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Germany

‡Department of Agricultural, Forestry and Food Science, Università di Torino, I-10095
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Abstract

We have proposed a new approach to simulating four-wave-mixing signals of molec-

ular systems at finite temperatures by combining the multiconfigurational Ehrenfest

method with the thermo-field dynamics theory. In our approach, the four-time corre-

lation functions at finite temperatures are mapped to those at the zero temperature in

an enlarged Hilbert space of twice vibrational degrees of freedom. As an illustration,

we have simulated three multidimensional spectroscopic signals, time and frequency-

resolved fluorescence spectra, transient-absorption pump-probe spectra, and electronic
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2D spectra at finite temperatures, for a conical intersection mediated singlet fission

model of the rubrene crystal. It is shown that a detailed dynamical picture of the

singlet fission process can be extracted from the three spectroscopic signals. An in-

creasing temperature leads to lower intensities of the signals and broadened vibrational

peaks, which can be attributed to faster singlet-triplet population transfer and stronger

bath-induced electronic dephasing at higher temperatures.

1 Introduction

With recent technological advances, the technique of multidimensional spectroscopy has

been increasingly used to probe energy and charge transfer processes in organic solar cells

as well as natural light harvesting complexes1–4. Compared to linear spectroscopy in which

the spectral lines are often congested, ultrafast non-linear spectroscopic techniques involve

many laser interactions allowing for differentiation of dynamical processes with different time

responses. The state-of-the-art nonlinear spectroscopies include, among others, fluorescence

up-conversion, pump-probe, transient grating, photon echo, which are also referred to as

four-wave-mixing (4WM) spectroscopies. Two-dimensional (2D) spectroscopy, in particular,

has emerged as a powerful technique in the infrared as well as in the visible spectral range5,6.

In a 2D spectroscopy experiment, three ultra-short laser pulses, separated by two time de-

lays, namely, the coherence time and the waiting time, are incident on the sample, and the

resultant signal field is spectrally resolved in a given phase-matched direction. However, the

interpretation of the measured spectroscopic responses in terms of the underlying molecular

structure and dynamics is not a trivial task, which necessitates theoretical simulations to

extract intrinsic system dynamics encoded from spectroscopic signals.

Simulation of 4WM spectroscopy signals involves the calculation of the third-order po-

larization P (3)(t)1,7,8. There exist two alternative groups of theoretical methods for the

calculation of P (3)(t). The methods of the first group are based on the nonperturbative

evaluation of spectroscopic signals, in which the laser fields are incorporated into the system
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Hamiltonian and the dynamics of the driven system is calculated numerically9,10. The non-

perturbative approach has been combined with multiconfigurational time-dependent Hartree

(MCTDH) method11,12 and quasiclassical mapping Hamiltonian method13 for the calculation

of 4WM spectroscopy signals. A variant of the nonperturbative description of time-resolved

spectroscopy, the equation-of-motion phase-matching approach (EOM-PMA), was developed

to simulate signals of any order and for any phase-matching direction8,14. The alternative,

more popular and mature, to the nonperturbative approach is based on the perturbation

theory in matter-field interactions, which describes the 4WM signals in terms of third-order

nonlinear response functions7. The evaluation of the multi-time response functions requires

numerical techniques capable of solving coupled multi-dimensional electronic and nuclear

dynamics.

A conceptually straightforward framework for simulating third-order polarization is to

adopt the density matrix formalism, where nonlinear response functions are obtained by

propagating the density matrix of the materials system along different Liouville pathways.

The numerically exact approaches of hierarchical equations of motion (HEOM)15,16 and the

quasiadiabatic path integral (QUAPI)17,18 are two most successful among density matrix

methods for computing the nonlinear spectra19–22. While both methods eliminate several

well-known limitations of the reduced equations-of-motion approaches, including the rotat-

ing wave approximation, the white noise (Markovian) approximation, and the perturbative

approximant that is associated with the dynamical positivity problem, they are computa-

tionally prohibitive in strong system-bath coupling regimes and at very low temperatures.

Furthermore, the construction of the HEOM restricts its applications to only certain forms

of bath spectral densities, although several spectrum decomposition techniques have been

developed to tackle this issue23–25. While a large number of numerically efficient approxi-

mate methods based on the density matrix formalism have been proposed during past several

decades26–33, the validity of those methods, however, is limited to specific parameter regimes

and system dependent.
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The wave function-based methods offer an alternative way to compute third-order non-

linear response functions at zero temperature. To solve the time-dependent Schrödinger

equation (TDSE), the wave function is expanded in a set of time-dependent basis func-

tions and propagated along the time using certain numerical techniques. The MCTDH

method34,35 and its multilayer version (ML-MCTDH)36,37 , are among the most popular,

powerful wavefunction-based methods, providing an effective tool for accurate simulation of

quantum dynamics with many degrees of freedom (DOFs). The Gaussian basis method, in

which the nuclear wave packet is expanded with time-dependent Gaussian basis functions, is

another promising technique for solving the TDSE. A large body of Gaussian basis methods

have been developed in the past years to provide compelling tools for simulating complex

molecular systems. They include, among others, the multiple spawning (MS) method38,39,

the coupled coherent states (CCS)40, the multiconfigurational Ehrenfest (MCE) method41–43,

the method of variational Multiconfigurational Gaussian (vMCG)44, the hierarchy of the

Davydov ansätze (DA)45–50, and the Gaussian-based MCTDH (G-MCTDH) method51,52. It

is well known, however, that wavefunction-based methods can be computationally expensive

at high temperatures since a large number of statistical samplings for different initial condi-

tions of vibrational modes is required to properly account for the temperature effect53,54. A

particularly promising technique to mitigate this computational bottleneck is to employ the

thermo-field dynamics (TFD)55,56, a finite temperature representation of quantum mechan-

ics. The method of TFD handles finite-temperature effects by mapping the Liouville-von

Neumann equation for the density matrix to the TFD Schrödinger equation with twice as

many DOFs, the dynamics of which are then calculated with wave function-based methods.

The TFD theory has been applied to treat quantum electron-vibrational dynamics57–59, finite

temperature vibronic spectra60,61, and finite-temperature electronic structure62,63.

Recently, we have extended the MCE method to the simulation of 4WM signals at

zero temperature by integrating the MCE method into the framework of the nonlinear re-

sponse functions theory64. However, how to extend the MCE method to computing finite-
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temperature 4WM signals, a central task of this work, is still an open question to be ad-

dressed. Here, we combine the MCE method with the TFD theory in order to introduce

temperature effects to nonlinear response functions. We then apply the theory to study

spectroscopic signatures of the singlet fission process at finite temperatures in rubrene crys-

tal. The rest of this paper is organized as follows. In Section 2, we describe the model

Hamiltonian, the third-order response functions, and the application to a two-state singlet

fission model. Simulated 4WM signals are presented and discussed in Section 3. Conclusions

are drawn in Section 4.

