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ABSTRACT

We investigate whether the recently suggested rotation and crystallization driven dynamo can explain the apparent increase of

magnetism in old metal polluted white dwarfs. We find that the effective temperature distribution of polluted magnetic white

dwarfs is in agreement with most/all of them having a crystallizing core and increased rotational velocities are expected due to

accretion of planetary material which is evidenced by the metal absorption lines. We conclude that a rotation and crystallization

driven dynamo offers not only an explanation for the different occurrence rates of strongly magnetic white dwarfs in close

binaries, but also for the high incidence of weaker magnetic fields in old metal polluted white dwarfs.
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1 INTRODUCTION

Metal absorption lines in the spectra of white dwarfs have been

firmly established to result from the accretion of planetary material

that survived the transformation of their host star into a white dwarf.

This idea was first proposed by Jura (2003) and later confirmed to

be correct due to the detection of a transiting planetesimal in the

process of tidal disintegration (Vanderburg et al. 2015; Gänsicke

et al. 2016). This key evidence is complemented by the detection

of dusty and gaseous debris disks (e.g. Zuckerman & Becklin 1987;

Gänsicke et al. 2006), a planetesimal that is possibly the core of a

differentiated rocky planet (Manser et al. 2019) and an evaporating

planet in close orbit around a white dwarf (Gänsicke et al. 2019).

This growing observational evidence for the accretion of planetary

material onto white dwarfs is in agreement with theoretical predic-

tions. It is well established that planets can survive the transition of

their host star into a white dwarf (e.g. Villaver & Livio 2009; Ronco

et al. 2020). Some of the surviving planetary systems are predicted

to become unstable which can push especially lower mass planets

or asteroids into highly eccentric orbits (Veras & Gänsicke 2015;

Smallwood et al. 2018; Maldonado et al. 2020). Tidal forces may

then destroy these objects which offers a consistent explanation for

the observations of planetary material being accreted onto 25–50 per

cent of all white dwarfs (Koester et al. 2014).

As noticed by Hollands et al. (2015), very old metal polluted

white dwarfs are more frequently magnetic than younger systems. All

magnetic metal polluted helium (DZ) white dwarfs and all but one

known magnetic metal polluted hydrogen atmosphere white dwarfs

(DAZ) have effective temperatures below 7500 K (Hollands et al.

2017; Kawka et al. 2019, 2021). In addition, three apparently isolated

white dwarfs exhibiting Zeeman split emission lines which might be

★ matthias.schreiber@usm.cl (MRS)

related to the existence of a conductive planet or planet core in a close

orbit, cluster around temperatures of ∼ 7500K (e.g. Li et al. 1998;

Gänsicke et al. 2020; Walters et al. 2021). This suggests that the

accretion of planetary material and low temperatures may be linked

to the generation of magnetic fields in white dwarfs.

Inspired by the earlier work of Isern et al. (2017), we recently

proposed a dynamo similar to those operating in planets and low-

mass stars to explain the observed incidence of strongly magnetic

white dwarfs in close binary stars (Schreiber et al. 2021). The main

ingredients for this dynamo to work are that the white dwarf’s core

started to crystallize (which depending on the mass of the white dwarf

generally occurs at white dwarf temperatures below ≃ 8000 K) and

increased rotational velocities due to accretion. We here test the

hypothesis that the increasing fraction of magnetic white dwarfs

among cold metal polluted (and therefore accreting) white dwarfs

could be produced by the same dynamo mechanism. We start with a

brief review of the dynamo mechanism recently suggested to work

in accreting white dwarfs in close binaries.

2 THE CONVECTIVE DYNAMO APPLIED TO WHITE

DWARFS

The magnetic fields of planets and rapidly rotating low-mass stars, are

generated by convection-driven dynamos (Christensen et al. 2009).

The main ingredients for these dynamos to work are a strong density

stratification, an extended convection zone, and rotation. A similar

configuration can occur in cooling white dwarfs.

As a carbon/oxygen white dwarf cools, the ions in the core begin

to freeze in a lattice structure (Van Horn 1968), i.e. the white dwarf

starts to crystallize. The phase diagram of the carbon–oxygen mixture

is of the spindle form (e.g. Horowitz et al. 2010) and consequently,

the solid phase becomes richer in oxygen and sinks while the carbon

excess mixes with the outer liquid envelope which is redistributed

© 2015 The Authors
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by the Rayleigh–Taylor instability (e.g. Isern et al. 1997). If the

white dwarf is also rapidly rotating, the conditions are appropriate

for magnetic field generation through the convective dynamo.

