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Abstract. It is pertinent to assess the performance of a sustainable system that can treat nitrogen 

oxides (NOx) emissions from combusting biomass waste. Low-temperature selective catalytic 

reduction is attractive due to the longer catalyst lifetime and the possibility to use carbon-based 

catalysts. Hence, this study explores this system with the utilization of: (i) a cost-effective 

catalyst support, i.e. activated carbon derived from abundant biomass waste; (ii) a renewable 

reductant, i.e. hydrogen; and (iii) Earth-abundant metal catalysts, i.e. copper and iron. The 

catalyst was prepared by impregnating metal oxides (Cu and Fe) over palm kernel shell activated 

carbon (PKS). The catalyst was characterised by hydrogen-temperature programmed reduction 

(H2-TPR) and nitric oxide-temperature programmed desorption (NO-TPD). H2-TPR revealed an 

increase in the reducibility, attributed to the synergistic effects between Cu and Fe. However, 

these catalyst sites favour nitrous oxide (N2O) formation as shown via NO-TPD. Meanwhile, the 

catalyst activity has also been investigated in a fixed-bed reactor. It showed that the 100% 

conversion can be achieved at 200°C, but the selectivity towards nitrogen formation is as low as 

40%. Therefore, investigating the optimum design of PKSCuFe catalyst is justifiable to improve 

the performance of low-temperature selective catalytic reduction.   

1.  Introduction 

In developing countries, decomposable organic waste, mainly from agricultural activities, dominates the 

total solid waste produced (4.5 times more than the generation of municipal solid waste) [1]. Typical 

final disposal methods are open dumping, landfilling and incineration. The development of methods for 

the sustainable utilization of solid waste is therefore becoming more prominent [2]. One sustainable 

alternative in utilizing agro-waste is its conversion to either energy or other useful products, such as 

composites and activated carbon which have shown successful application in industry. Activated carbon 

has been utilized widely in wastewater treatment and gas purification processes because it has high 

adsorption capacity. It is also evident that this material can be potentially utilized in other applications, 

in particular catalysis. The synthesis and application of carbonaceous catalysts from biomass has 

recently been reviewed [3]. Additionally, Yang et al. (2011) have reviewed the application of various 
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carbons as catalyst supports for flue gas treatment and concluded that activated carbon can be a 

potentially cost-effective catalyst support especially for application at low temperature [4]. 

The conversion of biomass to energy is associated with the emission of greenhouse gases (GHG) 

including nitrogen oxides (NOx) and sulphur oxides (SOx). Pathways for the conversion of biomass into 

energy include combustion, gasification, fermentation and pyrolysis [5]. In developing countries, even 

though the energy recovery is usually only 35 % and in some cases 85 %, incineration/combustion is 

the most common route chosen by developers due to its simplicity, low capital cost (RM 0.55 M/t 

compared to RM 0.65 M/t for gasification), low operational cost (RM 102/t compared to RM 120/t for 

gasification) as well as proven technology [6]. Nevertheless, low energy recovery adversely increases 

the volume of pollutants being released during combustion processes. These include mercury, NOx gases 

and volatile organic compounds (VOCs). 

NOx contributes to air pollution and the release of this substance into the atmosphere is strictly 

regulated by regulations and protocols of the respective countries. Emission of NOx promotes acid rain 

and ground-level ozone (smog). Due to the harm that NOx has brought upon living things, many 

techniques have been implemented to control the emission of NOx concentration including gas cleaning 

technology and selective catalytic reduction (SCR) with the latter being the area of interest lately 

because of the low capital cost [4], [7]–[10]. However, the operating cost of SCR can be expensive due 

to the need for ammonia or urea as the reductant. Therefore, other reducing agents have been studied, 

with hydrogen emerging as a promising alternative which has the potential to be produced sustainably 

via electrolysis [11], [12].  