2 METHODOLOGY

2.1 The model Hamiltonian

We consider a system consisting of an electronic ground state |g〉 and several electronic

excited states |e〉, e = 1, 2, · · · ,Ne (Ne is the number of electronic excited states). The

Hamiltonian of the system can be written as

Ĥ = Ĥg + Ĥe (1)

with

Ĥg = |g〉hg(q̂, p̂)〈g|,

Ĥe =
Ne
∑

e,e′

|e〉hee′(q̂, p̂)〈e′| =
Ne
∑

e

|e〉(ǫe + he(q̂, p̂))〈e|+
Ne
∑

e 6=e′

|e〉Vee′(q̂)〈e′| (2)

where q̂ = {q̂1, q̂2, · · · , q̂Nn} and p̂ = {p̂1, p̂2, · · · , p̂Nn} are the mass-weighted coordinates

and momenta of Nn nuclear DOFs. ǫe is the vertical excitation energy of the eth electronic

excited state. hg(q̂, p̂), he(q̂, p̂) are vibrational Hamiltonians of the electronic ground state

and eth electronic excited state, respectively, and Vee′(q̂) is the interstate vibrational coupling
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Hamiltonian between electronic excited states e and e′. For the ease of derivations in the later

section, we further write the vibrational Hamiltonians in terms of creation and annihilation

operators.

b̂† =
q̂− ip̂√

2
, b̂ =

q̂+ ip̂√
2

. (3)

with b̂† =
{

b̂†1, b̂
†
2, · · · , b̂†Nmod

}

and b̂ =
{

b̂1, b̂2, · · · , b̂Nmod

}

being the creation and annihi-

lation operators of Nmod normal modes. Employing the harmonic approximation for the

ground state potential energy surface (PES), one arrives at

ĥg =

Nmod
∑

l

~ωlb̂
†
l b̂l,

Ĥe =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

hord
11 (b̂†, b̂) hord

12 (b̂†, b̂) · · · hord
1Ne

(b̂†, b̂)

hord
21 (b̂†, b̂) hord

22 (b̂†, b̂) · · · hord
2Ne

(b̂†, b̂)

...
...

. . .
...

hord
Ne1

(b̂†, b̂) hord
Ne2

(b̂†, b̂) · · · hord
NeNe

(b̂†, b̂)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4)

Here, index “ord” denotes that the creation and annihilation operators are reordered in

so-called normal ordering, i.e., the powers of b̂† precede those of b̂.

2.2 Third-order response functions

The Hamiltonian describing the interactions of the system with three laser fields is defined

in the rotating wave approximation as follows

HL = −
3
∑

α=1

(

Eα(r, t) · µ+ + E∗
α(r, t) · µ−

)

, (5)

with

Eα(r, t) = sαEα(t− τα)e
ikα·r−iωαt, (6)
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and

µ+ =
Ne
∑

e

µeg|e〉〈g|, µ− =
Ne
∑

e

µge|g〉〈e|. (7)

Here sα, Eα(t), τα, kα, ωα denote the polarization, the envelope, the central time, the wave

vector, and the frequency of the αth laser pulse, respectively. The arrival times of three

pulses are defined as

τ1 = −Tw − τ, τ2 = −Tw, τ3 = 0, (8)

where τ is the delay time between the second and the first pulse, and Tw (also called pop-

ulation time) is the delay time between the third and the second pulse. The transition

dipole moment operator is defined as µ = µ+ +µ− with µ+ and µ− being the up and down

transition dipole moment operator, respectively.

The simulation of 4WM signals involves the calculation of third-order nonlinear response

functions. The four third-order response functions Ra, a = 1, 2, 3, 4, are expressed in terms

of four-time correlation functions of the transition dipole moment operators as7

R1(t3, t2, t1) = Φ(t1, t1 + t2, t1 + t2 + t3, 0),

R2(t3, t2, t1) = Φ(0, t1 + t2, t1 + t2 + t3, t1),

R3(t3, t2, t1) = Φ(0, t1, t1 + t2 + t3, t1 + t2),

R4(t3, t2, t1) = Φ(t1 + t2 + t3, t1 + t2, t1, 0). (9)

with

Φ (τ4, τ3, τ2, τ1) = 〈µ−(τ4)µ+(τ3)µ−(τ2)µ+(τ1)〉 (10)

where µ±(τ) denotes the Heisenberg representation of µ±, i.e., µ±(τ) = eiHτµ±e
−iHτ . In

Eq. 10, the angular brackets represent the trace over vibrational and electronic DOFs. The
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four-time correlation function (Eq. 10) can be written explicitly as

Φ(τ4, τ3, τ2, τ1) = Tr
(

ρ̂g〈g|eiĥgτ4µ−e
−iĤe(τ4−τ3)µ+e

−iĥg(τ3−τ2)µ−e
−iĤe(τ2−τ1)µ+e

−iĥgτ1 |g〉
)

(11)

where

ρ̂g = Z−1
g exp

{

−βĥg

}

(12)

is the density matrix of the vibrational DOFs at temperature T. Here, Zg = Tr
(

e−βĥg

)

is

the partition function, β = (kBT )
−1, and kB is the Boltzmann constant.

2.2.1 Zero temperature

At zero temperature, the four-time correlation function (Eq. 11) can be further simplified as

Φ(τ4, τ3, τ2, τ1) = 〈g|g〈0|µ−e
−iĤe(τ4−τ3)µ+e

−iĥg(τ3−τ2)µ−e
−iĤe(τ2−τ1)µ+|0〉g|g〉 (13)

In the derivation, we have used the fact that in the zero temperature limit, ρ̂g = |0〉gg〈0| and

e−iĥgt|0〉g = |0〉g (for convenience, the total zero-point vibrational energy is set to zero).

2.2.2 Finite temperature

At non-zero temperatures, we demonstrate that the evaluation of the four-time correlation

function (Eq. 11) can be done in a same way as in the zero-temperature case by employing

the TFD formalism.

