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Abstract 22 

The Farquhar-von Caemmerer-Berry (FvCB) model is extensively used to model 23 

photosynthesis from gas exchange measurements. Since its publication, many methods 24 

have been developed to measure, or more accurately estimate, parameters of this model. 25 

Here we have created a tool that uses Bayesian statistics to fit photosynthetic parameters 26 

using concurrent gas exchange and chlorophyll fluorescence measurements whilst 27 

evaluating the reliability of the parameter estimation. We have tested this tool on 28 

synthetic data and experimental data from rice leaves. Our results indicate that reliable 29 

parameter estimation can be achieved whilst only keeping one parameter, Km, i.e., 30 

Michaelis constant for CO2 by Rubisco, prefixed. Additionally, we show that including 31 

detailed low CO2 measurements at low light levels increases reliability, and suggest this 32 

as a new standard measurement protocol. By providing an estimated distribution of 33 

parameter values, the tool can be used to evaluate the quality of data from gas exchange 34 

and chlorophyll fluorescence measurement protocols. Compared to earlier model fitting 35 

methods, the use of a Bayesian statistics-based tool minimises human interaction during 36 

fitting, reducing the subjectivity which is essential to most existing tools. A user friendly, 37 

interactive Bayesian tool script is provided. 38 

Key Words: leaf photosynthesis, parameter estimation, Bayesian statistics, mesophyll 39 

conductance 40 

Interactive Bayesian Tool: https://github.com/xiaoyizz78/FvCB-JAGS   41 

https://github.com/xiaoyizz78/FvCB-JAGS
https://github.com/xiaoyizz78/FvCB-JAGS
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Introduction 42 

Since its publication in 1980, the Farquhar-von Caemmerer-Berry (FvCB) model has 43 

been widely used to model leaf photosynthesis in C3 plants (Farquhar, von Caemmerer 44 

& Berry 1980, 2001; von Caemmerer 2013). By assuming leaf photosynthetic rate (An) 45 

(see Table 1 for definition of terms) is either limited by the Rubisco catalysed 46 

carboxylation rate or the regeneration rate of ribulose 1,5-bisphosphate (RuBP), the 47 

model derives an elegant and powerful expression of An in response to environmental 48 

CO2 conditions. Estimating the parameters in the model brings insight into the 49 

processes limiting photosynthetic gas exchange. Parameters such as Vcmax, Km and Γ* 50 

improve our understanding of photosynthetic limitations from Rubisco. Calculation of 51 

J allows an estimation of the conversion efficiency from light to RuBP regeneration, 52 

while gm can be used to quantify the diffusive resistance of CO2 from the substomatal 53 

cavity to the chloroplast stroma. Such modelling is crucial for a number of aspects of 54 

photosynthesis research including, for example, understanding acclimation or 55 

adaptation of photosynthesis to environmental change (e.g. Bernacchi et al., 2005), and 56 

the response of photosynthetic properties to targeted genetic manipulation (e.g. Simkin 57 

et al., 2015; Perveen et al., 2020). The accuracy of the estimations made via the FvCB 58 

model also inform many predictions in ecological studies where the FvCB model has 59 

been widely incorporated and used to predict instantaneous CO2 assimilation at the 60 

canopy level or integrated carbon assimilation over an entire growing season 61 

(Humphries & Long 1995; Wang et al. 2015; Golaz et al. 2019; Lawrence et al. 2019). 62 
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The challenges of parameterising the FvCB model 63 

Despite its widespread use, challenges remain in parameterising the model, and various 64 

analytical and numerical methods have been developed using data from gas exchange 65 

and/or chlorophyll fluorescence measurements (Harley, Loreto, Di Marco & Sharkey 66 

1992; Ethier & Livingston 2004; Ethier, Livingston, Harrison, Black & Moran 2006; 67 

Dubois, Fiscus, Booker, Flowers & Reid 2007; Sharkey, Bernacchi, Farquhar & 68 

Singsaas 2007; Yin & Struik 2009; Gu, Pallardy, Tu, Law & Wullschleger 2010; 69 

Bellasio, Beerling & Griffiths 2015; Sharkey 2016; Moualeu-Ngangue, Chen & Stützel 70 

2017). These methods differ in the measurements taken for parameter estimation, the 71 

assumptions made during estimation and the fitting strategies used. 72 

Basic models use only An-Ci curves as input data, with fixed Km and Γ* values, requiring 73 

input from the user on the limitation status for each data point, with many parameters, 74 

including Vcmax, J and gm, being fitted (Ethier & Livingston 2004; Ethier et al. 2006; 75 

Sharkey et al. 2007; Sharkey 2016). For a more complete estimation, concurrent 76 

measurements of Y(II)-Ci curves can be included in the parameter estimation (Bongi & 77 

Loreto 1989; Di Marco et al., 1990; Harley et al., 1992). Then the accuracy of parameter 78 

estimation is particularly affected by the method used to calculate J from measured 79 

Y(II). Harley et al. (1992) calibrated the calculation of J with concurrent measurement 80 

of An and Y(II) under non-photorespiratory conditions; this calibration, which requires 81 

additional measurements, was simplified in many subsequent studies (e.g. Bernacchi et 82 

al., 2002; Sun et al., 2014) with implicit assumptions. For example, although the leaf 83 
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light absorption coefficient α can be measured with an integrating sphere, the light 84 

partition coefficient β cannot, and is usually fixed at 0.5, i.e., assuming that PSI and 85 

PSII each receive half of the absorbed photons. When s (α multiplied by β) is measured, 86 

values range between 0.35 to 0.45 (Valentini et al. 1995) and 0.42 to 0.6 (Laisk & 87 

Loreto 1996), depending on the species investigated. 88 

To correct the assumptions made on values of s, Km and Γ*, Laisk et al. (2002, 2006) 89 

made additional measurements of the initial slopes of An-Ci and Y(II)-Ci under different 90 

O2 levels, followed by an iterative fitting strategy for the estimation of s, Km, Γ* and the 91 

estimation of Vcmax, J, and gm. Yin et al. (2009a, 2009b) developed an alternative 92 

strategy in which s, Km and Γ* were first estimated from concurrent An-Ci and Y(II)-Ci 93 

measurements at a low Ci range under both normal and low O2 levels. A regression 94 

method, similar to Dubois et al. (2007), was then applied to fit the concurrent An-Ci and 95 

Y(II)-Ci measurements under saturating light and normal O2, thus obtaining the 96 

remaining parameters, including Vcmax, gm and J. This pipeline was later incorporated 97 

into an Excel worksheet by Bellasio et al. (2015), where input data required both CO2 98 

response curves and light response curves from concurrent An-Ci and Y(II)-Ci 99 

measurements under both ambient and low oxygen levels. These more recent methods 100 

clearly improve model accuracy, but data collection becomes increasingly time-101 

consuming, limiting their widespread application. Finally, although it has long been 102 

recognized that the performance of these different methods is affected by the choices 103 

of fixed parameters and the different fitting strategies implemented (Manter & Kerrigan 104 
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2004; Miao, Xu, Lathrop & Wang 2009; Gu & Sun 2014), to date the reliability and 105 

robustness of parameter estimation of the FvCB model have not been systematically 106 

evaluated. 107 

The accuracy of parameter estimation can be tested using synthetic data. For example, 108 

Gu et al. (2010) generated An-Ci data without variation using the FvCB model and 109 

applied a parameter fitting technique, demonstrating that their method was able to 110 

predict an unbiased parameter estimation from error-free measurements. However, for 111 

data with sample variation or error, and for estimation with concurrent An-Ci and Y(II)-112 

Ci measurements, quantification of the accuracy and robustness of the parameter fitting 113 

of different methods has not been performed. 114 

The Bayesian Approach 115 

Bayesian estimation is a powerful statistical approach to address many of the issues 116 

described above. It uses prior (already known) data to create a series of possible 117 

estimations (the posterior), which in turn are used to shape future estimations. 118 

Comparing the variability within the estimated parameter range gives an indication of 119 

the reliability of the estimation. The popularity of Bayesian inference is linked to the 120 

Markov Chain Monte Carlo (MCMC) method, which provides an effective sampling 121 

strategy to approximate the posterior distribution (Gelfand & Smith 1990; Smith & 122 

Roberts 1993; Tierney & Mira 1999; Andrieu, de Freitas, Doucet & Jordan 2003), 123 

especially for models with small sets of parameters, such as the FvCB model. A 124 

Bayesian framework with MCMC methods has been applied successfully in many 125 
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fields (Clark & Gelfand 2006; Chen X., Rubin, Ma & Baldocchi 2008), and it has also 126 

been applied in large scale ecological studies which estimate photosynthetic parameters 127 

with An-Ci and/or An-I data collected from tens of species across a growing season 128 

(Patrick, Ogle & Tissue 2009; Feng & Dietze 2013; Han et al., 2020). Here we apply 129 

the Bayesian approach to the leaf-by-leaf photosynthetic parameter estimation with 130 

concurrent An-Ci and Y(II)-Ci measurements.   131 

In this study, each parameter of the FvCB model is initially constrained to a range of 132 

possible values represented by an a priori probability distribution, then Bayesian 133 

statistics are used to calculate the posterior probability of parameters based on the prior 134 

information, the observation, and a probability model of observation. We use synthetic 135 

concurrent An-Ci and Y(II)-Ci with 5 replicates, as well as experimental data from rice 136 

leaves, to test the performance of the new Bayesian estimation tool. In particular, using 137 

100 synthetic datasets of widely varied photosynthetic parameters, our tool is compared 138 

with a simple fitting method to highlight the ability of the new tool to calculate the 139 

reliability of the estimated parameters. In addition, we evaluate the trade-off between 140 

time-consuming measurements and the accuracy of parameter estimation, comparing 141 

estimation using only high light An-Ci and Y(II)-Ci data with estimation using additional 142 

low CO2 and low light data. Finally, we report on the number of parameters which must 143 

be known and fixed in order to give accurate estimations using the synthetic data. 144 

Testing the estimation technique with both synthetic and experimental data not only 145 

increases our understanding of how accurate the Bayesian estimation is (given that the 146 
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model is true), but also gives insight into how well the FvCB model reflects reality.  147 

