
This is a repository copy of Parallel prefix scan for the computation of axonal projection
patterns in biological neural networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/175643/

Version: Published Version

Article:

James, S. orcid.org/0000-0003-0208-0588 (2021) Parallel prefix scan for the computation
of axonal projection patterns in biological neural networks. Academia Letters.

10.20935/al461

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

ACADEMIA Letters

Parallel prefix scan for the computation of axonal
projection patterns in biological neural networks

Sebastian James, Department of Psychology, The University of Sheffield

The graphical processing unit (GPU) is a specialized processer designed to carry out thou-
sands of parallel computations. The need to process graphical scenes for computer games and
movies has motivated sustained investment in the development of these devices which have
contributed to a huge growth in both industries. A highly parallel processor is ideally suited
for computer graphics because generating the image for the monitor provides the perfect par-
allelizable problem; the screen consists of millions of pixels, each of which must have its 3
colors specified to form an image. For a 1080p monitor, that’s 6 million parallel tasks. The
beauty of the problem is that the final integration of the meaning of these 6 million results
is performed by the gamer’s brain! In contrast, the solution of most mathematical problems
requires that ‘the pixels talk to one another: the computational elements must transfer infor-
mation in order to deliver a final result or to update variables at every timestep of a simulated
system. Information transfer is a task to which the GPU is, by design, less well suited. In spite
of this drawback, from about the mid 2000s researchers began to explore the use of GPUs for
general-purpose computation, seeking to identify those problems which would benefit most
from the GPU’s parallel computational power. Neural networks, which consist of many iden-
tical neuron models computing an output based on input from their neighbors were an obvious
target and artificial neural networks have indeed provided a well-known success, seeding an
entire ‘deep learning’ industry. Here, the GPU speed up of the back propapagation of error
makes possible the training of very large networks that can solve difficult problems such as
driving a car [4, 5], playing board games such as chess [16, 9] or Go [14] and console games
such as Pong [12].

Researchers in the field of computational neuroscience have explored the use of the GPU
to simulate neurophysiologically realistic neural networks [2, 17]. These generally involve

Academia Letters, March 2021

Corresponding Author: Sebastian James, seb.james@sheffield.ac.uk
Citation: James, S. (2021). Parallel prefix scan for the computation of axonal projection patterns in biological
neural networks. Academia Letters, Article 461. https://doi.org/10.20935/AL461.

1

©2021 by the author — Open Access — Distributed under CC BY 4.0

a complex neuron model in which the cell’s membrane voltage, its ion channels, and the
release of various neurotransmitters may be modeled to understand the network’s behavior.
Researchers have often focussed on the compute time required for simulation of the network
rather than for finding the connection parameters. Connection parameters may be found by
a variety of optimization techniques, but the bottleneck is often the network simulation time.
For simulation, the benefit which the GPU can offer depends on the complexity of the neuron
model and the connectivity of the network; N neurons in a network can be simulated in par-
allel by N processing threads for only one timestep before their outputs must be transferred
according to the network’s connectivity. The GPU is well suited to the parallel execution of
the neuron models, but not for the transfer of signals, which requires that GPU threads coor-
dinate memory accesses. So the GPU is best suited for simulating high complexity neuron
models operating in low complexity networks. The best speed ups reported to date involve
simulation of complex, multi compartment models [15]. Results are less favorable for net-
works involving the more parsimonious single compartment neuron models often employed
for their speed and efficiency in computational neuroscience studies [13]. Given the signifi-
cant additional complexity of GPU code development, the adoption of GPU computation to
simulate neurophysiological neural networks has been limited.

However, there is one practical task in the development of neuroscience models which is
amenable to GPU acceleration: the computation of connectivity patterns. It is common to de-
fine the connection patterns between populations in a biological neural network model accord-
ing to the hypothesis or on the basis of experimental observations, rather than by a from scratch
training. Often, parameterised mathematical functions (Gaussians, Gabor functions, etc.) are
employed. The computation of connectivity patterns between populations consisting of real-
istic numbers of neural elements can, however, be computationally demanding. The purpose
of this letter is to show that the GPU is well suited to the task and to give a sample implemen-
tation in Python. The motivation for this work was the construction, in SpineCreator [7, 8], of
a visual attention model in which a number of neural populations serve as image maps. Each
population is formed into square grids with a side length, d, of 150. Thus, each population
contains 22,500 neurons. Projections from one population to another take the form of Gaus-
sian projections (see Fig. 1A). These projections have the strongest weights where the source
neurons and the destination neurons are closest; neurons in the center of the source popula-
tion project most strongly to those in the destination population. The weights drop off as the
destination neurons become more distal from the source neurons, and below some thresholds,
the weights are set to zero. Examples can be found in [11].

For narrow Gaussian projections, relatively few neural processes connect a given source
neuron to elements in the destination population and a weight table can be constructed con-

Academia Letters, March 2021

Corresponding Author: Sebastian James, seb.james@sheffield.ac.uk
Citation: James, S. (2021). Parallel prefix scan for the computation of axonal projection patterns in biological
neural networks. Academia Letters, Article 461. https://doi.org/10.20935/AL461.