Many types of catalyst have been tested for NO reduction with hydrogen (H2-SCR) including Pt 

[13]–[16] and Pd [17]–[19]. A study using Pt, Pd and Rh supported over aluminium oxide showed high 

performance above 200 °C with conversion and nitrogen selectivity of at least 95 % and 80 % 

respectively [20]. The catalysts were also used with other supports including silica [18], zeolite [21], 

[22], mixed oxides [23], perovskite [24] and cordierite [25], showing favourable adsorption and 

reduction of nitric oxide. These catalysts and supports however suffer from sustainability issues around 

resource scarcity due to high demand. The performance of sustainable catalysts, especially those 

employing Earth-abundant metals and renewable catalyst supports such as activated carbon should 

therefore be explored.  

Copper salt supported on zeolite has been patented to adsorb NOx at low concentration and shows 

competitive performance to the noble metals [26]. Furthermore, it has been shown that copper- and iron-

exchanged zeolites are reactive at temperatures below 573 K to reduce NO using hydrocarbons, but their 

performance is still inferior when compared to noble metals catalysts such as platinum [27], [28]. 

This work aims to tackle the twin challenges of waste utilization and the development of more active 

and selective H2-SCR catalysts. Palm kernel shell (PKS), a major residue in oil palm industry, could be 

an abundant resource for producing carbon catalyst support due to its high carbon content and large 

surface area [29]. Therefore, it  is used in this work as a sustainable carbon source to synthesize the 

catalyst support, while Earth-abundant metals (Cu and Fe) are employed as the catalytic active agents, 

both as single component (Cu or Fe only) and as a binary system (Cu and Fe). 

2.  Methodology 

2.1.  Catalyst synthesis 

PKS activated carbon was supplied by the Universiti Malaysia Sarawak (UNIMAS). The particles were 

crushed in a ball mill and sieved to obtain uniform size prior to drying in an oven for 72 h at 110 °C. 

The catalysts were prepared via incipient wetness where the carbon was dipped in a metal salt solution 

[30] (either copper nitrate trihydrate, iron nitrate nanohydrate or a mixture of copper and iron nitrate, 

both at 99.999 % trace metals obtained from Sigma-Aldrich, UK). Co-doping was performed by mixing 

the metal nitrates on a 1:1 mass ratio, keeping the total metal loading as 10 wt.%. Subsequently, the 

catalysts were dried at 110 °C overnight, washed with deionized water and dried again at 80 °C for 24 h. 

All catalysts were calcined in an inert nitrogen flow at 200 °C for 2 h. 
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2.2.  Catalyst characterisation 

Hydrogen-temperature programmed reduction (H2-TPR) was performed to investigate the reduction 

sites and capacity of the catalysts. 0.2 g of the sample was purged under helium flow at 300 °C to remove 

moisture and volatile components prior to this experiment. The catalyst was reduced under 80 sccm 

4 %vol.H2/He using a programmed-temperature ramp of 2 °C/min from 30 to 400 °C [31]. This 

experiment was performed in a fixed-bed reactor shown in figure 1. The consumption of hydrogen and 

formation of water were recorded continuously by mass spectrometry (MS) (Hiden HPR-20, UK), 

monitoring m/z ratios of 2 and 18 respectively.  

To study the nitric oxide adsorption-desorption properties on the catalysts, nitric oxide-temperature 

programmed desorption (NO-TPD) was carried out in the same reactor by exposing 0.2 g of the sample 

to 0.3 %vol.NO/He in an 80 sccm flow at room temperature. Subsequently, the flow was switched to 

pure helium flow and a 2 °C/min temperature ramp was activated. The desorption products were 

analysed continuously by MS using m/z ratios of 16, 17, 18, 28, 30, 44, 46 for oxygen, ammonia, water, 

nitrogen, nitric oxide, nitrous oxide and nitrogen dioxide respectively. Some of the ions monitored are 

common to the fragmentation patterns of more than one species. Therefore, standard gases were 

analyzed using the MS to obtain a unique fragmentation pattern and relative fragment intensities to 

indentify the presence of the gas in the sample, and to obtain the intensities contributed by a particular 

gas [20].  