Following the TFD, we first express the expectation value of any operator Q̂ in the

vibrational space in terms of a “thermal vacuum state” |0(β)〉55,56

〈Q̂〉 = Tr
{

ρ̂gQ̂
}

= 〈0(β)|Q̂|0(β)〉, (14)
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where |0(β)〉 is the temperature-dependent “vacuum state” defined as56

|0(β)〉 = Z−1/2
g

∑

l

e−β~ωl/2|l, l̃〉

= Z−1/2
g e−

1
2
βĥg |I〉; |I〉 =

∑

l

|l, l̃〉. (15)

Here |l〉 is the eigenstate of the vibrational Hamiltonian ĥg with eigenvalue ~ωl, and |l̃〉 is the

eigenstate of the corresponding fictitious Hamiltonian ˆ̃hg =
∑

l ~ωl
ˆ̃b†l
ˆ̃bl. We can thus rewrite

Eq. 11 as

Φ(τ4, τ3, τ2, τ1) = 〈g|〈0(β)|eiĥgτ4µ−e
−iĤe(τ4−τ3)µ+e

−iĥg(τ3−τ2)µ−e
−iĤe(τ2−τ1)µ+e

−iĥgτ1 |0(β)〉|g〉

(16)

Eq. 16 can be further recast as

Φ(τ4, τ3, τ2, τ1) = 〈g|〈0(β)|µ−e
−i(Ĥe−ˆ̃

hg)(τ4−τ3)µ+e
−i(ĥg−ˆ̃

hg)(τ3−τ2)µ−e
−i(Ĥe−ˆ̃

hg)(τ2−τ1)µ+|0(β)〉|g〉

(17)

The reader is referred to Appendix A for a detailed derivation.

It is convenient to express |0(β)〉 as56

|0(β)〉 = e−iĜ|0〉g, (18)

where |0〉g = |00̃〉g is the ground state of the augmented vibrational Hamiltonian (ĥg and

ˆ̃hg), and Ĝ is the Bogoliubov unitary transformation operator defined as

Ĝ = Ĝ† = −i
∑

l

θl

(

b̂l
ˆ̃bl − b̂†l

ˆ̃b†l

)

(19)

with

θl = arctanh(e−β~ωl/2). (20)
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By substituting Eq. 18 into Eq. 17, we finally obtain

Φ(τ4, τ3, τ2, τ1) = 〈g|g〈0|µ−e
−i ˆ̄Heθ(τ4−τ3)µ+e

−iˆ̄hgθ(τ3−τ2)µ−e
−i ˆ̄Heθ(τ2−τ1)µ+|0〉g|g〉, (21)

where we have defined

ˆ̄hgθ = eiĜ
(

ĥg − ˆ̃hg

)

e−iĜ,

ˆ̄Heθ = eiĜ
(

Ĥe − ˆ̃hg

)

e−iĜ. (22)

The specific forms of ˆ̄hgθ and ˆ̄Heθ can be easily derived by using the following relations56

eiĜb̂le
−iĜ = b̂l cosh(θl) +

ˆ̃b†l sinh(θl),

eiĜˆ̃ble
−iĜ = ˆ̃bl cosh(θl) + b̂†l sinh(θl),

eiĜ
(

b̂†l b̂l −
ˆ̃b†l
ˆ̃bl

)

e−iĜ = b̂†l b̂l −
ˆ̃b†l
ˆ̃bl. (23)

Comparing Eqs. 13 and 21, it is found that the four-time correlation function at finite

temperatures can be viewed as the zero-temperature correlation function with Ĥe, ĥg, and

|0〉g substituted by ˆ̄Heθ,
ˆ̄hgθ, and |0〉g, respectively. The explicit expressions for the four
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response functions Ra, a = 1, 2, 3, 4, can be obtained from Eq. 21, yielding

R1(τ, Tw, t)

=
∑

e1,e2,e3,e4

(

s∗4 · µge3

) (

s1 · µe4g

) (

s∗2 · µge1

) (

s3 · µe2g

)

g
〈0|〈e1|ei

ˆ̄HeθTw |e2〉ei
ˆ̄hgθt〈e3|e−i ˆ̄Heθ(τ+Tw+t)|e4〉|0〉g

R2(τ, Tw, t)

=
∑

e1,e2,e3,e4

(

s∗4 · µge3

) (

s∗1 · µge1

) (

s2 · µe4g

) (

s3 · µe2g

)

g
〈0|〈e1|ei

ˆ̄Heθ(Tw+τ)|e2〉ei
ˆ̄hgθt〈e3|e−i ˆ̄Heθ(Tw+t)|e4〉|0〉g

R3(τ, Tw, t)

=
∑

e1,e2,e3,e4

(

s∗4 · µge3

) (

s∗1 · µge1

) (

s2 · µe2g

) (

s3 · µe4g

)

g
〈0|〈e1|ei

ˆ̄Heθτ |e2〉ei
ˆ̄hgθ(Tw+t)〈e3|e−i ˆ̄Heθt|e4〉|0〉g

R4(τ, Tw, t)

=
∑

e1,e2,e3,e4

(

s∗4 · µge1

) (

s1 · µe4g

) (

s∗2 · µge3

) (

s3 · µe2g

)

g
〈0|〈e1|e−i ˆ̄Heθt|e2〉e−iˆ̄hgθTw〈e3|e−i ˆ̄Heθτ |e4〉|0〉g (24)

2.3 Application to a linear vibronic coupling model of the singlet

fission in crystalline rubrene

In this work, we consider a linear vibronic coupling model of singlet fission (SF) in crys-

talline rubrene, which was used to study the effect of conical intersections (CIs) in the SF

process65–68. The model consists of an electronic ground state |g〉 and two lowest electronic

excited states |S1〉 and |TT〉, where S1 and TT are the (optically bright) singlet state and

(optically dark) correlated triplet pair state, respectively. The total Hamiltonian (Ĥ) is par-

titioned into the system Hamiltonian (ĤS), the bath Hamiltonian (ĤB) and their coupling

(ĤSB)

Ĥ = ĤS + ĤB + ĤSB (25)
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In the diabatic representation, the system Hamiltonian ĤS is written as

ĤS = |g〉ĥg〈g|+
∑

e=S1,TT

|e〉(ǫe + ĥe)〈e|+ (|S1〉〈TT|+ |TT〉〈S1|)λQ̂c

ĥe = ĥg +
∑

m=t

κ(e)
m Q̂m

ĥg =
1

2

∑

j=c,t

~Ωj

{

P̂ 2
j + Q̂2

j

}

(26)

Here, Q̂j, P̂j and Ωj are the dimensionless coordinate, momentum and frequency of the

coupling mode (subscript c) and the tuning modes (subscript t), respectively. ǫS1 and ǫTT

are the vertical excitation energies of S1 and TT states, respectively. κ
(e)
m (e = S1,TT) are

the intra-state electron-vibrational coupling constants of tuning modes, and λ is the inter-

state coupling constant of the coupling mode. The values of model parameters are listed in

Table 1.