The overall aim of the investigation is to establish a Bayesian framework to estimate 148 

parameter values, as well as to evaluate the robustness and reliability of parameter 149 

estimation of the FvCB model. Factors limiting the accuracy of estimation are identified. 150 

The tool is incorporated into an easy-to-use Bayesian parameter estimation script for 151 

use with concurrent An-Ci and Y(II)-Ci measurements. 152 

 153 

Computational Methods: 154 

The Farquhar-von Caemmerer-Berry model for CO2 assimilation rate and 155 

quantum efficiency of PSII 156 

An adapted version of the FvCB model is used, after von-Caemmerer (2000) and Gu et 157 

al., 2010 (Eqns 1-3). Leaf net photosynthesis rate (An) is modeled as the minimum of 158 

the Rubisco-limited carboxylation rate (Wc) and the ribulose 1,5-bisphosphate (RuBP) 159 

regeneration-limited carboxylation rate (Wj). To make the analysis of the relationship 160 

between Bayesian estimation and the model structure clearer, triose phosphate 161 

utilisation (TPU) limitation, which occurs in some plants (McClain & Sharkey, 2019), 162 

is not included here. Bayesian estimation of the FvCB model with TPU limitation is 163 

discussed in more detail later. 164 
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In practice, Cc cannot be measured directly. Instead, a response curve of An to 168 

intercellular CO2 concentration (Ci) is usually recorded. To model the An-Ci curve, 169 

mesophyll conductance (gm) is introduced to the FvCB model. 170 

 /c i mC C A g    Eqn 4 171 

Measured Y(II) based on chlorophyll fluorescence has a linear relationship with whole 172 

chain electron transport rate Jf.  173 

 ( ) ( )fJ I Y II I s Y II         Eqn 5 174 

where α is light absorption by PSI and PSII, β is the fraction of the incident irradiance 175 

(I) absorbed by PSII, s is α multiplied by β representing a combined effect of light 176 

absorption and partitioning. Here we are interested in the robustness and reliability of 177 

parameter estimation using the fewest possible model parameters, thus α·β is estimated 178 

as a whole and represented by s. We assume that true electron transport rate JA 179 

calculated from CO2 assimilation rate (Eqn 6) equals Jf. Therefore other synthetic 180 

processes which consume electrons, such as nitrate reduction, the Mehler reaction and 181 

malate-oxaloacetate shuttling (von Caemmerer 2000; Yin et al. 2009; Selinski & 182 

Scheibe 2019), contribute to the observed fluorescence signal and will be combined 183 

into an apparent s. 184 
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 Eqn 6 185 

To synthesise data under different light levels, a non-rectangular hyperbola light 186 
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response curve of potential electron transport rate J is adopted (Farquhar & Wong, 187 

1984), 188 

 ( )i LLJ I s Y II     Eqn 7 189 

 
2

max max max( ) ( ) 4

2
i i iJ J J J J J

J



   

   Eqn 8 190 

Where Y(II)LL is the initial slope of Y(II)-I·s curve, i.e. the maximum quantum efficiency 191 

of PSII under low light. θ is the curvature index of the J-I curve. 192 

Synthesise physiological measurements with sample variation and measurement 193 

errors 194 

Variance of observation (
( ) ( ),  ( )o o

n i iA Y II  ) in the synthetic data is modeled by sample 195 

variation and systematic error (Eqn 9, Fig. 1). Sample variation corresponds to the 196 

variance explained by error-free measurement of each replicate (
( ) ( ),  ( )s s

n i iA Y II ) used in 197 

the experiment, while systematic error (εA, εY) means the variance of data due to 198 

systematic or random factors other than biological variability, such as the accuracy of 199 

the Infra-Red Gas Analyser (IRGA), the measurement protocol or human operation. 200 
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  Eqn 9 201 

To generate the synthetic data used in this manuscript (Fig. 1, Fig. 3 & Fig. S4), error-202 

free observations
( ) ( )( ,  ( ) )s s

n i iA Y II  of the ith replicate are randomly generated from the 203 

FvCB model with slightly varied input parameters (Fig. S1).  204 
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( )

, , , , , , , , ,
( )

s

n i
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  Eqn 10 205 

For each replicate, we assume that Km, Γ* and gm are constant across all replicates, and 206 
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the remaining parameters X (including Vcmax, Jmax, Rd, s and Y(II)LL) are randomly 207 

generated from a generic (two-sided truncated) normal distribution.  208 

 ( ) ( , )i TruncNorm 
X

X X   Eqn 11 209 

The two-sided truncation here is to avoid randomly derived extreme values. Specifically, 210 

standard deviation (σx) of the normal distribution of any variable x is equal to 5% of its 211 

mean value (μx), then the intervals of truncation are all equal to (μx-2σx, μx+2σx), i.e. 212 

outliers smaller than μx-2σx or larger than μx+2σx will be discarded. 213 

Systematic error of An and Y(II) measurements are also generated from generic (two-214 

sided truncated) normal distributions, considering that outliers of measurements will be 215 

excluded in practice. The standard deviation of each An measurement (σε_A) is assumed 216 

as 0.1 μmol m-2 s-1 and the standard deviation of each Y(II) measurement (σε_Y) is 217 

assumed as 0.01. The intervals of truncation for error of both An and Y(II) measurements 218 

are from -3σ to 3σ. 219 

 
_~ (0, )A ATruncNorm     Eqn 12 220 

 
_~ (0, )Y YTruncNorm     Eqn 13 221 

It is worth mentioning that although different replicates have varied Vcmax, Jmax, Rd, s 222 

and Y(II)LL, the purpose of parameter estimation is still to estimate one representative 223 

value for each parameter. With a limited number of replicates, the mean values of 224 

replicates will likely bias from the mean of generic normal distributions. Here in this 225 

paper, we are not going to discuss this layer of biases, therefore the results of Bayesian 226 

estimation and traditional fitting are all compared with the mean values of 227 
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photosynthetic parameters of all replicates. 228 

Probability model of physiological measurements and Bayesian estimation 229 

Bayesian theorem (Eqn 14) calculates the joint posterior distribution based on the 230 

likelihood of observations and prior information. This equation estimates An and Y(II) 231 

observations with replicates. Some parameters are prefixed during estimation, with X 232 

representing the remaining parameters.  233 

 ( ) ( ) ( ) ( )( | , ( ) ) ( , ( ) | ) ( )o o o o

n i i n i ip A Y II p A Y II pX X X   Eqn 14 234 

The Markov Chain Monte Carlo (MCMC) method is used to approximate this joint 235 

posterior distribution numerically. Its calculation requires a process model describing 236 

the observations, equations of the likelihood of observations, and prior distributions of 237 

estimated parameters.  238 

The process model for both the An-Ci and Y(II)-Ci data used in this study is the FvCB 239 

model described above. The likelihood of measured An-Ci and Y(II)-Ci data is calculated 240 

based on the likelihood of each observation. We assumed that An and Y(II) signals can 241 

be described by a normal distribution. Thus for the ith observation (i = 1, 2,…, N): 242 

 ( )( ) _~ Normal( , )o
n in i obs AA A    Eqn 15 243 

 ( ) ( ) _( ) ~ Normal( ( ) , )o

i i obs YY II Y II    Eqn 16 244 

where ( )n iA  and ( )( ) iY II  are the error-free mean values of An and Y(II) signals, and245 

_obs A  and _obs Y  are the standard deviations describing variability of observations.  246 

A uniform distribution was set as the prior for each parameter in the FvCB model for 247 

the Bayesian estimation. Vcmax ranged from 10 to 200 μmol m-2 s-1, J was from 20 to 248 



 13 

400 μmol m-2 s-1, Rd was from -5 to 5 μmol m-2 s-1, Km was from 100 to 1000 μbar, Γ* 249 

was from 10 to 50 μbar, gm was from 0.02 to 50 mol m-2 s-1 bar-1, and s was from 0.2 to 250 

0.8. rm is the reciprocal of gm (rm = 1/gm) and as such is restricted between 0.02 and 50 251 

mol-1 m2 s bar. Using such relatively large ranges as prior allows the convergence of 252 

Bayesian estimation, whilst ensuring that the estimated joint posterior distribution is 253 

not influenced by these prior distributions. The MCMC method is implemented in a 254 

software package JAGS (Just Another Gibbs Sampler, Plummer 2003). The rationale 255 

of the MCMC method is to construct a series of sampling points in the parameter space, 256 

where each sampling point is an array of possible values for the estimated parameters. 257 

A Markov chain is constructed where the next sampling point is dependent on the 258 

current sampling point and a transition probability. Three parallel MCMC chains are 259 

run for 20,000 iterations each, and the Gelman-Rubin convergence diagnostic (Gelman 260 

& Rubin 1992) is used to check the convergence of the MCMC algorithm, i.e. all 261 

potential scale reduction factor (Rhat) values from JAGS are smaller than 1.1. This is 262 

an indicator of the reliability of the estimation technique. The first 10,000 samples are 263 

discarded as burn-in samples and the remaining 10,000 samples are used to approximate 264 

the joint posterior distribution. 265 

The Bayesian estimation is coded in R. The script is open-source and implemented 266 

through a web-based interactive platform, Jupyter Notebook. The details of the fitting 267 

method used for comparison with the Bayesian estimation can be found in the 268 

Supplementary Methods. 269 
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Experimental Methods: 270 

Plant material and growth conditions 271 

Rice (Oryza sativa var. indica; IR64) plants were grown in a controlled growth chamber 272 

(Controlled Environments Ltd, Winnipeg, MB, Canada) at 1000 µmol m−2 s−1 273 

photosynthetic photon flux density (PPFD), with a 12-h/12-h light/dark cycle, ambient 274 

CO2 (410-420ppm), 60% humidity and a day/night temperature of 28/24°C. Seeds were 275 

germinated on filter paper with 15 ml water, and seedlings transferred after 7 days to 276 

13D pots (0.88 l) filled with 71% Kettering Loam (Boughton, UK), 23.5% Vitax John 277 

