_
Input data		(µmol m ⁻² s ⁻¹)	(µmol m ⁻² s ⁻¹)	(µmol m ⁻² s ⁻¹)	(mol ⁻¹ m ² s bar)	(µbar)	(µbar)	8
	true	73.0**	142.3**	0.84**	5.0	535.3	38.5	0.368**
LL=50,	mean	73.0	142.2	0.80	5.0	/	39.3	0.369
100, 200	std	3.4 (4.7%)	0.7 (0.5%)	0.14 (16%)	0.72 (14%)	0 (0%)	2.0 (5.2%)	0.0044 (1.2%)
LL=50,	mean	72.5	142	0.80	4.9	/	39.6	0.369
100	std	3.8 (5.2%)	0.8 (0.6%)	0.15 (18%)	0.84 (17%)	0 (0%)	2.4 (6.3%)	0.0043 (1.2%)
LL=50,	mean	72.7	142.2	0.79	4.9	/	39.4	0.369
200	std	3.5 (4.8%)	0.8 (0.6%)	0.16 (19%)	0.75 (15%)	0 (0%)	2.2 (5.7%)	0.0042 (1.1%)
LL=100,	mean	72.5	142.2	0.76	4.9	/	39.6	0.369
200	std	4.1 (5.6%)	0.8 (0.6%)	0.23 (27%)	0.85 (17%)	0 (0%)	2.8 (7.2%)	0.0043 (1.2%)
LL_50	mean	72.4	142.2	0.79	4.8	/	39.6	0.369
LL=30	std	4.0 (5.4%)	0.9 (0.6%)	0.18 (21%)	0.90 (18%)	0 (0%)	2.7 (6.9%)	0.0041 (1.1%)
LL 100	mean	72.2	142.2	0.76	4.8	/	39.9	0.369
LL=100	std	4.5 (6.1%)	0.9 (0.6%)	0.25 (30%)	0.97 (19%)	0 (0%)	3.1 (8.1%)	0.0042 (1.1%)
11 200	mean	72.2	142.1	0.71	4.8	/	40.0	0.369
LL=200	std	5.2 (7.1%)	1.0 (0.7%)	0.40 (47%)	1.01 (20%)	0 (0%)	3.8 (9.7%)	0.0044 (1.2%)
Rep. No.1	true	74.2	144.3	0.83	5.0	535.3	38.5	0.361
& LL=50,	mean	73.7	144.0	0.85	4.8	/	38.8	0.361
100, 200	std	0.97 (1.3%)	0.3 (0.21%)	0.052 (6.3%)	0.23 (4.5%)	0 (0%)	0.7 (1.8%)	0.0010 (0.28%)

910 **Table 4.** Standard deviations of marginal posterior distributions of estimated 911 parameters with experimental concurrent A_n - C_i and Y(II)- C_i data under one saturating 912 light and three low light levels on rice leaves. Bayesian estimation is conducted with 913 data of all replicates and with data of each replicate. For all estimations, K_m is prefixed 914 at 427.7 µbar (von Caemmerer 2000).

Input exp.		V _{cmax}	J_{1500}	R_d	r_m	K_m	$\Gamma^*(uhar)$	
data		(µmol m ⁻² s ⁻¹)	(µmol m ⁻² s ⁻¹)	(µmol m ⁻² s ⁻¹)	(mol ⁻¹ m ² s bar)	(µbar)	1 (µbar)	S
11	mean	101.1	179.5	1.67	0.51	427.7	33.5	0.300
an reps.	std	5.0 (4.9%)	2.8 (1.6%)	0.39 (23%)	0.57 (81%)	0	2.7 (7.6%)	0.0060 (2.0%)
non No 1	mean	107.0	157.6	2.67	0.62	427.7	28.2	0.281
rep. No.1	std	8.6 (8.0%)	4.5 (2.9%)	0.64 (24%)	0.57 (92%)	0	3.7 (13%)	0.0090 (3.2%)
ron No 2	mean	109.6	196.9	2.71	0.60	427.7	35.7	0.305
rep. No.2	std	8.3 (7.5%)	6.3 (3.2%)	0.75 (28%)	0.56 (94%)	0	4.8 (13%)	0.011 (3.7%)
ran No 3	mean	101.6	168.8	1.24	1.05	427.7	32.1	0.308
rep. No.5	std	5.5 (5.4%)	1.5 (0.9%)	0.28 (23%)	0.46 (44%)	0	2.2 (6.9%)	0.0044 (1.4%)
rep. No.4	mean	110.9	187.7	1.78	1.03	427.7	31.1	0.296
	std	11 (9.9%)	3.3 (1.7%)	0.58 (33%)	0.76 (74%)	0	4.0 (13%)	0.0063 (2.1%)