Table 1: Vertical excitation energies ǫe (eV), intrastate electron-vibrational coupling con-
stants κ (eV), interstate electronic coupling constant λ (eV), vibrational frequencies Ω (eV)
and periods τ = 2π/Ω (fs).

S1 TT Ω τ = 2π/Ω
ǫe 2.58 2.5812
κt1 0.3720 -0.3720 0.1860 22.2
κt2 0.0745 -0.0745 0.0260 159.1
κc 0 0 0.0154 268.6

λ = 0.05

After including the primary vibrational modes into the system Hamiltonian, the effect

of the remaining intra- and inter- molecular vibrational modes can be described as a bath

which consists of a collection of harmonic oscillators

ĤB =
∑

n

1

2
~ωn

{

p̂2n + q̂2n
}

(27)

where p̂n, q̂n and ωn are the dimensionless momentum, coordinate, and frequency of the nth
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bath oscillators, respectively.

The system-bath coupling Hamiltonian reads

ĤSB =
∑

e=S1,TT

|e〉(
∑

n

κ(e)
n q̂n)〈e| (28)

with κ
(e)
n being the system-bath coupling constants. For simplicity, we assume that κ

(S1)
n =

κ
(TT)
n = κn in this work. The coupling strength κn is fully characterized by the bath spectral

density

J(ω) =
π

2

∑

n

κ2
nδ(ω − ωn) =

π

2
ηω exp(−ω/ωc) (29)

Here, an Ohmic spectral density is used, with η and ωc denoting the system-bath cou-

pling strength and the cutoff frequency, respectively. In this work, we use η = 1.0 and

ωc = 800cm−1. We then follow the spectral density discretization procedure as described in

Refs.69,70 to obtain κn, where the spectral density is divided into Nb effective modes in the

range of [0, ωmax] with ωmax = 4ωc being the upper bound of the frequency. The frequency

and coupling strength of nth bath mode are then expressed by

ωn = −ωcln

(

1− n
ω0

ωc

)

,

κn =
√

2ηωnω0 (30)

with ω0 = ωc (1− e−ωmax/ωc ) /Nb.

Using the creation and annihilation operators of normal modes, the total Hamiltonian Ĥ
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can be rewritten as

Ĥ = |g〉ĥg〈g|+ Ĥe,

ĥg =

Nmod
∑

l

~ωlb̂
†
l b̂l,

Ĥe =

S1,TT
∑

e

ǫe|e〉〈e|+
Nmod
∑

l

~ωlb̂
†
l b̂l +

1√
2

S1,TT
∑

e 6=e′

λ|e〉〈e′|(b̂†c + b̂c)

+
1√
2

S1,TT
∑

e

Nmod
∑

l 6=c

κ
(e)
l |e〉〈e|(b̂

†
l + b̂l) (31)

Here, l labels the 3 primary system modes plus Nb bath modes (Nmod = 3 + Nb).

In order to calculate 4WM signals at finite temperatures, we need to specify ˆ̄hgθ and
ˆ̄Heθ

(Eq. 22). The explicit forms of ˆ̄hgθ and ˆ̄Heθ can be derived as

ˆ̄hgθ = eiĜ(ĥg − ˆ̃hg)e
−iĜ

=

Nmod
∑

l

~ωl(b̂
†
l b̂l −

ˆ̃b†l
ˆ̃bl)

ˆ̄Heθ = eiĜ(Ĥe − ˆ̃hg)e
−iĜ

=

S1,TT
∑

e

ǫe|e〉〈e|+
Nmod
∑

l

~ωl(b̂
†
l b̂l −

ˆ̃b†l
ˆ̃bl) +

1√
2

S1,TT
∑

e 6=e′

λ|e〉〈e′|
{

(b̂†c + b̂c) cosh(θc) + (ˆ̃b†c +
ˆ̃bc) sinh(θc)

}

+
1√
2

S1,TT
∑

e

∑

l 6=c

κ
(e)
l |e〉〈e|

{

(b̂†l + b̂l) cosh(θl) + (ˆ̃b†l +
ˆ̃bl) sinh(θl)

}

(32)

The expressions of ˆ̄hgθ and ˆ̄Heθ can be further simplified as

ˆ̄hgθ =

2Nmod
∑

l

~ω
′

l b̂
′†
l b̂

′

l,

ˆ̄Heθ =

S1,TT
∑

e

ǫe|e〉〈e|+
2Nmod
∑

l

~ω
′

l b̂
′†
l b̂

′

l +
1√
2

S1,TT
∑

e 6=e′

2Nmod
∑

l

|e〉〈e′|λ′

l(b̂
′†
l + b̂

′

l)

+
1√
2

S1,TT
∑

e

2Nmod
∑

l

κ
′(e)
l |e〉〈e|(b̂

′†
l + b̂

′

l) (33)
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by introducing the following notations

b̂
′†
l (b̂

′

l) =















b̂†l (b̂l) 1 ≤ l ≤ Nmod

ˆ̃b†l−Nmod
(ˆ̃bl−Nmod

) 1 + Nmod ≤ l ≤ 2Nmod

ω
′

l =















ωl 1 ≤ l ≤ Nmod

−ωl−Nmod
1 + Nmod ≤ l ≤ 2Nmod

λ
′

l =















λl cosh(θl) 1 ≤ l ≤ Nmod

λl−Nmod
sinh(θl−Nmod

) 1 + Nmod ≤ l ≤ 2Nmod

κ
′(e)
l =















κ
(e)
l cosh(θl) 1 ≤ l ≤ Nmod

κ
(e)
l−Nmod

sinh(θl−Nmod
) 1 + Nmod ≤ l ≤ 2Nmod

(34)

We then substitute the propagators in the four response functions Ra, a = 1, 2, 3, 4 (Eq.

24) by the following wave function of the MCE method41,

e−i ˆ̄Heθt|e〉|0〉g = |Ψ(t)〉

=
M
∑

u=1

(

S1,TT
∑

e

Aue(t)|e〉
)

|zu(t)〉

=
M
∑

u=1

(

S1,TT
∑

e

Aue(t)|e〉
)

exp

[

2Nmod
∑

l

(

zul(t)b̂
′†
l − z∗ul(t)b̂

′

l

)

]

|0〉g (35)

Here, u is the index for the configuration. Aue is the amplitude in the diabatic electronic

excited state |e〉, and zu is the coherent state for the vibrational DOFs. zul is the phonon

displacement for the lth normal mode. In principle, one can apply the Lagrangian formalism

of the Dirac-Frenkel variational method to obtain the equations of motion for both state

amplitude Aue and phonon displacement uul. In the MCE method, the variational principle

is applied only to Aue, while each zu follows its own Ehrenfest trajectory. The reader is

referred to the Appendix B for details on the MCE method and its applications to the
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calculation of four response functions Ra, a = 1, 2, 3, 4.