Innes No. 3 (Leicester, UK), 5% silica sand and 0.5% Osmocote Extract Standard 5–6 278 

month slow‐release fertilizer (ICL, Ipswich, UK) by volume, saturated with water.  279 

Gas exchange and chlorophyll fluorescence measurements 280 

Gas exchange and chlorophyll fluorescence were measured simultaneously on the fully 281 

expanded 6th true leaf of 28-day old plants using a Licor 6800 (LI-COR Inc., Lincoln, 282 

NE, USA) and attached Multiphase Flash Fluorometer (6800-01A). For each replicate, 283 

the leaf remained in the IRGA chamber for the duration of all high light and low light 284 

curves. Relative humidity was maintained at c. 60% with the chamber flow rate set at 285 

300 μmol s−1 and leaf temperature set at 28°C. For An-Ci curves, saturating PPFD was 286 

held at 2000 μmol m−2 s−1 and the following [CO2]ref were used: 500, 350, 200, 110, 80, 287 

60, 30, 500, 700, 900, 1100, 1300, 1500 ppm. Leaves were held at each [CO2] for a 288 

minimum and maximum of 90 and 180 seconds for the first 7 [CO2] and 180-300 289 

seconds for the last 5 [CO2]. For the 8th [CO2], leaves were held until stable. IRGAs 290 
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were matched at every [CO2]. Low light curves were performed without unclipping the 291 

leaf, under 3 different PPFD levels, 300, 200 and 100 μmol m−2s−1. All of the low light 292 

curves used the following [CO2]ref: 110, 90, 80, 70, 50, 30 ppm. Leaves were held at 293 

each [CO2] for a minimum and maximum of 90 and 180 seconds. The fluorometer was 294 

set to measure Fs Fm' Fo', with a light mod rate of 50kHz, flash mod rate of 250kHz, 295 

and flash type: Multiphase.  296 

 297 

Results 298 

Bayesian estimation to evaluate the uncertainty of parameter estimation 299 

Having created a new photosynthetic metabolism parameter estimation tool using 300 

concurrent An-Ci and Y(II)-Ci data (described in Methods and implemented through 301 

Jupyter Notebook (https://github.com/xiaoyizz78/FvCB-JAGS)), we proceeded to 302 

analyse the uncertainty under different input data and different prefixed parameters 303 

during estimation. In particular, we compared the Bayesian estimation method with a 304 

traditional fitting method developed using the Levenberg-Marquardt algorithm (see 305 

Supplementary Methods for details on the fitting method).  306 

We first used synthetic input data to explore the model. Thus, An-Ci (Fig. 1 A) and Y(II)-307 

Ci (Fig. 1 B) curves under saturating irradiance were created from a set of synthetic 308 

data, with inbuilt sample variation and systematic error such as that caused by machine 309 

or human operation during measurement. Data was also synthesised at low CO2 and 310 

low light levels (Fig. 1 C, D). For these curves, the joint posterior distribution 311 

https://github.com/xiaoyizz78/FvCB-JAGS
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calculated from Bayesian estimation was approximated by 3 MCMC chains and 10000 312 

sampling points for each chain. Each point thus represents an array of possible 313 

estimated parameters, creating an estimate of the “true” An-Ci and Y(II)-Ci curves. We 314 

then used the synthetic data to test the effect of fixing different parameters during 315 

Bayesian estimation.  316 

With Km, Γ* and s prefixed at their true values, Bayesian estimation was applied to the 317 

synthetic concurrent An-Ci and Y(II)-Ci data under saturating light (Fig. 2 A-B). The 318 

marginal posterior distribution of each estimated parameter is shown by the grey 319 

regions in Fig. 2 C-F. As can be seen, both the best fitted values and the mode of 320 

distribution (or the value with the highest probability) of Vcmax, J1500, Rd and rm are very 321 

close to the true values. Grey regions in Fig. 2 A-B show An-Ci and Y(II)-Ci curves 322 

predicted based on the joint posterior distribution. These predicted An-Ci and Y(II)-Ci 323 

curves only vary within a very small range compared to the synthetic observations with 324 

error (red line with error bars). This seems counterintuitive to the deviation of estimated 325 

Vcmax, J, Rd and rm (Fig. 2 C-F). However, it is worth mentioning here that estimated 326 

parameters are not necessarily independent, as shown by the bivariate marginal 327 

distributions (Fig. S2).  328 

The standard deviation (std) of the marginal posterior distribution based on 30,000 329 

sampling points gives an indication of the accuracy of the estimation for each estimated 330 

parameter (Table 2). Vcmax and J1500 reach a high precision when the Km, Γ* and s values 331 

are pre-fixed, as shown by the small std values (within 2% of the true value). For Rd 332 
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and rm, std values are equal to 0.22 μmol m-2 s-1 and 0.43 mol-1 m2 s bar respectively, 333 

which is 26% and 8.7% relative to the true values (Table 2). 334 

Bayesian estimation was also applied to the same synthetic data with different prefixed 335 

parameters, with the stds of the marginal posterior distributions listed in Table 2. We 336 

found that if we loosened the constraint of s while still keeping the prefixed Km and Γ* 337 

at the true values, std of estimated s was still reasonable (1.2% relative to its true value) 338 

with little change in the stds of the other estimated parameters. However, if we further 339 

loosened the constraints of Γ* and/or Km, much larger stds were observed (Table 2). 340 

It seems that the synthetic An-Ci and Y(II)-Ci data cannot support the identifiability of 341 

all photosynthetic parameters in the FvCB model (a model is identifiable if it is 342 

theoretically possible to learn the true values of this model's underlying parameters after 343 

obtaining an infinite number of observations from it). This identifiability issue of 344 

parameter estimation is not evident from the fitted An-Ci curve, where fitness is usually 345 

the focus rather than uncertainty of fitted values. Taking the scenario with no prefixed 346 

values as an example, we found that the corresponding An-Ci curves calculated based 347 

on the joint posterior distribution also fit the An-Ci curve well. However, the best 348 

estimated values are strongly biased from the true values (Table 2, Fig. S3).  349 

 350 

Bayesian estimation, verified with synthetic data with inbuilt error, provides an 351 

uncertainty analysis which is unavailable in traditional fitting methods  352 

It is a good practice to verify new methods of parameter estimation with synthetic data. 353 
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Therefore, we further tested the Bayesian estimation on more synthetic datasets with 354 

inbuilt error, and compared the estimation with fitting using a traditional method. Thus, 355 

having characterised the model with the synthetic dataset described in Fig. 1, we 356 

synthesised a further 100 datasets with varying photosynthetic parameters to mimic the 357 

natural variation and systematic error in biological data. In each dataset, concurrent An-358 

Ci and Y(II)-Ci measurements similar to Fig. 1 A, B were generated. We then compared 359 

the performance of the Bayesian estimation with a fitting method (Dubois et al. 2007; 360 

Supplementary Methods).  361 

In the initial comparison, we kept only Km prefixed at the true values and focused on Rd  362 

(Fig. 3 A-D) and rm (Fig. 3 E-H) as they are the most difficult parameters to fit or 363 

estimate (other estimated parameters - Fig. S4 A-P). Significant biases to the true values 364 

of Rd and rm were observed for both the traditional fitting method and Bayesian 365 

estimation (Fig. 3 A-B, E-F). When the true values for these parameters were very small, 366 

the best fitted values for these parameters were particularly inaccurate, with bias from 367 

the true value as high as 100% to 160% (Fig. 3 C-D, G-H). The Bayesian estimation 368 

method also showed a high deviation at low true values (up to 350% and 100% for Rd 369 

and rm, respectively), and the accuracy of estimation dramatically improved as the true 370 

value of Rd and rm increased (Fig. 3 C, G). The z-score of the true values, measured in 371 

terms of standard deviations from the mean, was within 1.5 standard deviations of the 372 

mean of the posterior distribution across the range of true values (Fig. 3 D, H), implying 373 

that the value estimated by the Bayesian method is highly related to the true value. The 374 
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remaining parameters were more accurately fitted and estimated than Rd and rm (Fig. 375 

S4 A-P). 376 

When both Km and Γ* were prefixed in the traditional fitting and Bayesian estimation, 377 

the best fitted values and the mean of the marginal posterior distribution were much 378 

less biased from the true values, both for Rd and rm (Fig. 3 I-L, M-P) and the other 379 

parameters estimated (Fig. S4 Q-AB). Indeed, fitted values for Vcmax, J and s were less 380 

than 1% biased relative to the true values (Fig. S4 R, V & Z). Overall, the stds of 381 

posterior distributions from Bayesian estimation with Km and Γ* prefixed were much 382 

smaller than the results with only Km prefixed (Fig. 3 and Fig. S4), with Z-scores of 383 

true values lying mostly within -0.5 and 0.5 (Fig. 3 L&P, Fig. S4 T, X&AB). Parameter 384 

estimation is often very sensitive to biological variation and error in data collection. 385 

The uncertainty analysis provided by std values in the Bayesian estimation tool allows 386 

quantification of this sensitivity, a capacity that is lacking in traditional fitting methods. 387 

 388 

Including additional concurrent An-Ci and Y(II)-Ci measurements at low CO2 and 389 

light levels improves estimation of photosynthetic parameters 390 

Inspired by Laisk’s method for the estimation of Γ* and Rd (Laisk, 1977; Brooks & 391 

Farquhar, 1985) and to improve the parameter estimation (especially of Rd and rm), we 392 

synthesised additional detailed low CO2 concurrent An-Ci and Y(II)-Ci curves under 393 

three different low light levels based on the FvCB model (Fig. 1 C-D) for each 394 

replication. Bayesian estimation can deal with data from different signals and 395 
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conditions to calculate the joint posterior distribution (Table 3). With Km prefixed at its 396 

true value, these additional low light measurements improved the identifiability of Γ*. 397 

Moreover, they decreased the variability of estimated Rd and rm from 72% and 23% of 398 

the true value to much smaller ranges (16% and 14%, respectively) (Table 2, Table 3). 399 