916 Figures

917 Fig 1

Fig 1. Synthetic concurrent gas exchange (A, C) and chlorophyll fluorescence (B, D)
measurements under saturating light level, i.e. 1500 PPFD (A, B) and three low light
levels, i.e. 50, 100 and 200 PPFD (C, D). Red lines are predicted lines calculated from
true values. Error bars plot five replicates containing sample variation and systematic
error as described in Eqn. S1.

925 Fig 2

926

927 Fig 2. Bayesian estimation with A_n - C_i and Y(II)- C_i data in Fig. 1 A & B under

928 prefixed K_m , Γ^* and s.

929 (A) A_n - C_i observations and Bayesian estimation. Red lines and error bars here are 930 observations from Fig. 1 A. Grey regions are A_n - C_i curves calculated from the joint 931 posterior distribution. (B) Y(II)- C_i observations (red lines and error bars) and Bayesian 932 estimation (grey region). (C-F) Marginal posterior distributions of estimated parameters. 933 Grey regions are the marginal posterior distribution. Blue solid lines indicate best fitted

- 934 value by a simultaneous fitting algorithm. Red solid lines are the mean of the five
- 935 replicates (Eqn S2-S3).

936 Fig 3

938 Fig 3. Fitting vs Bayesian estimation of R_d and r_m .

939 Comparison between fitting method and Bayesian estimation with 100 random synthetic datasets. Both methods are conducted with K_m (A-H) or $K_m \& \Gamma^*$ (I-P) 940 prefixing at true values. (A, E, I & M) Estimated values from both methods versus true 941 values. Blue dots represent best fitted values, while red dots represent mean values of 942 943 estimated marginal posterior distributions. (B, F, J & N) Error of fitted values relative to the true values as percentage. (C, G, K & O) Standard deviations of estimated 944 945 marginal posterior distributions relative to the true values as percentage. (D, H, L & P) 946 z-scores of the true value against the marginal posterior distributions, which equals the

- 947 difference between the true value and the mean of distribution divided by the standard
- 948 deviation of the distribution.

Fig. 4: Sensitivity analysis of sample variation on parameter estimation. 951

952 Based on synthetic data in Fig. 1, data with different amounts of sample variation are 953 generated by scaling up the difference between photosynthetic parameters and true values in each replicate (Eqn 10 & 11). Each column of pixels represents a marginal 954 955 posterior distribution. The colour bar represents the probability density. White solid 956 lines represent the mean value of the marginal posterior distribution. White dashed lines 957 represent the standard deviation of the marginal posterior distributions. Red dashed 958 lines are the true values. For V_{cmax} , J, R_d , and s with sample variation, red dashed lines 959 actually represent the mean value of five replicates.

Fig. 5

963 Fig 5. Marginal posterior distributions estimated from experimental data on rice

leaves. Dashed lines in different colours represent the posterior distributions

- 965 estimated for each replicate. Grey regions represent the posterior distribution
- 966 estimated using the data from all the replicates.

970 Fig. 6

972 Fig 6. A_n - C_i and Y(II)- C_i curves predicted from Bayesian estimation with one

973 experimental replicate.

The data from replicate No. 3 (green dash lines in Fig. 5) is used for Bayesian estimation. Open circles represent A_n - C_i and Y(II)- C_i curves under saturating light. Blue asterisks, green squares and red crosses represent A_n - C_i and Y(II)- C_i curves under three different low light levels. Grey regions are A_n - C_i and Y(II)- C_i curves under saturating light calculated from the joint posterior distribution. Blue, green and red regions are A_n - C_i and Y(II)- C_i curves under three low light levels calculated from the joint posterior distributions.

981

971