2

©2021 by the author — Open Access — Distributed under CC BY 4.0

taining source neuron index, destination index, and weight. However, to actually determine
which source/destination pairs belong in the table, it is necessary to evaluate the connec-
tion weight between every source/destination pair. In our model, this results in 22,500 ×
22,500 = 506,250,000 n = d4 weight pairs. The creation of this table is a reducing opera-
tion; 506,250,000 possible connections are reduced down to a table consisting of a few million
non negligible weights.

Code A gives an example of Python code that carries out this computation using a general-
purpose CPU. It implements the SpineCreator connectionFunc API, which defines arguments
and a return data format for a Python function to compute the weight table. The example
computes a widening Gaussian—the projection pattern widens along one axis of the (square)
population, modeling the retinotopic projection from the primate retina (with its high acuity
fovea) to the superior colliculus [11]. Complying with the SpineCreator connectionFunc API,
it passes arrays of source neuron coordinates (srclocs), destination neuron coordinates (dst-
locs), and a number of connection-specific (and user definable) parameters as arguments. It
expects a table of connections to be returned. The returned table is used by SpineCreator as
the connectivity definition and saved in the SpineML format [6].

Execution of the listing in Code A takes about 100 s on a fast (Intel i9) CPU. Although this
is not a long wait, the modeler is likely to need to run the operation many times during model
development, to experiment with different parameters in the connection patterns. The visual
attention model which forms our example has at least 20 different projections, so changing a
common parameter could result in nearly an hour of computation, making the model exceed-
ingly tedious to work with. The majority of the time required for the computation occurs in the
inner loop over the destination neurons (line 23). Because each computation in the inner loop
is fully independent, the computation would seem to be a great candidate for execution on the
GPU. However, at first sight, it appears to be necessary to transfer the 506,250,000 inner loop
results from GPU memory to CPU memory, then carry out all 506,250,000 weight compar-
isons in order to sequentially build an ordered, reduced table of connections, effectively losing
any performance gain provided by the GPU!

The solution is to make use of the parallel prefix scan algorithm[3]. This provides a way
of computing the sum of a set of numbers by summing in blocks and propagating the partial
sums until a final result is produced. Parallel prefix scan can be used to select out the non zero
weights with a method called stream compaction [10]. This involves summing 1 for each
non zero weight and using the cumulative sum as the ‘line address’ in the output table. This
way, the output table (which must be preallocated in memory) can be populated in parallel
by the GPU. Code B gives an implementation in Python, using Numba CUDA [1] to enable
execution on NVIDIA GPU devices. The example follows the work efficient parallel scan [3]

Academia Letters, March 2021

Corresponding Author: Sebastian James, seb.james@sheffield.ac.uk
Citation: James, S. (2021). Parallel prefix scan for the computation of axonal projection patterns in biological
neural networks. Academia Letters, Article 461. https://doi.org/10.20935/AL461.

3

©2021 by the author — Open Access — Distributed under CC BY 4.0

Figure 1: A Projection pattern computed using the widening gaussian defined in the
referenced code (Code A and B). Projection weights are plotted for three source neurons,
whose locations are shown by large circles. This projection has an offset in the ϕ direction
(offsetd0p) of 25. Other parameters: sigma_m=100, W_cut=0.008, fshift=4, sigma_0=3.

With these parameters, a weight table of 22,208,750 rows is generated. B Log of
computation time (in seconds) plotted versus n, the maximum possible number of weights in
a projection from a population of size d2to a second population of size d2. The dotted grey

lines indicate n for the population size shown in A. Results are shown for an AMD
Threadripper 2990WX CPU (TR), an Intel Core i9 8950HK CPU (i9), an NVIDIA Quadro
P5000 GPU, and a GTX 1080 GPU. For small n, the overhead in the GPU algorithm makes

it slower than the CPU algorithm. The crossover occurs at n ≈ 1.7 × 106 (d ≈ 64). C
Speed up: The time taken on the CPU (tc) divided by the time taken on the GPU (tg) plotted
vs. n for two different machines (the Quadro GPU was paired with the Threadripper CPU;
1080 with the i9). The overall speed up exceeds one order of magnitude for populations of
the size shown in A. The data for the i9/1080 is truncated because the 1080 GPU did not

have enough RAM to compute patterns for d > 155.

given in [10], taking into account features of the GPU’s shared memory banks to avoid bank
conflicts. The organization of the code may seem unusual, with all the GPU kernel functions
being defined within the outer connectionFunc definition. This ensures that connectionFunc
can be pasted into the Python script window of SpineCreator. Within connectionFunc, there
are two main code blocks: i) dowork which carries out the parallel computation of the weights,

Academia Letters, March 2021

Corresponding Author: Sebastian James, seb.james@sheffield.ac.uk
Citation: James, S. (2021). Parallel prefix scan for the computation of axonal projection patterns in biological
neural networks. Academia Letters, Article 461. https://doi.org/10.20935/AL461.

4

©2021 by the author — Open Access — Distributed under CC BY 4.0

and is similar in structure to the code in Code A; and ii) reduce_nonzero_gpu, which carries
out the reduction operation, extracting the non zero weights into the final output table.