Although these additional low light, low CO2 experimental measurements improved 400 

parameter estimation, they are time consuming and rely heavily on the stability of the 401 

instrument. It also involves having the leaf clamped in the IRGA chamber for a long 402 

time, potentially causing stress to the plant. Therefore, we explored the reliability of 403 

Bayesian estimation using fewer low light measurements (Table 3). The results showed 404 

that parameter estimation using data from low CO2 curves at two low light levels gave 405 

an estimation of similar accuracy to that obtained using three low light levels. 406 

Specifically, the combination of light at PPFD of 50 & 200 mol m-2 s-1 performs better 407 

than the combination of 50 & 100 mol m-2 s-1 or 100 & 200 mol m-2 s-1. With 100 & 408 

200 mol m-2 s-1 as low light levels, the std of Rd increases from 16% of its true value 409 

(data from three low light curves) to 27%. With only the lowest light level, 50 mol m-410 

2 s-1, in combination with the high light An-Ci and Y(II)-Ci data, estimation of Rd is 411 

actually more accurate, with a std of 21%, but using only 100 mol m-2 s-1or 200 mol 412 

m-2 s-1 increases the std of the estimated parameters further (Table 3).  413 

 414 

Sensitivity analysis of error in the synthetic data with prefixed parameters 415 

There are two different types of error modelled in the synthetic data, which include 416 
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sample variation and systematic error (see Methods for more details). We conducted a 417 

sensitivity analysis of the effect of sample variation in the synthetic concurrent An-Ci 418 

and Y(II)-Ci data (with Km prefixed at its true value) on the accuracy of parameter 419 

estimation. Synthetic data with different levels of sample variation were generated by 420 

scaling up the difference of photosynthetic parameters to the true values in each 421 

replicate (Eqn 10 & 11). Bayesian estimation was then conducted on this data (Fig. 4). 422 

For a given scale factor, new photosynthetic parameters Xi of ith replicate were 423 

calculated from the original Xi by scaling the deviation (Eqn. 10 & 11). The marginal 424 

posterior distribution is plotted as a column of pixels in Fig. 4, with different colours 425 

representing the probability density. The lower the scale factor of sample variation, the 426 

closer the approximations of different replicates are to the true values. As can be seen 427 

in Fig. 4, stds of the marginal posterior distribution increase linearly with increasing 428 

scale factor of sample variability, however, the mean value of the marginal posterior 429 

distribution approximated the true value at all levels of variability. Using data without 430 

sample variation (represented by a single replicate; Rep No.1 of the synthetic 431 

concurrent An-Ci and Y(II)-Ci data from Fig. 1) as input observations to Bayesian 432 

estimation dramatically decreased the stds of all estimated parameters (Table 3). 433 

As we have shown, parameter identifiability by Bayesian estimation is only possible 434 

with a prefixed Km value. We therefore conducted a sensitivity analysis on the effect of 435 

decreasing and increasing the prefixed Km value by 50% from its true value (Fig. S5). 436 

The estimated marginal posterior distribution of Vcmax was very sensitive to the prefixed 437 
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value of Km. The other parameters were less sensitive, with good parameter 438 

identifiability, especially with Km values prefixed higher than the true value (Fig. S5). 439 

We also tested the effect of systematic error on the accuracy of parameter estimation. 440 

Here only synthetic data of replicate No.1 were used and its systematic error was 441 

manually controlled (εA and εY in Eqn 9). For a given scale factor, new observations of 442 

replicate No.1 were calculated from default observation by scaling the deviation εA and 443 

εY in Eqn 9. Results of the Bayesian estimation showed that stds of the marginal 444 

posterior distributions increased linearly with increased systematic error (Fig. S6). 445 

 446 

Parameter estimation with experimental data from rice leaves under several light 447 

levels 448 

To further characterise the utility of the Bayesian tool for photosynthetic parameter 449 

estimation, experimental datasets comprising concurrent An-Ci and Y(II)-Ci 450 

measurements under several light levels were taken from rice leaves from four 451 

independent plants (Experimental Dataset available on 452 

https://github.com/xiaoyizz78/FvCB-JAGS; replicates are numbered from 1 to 4). 453 

Bayesian estimation was conducted with data for each of the four replicates separately 454 

and with all data combined. The marginal posterior distributions of each estimated 455 

parameter from these five scenarios showed different values and probabilities of each 456 

peak, suggesting that these different replicates result in different levels of estimation 457 

uncertainty (Fig. 5). The corresponding means and stds are shown in Table 4. 458 

https://github.com/xiaoyizz78/FvCB-JAGS
https://github.com/xiaoyizz78/FvCB-JAGS
https://github.com/xiaoyizz78/FvCB-JAGS
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Estimation using data from sample No. 3 consistently had the smallest stds of all of the 459 

individual datasets, while parameter values estimated from sample No. 4 were generally 460 

closer to that estimated from analysis of the combined datasets. Bayesian estimation 461 

with the combined datasets showed a higher accuracy than most individual estimations, 462 

with the exception of sample No. 3. Fig. 6 shows the Bayesian estimation for sample 463 

No. 3 calculated from the joint posterior distributions (see Fig. S7-9 for the remaining 464 

three replicates). The curves under saturating light (Fig. 6 A,B) showed less bias than 465 

the curves at the three low light levels (Fig. 6 C,D), possibly reflecting the use of normal 466 

distributions in the error term of the probability model during Bayesian estimation (Eqn 467 

15&16). Interestingly, the Y(II)-Ci data showed a slight discrepancy between measured 468 

values and estimation (panel D in Fig. 6, Fig. S7-S9), with measured values going up 469 

with increasing Ci but estimated values remaining level. 470 

 471 

Discussion 472 

Most methods developed for parameter estimation of the Farquhar-von Caemmerer-473 

Berry model lack evaluation of robustness and reliability of the estimated parameters. 474 

In this paper, we report a Bayesian parameter estimation framework which not only 475 

estimates the photosynthetic parameters of the FvCB model, but also gives the standard 476 

deviation of the parameters, which represents their robustness and reliability. Using 477 

synthetic concurrent An-Ci and Y(II)-Ci measurements at high light, we show that 478 

multiple prefixed parameters are needed to enable accurate estimation of the parameter 479 
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mean and to estimate the standard deviation. We dramatically improved the accuracy 480 

of prediction of the mean and decreased the std of the estimated parameters by including 481 

additional detailed low CO2 concurrent An-Ci and Y(II)-Ci measurements under low 482 

light, keeping only Km prefixed.  483 

Sensitivity analysis showed that sample variation and systematic error (from human 484 

mistakes or technical issues) are the major limits to the accuracy of parameter 485 

estimation. We have shown that using the correct prefixed value for Km is crucial to 486 

robust estimations. We have tested these ideas and the Bayesian framework in planta, 487 

on rice leaves, with the corresponding pipeline of Bayesian estimation provided as a 488 

user-friendly interactive script in Jupyter Notebook (see supplementary code or 489 

https://github.com/xiaoyizz78/FvCB-JAGS). 490 

 491 

Bayesian estimation enables objective evaluation of robustness and reliability of 492 

the estimated parameters 493 

The performance of various methods of photosynthetic parameter estimation is usually 494 

evaluated by r2 of the fitted values or the sum of squared error between observation and 495 

prediction. However, an r2 close to 1 or a predicted curve very close to the observation 496 

does not necessarily imply that the estimated values are accurate. This is evident in our 497 

Bayesian estimation with the synthetic An-Ci and Y(II)-Ci data under saturating light in 498 

Fig. 1 A & B. Even with no parameters prefixed, the predicted An-Ci curve appears to 499 

be very close to the true curve (Fig. S3 A). However, the parameter estimations are 500 

https://github.com/xiaoyizz78/FvCB-JAGS
https://github.com/xiaoyizz78/FvCB-JAGS
https://github.com/xiaoyizz78/FvCB-JAGS
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clearly biased from the true values, as shown by the posterior distributions and 501 

difference between the true value and the mode of the posterior distribution (Table 2, 502 

Fig. S3 C-I). Extending this parameter estimation to 100 synthetic datasets, comparison 503 

of a traditional fitting method and our Bayesian estimation confirmed that while neither 504 

method can accurately estimate the parameter values without sufficient prefixed 505 

parameters (Fig. 3 A-H, Fig. S4 A-P), the Bayesian framework is able to accurately 506 

estimate the reliability of parameters through the posterior distributions.  507 

 508 

Factors influencing identifiability and accuracy of parameter estimation of FvCB 509 

model 510 

Accuracy of parameter estimation is generally affected by how well the model reflects 511 

the observations, the calibre of the data, and the quality of the estimation assuming the 512 

model to be perfect. We analysed factors influencing the accuracy of current 513 

photosynthetic parameter estimation with the FvCB model using synthetic datasets. 514 

First, for given synthesised measurements, reasonable prefixed parameters are required 515 

to estimate the remaining parameters in the FvCB model (Table 2 & 3). We have shown 516 

that identifiability of photosynthetic parameters from saturating light An-Ci and Y(II)-517 

Ci data is only possible if Km and Γ* are prefixed at their true value (Table 2). With 518 

concurrent An-Ci and Y(II)-Ci data under saturating light, and additional focused low 519 

CO2 data from multiple low light levels, a comparable accuracy of parameter estimation 520 

is achieved, with only Km needing to be prefixed (Table 3).  521 
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Secondly, we have shown that bias in these prefixed parameters also affects the 522 

parameter estimation. To obtain an accurate parameter estimation using all of the 523 

synthetic measurements in Fig. 1, Km needs to be prefixed. Without a known Km, 524 

sensitivity analysis of prefixed Km values demonstrated that Vcmax estimation is very 525 

sensitive to a biased prefixed Km, while J, Rd and Γ* are much less sensitive (Fig. S6). 526 

Technically, in vivo determinations of Km should be done with transgenic plants with 527 

decreased amounts of Rubisco (von Caemmerer et al., 1994). A small number of 528 

measurements from one location on a normal leaf, where only a fraction of the An-Ci 529 

curve is Rubisco-limited, is not sufficient to support the estimation of Km.  530 