For planets and low-mass stars, the magnetic field strength can be

derived from fundamental properties of a given object using the con-

vective energy flux scaling law (Christensen et al. 2009). Applying

this scaling law to white dwarfs led to the prediction of field strengths

below ∼ 1 MG (Isern et al. 2017). However, the field strength gener-

ated by the dynamo likely depends on the magnetic Prandtl number

(Brandenburg 2014) which is not taken into account in the scaling

law (Christensen & Aubert 2006). Given that the magnetic Prandtl

number for crystallizing white dwarfs is orders of magnitude larger

than that of planets and low-mass stars, the field strength generated

by the dynamo is likely also much larger (Bovino et al. 2013). For

more details see Schreiber et al. (2021).

According to measurements of activity and rotation in fully con-

vective stars, the dynamo seems to saturate for Rossby numbers (ro-

tation period divided by convective turnover time) below 0.1 which

might indicate that the generated field strength becomes independent

of the rotation rate for rapidly spinning stars. For white dwarfs, the

condition on the Rossby number translates to rotation periods of the

order of seconds/minutes as the threshold for saturation. For slower

rotation rates, magnetic fields might still be generated but should on

average be weaker.

Based on the reasonable assumption that strong magnetic fields can

be generated if a crystallizing white dwarf is rotating in the saturated

regime, Schreiber et al. (2021) explained the occurrence rates and

characteristics of strongly magnetic white dwarfs in close binary

stars. The very same mechanism may explain the large incidence

of weaker magnetic fields in cool metal polluted white dwarfs if

they have temperatures consistent with crystallizing cores and if

the accretion of planetary material can significantly increase their

rotation. In the next section we evaluate whether the distribution

of effective temperatures of magnetic DAZ and DZ white dwarfs is

consistent with them having crystallizing cores.

3 CRYSTALLIZING CORES IN MAGNETIC METAL

POLLUTED WHITE DWARFS

The onset of crystallization in white dwarfs, a requirement for the

dynamo mechanism proposed by Schreiber et al. (2021), depends

not only on the white dwarf effective temperature but also on the

white dwarf mass. However, measuring the masses of magnetic white

dwarfs is extremely challenging. The standard technique for non-

magnetic DA white dwarfs, which make up the bulk of the white

dwarf population (e.g. McCleery et al. 2020), is to measure the

effective temperature and surface gravity from fitting the Balmer

lines and then to determine the white dwarf mass using a mass-

radius relation. There is currently no theory for the simultaneous

treatment of the Zeeman effect and Stark broadening, and therefore,

this method cannot be applied to magnetic DA(Z) white dwarfs.

An alternative method to derive white dwarf masses is to iteratively

fit the photometric spectral energy distribution (SED, which, for a

given temperature, is very sensitive to the radius) and the spectrum

(where the relative strengths of absorption lines provide a handle

on the temperature), and to subsequently derive the mass adopting

a white dwarf mass-radius relation. However, this method requires

the accurate knowledge of the distance to the white dwarf under

analysis. Most cool and faint DZ white dwarfs in our sample have

large parallax uncertainties in the available Gaia data releases, and

consequently, estimated masses are unreliable (Coutu et al. 2019).

Additional complications arise from the line blanketing caused by
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Figure 1. The onset and 80 per cent completed crystallization temperatures

for thin (blue) and thick (black) hydrogen atmospheres taken from Bédard

et al. (2020). For thin atmospheres (DZ) crystallization starts at slightly

higher temperatures than for thick atmospheres (DAZ). Crystallization starts

at effective temperatures well above 10 000 K for massive white dwarfs but for

typical white dwarf masses in the range 5000–9000 K. The currently known

DZ (blue histogram) and DAZ (grey histogram) magnetic white dwarfs lie

exactly in the range temperature range of crystallizing cores for typical white

dwarf masses. The only exception is WD 2105–820 which is hotter and (most

likely and fittingly) more massive (Swan et al. 2019).

the metals in the magnetic DZ white dwarfs considered here, intro-

ducing the detailed photospheric abundances as additional free fit

parameters. Finally, magnetic fields may suppress or weaken con-

vection, which will affect the temperature structure and emerging

spectrum of magnetic white dwarfs (Gentile Fusillo et al. 2018), and

it is currently unclear whether the SEDs of magnetic white dwarfs

are better fitted with radiative or convective models. Given the dif-

ficulties in determining the individual masses of the magnetic metal

polluted white dwarfs, we here investigate whether the distribution

of their effective temperatures is in agreement with their cores being

in the process of crystallization.