Execution of the code takes about 6 seconds on a GTX 1080 GPU for populations of
150×150 neural elements. Computation of the weights by dowork takes just 1 millisecond;
the reduce operation, reduce_nonzero_gpu, requires about 5.8 seconds. When integrated
into SpineCreator, this makes the work flow of modifying projection parameters feasible. Fig.
1B shows GPU and CPU times plotted vs. the problem size, n. The graph in Fig. 1C shows
that the GPU speed up for larger populations tends towards about 18 times faster than the CPU
code.

It is obvious that the GPU implementation code is significantly more complex than that
for the CPU in Code A. The implementation consists of roughly ten times as many lines of
code. Code A was coded in less than an hour; Code B took weeks of effort. The order of
magnitude increase in complexity is justified by the order of magnitude speed up achieved by
the GPU code. Additionally, much of the GPU solution code is ‘boilerplate’: To change the
form of the projection, perhaps to implement a new Gabor projection in place of the Gaussian
connectivity, only the dowork function needs to be re implemented. Code B thus provides to
the computational neuroscience research community a useful template for GPU computation
of connection patterns.

Code A refers to: https://github.com/ABRG-Models/VisualAttention/blob/master/ con-
nectionFuncs/offset_retgauss_forpaper.py

Code B re https://github.com/ABRG-Models/VisualAttention/blob/master/connectionFuncs/
offset_retgauss_gpu_forpaper.py.

Acknowledgments

I’d like to thank Paul Richmond at The University of Sheffield for originally suggesting the
use of the parallel prefix scan algorithm. This work is supported by a Collaborative Activity
Award, Cortical Plasticity Within and Across Lifetimes, from the James S McDonnell Foun-
dation (grant 220020516).

References

1. Anaconda, Inc. Numba for CUDA GPUs documentation, 2012.

2. M. Beyeler, N. Oros, N. Dutt, et al. Neural Networks, 72:75–87, Dec. 2015.

Academia Letters, March 2021

Corresponding Author: Sebastian James, seb.james@sheffield.ac.uk
Citation: James, S. (2021). Parallel prefix scan for the computation of axonal projection patterns in biological
neural networks. Academia Letters, Article 461. https://doi.org/10.20935/AL461.

5

©2021 by the author — Open Access — Distributed under CC BY 4.0

3. G. E. Blelloch. Prefix Sums and Their Applications. Technical Report CMU CS 90 190,
Carnegie Mellon University, School of Computer Science, 1990.

4. M. Bojarski, D. Del Testa, D. Dworakowski, et al. arXiv:1604.07316 [cs], Apr. 2016.
arXiv: 1604.07316.

5. M. Bojarski, P. Yeres, A. Choromanska, et al. arXiv:1704.07911 [cs], Apr. 2017. arXiv:
1704.07911.

6. A. Cope and P. Richmond. SpineML, 2014. RRID: SCR_015641.

7. A. J. Cope, P. Richmond, and S. S. James. SpineCreator, 2015. RRID: SCR_015637.

8. A. J. Cope, P. Richmond, S. S. James, et al. Neuroinformatics, Sept. 2016.

9. O. E. David, N. S. Netanyahu, and L. Wolf. DeepChess: End to End Deep Neural Network
for Automatic Learning in Chess. In A. E. Villa, P. Masulli, and A. J. Pons Rivero, edi-
tors, Artificial Neural Networks and Machine Learning – ICANN 2016, Lecture Notes in
Computer Science, pages 88–96, Cham, 2016. Springer International Publishing.

10. M. Harris, S. Sengupta, M. Garland, et al. Chapter 39. Parallel Prefix Sum (Scan) with
CUDA, 2010.

11. S. S. James, C. Papapavlou, A. Blenkinsop, et al. Frontiers in Neuroscience, 12, 2018.

12. V. Mnih, K. Kavukcuoglu, D. Silver, et al. arXiv:1312.5602 [cs], Dec. 2013. arXiv:
1312.5602.

13. J. M. Nageswaran, N. Dutt, J. L. Krichmar, et al. Neural Networks, 22(5):791–800, July
2009.

14. D. Silver, T. Hubert, J. Schrittwieser, et al. Science, 362(6419):1140–1144, Dec. 2018.
Pub lisher: American Association for the Advancement of Science Section: Report.

15. M. Stimberg, D. F. M. Goodman, and T. Nowotny. Scientific Reports, 10(1):410, Jan.
2020. Number: 1 Publisher: Nature Publishing Group.

16. S. Thrun. Advances in neural information processing systems., pages 1069–1076, 1995.
17. E. Yavuz, J. Turner, and T. Nowotny. Scientific Reports, 6(1):18854, Jan. 2016.
Number: 1 Publisher: Nature Publishing Group.

Academia Letters, March 2021

Corresponding Author: Sebastian James, seb.james@sheffield.ac.uk
Citation: James, S. (2021). Parallel prefix scan for the computation of axonal projection patterns in biological
neural networks. Academia Letters, Article 461. https://doi.org/10.20935/AL461.

6

©2021 by the author — Open Access — Distributed under CC BY 4.0