Thirdly, we show that the accuracy of parameter estimation in the FvCB model was 531 

greatly affected by sample variation and systematic error in the data. Sample variation 532 

is especially poorly acknowledged in many previous studies. In practice, errors due to 533 

sample variation are inevitable, given the heterogeneity existing among biological 534 

replicates and even at different positions along the same leaf (Chen C.P., Zhu & Long 535 

2008; Xiong et al. 2015). Among all the photosynthetic parameters, Rd and rm are most 536 

sensitive to these errors in the data. If Bayesian estimation is applied to one synthetic 537 

replicate (data with no sample variation) instead of all replicates, the std of the estimated 538 

Rd decreased from 16% to 6.3% relative to the true value, while the std of the estimated 539 

rm decreased from 14% to 4.5% relative to the true value (Table 3). These remaining 540 

stds (6.3% and 4.5%) are still large considering the fact that the systematic error of the 541 

An signal and the Y(II) signal was very small in the synthetic data (σε_A = 0.1 μmol m-2 542 
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s-1 and σε_Y = 0.01 in Eqn. 15 & 16). Previously, Gu et al. (2010) showed that their 543 

optimum fitting method predicts unbiased photosynthetic parameters using completely 544 

error-free synthetic An-Ci data. Our sensitivity analysis of the sample variation (Fig. 4) 545 

and systematic error (Fig. S6) leads to a similar conclusion, i.e., that with a decrease of 546 

both types of error, marginal posterior distributions converge to the true values. The 547 

high sensitivity of estimation of Rd and rm to these errors is a property of the structure 548 

of the FvCB model.  549 

 550 

Evaluating the quality of experimental data and the experimental protocols 551 

Using the std values as an indicator of estimation accuracy, it is possible to use the 552 

Bayesian tool to instantly analyse data quality. With the above analysis, concurrent 553 

measurements of An-Ci and Y(II)-Ci under high light and three low light levels were 554 

conducted on rice leaves (Fig. 5) with four replicates. It is possible to compare the stds 555 

of parameters from each replication to assess whether the data is robust. The range of 556 

stds in the above data, where Bayesian estimation with the combined dataset led to 557 

smaller predicted stds for all estimated parameters compared with estimation using data 558 

from individual samples No.1, 2 or 4 (Fig. 5, Table 4), but using only data from sample 559 

No.3 led to smaller stds for all estimated parameters than with combined data, 560 

demonstrates this potential (Table 4, Supplementary code). 561 

Since this Bayesian approach can be used to estimate parameters from a single sample 562 

and provide an estimate of the confidence interval, our Bayesian tool also allows for 563 
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rapid assessment of protocol quality. There are many options in Infra-Red Gas Analysis 564 

that can be varied during data collection for An-Ci and Y(II)-Ci curves, such as the 565 

number and spacing of [CO2]ref values in the curves, maximum and minimum wait 566 

times for stability at each [CO2]ref point, and low light levels used. This capacity of the 567 

tool can be used in the initial planning stages of an experiment, which could potentially 568 

eliminate many time-consuming and unnecessary measurements.  569 

 570 

Using Bayesian statistics to quantify more accurate respiration and mesophyll 571 

conductance in planta 572 

The Bayesian estimation with data from the “best” biological sample in our analysis 573 

had a standard deviation of the marginal posterior distribution of estimated rm equal to 574 

0.46 mol m-2 s-1 bar-1, which is about 44% of the mean value (Table 4). This uncertainty 575 

is much larger than that predicted using the synthetic data (Table 3), where estimation 576 

of rm from one replicate has a std of 0.23 mol m-2 s-1 bar-1 (4.5% of the mean). As we 577 

discussed above, systematic error is part of the reason for this difference. Meanwhile, 578 

biological systems tend to be inherently complex and noisy, which cannot be fully 579 

represented by the simplified model used to synthesise this data. For example, rm 580 

potentially varies in a real leaf under different light or CO2 levels, variation of which is 581 

embedded in the measurements and estimation (Flexas et al. 2007; Tholen & Zhu 2011; 582 

Tholen, Ethier, Genty, Pepin & Zhu 2012; Tholen, Éthier & Genty 2014; Evans & von 583 

Caemmerer 2013; Xiao & Zhu 2017).  584 
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From the An-Ci and Y(II)-Ci curves calculated based on posterior distribution, the FvCB 585 

model with a constant rm generally fitted well with the experimental data (Fig. 6, Fig. 586 

S7-S9). However, an interesting observation from using the experimental data for 587 

Bayesian estimation is an apparent mismatch between predicted and measured Y(II)-Ci 588 

curves under low light (panel D in Fig. 6, Fig. S7-S9). Specifically, the measured Y(II)-589 

Ci curves under low light showed a slight trend to increase with Ci, while the FvCB 590 

model predicted a constant Y(II) under different Ci. As we use the variable J method for 591 

calculating rm, this discrepancy is most likely attributed to a varying rm (Flexas et al. 592 

2007; Tholen & Zhu 2011; Tholen, Ethier, Genty, Pepin & Zhu 2012; Tholen, Éthier & 593 

Genty 2014; Evans & von Caemmerer 2013; Xiao & Zhu 2017). However, there are 594 

several additional factors or processes related to this mismatch: 1) a varying Vcmax due 595 

to activation of Rubisco under low light (von Caemmerer & Edmondson 1986); 2) a 596 

larger Rd under low light due to the Kok effect (Kok 1948, 1956; Hoch, Owens & Kok 597 

1963); 3) a varying s due to change of cyclic or alternative electron transport in the 598 

whole electron transport chain (Yin et al. 2004, 2009b); 4) a varying expression of 4Cc 599 

+ 8Γ* in Eqn. 3 due to RuBP regeneration being limited by insufficient NADPH or by 600 

insufficient ATP (von Caemmerer 2000); 5) a varying Γ* due to competition of electron 601 

flow from nitrogen fixation with carboxylation and photorespiration (Busch, Sage & 602 

Farquhar 2018). 603 

Together, these six factors are pertinent when dissecting factors underlying the slight 604 

increasing trend of low light Y(II)-Ci curves (Fig. 6 D, Fig. S7-S9). Practically, from 605 
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the perspective of Bayesian estimation, an accurate quantification of the varying rm 606 

would require extending the current FvCB model or developing new models to include 607 

these factors, both of which have been attempted a number of times (e.g. Yin et al. 2004, 608 

2009b; Tholen et al. 2012; Busch et al. 2018). At the same time, it would also require 609 

that variables representing these factors or processes are identifiable from experimental 610 

data, which could be evaluated by using the same Bayesian statistical framework.  611 

 612 

A generic framework of uncertainty evaluation for estimating photosynthetic 613 

parameters with various physiological measurements and models 614 

In this paper, the identifiability issue and accuracy of parameter estimation shown in 615 

the analysis is limited by the FvCB model used (Eqns 1-5) and corresponding 616 

physiological measurements taken. However, many variants of the FvCB model and 617 

various related experimental protocols have been developed during the past decades. 618 

For example, measurements under low oxygen achieve a non-photorespiratory 619 

condition under which Γ* and Rd are better estimated compared to Laisk’s method 620 

(Laisk et al. 2002, 2006; Yin et al. 2009b, 2011; Bellasio et al. 2015). In addition to 621 

Rubisco and RuBP regeneration, photosynthesis can be limited by triose phosphate 622 

utilisation (TPU) in many species (McClain and Sharkey, 2019). Our measured An-Ci 623 

and Y(II)-Ci curves in rice also seems to show a decreasing trend especially under high 624 

Ci (Panel A,B in Fig. 6, Fig. S7-S9) which implies potential TPU limitation, this is not 625 

reflected in the estimated data. An alternative process model could be used to better 626 



 31 

incorporate TPU limitation, perhaps improving the identifiability of the model 627 

parameters. The number of data points falling within the range of Ci whereby this 628 

limitation is relevant would also need to be increased. The Bayesian statistics shown in 629 

our study would still apply to scenarios such as this with different physiological 630 

measurements and different variants of the FvCB model.  631 

When comparing the performance of multiple identifiable models, in Bayesian statistics, 632 

information criterion is calculated for each model based on the posterior distribution 633 

approximated by MCMC, quantifying the likelihood of a model with penalty to its 634 

complexity, i.e. number of parameters. There are several information criteria proposed 635 

(Gelman, Hwang & Vehtari, 2014), such as AIC (Akaike information criterion), DIC 636 

(deviance information criterion) and WAIC (Watanabe-Akaike information criterion), 637 

among which DIC is computed by default in the software JAGS used here (Plummer, 638 

2003). Alternative code, for other scenarios with different experimental measurements 639 

or models is available in the Jupyter Notebook. 640 

 641 

Using the new Bayesian parameter estimation tool 642 

The interactive Bayesian tool includes full instructions on how to download the 643 

prerequisites and run the program: https://github.com/xiaoyizz78/FvCB-JAGS. Three 644 

optional Km values for rice, tobacco and Arabidopsis are provided. Consideration should 645 

be given to the low light levels used. Ideally all low light curves should be RuBP 646 

regeneration limited, and each should be separate from the others. Data is inputted in 647 

https://github.com/xiaoyizz78/FvCB-JAGS
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one csv file of all replicates for each treatment. Bayesian estimation is performed on 648 

each individual replicate (for quality control) and on all replicates (combined data) for 649 

parameter estimation. The output is a series of graphs of the raw data, the Bayesian 650 

posterior distributions for each estimated parameter, a table of estimated parameters 651 

(including the stds of posterior distributions for each parameter), traceplots to ensure 652 

the estimation is stable, and posterior distribution Ci response curves. Compared to 653 

many existing parameter fitting tools, this is extremely simple to use and has a user-654 

friendly output. The tool is able to handle a large amount of data extremely quickly and 655 

removes much of the human interaction which can potentially affect parameter 656 

estimation. 657 

 658 

Conclusion 659 

Bayesian estimation not only predicts the most likely parameter values, but also 660 

provides the standard deviation of marginal posterior distributions, a measure of 661 

estimation accuracy. Systematic analyses with synthetic data have highlighted 662 

important factors influencing this. The Bayesian system enables evaluation of the 663 

quality of experimental data and the reliability of experimental protocols. The addition 664 

of concurrent measurements of An-Ci and Y(II)-Ci curves within a focused low CO2 665 

range, at two or more low light levels produces much more reliable parameter 666 

estimation than saturating light concurrent An-Ci and Y(II)-Ci curves alone, which 667 

should be considered in future experimental protocol development. Ultimately, accurate 668 
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estimation of photosynthetic parameters is limited by physiological parameter 669 

variability within the samples and measurement error introduced by human or machine. 670 