Largely based on earlier work (Hollands et al. 2017), evidence is

growing that the occurrence of magnetic fields in DZ white dwarfs

increases with decreasing temperature (Kawka et al. 2021). All mag-

netic DZ white dwarfs have effective temperatures below 7500 K. At

these low temperatures ≃ 40 per cent of the known DZ white dwarfs

are magnetic. In contrast, not a single magnetic DZ has been found in

the temperature range 7500 − 10000 K. The situation is very similar

for DAZ white dwarfs among which the fraction of magnetic systems

increases significantly with decreasing effective temperature and all

but one magnetic DAZ white dwarfs are cooler than ∼7500 K. A list

of magnetic DAZ and DZ white dwarfs is provided in Table 1 where

we ignored some candidate magnetic systems suggested in Kawka &

Vennes (2014) and Coutu et al. (2019) as well as the magnetic Balmer

emission line white dwarfs discussed by Gänsicke et al. (2020).

Comparing the measured temperatures with those expected for

crystallizing white dwarfs, we find good agreement with ongoing

crystallization in their cores (see Fig. 1). Roughly 80 per cent of sin-

gle white dwarfs can be found in the mass range of 0.5 − 0.75M⊙

(Tremblay et al. 2016) and the distribution peaks at ≃ 0.6 M⊙ . All

magnetic DZ and all but one magnetic DAZ white dwarfs are cooler

than the temperature at which a 0.75M⊙ white dwarf starts to crys-

tallize (∼ 8 000 K) and roughly half of them are below the crys-

tallization temperature of a 0.6 M⊙ white dwarf (see Fig. 1). Only

MNRAS 000, 1–5 (2015)



Dynamo activity in metal polluted white dwarfs 3

Table 1. Currently known magnetic DZ and DAZ white dwarfs.