Following the procedure described in Ref.71, the initial values of the state amplitudes Aue

are obtained from the quantum superposition sampling. The initial values of the phonon dis-

placements zul (both the real and imaginary part) are sampled from the uniform distribution

[−δ, δ]. Adopting the idea of “compressed pancakes” sampling technique of Shalashilin and

Child72, we use a larger value of δ = 5 × 10−2 for the primary system modes and a smaller

value of δ = 10−2 for bath modes. A configuration of M = 800 and Nb = 30 discretized

bath modes are employed to achieve high accuracy and efficiency in the calculations of 4WM

signals. The transition dipole moments are set as µS1g = 1 and µTTg = 0 since the TT

state is optically dark. To account for additional optical dephasing, we further multiply the

response functions Ra(τ,Tw, t), a = 1, 2, 3, 4 (Eq. 24) by exp {−(τ + t)/τd} with a dephasing

time τd = 80 fs.

Since higher-lying singlet and triplet states are not included in our model, the third-

order polarization P (3)(t) consists of contributions from the stimulated emission (SE) and

the ground state bleaching (GSB). While the SE is described by response functions R1 and

R2 (the system evolves in the electronic excited states during Tw), the GSB is characterized

by response functions R3 and R4 (the system evolves in the electronic ground state during

Tw).

2D electronic spectroscopy is a typical 4WM technique used to study the ultrafast energy

relaxation processes in molecular systems. To simulate 2D electronic spectra, we need to de-

compose P (3)(t) into rephasing (subscript R) and nonrephasing (subscript NR) contributions,

which can be written as

P (3)(τ, Tw, t) = P
(3)
R (τ, Tw, t) + P

(3)
NR(τ, Tw, t) (36)

where in the impulsive limit (when the pulse envelopes can be replaced by the Dirac delta

16



functions)

P
(3)
R (τ, Tw, t) ∼ −i [R2(τ, Tw, t) +R3(τ, Tw, t)] ,

P
(3)
NR(τ, Tw, t) ∼ −i [R1(τ, Tw, t) +R4(τ, Tw, t)] . (37)

2D electronic spectrum is then obtained by 2D Fourier transforms, yielding

SR(ωτ , Tw, ωt) = Re

∫ ∞

0

∫ ∞

0

dtdτiP
(3)
R (τ, Tw, t)e

−iωτ τ+iωtt

SNR(ωτ , Tw, ωt) = Re

∫ ∞

0

∫ ∞

0

dtdτiP
(3)
NR(τ, Tw, t)e

iωτ τ+iωtt (38)

The total 2D signal is the sum of the above two contributions

S(ωτ , Tw, ωt) = SR(ωτ , Tw, ωt) + SNR(ωτ , Tw, ωt) (39)

The transient absorption (TA) pump-probe spectrum corresponds to the case where

k1 = k2 = kpump, k3 = kprobe and the signal is detected in the direction of kprobe. In

the ultrashort pulse approximation, the TA polarization can be written as

PTA(Tw, t) ∼ −i [R1(0, Tw, t) +R2(0, Tw, t) +R3(0, Tw, t) +R4(0, Tw, t)] . (40)

The dispersed TA spectrum is obtained by performing the Fourier transform with respect to

PTA(Tw, t),

STA(Tw, ωt) = Re

∫ ∞

0

dtiPTA(Tw, t)e
iωtt. (41)

The time and frequency-gated (TFG) fluorescence spectroscopy is a valuable tool for

monitoring the wave packet dynamics in the electronic excited states. The TFG signal can

be calculated as73,74

STFG(Tw, ωt) ∼ Re

∫ ∞

0

dt2dtR2(0, t2, t)e
iωttEf (t+ t2 − Tw)Ef (t2 − Tw), (42)
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where Ef (t) denotes the envelop of the gate pulse, assumed to be of Gaussian shape Ef (t) =

exp {−(t/τf )2}. Here τf is the pulse duration which controls the time resolution of the signal.

3 Results and Discussions

Figure 1: TFG fluorescence spectra STFG(Tw, ωt) at different temperatures T=0K, 100K,
200K, and 300K. Upper and lower panels correspond to the cases of good time resolution
(τf =12 fs) and good frequency resolution (τf= 60 fs), respectively.

TFG fluorescence spectroscopy characterizes the wave packet dynamics in the electronic

excited states, providing a connection between the electronic population and vibrational

wave-packet motions73–75. Fig. 1 plots the TFG fluorescence spectra STFG(Tw, ωt) at different

temperatures, T=0K, 100K, 200K, and 300K. Upper and lower panels correspond to the cases

of good time resolution (τf =12 fs) and good frequency resolution (τf= 60 fs), respectively.

At T=0K, STFG(Tw, ωt) (Fig. 1(a)) calculated with a short gate pulse (τf =12 fs) reflects the

vibronic wave packet motions in the bright singlet S1 state. The spectrum exhibits periodic

oscillations as a function of Tw modulated by the high frequency tuning mode Qt1 with a

period of ∼22 fs. One can also find the recurrence of the emission pattern with a longer

period of ∼ 156 fs, which reveals the wave packet motions along tuning mode Qt2 in the

singlet S1 state. As waiting time Tw increases, the emission intensity slightly decreases due

to the relatively slow population transfer from S1 to TT.
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The spectrum STFG(Tw, ωt) at T=100K, as displayed in Fig. 1(b), looks similar to that at

T=0K. However, increasing temperature has two different effects on the spectrum. On the

one hand, higher temperature leads to a faster S1-TT population transfer, which is reflected

by a slightly smaller intensity of the emission. On the other hand, it causes the dissipation

of the vibrational energy to the bath, thus the spectral width of the emission at T=100K

becomes narrower as compared to that at T=0K. With further increasing temperature to

200K and 300K (see Figs. 1(c) and (d)), the temperature effects become more pronounced

as higher excited states of more vibrational modes are involved. As a result, the emission

intensity further decreases with the temperature, indicating that high temperature facilitates

the SF process. In addition, the spectral width of the emission narrows with the increase of

temperature and vibrational structures on the left and right sides of the TFG spectra start

to merge with increasing Tw, which can be attributed to the bath-induced dissipation of the

vibrational energy.

The spectra STFG(Tw, ωt) calculated with a longer gate pulse (τf = 60 fs) at temperatures

T=0K, 100K, 200K, and 300K are depicted in the lower panel of Fig. 1. As illustrated in

Fig. 1(e), vibrational wave packet motions cannot be captured by the TFG spectrum with

a longer gate pulse, the spectrum at T=0K consists of emissions from individual vibronic

levels of the bright S1 state. With the increase of the temperature, the individual emission

lines are gradually merged, forming structureless, broaden signal (compare Figs. 1(f), (g)

and (h) with Fig. 1(e)). The intensity of the emissions decreases with the temperature due

to the faster S1-TT population transfer at elevated temperatures.