We have highlighted the importance of striving to minimise these sources of error.  671 

Finally, Bayesian estimation can capture the mismatch between theoretical models and 672 

experimental data, which can help to direct systems level studies towards more accurate 673 

quantification of photosynthetic related processes. 674 

 675 

Acknowledgements 676 

This work was supported in part by Chinese Strategic Leading project category B 677 

(XDB27020105), National Natural Science Foundation of China (31700201, 31900304) 678 

to XGZ and YX; BBSRC (BB/N013719/1) Newton Fund Rice Research and Royal 679 

Society (CH\R1\180027) Challenge-led grant to AJF. XYC is supported by the U.S. 680 

Department of Energy (DOE), Office of Biological and Environmental Research 681 

(BER), as part of BER's Subsurface Biogeochemical Research Program (SBR), through 682 

the SBR Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory 683 

(PNNL). PNNL is operated for the DOE by Battelle Memorial Institute under contract 684 

DE-AC05-76RL01830. The authors also thank Dr Matthew Wilson for comments on 685 

the manuscript and declare no competing interests. 686 

 687 

References 688 

Andrieu C., de Freitas N., Doucet A. & Jordan M.I. (2003) An introduction to MCMC 689 



 34 

for machine learning. Machine Learning 50, 5–43. 690 

Bellasio C., Beerling D.J. & Griffiths H. (2015) An Excel tool for deriving key 691 

photosynthetic parameters from combined gas exchange and chlorophyll 692 

fluorescence: Theory and practice. Plant, Cell & Environment. 693 

Bernacchi C.J., Morgan P.B., Ort D.R. & Long S.P. (2005) The growth of soybean 694 

under free air CO2 enrichment (FACE) stimulates photosynthesis while decreasing 695 

in vivo Rubisco capacity. Planta 220. 696 

Bernacchi C.J., Portis A.R., Nakano H., von Caemmerer S. & Long S.P. (2002) 697 

Temperature response of mesophyll conductance. Implications for the 698 

determination of Rubisco enzyme kinetics and for limitations to photosynthesis in 699 

vivo. Plant Physiology 130, 1992–1998. 700 

Bongi G. & Loreto F. (1989) Gas-exchange properties of salt-stressed Olive (Olea 701 

europea L.) leaves. Plant Physiology 90, 1408–1416. 702 

Brooks A. & Farquhar G.D. (1985) Effect of temperature on the CO2/O2 specificity of 703 

ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the 704 

light: Estimates from gas-exchange measurements on spinach. Planta 165, 397–705 

406. 706 

Busch F.A., Sage R.F. & Farquhar G.D. (2018) Plants increase CO2 uptake by 707 

assimilating nitrogen via the photorespiratory pathway. Nature Plants 4, 46–54. 708 

von Caemmerer S. (2000) Biochemical models of leaf photosynthesis. CSIRO 709 

Publishing, Collingwood, VIC, Australia. 710 



 35 

von Caemmerer S. (2013) Steady-state models of photosynthesis. Plant, Cell & 711 

Environment 36, 1617–1630. 712 

von Caemmerer S. & Edmondson D.L. (1986) Relationship between steady-state gas 713 

exchange, in vivo ribulose bisphosphate carboxylase activity and some carbon 714 

reduction cycle intermediates in Raphanus sativus. Functional Plant Biology 13, 715 

669–688. 716 

Caemmerer S., Evans J.R., Hudson G.S. & Andrews T.J.J. (1994) The kinetics of 717 

ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from 718 

measurements of photosynthesis in leaves of transgenic tobacco. Planta 195, 88–719 

97. 720 

Chen C.P., Zhu X.-G. & Long S.P. (2008) The effect of leaf-level spatial variability in 721 

photosynthetic capacity on biochemical parameter estimates using the Farquhar 722 

model: a theoretical analysis. Plant Physiology 148, 1139–47. 723 

Chen X., Rubin Y., Ma S. & Baldocchi D. (2008) Observations and stochastic modeling 724 

of soil moisture control on evapotranspiration in a Californian oak savanna. Water 725 

Resources Research 44. 726 

Clark J.S. & Gelfand A.E. (2006) A future for models and data in environmental science. 727 

Trends in Ecology & Evolution 21, 375–380. 728 

Di Marco G., Manes F., Tricoli D. & Vitale E. (1990) Fluorescence parameters 729 

measured concurrently with net photosynthesis to investigate chloroplastic CO2 730 

concentration in leaves of Quercus ilex L. Journal of Plant Physiology 136, 538–731 



 36 

543. 732 

Dubois J.-J.B., Fiscus E.L., Booker F.L., Flowers M.D. & Reid C.D. (2007) Optimizing 733 

the statistical estimation of the parameters of the Farquhar–von Caemmerer–Berry 734 

model of photosynthesis. New Phytologist 176, 402–414. 735 

Ethier G.J. & Livingston N.J. (2004) On the need to incorporate sensitivity to CO2 736 

transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis 737 

model. Plant, Cell & Environment 27, 137–153. 738 

Ethier G.J., Livingston N.J., Harrison D.L., Black T.A. & Moran J.A. (2006) Low 739 

stomatal and internal conductance to CO2 versus Rubisco deactivation as 740 

determinants of the photosynthetic decline of ageing evergreen leaves. Plant, Cell 741 

& Environment 29, 2168–2184. 742 

Evans J.R. & von Caemmerer S. (2013) Temperature response of carbon isotope 743 

discrimination and mesophyll conductance in tobacco. Plant, Cell & Environment 744 

36, 745–756. 745 

Farquhar G.D., von Caemmerer S. & Berry J. (1980) A biochemical model of 746 

photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90. 747 

Farquhar G.D., von Caemmerer S. & Berry J. (2001) Models of photosynthesis. Plant 748 

Physiology 125, 42–45. 749 

Farquhar G.D. & Wong S.C. (1984) An empirical model of stomatal conductance. 750 

Australian Journal of Plant Physiology 11, 191. 751 

Feng X. & Dietze M. (2013) Scale dependence in the effects of leaf ecophysiological 752 



 37 

traits on photosynthesis: Bayesian parameterization of photosynthesis models. 753 

New Phytologist 200, 1132–1144. 754 

Flexas J., Diaz-Espejo A., Galmés J., Kaldenhoff R., Medrano H. & Ribas-Carbo M. 755 

(2007) Rapid variations of mesophyll conductance in response to changes in CO2 756 

concentration around leaves. Plant, Cell & Environment 30, 1284–1298. 757 

Gelfand A.E. & Smith A.F.M. (1990) Sampling-based approaches to calculating 758 

marginal densities. Journal of the American Statistical Association 85, 398–409. 759 

Gelman A., Hwang J. & Vehtari A. (2014) Understanding predictive information 760 

criteria for Bayesian models. Statistics and Computing 24, 997–1016. 761 

Gelman A. & Rubin D.B. (1992) Inference from iterative simulation using multiple 762 

sequences. Statistical Science 7, 457–472. 763 

Golaz J.-C., Caldwell P.M., Van Roekel L.P., Petersen M.R., Tang Q., Wolfe J.D., … 764 

Zhu Q. (2019) The DOE E3SM coupled model version 1: Overview and 765 

evaluation at standard resolution. Journal of Advances in Modeling Earth Systems 766 

11, 2089–2129. 767 

Gu L., Pallardy S.G., Tu K., Law B.E. & Wullschleger S.D. (2010) Reliable estimation 768 

of biochemical parameters from C3 leaf photosynthesis-intercellular carbon 769 

dioxide response curves. Plant, Cell & Environment 33, 1852–1874. 770 

Gu L. & Sun Y. (2014) Artefactual responses of mesophyll conductance to CO2 and 771 

irradiance estimated with the variable J and online isotope discrimination methods. 772 

Plant, Cell & Environment 37, 1231–1249. 773 



 38 

Han T., Zhu G., Ma J., Wang S., Zhang K., Liu X., … Huang C. (2020) Sensitivity 774 

analysis and estimation using a hierarchical Bayesian method for the parameters 775 

of the FvCB biochemical photosynthetic model. Photosynthesis Research 143, 776 

45–66. 777 

Harley P.C., Loreto F., Di Marco G. & Sharkey T.D. (1992) Theoretical considerations 778 

when estimating the mesophyll conductance to CO2 flux by analysis of the 779 

response of photosynthesis to CO2. Plant Physiology 98, 1429–36. 780 

Hoch G., Owens O. v. H. & Kok B. (1963) Photosynthesis and respiration. Archives of 781 

biochemistry and biophysics 101, 171–180. 782 

Humphries S.W. & Long S.P. (1995) WIMOVAC: a software package for modelling 783 

the dynamics of plant leaf and canopy photosynthesis. Computer applications in 784 

the biosciences : CABIOS 11, 361—371. 785 

Kok B. (1948) A Critical consideration of the quantum yield of Chlorella-786 

photosynthesis. Enzymologia 13, 1–56. 787 

Kok B. (1956) On the inhibition of photosynthesis by intense light. Biochimica et 788 

Biophysica Acta 21, 234–244. 789 

Laisk A.K. (1977) Kinetics of photosynthesis and photorespiration of C3 in plants. 790 

Moscow, Russia; Nauka 791 

Laisk A., Eichelmann H., Oja V., Rasulov B. & Rämma H. (2006) Photosystem II cycle 792 

and alternative electron flow in leaves. Plant and Cell Physiology 47, 972–983. 793 

Laisk A. & Loreto F. (1996) Determining photosynthetic parameters from leaf CO2 794 



 39 

exchange and chlorophyll fluorescence. Plant Physiology 110, 903–912. 795 

Laisk A., Oja V., Rasulov B., Rämma H., Eichelmann H., Kasparova I., … Vapaavuori 796 