Name Type Teff [K] B𝑆 [MG] reference

SDSS J0037–0525 DZ 5630±120 7.09±0.04 1

SDSS J0107+2650 DZ 6190±140 3.37±0.07 1

SDSS J0157+0033 DZ 6110±140 3.49 ± 0.05 1

SDSS J0200+1646 DZ 5810±180 10.71 ± 0.07 1

SDSS J0735+2057 DZ 6110±180 6.12 ± 0.06 1

SDSS J0806+4058 DZ 6808±80 0.80 ± 0.03 1

SDSS J0832+4109 DZ 6070±190 2.35 ± 0.11 1

SDSS J0902+3625 DZ 6330±210 1.92 ± 0.05 1

SDSS J0927+4931 DZ 6200±230 2.10 ± 0.09 1

SDSS J1003-0031 DZ 5740±140 4.37 ± 0.05 1

SDSS J1105+5006 DZ 7280±190 4.13 ± 0.11 1

SDSS J1106+6737 DZ 6400±170 3.50 ± 0.09 1

SDSS J1113+2751 DZ 6180±210 3.18 ± 0.09 1

SDSS J1150+4533 DZ 5720±320 2.01±0.20 1

SDSS J1152+1605 DZ 6550±160 2.72±0.04 1

SDSS J1214–0234 DZ 5210±100 2.12±0.03 1

SDSS J1249+6514 DZ 7540±170 2.15±0.05 1

SDSS J1330+3029 DZ 6100±60 0.57±0.04 1

SDSS J1412+2836 DZ 4990±160 1.99±0.10 1

SDSS J1536+4205 DZ 5800±140 9.59±0.04 1

SDSS J1546+3009 DZ 6600±120 0.81±0.07 1

SDSS J1651+4249 DZ 5710±200 3.12±0.28 1

SDSS J2254+3031 DZ 5900±90 2.53±0.03 1

SDSS J2325+0448 DZ 6020±100 6.56±0.09 1

SDSS J2330+2805 DZ 6670±210 3.40±0.04 1

WD 1515+8230 DZ 4360±80 3.1±0.2 2

WD 0816–310 DZ 6436 0.092±0.001 3,4,5

WD 1009–184 DZ 6036 >
∼0.3 3,6

WD 1532+129 DZ 5430 >
∼0.3 3,4

WD 2138—332 DZ 7399 >
∼0.4 3,4

WD 0214–071 DAZ 5460±40 0.163±0.004 7

WD 0315–293 DAZ 5200±200 0.519±0.04 7,8,9

WD 0322–019 DAZ 5310±100 0.120 7,10,11

WD 1653+385 DAZ 5900 0.07 7,12

WD 2225+176 DAZ 6250±70 0.334±0.003 7,13

WD 2105−820 DAZ 10890±380 ≃0.043 7,14,15,16

References: (1) Hollands et al. (2017), (2) Tremblay et al. (2020), (3) Bagnulo

& Landstreet (2019), (4) Giammichele et al. (2012) (5) Kawka et al. (2021)

(6) Subasavage et al. (2017) (7) Kawka et al. (2019), (8) Kawka & Vennes

(2012), (9) Kawka & Vennes (2011), (10) Farihi et al. (2011), (11) Farihi

et al. (2018), (12) Zuckerman et al. (2011), (13) Kawka & Vennes (2014)

(14) Koester et al. (1998) (15) Landstreet et al. (2012) (16) Swan et al. (2019)

the hottest (∼ 11 000 K) metal polluted magnetic white dwarf, the

DAZ white dwarf WD 2105−820, seems to contradict this finding

as its temperature is too high to be crystallizing if its mass was that

of a typical 0.5–0.75M⊙ white dwarf. However, apart from being

the hottest metal polluted magnetic white dwarf, WD 2105−820 is

also most likely the most massive one. Swan et al. (2019) estimated

a white dwarf mass of 0.86 M⊙ for which crystallization starts at

much higher temperatures. The estimated mass is not high enough

to reach the onset of crystallization but assuming an uncertainty of

just 0.05M⊙ would fix this apparent disagreement (which would be

completely consistent with the uncertainty provided for log 𝑔). We

conclude that indeed most/all metal polluted magnetic white dwarfs

might have passed the onset of crystallization in their cores.

The remaining question is whether the accretion of planetary ma-

terial could spin up the white dwarfs to reach significantly increased

rotational velocities.

4 SPIN-UP OF THE WHITE DWARF

The second ingredient for the proposed dynamo proposed to work

is increased rotation of the white dwarf. It is well established that

metal polluted white dwarfs accrete planetary debris that result from

disintegrating planetesimals, asteroids, comets, or planets. During

the accretion process, the white dwarf not only accretes mass, but

also angular momentum (Stephan et al. 2020). We here estimate

whether the accreted angular momentum might sufficiently spin up

the white dwarf to cause the generation of detectable magnetic fields.

From a large sample of cold and old metal polluted white dwarfs

Hollands et al. (2017) derived a trend of decreasing accretion rates

with an e-folding time of ≃ 1 Gyr. This observed long term trend,

however, does not cover short episodes of much larger accretion rates

that occur when rocky or even gas giant planets come too close to

the white dwarfs. Observational evidence for such events has been

provided recently (Manser et al. 2019; Gänsicke et al. 2019). In addi-

tion, the recently observed giant planet around WD 1856+534 shows

that even Jupiter mass planets may end up in close orbits around

white dwarfs either due to common envelope evolution (Lagos et al.

2021), triple dynamics (Muñoz & Petrovich 2020), or gravitational

interactions (Maldonado et al. 2020). Indeed, using configurations of

planetary systems derived from observed systems, Maldonado et al.

(2020) showed that eccentricity pumping leading to the tidal dis-

ruption and/or evaporation of planets is by no means a rare event.

For planetary systems consisting of five or six planets, star-planet

collisions are expected in ∼ 10 per cent of the cases.