The TA spectrum reflects the wave packet dynamics on both the electronic excited states

(SE) and the electronic ground state (GSB), thus offering richer information content than

that of the TFG fluorescence spectrum76. In Fig. 2, we display the dispersed transient

absorption signal STA(Tw, ωt) at different temperatures T=0K, 100K, 200K, and 300K. The

TA spectrum at 0K (Fig. 2(a)) consists of a pronounced stationary ridge centred around

2.5 eV and periodic wave-like oscillations pattern with two characteristic periods of ∼ 22
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Figure 2: Dispersed transient absorption signal STA(Tw, ωt) at different temperatures T=0K,
100K, 200K, and 300K.
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and 156 fs. While the former originates in the GSB contribution, the latter results from

the SE contribution. It should be noted that both the GSB and SE components contribute

almost equally to the TA spectrum on the entire timescale of 250 fs. As shown in Figs. 2(b)-

(d), the spectra are smoothed and broadened at elevated temperatures due to bath-induced

dissipation of the vibrational energy. Furthermore, the intensity of the signal decreases with

the rising temperature, which is attributed to a faster S1-TT population transfer at higher

temperatures.
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Figure 3: Real part of the total 2D electronic spectra S(ωτ ,Tw, ωt) at T=0K for different
population times Tw.

Electronic 2D spectroscopy captures the excitation and emission events on an equal

footing, providing sensitive detection of wave packet motions on both electronic excited state

(SE) and the electronic ground state (GSB). The 2D spectra S(ωτ ,Tw, ωt) as a function of

population times Tw at four temperatures, T=0K, 100K, 200K, and 300K, are displayed in

Figs. 3-6. Let us consider the time evolution of the 2D spectra at T=0K as shown in Fig.

3 first. The 2D spectra at Tw=0 fs exhibit a pronounced vibrationally diagonal multi-peak

21



structure with an energy spacing of ∼ Ωt1 , which corresponds to the vibrational progression

of the linear absorption. The shape of the 2D spectrum is dominated by a superposition of

the spectrally overlapping SE and GSB contributions. At Tw=6 fs, the SE peaks move along

the ωt axis to lower energies, reflecting the wave packet movement along the excited state

PES to the lower energy region. The spectral shape of the GSB contribution also changes,

while its “center of gravity” remains around the initial position ωt = ωτ ≈ 2.5 eV. As Tw

increases to 12 fs, the SE peaks reach for the first time the attainable lowest energy region

(see Figs. 1(a) and 2(a)). From Tw=12 fs to Tw=22 fs, the SE peaks then move up along the

ωt axis due to the reverse movement of the wave packet along the excited state PES. When

the wave packet returns back to its starting points on the excited state PES at Tw=22 fs,

the GSB and SE contributions overlap again and one can observe almost complete revival

of the 2D spectra as compared to the spectra at Tw=0 fs. With the further increase of Tw,

the 2D spectra show periodic oscillation which is predominately modulated as a function of

Tw by the high-frequency tuning mode Qt1 with a vibrational period of ∼ 22 fs (compare

spectra at Tw=44, 66, and 200 fs, as well as the spectra at Tw=18 and 130 fs). In addition,

the recurrence of the spectra at Tw=200 fs as compared to those at Tw=44 fs also reveals the

wave packet motions along the low-frequency tuning mode Qt2 with a vibrational period of ∼

159 fs. It should be noted that 2D spectra at three representative population times Tw=80,

100, and 190 fs show a large energy separation between the GSB and SE peaks along the ωt

axis, a feature that is consistent with accessible lowest frequency region in the time-resolved

fluorescence and TA spectra (see Figs. 1(a) and 2(a)). Overall, the time evolution of 2D

spectra vividly maps the wave packet dynamics on both electronic excited state and the

electronic ground state.

The 2D spectra at T=100K for different population times Tw are depicted in Fig. 4.

While these spectra show quite similar vibrational peaks structure and periodic oscillations

as a function of Tw as compared to their counterparts at zero temperature in Fig. 3, the

differences between the two groups of signals can be discernible. The rising temperature
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Figure 4: Real part of the total 2D electronic spectra S(ωτ ,Tw, ωt) at T=100K for different
population times Tw.

primarily affects the 2D spectra in two ways. Firstly, it increases the number of the vibronic

states which can be probed by the laser pulse. As a result, the overall peak intensities of

2D spectra for each specific Tw are slightly decreased as temperature increases to 100K,

which can be attributed to a faster S1-TT population transfer at T=100K. Secondly, higher

temperature induces stronger dissipation of the vibrational energy to the bath, which in turn

leads to broadened vibrational peaks. When the temperature further increases to T=200K

(Fig. 5) and T=300K (Fig. 6), the above two effects of temperature on spectra become

more pronounced. It is found that the overall intensities of 2D spectra for each specific Tw

further decrease with temperature due to the faster SF process at elevated temperatures.

Furthermore, the individual vibrational subpeaks are blurred out and merged into broad

features at high temperatures, a direct consequence of the strong bath-induced electronic

dephasing.
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Figure 5: Real part of the total 2D electronic spectra S(ωτ ,Tw, ωt) at T=200K for different
population times Tw.
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Figure 6: Real part of the total 2D electronic spectra S(ωτ ,Tw, ωt) at T=300K for different
population times Tw.
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4 Conclusions

In summary, we have developed a new approach to the computation of time and frequency-

resolved 4WM signals at finite temperatures by integrating the MCE method into the frame-

work of the TFD theory. The proposed method employs the formalism of the TFD to

transform the four-time correlation function at finite temperatures into a form which can

be treated as the four-time correlation function at zero temperature with an augmented

vibrational Hilbert space twice as large.

The strengths of the theory developed in this work have been demonstrated by simulating

three typical multidimensional spectroscopic signals, namely, the time and frequency-resolved

fluorescence spectra, the transient-absorption pump-probe spectra, and the electronic 2D

spectra at finite temperatures, for a CI-mediated SF model of crystalline rubrene. While

the time and frequency-resolved fluorescence spectrum reflects the vibrational wave-packet

motions on the electronic excited state, the transient absorption and electronic 2D spectra

provide sensitive detection of the vibrational wave packet dynamics on both electronic excited

state (SE) and the electronic ground state (GSB). The rising temperature has two main

effects on the spectra. On the one hand, increasing temperature causes lower intensities of

the TFG fluorescence, TA and 2D electronic spectra, which can be ascribed to the faster SF

process at elevated temperature. On the other hand, higher temperature induces stronger

dissipation of vibrational energy to the bath, which in turn leads to a narrower spectral

width of the TFG fluorescence spectra and broaden peaks of TA and 2D spectra.