E. (2002) A computer-operated routine of gas exchange and optical measurements 797 

to diagnose photosynthetic apparatus in leaves. Plant, Cell & Environment 25, 798 

923–943. 799 

Lawrence D.M., Fisher R.A., Koven C.D., Oleson K.W., Swenson S.C., Bonan G., … 800 

Zeng X. (2019) The Community Land Model version 5: description of new 801 

features, benchmarking, and impact of forcing uncertainty. Journal of Advances 802 

in Modeling Earth Systems 11, 4245–4287. 803 

Manter D.K. & Kerrigan J. (2004) A/Ci curve analysis across a range of woody plant 804 

species: influence of regression analysis parameters and mesophyll conductance. 805 

Journal of Experimental Botany 55, 2581–2588. 806 

McClain A.M. & Sharkey T.D. (2019) Triose phosphate utilization and beyond: From 807 

photosynthesis to end product synthesis. Journal of Experimental Botany 70, 808 

1755–1766. 809 

Miao Z., Xu M., Lathrop R.G. & Wang Y. (2009) Comparison of the A-Cc curve fitting 810 

methods in determining maximum ribulose 1.5-bisphosphate 811 

carboxylase/oxygenase carboxylation rate, potential light saturated electron 812 

transport rate and leaf dark respiration. Plant, Cell & Environment 32, 109–22. 813 

Moualeu-Ngangue D.P., Chen T.-W. & Stützel H. (2017) A new method to estimate 814 

photosynthetic parameters through net assimilation rate−intercellular space CO2 815 



 40 

concentration (A−Ci) curve and chlorophyll fluorescence measurements. New 816 

Phytologist 213, 1543–1554. 817 

Patrick L.D., Ogle K. & Tissue D.T. (2009) A hierarchical Bayesian approach for 818 

estimation of photosynthetic parameters of C3 plants. Plant, Cell & Environment 819 

32, 1695–1709. 820 

Perveen S., Qu M., Chen F., Essemine J., Khan N., Lv M.A., Chang T., Song Q., Chen 821 

G-Y, and Zhu X-G (2020) Over-expression of maize transcription factor mEmBP-822 

1 increases photosynthesis, biomass and yield in rice. Journal of Experimental 823 

Botany 71, 4944-4957. 824 

Plummer M. (2003) JAGS : A program for analysis of Bayesian graphical models. 825 

Proceedings of the 3rd International Workshop on Distributed Statistical 826 

Computing (DSC 2003). 827 

Selinski J. & Scheibe R. (2019) Malate valves: old shuttles with new perspectives. Plant 828 

Biology 21, 21–30. 829 

Simkin A.J., McAusland L., Headland L.R., Lawson T. & Raines C.A. (2015) 830 

Multigene manipulation of photosynthetic carbon assimilation increases CO2 831 

fixation and biomass yield in tobacco. Journal of Experimental Botany 66, 4075–832 

4090. 833 

Sharkey T.D. (2016) What gas exchange data can tell us about photosynthesis. Plant, 834 

Cell & Environment 39, 1161–1163. 835 

Sharkey T.D., Bernacchi C.J., Farquhar G.D. & Singsaas E.L. (2007) Fitting 836 



 41 

photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell & 837 

Environment 30, 1035–40. 838 

Smith A.F.M. & Roberts G.O. (1993) Bayesian computation via the Gibbs sampler and 839 

related Markov Chain Monte Carlo methods. Journal of the Royal Statistical 840 

Society. Series B (Methodological) 55, 3–23. 841 

Sun Y., Gu L., Dickinson R.E., Pallardy S.G., Baker J., Cao Y., … Winter K. (2014) 842 

Asymmetrical effects of mesophyll conductance on fundamental photosynthetic 843 

parameters and their relationships estimated from leaf gas exchange measurements. 844 

Plant, Cell & Environment 37, 978–994. 845 

Tholen D., Éthier G. & Genty B. (2014) Mesophyll conductance with a twist. Plant, 846 

Cell & Environment 37, 2456–2458. 847 

Tholen D., Ethier G., Genty B., Pepin S. & Zhu X.-G. (2012) Variable mesophyll 848 

conductance revisited: theoretical background and experimental implications. 849 

Plant, Cell & Environment 35, 2087–103. 850 

Tholen D. & Zhu X.-G. (2011) The mechanistic basis of internal conductance: A 851 

theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant 852 

Physiology 156, 90–105. 853 

Tierney L. & Mira A. (1999) Some adaptive Monte Carlo methods for Bayesian 854 

inference. Statistics in Medicine 18, 2507–2515. 855 

Valentini R., Epron D., De Angelis P., Matteucci G. & Dreyer E. (1995) In situ 856 

estimation of net CO2 assimilation, photosynthetic electron flow and 857 



 42 

photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different 858 

levels of water supply. Plant, Cell & Environment 18, 631–640. 859 

Wang D., Jaiswal D., Lebauer D.S., Wertin T.M., Bollero G.A., Leakey A.D.B. & Long 860 

S.P. (2015) A physiological and biophysical model of coppice willow (Salix spp.) 861 

production yields for the contiguous USA in current and future climate scenarios. 862 

Plant, Cell & Environment 38, 1850–1865. 863 

Xiao Y. & Zhu X.-G. (2017) Components of mesophyll resistance and their 864 

environmental responses: A theoretical modelling analysis. Plant, Cell & 865 

Environment 40, 2729–2742. 866 

Xiong D., Yu T., Liu X., Li Y., Peng S. & Huang J. (2015) Heterogeneity of 867 

photosynthesis within leaves is associated with alteration of leaf structural features 868 

and leaf N content per leaf area in rice. Functional Plant Biology 42, 687–696. 869 

Yin X., Van Oijen M. & Schapendonk  a. H.C.M. (2004) Extension of a biochemical 870 

model for the generalized stoichiometry of electron transport limited C3 871 

photosynthesis. Plant, Cell & Environment 27, 1211–1222. 872 

Yin X. & Struik P.C. (2009a) Theoretical reconsiderations when estimating the 873 

mesophyll conductance to CO2 diffusion in leaves of C3 plants by analysis of 874 

combined gas exchange and chlorophyll fluorescence measurements. Plant, Cell 875 

& Environment 32, 1513–1524. 876 

Yin X., Struik P.C., Romero P., Harbinson J., Evers J.B., Van Der Putten P.E.L. & Vos 877 

J. (2009b) Using combined measurements of gas exchange and chlorophyll 878 



 43 

fluorescence to estimate parameters of a biochemical C3 photosynthesis model: A 879 

critical appraisal and a new integrated approach applied to leaves in a wheat 880 

(Triticum aestivum) canopy. Plant, Cell & Environment 32, 448–464. 881 

Yin X., Sun Z., Struik P.C. & Gu J. (2011) Evaluating a new method to estimate the rate 882 

of leaf respiration in the light by analysis of combined gas exchange and 883 

chlorophyll fluorescence measurements. Journal of Experimental Botany 62, 884 

3489–3499. 885 

 886 

 887 

 888 

  889 



 44 

Tables 890 

Table 1. List of model variables and their units 891 

Variables Definition Units 

An Net photosynthesis rate μmol m-2 s-1 

Ac Rubisco limited net photosynthesis rate μmol m-2 s-1 

Aj RuBP regeneration limited net photosynthesis rate μmol m-2 s-1 

Ci Intercellular CO2 partial pressure μbar 
Cc Chloroplastic CO2 partial pressure μbar 
gm Mesophyll conductance mol m-2 s-1 bar-1 

I Incident irradiance μmol m-2 s-1 

J Potential linear electron transport rate through PSII μmol m-2 s-1 

Ji Maximum electron transport rate through PSII limited by I μmol m-2 s-1 

JA Electron transport rate calculated from CO2 assimilation rate μmol m-2 s-1 

Jf 
Electron transport rate calculated from chlorophyll 
fluorescence measurement 

μmol m-2 s-1 

Jm 
Maximum electron transport rate through PSII limited by 
capacity of photosystem 

μmol m-2 s-1 

Km 
Michaelis-Menten constant of Rubisco for CO2 in the 
presence of O2 

μbar 

Rd Day respiration μmol m-2 s-1 

rm Mesophyll resistance, i.e. the reciprocal of gm mol-1 m2 s bar 

s 
Product of α and β; a combined parameter of light absorption 
and partition to PSII 

Unitless 

Vcmax CO2 saturated Rubisco carboxylation rate μmol m-2 s-1 

Wc Rubisco limited carboxylation rate μmol m-2 s-1 

Wj RuBP regeneration limited carboxylation rate μmol m-2 s-1 

Y(II) Quantum efficiency of absorbed photons on PSII Unitless 

Y(II)LL Initial slope of Y(II)-I∙s curve Unitless 

θ Curvature index of J to I Unitless 

α Light absorption Unitless 

β Partition of total absorbed light to PSII Unitless 

Γ* Cc-based CO2 compensation point in the presence of Rd μbar 
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Table 2. Standard deviations (std) of the marginal posterior distributions of estimated 893 

parameters using the synthetic concurrent An-Ci and Y(II)-Ci data shown in Fig. 1 A & 894 

B. Four scenarios with different prefixed parameters are conducted here. Prefixed 895 

parameters are fixed at the true values used to generate the synthetic data. The 896 

remaining parameters are estimated with Bayesian estimation. Numbers in brackets 897 

show the std as a percentage of the true values. ** indicates parameter values with 898 

sample variation. 899 

Prefixed 

parameters 
 

Vcmax  

(μmol m-2 s-1) 

J1500  

(μmol m-2 s-1) 

Rd  

(μmol m-2 s-1) 

rm  

(mol-1 m2 s bar) 
Km 

(μbar) 
Γ* 

(μbar) 
s 

(unitless) 

 true 73.0** 142.3** 0.84** 5.0 535.3 38.5 0.368** 

Km, Γ*, s 
mean 73.2 142.0 0.81 5.1 / / / 

std 1.3 (1.7%) 0.8 (0.5%) 0.22 (26%) 0.43 (8.7%) 0 (0%) 0 (0%) 0 (0%) 