The accretion of planetary material does not only lead to metal

absorption lines in the spectra of white dwarfs, accretion of mass

is accompanied by the accretion of angular momentum. The ma-

terial from destroyed planetesimals, asteroids, comets, and planets

accumulates in a Keplerian disk around the white dwarf and is then

slowly accreted onto the white dwarf. King et al. (1991) derived the

angular momentum balance equation for accreting white dwarfs in

cataclysmic variables and found

𝐼
d𝜔

d𝑡
= 𝛼 ( − ¤𝑀2 ) (𝐺 𝑀WD 𝑅WD )1/2 + (1 + 𝜖)

(

¤𝑀2 𝜂 𝑅
2
WD 𝜔

)

,

(1)

where 𝜔 is the white dwarf spin, 𝐼 its moment of inertia, 𝐺 the

gravitational constant, ¤𝑀2 the mass transfer rate averaged over nova

cycles, and 𝑀WD and 𝑅WD are the white dwarf mass and radius.

The first term on the right-hand side of the equation corresponds to

the spin-up due to accretion and the parameter 0 ≤ 𝛼 ≤ 1 (added

by Schreiber et al. 2021) represents the spin-up efficiency. The sec-

ond term represents the spin-down due to material leaving the white

dwarf which can be ignored in this work as nova eruptions are gen-

erally not expected (𝜖 = −1.0) given the small amount of accreted

hydrogen (the accretion of an entire Jupiter mass planet could be a

rare exception). We solved the non-homogeneous differential equa-

tion 1 as in Schreiber et al. (2021) for total accreted mass (over a

time span of several Gyr) of 10−6 − 10−3 M⊙ which roughly covers

the mass range from Earth to Jupiter.

We find that the accretion of planetary material in polluted white

dwarfs can easily lead to significantly shorter spin periods. Figure 2

shows the spin-up of a 0.6 M⊙ white dwarf for different total accre-

tion rates as a function of the spin-up efficiency. For accreted masses

exceeding 10−5M⊙ we find rotation periods ranging from several

minutes, as recently observed (Reding et al. 2020), to a few hours,

much shorter than the assumed initial rotation rate of 1–3 days (Her-

mes et al. 2017). At the same time, the spin periods reached remain

longer than the spin period estimated by Isern et al. (2017) for satu-

MNRAS 000, 1–5 (2015)
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Figure 2. Final white dwarf spin period (𝑃WD) against the spin-up efficiency

parameter (𝛼), for four different accreted masses, in M⊙ , namely 10−6, 10−5,

10−4 and 10−3 and two initial spin periods. With the exception of accreted

masses . 10−5, the white dwarf spin periods become significantly shorter

(minutes to a few hours) for a large range of efficiencies.

ration of the dynamo which could be reached due to the accretion of

significantly more mass in Cataclysmic Variables (CVs). One would

therefore expect the generated magnetic fields in DZ and DAZ white

dwarfs to be weaker than the up to several 100 MG fields of strongly

magnetic white dwarfs in CVs which is clearly the case (see Table 1).

We conclude that both conditions for the generation of magnetic

fields due to a crystallization and rotation driven dynamo are most

likely fulfilled in DZ and DAZ white dwarfs. To the best of our

knowledge, no other scenario suggested for the generation of mag-

netic fields in white dwarfs offers an explanation for the increased

incidence of magnetism in old metal polluted white dwarfs.

However, in the absence of a scaling law that takes into account the

dependence on the magnetic Prandtl number, let alone detailed sim-

ulations of the dynamo in white dwarfs, we admit that the presented

arguments are reasonable but phenomenological. More detailed the-

oretical investigations as well as a representative sample of observed

magnetic DZ and DAZ white dwarfs are clearly required to further

test the outlined scenario.

5 PREDICTIONS TO BE TESTED

At first glance, one might think that calculating the temperature dis-

tribution of crystallizing white dwarfs by combining stellar evolution

codes and white dwarf cooling tracks could be an easy way to con-

front the observed temperature distribution with model predictions.

However, such a comparison would currently represent a rather fu-

tile exercise as the distributions of the effective temperatures of the

currently available sample of DAZ and DZ white dwarfs is not only

very likely biased towards hot white dwarfs but also incomplete.