Finally, a short outlook on possible extensions of our approach and its applications. To

properly describe the excited state absorption (ESA) contribution to the TA and 2D measure-

ments of various SF process65,77, one also needs to consider higher-lying singlet/triplet states.

Our theory can take into account the ESA by propagating the system in the higher excited

state manifold between τ2 and τ3 in Eq. 21, with ˆ̄hgθ substituted by ˆ̄Hfθ = eiĜ
(

Ĥf − ˆ̃hg

)

e−iĜ

(Ĥf represents the Hamiltonian for higher-lying electronic excited states). It should be noted
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that the MCE method (MCEv1) used in this work was developed for the simulations of

model systems, which require a tedious construction of global or semi-global PESs. The

independent-trajectory version of the MCE method (MCEv2, see Appendix B), in contrast,

avoids the calculation of PESs and is well suited to the on-the-fly ab initio (OTF-AI) simula-

tions of non-adiabatic excited state molecular dynamics of small polyatomic molecules42,78,79.

It is thus of great interest to extend our approach to the OTF-AI evaluation of various

4WM signals of small polyatomic molecules at finite temperatures by combining the MCEv2

method with the TFD theory. Work in these directions is in progress.
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Appendix A Derivation of Eq. 17

The proof of Eq. 17 proceeds as follows

Φ(τ4, τ3, τ2, τ1)

= Tr
(

ρ̂g〈g|eiĥgτ4µ−e
−iĤe(τ4−τ3)µ+e

−iĥg(τ3−τ2)µ−e
−iĤe(τ2−τ1)µ+e

−iĥgτ1 |g〉
)

= Tr
(

〈g|ρ̂1/2g µ−e
−iĤe(τ4−τ3)µ+e

−iĥg(τ3−τ2)µ−e
−iĤe(τ2−τ1)µ+ρ̂

1/2
g eiĥgτ4e−iĥgτ1 |g〉

)

= 〈g|
∑

l

〈l|ρ̂1/2g µ−e
−iĤe(τ4−τ3)µ+e

−iĥg(τ3−τ2)µ−e
−iĤe(τ2−τ1)µ+ρ̂

1/2
g eiĥgτ4e−iĥgτ1 |l〉|g〉

= 〈g|
∑

l

∑

l′

〈l|ρ̂1/2g µ−e
−iĤe(τ4−τ3)µ+e

−iĥg(τ3−τ2)µ−e
−iĤe(τ2−τ1)µ+ρ̂

1/2
g |l′〉〈l′|eiĥgτ4e−iĥgτ1 |l〉|g〉

= 〈g|
∑

l

∑

l′

〈l|ρ̂1/2g µ−e
−iĤe(τ4−τ3)µ+e

−iĥg(τ3−τ2)µ−e
−iĤe(τ2−τ1)µ+ρ̂

1/2
g |l′〉〈l̃|ei

ˆ̃
hgτ4e−i

ˆ̃
hgτ1 |l̃′〉|g〉

= 〈g|
∑

l

〈l|〈l̃|ρ̂1/2g ei
ˆ̃
hgτ4µ−e

−iĤe(τ4−τ3)µ+e
−iĥg(τ3−τ2)µ−e

−iĤe(τ2−τ1)µ+e
−i

ˆ̃
hgτ1 ρ̂1/2g

∑

l′

|l′〉|l̃′〉|g〉

= 〈g|〈0(β)|µ−e
−i(Ĥe−ˆ̃

hg)(τ4−τ3)µ+e
−i(ĥg−ˆ̃

hg)(τ3−τ2)µ−e
−i(Ĥe−ˆ̃

hg)(τ2−τ1)µ+|0(β)〉|g〉 (A1)

where we have used the identity 〈l′|eiĥgτ4e−iĥgτ1 |l〉 = 〈l̃|eiˆ̃hgτ4e−i
ˆ̃
hgτ1 |l̃′〉

Appendix B The multiconfigurational Ehrenfest method

Upon laser excitation the system is excited from the electronic ground state to the elec-

tronic excited states, and the resulting dynamics can be described by the TDSE. The MCE

method, in which the wave function is expanded as a linear combination of many config-

urations with each configuration guided by its own Ehrenfest (mean-field) trajectory, has

been proved as a numerical efficient and accurate tool for simulating quantum dynamics in-

volving multiple electronic states. There are two versions of the MCE method (MCEv1 and

MCEv2). In the MCEv1 method, the wave function is represented as a linear combination
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of M configurations41

|Ψ(t)〉 =
M
∑

u=1

(

Ne
∑

e

Aue(t)|e〉
)

|zu(t)〉

=
M
∑

u=1

(

Ne
∑

e

Aue(t)|e〉
)

exp

[

Nmod
∑

l

(

zul(t)b̂
†
l − z∗ul(t)b̂l

)

]

|0〉g (B1)

Here, u is the index for the configuration. Aue is the amplitude in the diabatic electronic

excited state |e〉, and |zu〉 is the coherent state for the vibrational DOFs. zul is the phonon

displacement for the lth normal mode and |0〉g is the vibrational ground state of ĥg. The

MCEv1 method was shown to provide a reliable description of the dynamics of multi-state

multi-mode model systems, such as spin-boson model41 and one-dimensional Holstein po-

laron model43. The MCEv2 method, on the other hand, was developed for the use with

on-the-fly ab initio simulations of ultrafast nonadiabatic excited-state processes of small

polyatomic molecules78,79. Compared to the MCEv1 method in which the Ehrenfest trajec-

tories are coupled with each other, in the MCEv2 method, the wave function is expanded

using an ensemble of independent Ehrenfest configurations42

|Ψ(t)〉 =
M
∑

u=1

Du(t)|φu(t)〉

=
M
∑

u=1

Du(t)

(

Ne
∑

e

Aue(t)|e〉
)

|zu(t)〉 (B2)

Here, Du are weighting coefficients for the configurations |φu(t)〉 =
(

∑Ne

e Aue(t)|e〉
)

|zu(t)〉.

Since the Ehrenfest trajectories now are independent with each other, the MCEv2 method

is well suited to be implemented with an on-the-fly ab initio calculation of the electronic

structure, but is also harder to converge for some systems.