Km, Γ* 
mean 73.4 142.1 0.83 5.1 / / 0.369 

std 1.6 (2.2%) 1.3 (0.9%) 0.28 (33%) 0.43 (8.7%) 0 (0%) 0 (0%) 0.0044 (1.2%) 

Km 
mean 72.7 142.1 0.76 4.9 / 39.7 0.369 

std 6.5 (8.9%) 1.6 (1.2%) 0.60 (72%) 1.2 (23%) 0 (0%) 4.5 (12%) 0.0054 (1.5%) 

Γ* 

mean 75.4 142.2 0.84 5.2 551 / 0.369 

std 9.5 (13.0%) 1.4 (1.0%) 0.30 (36%) 0.59 (12%) 
77 

(14%) 
0 (0%) 0.0044 (1.2%) 

/ 

mean 77.1 142.0 0.62 4.8 590 40.8 0.369 

std 10.3 (14.9%) 1.9 (1.4%) 0.87 (104%) 1.2 (24%) 
112 

(21%) 
6.0 (16%) 0.0057 (1.6%) 
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Table 3. Standard deviations (std) of the marginal posterior distributions of estimated 901 

parameters with synthetic concurrent An-Ci and Y(II)-Ci data under one saturating 902 

light (1500 PPFD) and three low light levels (50, 100 and 200 PPFD) in Fig. 1A-D. 903 

Bayesian estimation is applied to data with different low light (LL) measurements. 904 

Data from Rep. No. 1 alone is also shown. All these estimations prefix Km at the true 905 

value used to generate the synthetic data. ** indicates parameter values with sample 906 

variation. 907 

Input data  
Vcmax  

(μmol m-2 s-1) 

J1500  

(μmol m-2 s-1) 

Rd  

(μmol m-2 s-1) 

rm  

(mol-1 m2 s bar) 
Km 

(μbar) 
Γ*  

(μbar) 
s 

 true 73.0** 142.3** 0.84** 5.0 535.3 38.5 0.368** 

LL=50, 

100, 200 

mean 73.0 142.2 0.80 5.0 / 39.3 0.369 

std 3.4 (4.7%) 0.7 (0.5%) 0.14 (16%) 0.72 (14%) 0 (0%) 2.0 (5.2%) 0.0044 (1.2%) 

LL=50, 

100 

mean 72.5 142 0.80 4.9 / 39.6 0.369 

std 3.8 (5.2%) 0.8 (0.6%) 0.15 (18%) 0.84 (17%) 0 (0%) 2.4 (6.3%) 0.0043 (1.2%) 

LL=50, 

200 

mean 72.7 142.2 0.79 4.9 / 39.4 0.369 

std 3.5 (4.8%) 0.8 (0.6%) 0.16 (19%) 0.75 (15%) 0 (0%) 2.2 (5.7%) 0.0042 (1.1%) 

LL=100, 

200 

mean 72.5 142.2 0.76 4.9 / 39.6 0.369 

std 4.1 (5.6%) 0.8 (0.6%) 0.23 (27%) 0.85 (17%) 0 (0%) 2.8 (7.2%) 0.0043 (1.2%) 

LL=50 
mean 72.4 142.2 0.79 4.8 / 39.6 0.369 

std 4.0 (5.4%) 0.9 (0.6%) 0.18 (21%) 0.90 (18%) 0 (0%) 2.7 (6.9%) 0.0041 (1.1%) 

LL=100 
mean 72.2 142.2 0.76 4.8 / 39.9 0.369 

std 4.5 (6.1%) 0.9 (0.6%) 0.25 (30%) 0.97 (19%) 0 (0%) 3.1 (8.1%) 0.0042 (1.1%) 

LL=200 
mean 72.2 142.1 0.71 4.8 / 40.0 0.369 

std 5.2 (7.1%) 1.0 (0.7%) 0.40 (47%) 1.01 (20%) 0 (0%) 3.8 (9.7%) 0.0044 (1.2%) 

Rep. No.1 

& LL=50, 

100, 200 

true 74.2 144.3 0.83 5.0 535.3 38.5 0.361 

mean 73.7 144.0 0.85 4.8 / 38.8 0.361 

std 0.97 (1.3%) 0.3 (0.21%) 0.052 (6.3%) 0.23 (4.5%) 0 (0%) 0.7 (1.8%) 0.0010 (0.28%) 

 908 

  909 



 47 

Table 4. Standard deviations of marginal posterior distributions of estimated 910 

parameters with experimental concurrent An-Ci and Y(II)-Ci data under one saturating 911 

light and three low light levels on rice leaves. Bayesian estimation is conducted with 912 

data of all replicates and with data of each replicate. For all estimations, Km is prefixed 913 

at 427.7 µbar (von Caemmerer 2000). 914 

Input exp. 

data 
 

Vcmax  

(μmol m-2 s-1) 

J1500  

(μmol m-2 s-1) 

Rd  

(μmol m-2 s-1) 

rm  

(mol-1 m2 s bar) 
Km 

(μbar) 
Γ* (μbar) s 

all reps. 
mean 101.1 179.5 1.67 0.51 427.7 33.5 0.300 

std 5.0 (4.9%) 2.8 (1.6%) 0.39 (23%) 0.57 (81%) 0 2.7 (7.6%) 0.0060 (2.0%) 

rep. No.1 
mean 107.0 157.6 2.67 0.62 427.7 28.2 0.281 

std 8.6 (8.0%) 4.5 (2.9%) 0.64 (24%) 0.57 (92%) 0 3.7 (13%) 0.0090 (3.2%) 

rep. No.2 
mean 109.6 196.9 2.71 0.60 427.7 35.7 0.305 

std 8.3 (7.5%) 6.3 (3.2%) 0.75 (28%) 0.56 (94%) 0 4.8 (13%) 0.011 (3.7%) 

rep. No.3 
mean 101.6 168.8 1.24 1.05 427.7 32.1 0.308 

std 5.5 (5.4%) 1.5 (0.9%) 0.28 (23%) 0.46 (44%) 0 2.2 (6.9%) 0.0044 (1.4%) 

rep. No.4 
mean 110.9 187.7 1.78 1.03 427.7 31.1 0.296 

std 11 (9.9%) 3.3 (1.7%) 0.58 (33%) 0.76 (74%) 0 4.0 (13%) 0.0063 (2.1%) 
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Figures 916 

Fig 1 917 

 918 

Fig 1. Synthetic concurrent gas exchange (A, C) and chlorophyll fluorescence (B, D) 919 

measurements under saturating light level, i.e. 1500 PPFD (A, B) and three low light 920 

levels, i.e. 50, 100 and 200 PPFD (C, D). Red lines are predicted lines calculated from 921 

true values. Error bars plot five replicates containing sample variation and systematic 922 

error as described in Eqn. S1. 923 
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Fig 2 925 

 926 

Fig 2. Bayesian estimation with An-Ci and Y(II)-Ci data in Fig. 1 A & B under 927 

prefixed Km, Γ* and s.  928 

(A) An-Ci observations and Bayesian estimation. Red lines and error bars here are 929 

observations from Fig. 1 A. Grey regions are An-Ci curves calculated from the joint 930 

posterior distribution. (B) Y(II)-Ci observations (red lines and error bars) and Bayesian 931 

estimation (grey region). (C-F) Marginal posterior distributions of estimated parameters. 932 

Grey regions are the marginal posterior distribution. Blue solid lines indicate best fitted 933 
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value by a simultaneous fitting algorithm. Red solid lines are the mean of the five 934 

replicates (Eqn S2-S3).   935 
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Fig 3 936 

 937 

Fig 3. Fitting vs Bayesian estimation of Rd and rm. 938 

Comparison between fitting method and Bayesian estimation with 100 random 939 

synthetic datasets. Both methods are conducted with Km (A-H) or Km & Г* (I-P) 940 

prefixing at true values. (A, E, I & M) Estimated values from both methods versus true 941 

values. Blue dots represent best fitted values, while red dots represent mean values of 942 

estimated marginal posterior distributions. (B, F, J & N) Error of fitted values relative 943 

to the true values as percentage. (C, G, K & O) Standard deviations of estimated 944 

marginal posterior distributions relative to the true values as percentage. (D, H, L & P) 945 

z-scores of the true value against the marginal posterior distributions, which equals the 946 
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difference between the true value and the mean of distribution divided by the standard 947 

deviation of the distribution.  948 



 53 

Fig. 4 949 

 950 

Fig. 4: Sensitivity analysis of sample variation on parameter estimation.  951 

Based on synthetic data in Fig. 1, data with different amounts of sample variation are 952 

generated by scaling up the difference between photosynthetic parameters and true 953 

values in each replicate (Eqn 10 & 11). Each column of pixels represents a marginal 954 

posterior distribution. The colour bar represents the probability density. White solid 955 

lines represent the mean value of the marginal posterior distribution. White dashed lines 956 

represent the standard deviation of the marginal posterior distributions. Red dashed 957 

lines are the true values. For Vcmax, J, Rd, and s with sample variation, red dashed lines 958 

actually represent the mean value of five replicates. 959 
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Fig. 5 961 

 962 

Fig 5. Marginal posterior distributions estimated from experimental data on rice 963 

leaves. Dashed lines in different colours represent the posterior distributions 964 

estimated for each replicate. Grey regions represent the posterior distribution 965 

estimated using the data from all the replicates. 966 
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Fig. 6 970 

 971 

Fig 6. An-Ci and Y(II)-Ci curves predicted from Bayesian estimation with one 972 

experimental replicate. 973 

The data from replicate No. 3 (green dash lines in Fig. 5) is used for Bayesian estimation. 974 

Open circles represent An-Ci and Y(II)-Ci curves under saturating light. Blue asterisks, 975 

green squares and red crosses represent An-Ci and Y(II)-Ci curves under three different 976 

low light levels. Grey regions are An-Ci and Y(II)-Ci curves under saturating light 977 

calculated from the joint posterior distribution. Blue, green and red regions are An-Ci 978 

and Y(II)-Ci curves under three low light levels calculated from the joint posterior 979 

distributions. 980 
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