In addition, making reliable model predictions for the temperature

distribution of crystallizing metal polluted white dwarfs is currently

hardly possible as the occurrence rate of planetary systems around
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Figure 3. Predicted temperature distributions of crystallizing DAZ and DZ

white dwarfs assuming solar metallicity and a constant occurrence rate of

planetary systems around progenitor stars less massive then 3.0M⊙ . The

predicted distribution of temperatures of DZ white dwarfs is much broader

and peaks at higher temperatures than the observed DZ sample.

the progenitor stars and its exact dependence on the stellar mass,

planet separation, planet mass, and stellar metallicity are, despite

recent progress (e.g. Fischer & Valenti 2005; Mulders et al. 2015),

not well known. Therefore, instead of performing such a comparison,

we here investigate whether the suggested dynamo scenario leads to

predictions that can be observationally tested in the near future.

To that end we calculated the temperature distribution of crystal-

lizing DZ and DAZ white dwarfs for solar metallicity and assuming

a constant probability for the existence of planetary systems up to

masses of the white dwarf progenitor of 3.0M⊙ . As the planet occur-

rence rate seems to drop for larger stellar masses (e.g. Mulders et al.

2015), we assumed that planets do not form around more massive

stars. We furthermore assumed a constant star formation rate, an age

of the Galactic disk of 10 Gyr, and an initial mass function ∝ 𝑀−2.3.

We used the the single star evolution code written by Hurley et al.

(2000) and the white dwarf cooling models of Bédard et al. (2020).

The resulting temperature distributions are shown in Fig. 3. As

the onset of crystallization for DZ white dwarfs occurs at higher

temperatures, their distribution peaks at a slightly higher temperature.

Given that in addition the late cooling of DZ white dwarfs is faster,

their predicted distribution also extends more towards cooler white

dwarfs. While the detailed shape of both distributions depends on

the assumed occurrence rate of planets as a function of stellar mass

and metallicity, the predicted differences should be present as long

as both samples suffer from the same observational biases and their

progenitor stars have the same planet occurrence rates.

The small number of magnetic DAZ and DZ white dwarfs currently

known does not allow us to asses whether the underlying temperature

distributions are different. However, the ongoing SDSS -V survey

will provide spectra of ∼ 200 000 white dwarfs, many of which

will be metal polluted and a significant fraction of the latter will be

magnetic. Thus, the required large sample of magnetic DZ and DAZ

white dwarfs is likely to be established within the next few years.

A second and obvious prediction of our model is that the rotation

periods of magnetic DZ and DAZ white dwarfs should be on average

shorter than those of non-magnetic white dwarfs with crystallizing

cores. Fortunately, the rotation periods of magnetic white dwarfs can

MNRAS 000, 1–5 (2015)



Dynamo activity in metal polluted white dwarfs 5

be measured through either photometric variability (Brinkworth et al.

2013) or circular spectropolarimetry of spectral lines (Bagnulo &

Landstreet 2019) and thus the prediction can be tested. Interestingly,

the three cold magnetic white dwarfs showing Balmer emission and

potentially hosting a conductive planet or planetary core (Gänsicke

et al. 2020), clearly show reduced spin periods which fits with the

scenario outlined here.

Our scenario also predicts that a certain fraction of crystallizing

white dwarfs currently not showing metal absorption lines should

have increased rotation rates and be magnetic because accretion that

spun up the white dwarf has occurred in the past. The cool magnetic

white dwarfs found in the 20 pc sample (Bagnulo & Landstreet 2020)

could be such systems.

Finally, another mechanism must be responsible for the magnetic

fields observed in some hot white dwarfs and this alternative process

must prevent the accretion of planetary debris (given the absence

of hot magnetic metal polluted white dwarfs). Double white dwarf

mergers could be such a mechanism, as planetary material is certainly

unlikely to survive two phases of mass transfer.

6 CONCLUSION

Schreiber et al. (2021) recently suggested a crystallisation and rota-

tion driven dynamo for the origin of strong magnetic fields of white

dwarfs in close binary stars. We here investigated whether the same

mechanism might be responsible for the surprising increase of mag-

netism in metal polluted white dwarfs when they have cooled to

temperatures <
∼7500 K. We found that the temperature distribution of

metal polluted magnetic DAZ and DZ white dwarfs is consistent with

them having crystallizing cores and that the accretion of planetary

material can spin up the white dwarf’s rotation to periods ranging

from minutes to a hours depending on the total amount of accreted

material. Thus, the suggested dynamo represents a promising model

for explaining the magnetic fields of old DA/DAZ white dwarfs.
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