In this work, we use the MCEv1 method to solve the TDSE due to its faster convergence

as compared to that of the MCEv2 method. The equations of motion for the state amplitudes
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Aue can be derived by first constructing the following Lagrangian,

L = 〈Ψ(t)| i
2

←→
∂

∂t
− Ĥe|Ψ(t)〉

=
i

2

M
∑

nu

Ne
∑

e

{

[

A∗
neȦue − Ȧ∗

neAue

]

+ A∗
neAue

∑

l

(

znlż
∗
nl + żnlz

∗
nl − zulż

∗
ul − żulz

∗
ul

2
+ z∗nlżul − ż∗nlzul

)

}

×Rnu − 〈Ψ(t)|Ĥe|Ψ(t)〉 (B3)

where

Rnu = 〈zn|zu〉 = exp

{

∑

l

z∗nlzul −
1

2

(

|znl|2 + |zul|2
)

}

(B4)

and

〈Ψ(t)|Ĥe|Ψ(t)〉 =
M
∑

nu

(

Ne
∑

ee′

A∗
neAue′h

ord
ee′ (z

∗
n, zu)

)

Rnu (B5)

then the application of the Euler equations

∂L

∂A∗
ne

− d

dt

∂L

∂Ȧ∗
ne

= 0 (B6)

yields

i

M
∑

u

{

Ȧue + Aue

∑

l

[

z∗nlżul −
żulz

∗
ul + zulż

∗
ul

2

]

}

Rnu −
M
∑

u

Ne
∑

e′

Aue′h
ord
ee′ (z

∗
n, zu)Rnu = 0

(B7)

In the MCEv1 method, the equations of motion for zu are obtained by applying the Ehrenfest
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dynamics to each zu, i.e.,

iżu =
∂HEhr

u

∂z∗u
,

HEhr
u =

〈Ψu|Ĥe|Ψu〉
〈Ψu|Ψu〉

,

|Ψu〉 =
Ne
∑

e

Aue|e〉|zu〉. (B8)

with

〈Ψu|Ĥe|Ψu〉 =
Ne
∑

ee′

A∗
ueAue′h

ord
ee′ (z

∗
u, zu), (B9)

〈Ψu|Ψu〉 =
Ne
∑

e

A∗
ueAue (B10)

For the singlet fission model described in Sec. 2.3, the equations of motion for the state

amplitude Aue and phonon displacement zul can be derived as

i

M
∑

u

{

ȦuS1 + AuS1

∑

l

[

z∗nlżul −
żulz

∗
ul + zulż

∗
ul

2

]

}

Rnu

=
M
∑

u

{

AuS1

[

ǫS1 +
∑

l

ω
′

lz
∗
nlzul +

∑

l

κ
′(S1)
l√
2
(z∗nl + zul)

]

+ AuTT

∑

l

λ
′

l√
2
(z∗nl + zul)

}

Rnu

i
M
∑

u

{

ȦuTT + AuTT

∑

l

[

z∗nlżul −
żulz

∗
ul + zulż

∗
ul

2

]

}

Rnu

=
M
∑

u

{

AuTT

[

ǫTT +
∑

l

ω
′

lz
∗
nlzul +

∑

l

κ
′(TT)
l√
2

(z∗nl + zul)

]

+ AuS1

∑

l

λ
′

l√
2
(z∗nl + zul)

}

Rnu

(B11)

iżul =
A∗

uS1
AuS1(ω

′

lzul +
κ
′(S1)
l√
2
) + A∗

uTTAuTT(ω
′

lzul +
κ
′(TT)
l√

2
) + (A∗

uS1
AuTT + A∗

uTTAuS1)
λ
′

l√
2

A∗
uS1

AuS1 + A∗
uTTAuTT

(B12)

By inserting the wave function of the MCEv1 method (Eq. B1) into Eq. 13, we obtain
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the expressions of the four response functions Ra
64, a = 1, 2, 3, 4, at zero temperature.

R1(τ, Tw, t) =
M
∑

nu

∑

e1,e2,e3,e4

(

s∗4 · µge3

) (

s1 · µe4g

) (

s∗2 · µge1

) (

s3 · µe2g

)

Ae1∗
ne2

(Tw)A
e4
ue3

(τ + Tw + t)

× exp

{

∑

l

ze1∗nl (Tw)z
e4
ul (τ + Tw + t)eiωlt

}

e−
1
2

∑
l(|z

e1
nl (Tw)|2+|ze4ul (τ+Tw+t)|2),

R2(τ, Tw, t) =
M
∑

nu

∑

e1,e2,e3,e4

(

s∗4 · µge3

) (

s∗1 · µge1

) (

s2 · µe4g

) (

s3 · µe2g

)

Ae1∗
ne2

(τ + Tw)A
e4
ue3

(t+ Tw)

× exp

{

∑

l

ze1∗nl (τ + Tw)z
e4
ul (t+ Tw)e

iωlt

}

e−
1
2

∑
l(|z

e1
nl (τ+Tw)|2+|ze4ul (t+Tw)|2),

R3(τ, Tw, t) =
M
∑

nu

∑

e1,e2,e3,e4

(

s∗4 · µge3

) (

s∗1 · µge1

) (

s2 · µe2g

) (

s3 · µe4g

)

Ae1∗
ne2

(τ)Ae4
ue3

(t)

× exp

{

∑

l

ze1∗nl (τ)z
e4
ul (t)e

iωl(Tw+t)

}

e−
1
2

∑
l(|z

e1
nl (τ)|2+|ze4ul (t)|2),

R4(τ, Tw, t) =
M
∑

nu

∑

e1,e2,e3,e4

(

s∗4 · µge1

) (

s1 · µe4g

) (

s∗2 · µge3

) (

s3 · µe2g

)

Ae1∗
ne2

(−t)Ae4
ue3

(τ),

× exp

{

∑

l

ze1∗nl (−t)ze4ul (τ)e−iωlTw

}

e−
1
2

∑
l(|z

e1
nl (−t)|2+|ze4ul (τ)|2), (B13)

where s4 is the polarization of the local oscillator field, Ae4
ue3

(t) is the probability to find the

electronic state e3 at time t if we excite the system from the electronic ground state to the

electronic excited state e4 initially and with configuration u, and ze4ul (t) is the corresponding

phonon displacement at time t.

The expressions for the four response functions Ra, a = 1, 2, 3, 4, at finite temperatures

can be obtained in a same way as the zero temperature case by inserting the wave function

32



of Eq. 35 into Eq. 24. We have

R1(τ, Tw, t) =
M
∑

nu

∑

e1,e2,e3,e4

(

s∗4 · µge3

) (

s1 · µe4g

) (

s∗2 · µge1
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s3 · µe2g
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Ae1∗
ne2

(Tw)A
e4
ue3

(τ + Tw + t)

× exp

{

2Nmod
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l t

}
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1
2
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∑
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M
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