2.3.  Catalyst activity experiment 

Catalyst testing was conducted in the same reactor as H2-TPR studies (Section 2.2). The catalyst was 

reduced at 200 °C under 2 %H2/He flow of 250 sccm for 120 minutes. The temperature-programmed 

reaction (TPRxn) was carried out over 1.0 g of catalyst with nitric oxide and hydrogen concentrations 

of 330 and 8000 ppm respectively in the inlet stream with a temperature ramp rate of 2 °C/min to a final 

temperature of 450 °C [32].  

 

 

Figure 1. Schematic diagram of the fixed-bed reactor with internal diameter = 7.1 mm. (PR: pressure 

regulator, V-1 to V-3: isolation valves, V-4: two-way valve, V-5 to V-8: check valves, V-9 to V-11: 

sampling valves, MFC: mass flow controllers, HE: heat exchangers) 
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The products were analysed continuously by MS. The calculation of NO conversion (X%) and 

nitrogen selectivity against N-products (SN2) is based on equations (1) and (2): 

Conversion (X%)= Inlet NO-Outlet NO
Inlet NO

×100% 
(1) 

Selectivity (SN2)= N2 formed
Inlet NO-Outlet NO

×100% 
(2) 

 

3.  Results and Discussion 

3.1.  Catalyst characteristics 

The effects of introducing iron into copper-activated catalyst have been investigated in respect of the 

catalyst reducibility and active sites. It is known that the copper reduction temperature (TR) is about 

200 °C and the two step reduction (Cu2+ → Cu+ → Cu) requires higher temperature [33]. As the catalysts 

in this study have been prepared under mild condition (calcined and reduced at 200 °C), it is not expected 

that Fe contributes to the reduction of NO as an isolated ion because the reduction temperature of Fe is 

~400 °C [34]. CuxOy crystals obtained by heating Cu(NO3)2 particles give a single TR at 350 °C [35] 

while on a commercial zeolite-supported catalyst, the TR can be as low as 210 °C [33]. Lamacz et al. 

(2011) showed that the TR for a copper supported over a ceria-zirconia catalyst can be as low as 150 °C 

and that the lower TR is correlated with higher metal dispersion [36]. 

Figure 2 shows two reduction peaks for both catalysts at ~135 and ~309 °C. Therefore, supporting 

the catalysts on PKS prepared has improved the reducibility of CuxOy. A sharp peak of copper reduction 

is always attributed to the highly dispersed CuxOy and/or isolated Cu2+ ions [35] as can be seen at 135 °C, 

while reduction at 309 °C can be attributed to the bulk catalyst [37]. Additionally, the higher area under 

the curve for PKSCuFe shows a greater number of sites have undergone reduction when compared to 

PKSCu.  

Several studies have found that co-catalysts possess lower TR than their counterpart single-

component systems. As for example, the lowest TR for Mn/TiO2, Cu/TiO2 and Fe/MnTiO2 are 303, 177 

and 387 °C, correspondingly. After combining Mn with Cu and Fe, the TR shifted to 129 and 359 °C, 

respectively for MnCu/TiO2 and MnFe/TiO2 [38]. The deconvolution of the H2-TPR curve for PKSCuFe 

(not shown here) identified several peaks between 137 and 312 °C which can be assigned to the Cu-Fe 

synergistic sites.  

The NO-TPD profile for the two catalysts are compared in figure 3. After NO adsorption at room 

temperature, the catalysts were purged with inert gas. PKSCu (figure 3a) shows desorption of N2 

commencing from 70 °C, and continuing throughout the temperature range. NO exhibits a broad 

desorption peak between 30 and 180 °C. After the desorption of NO ceases, water is seen to desorb, 

concurrently with smaller quantities of NH3. Peaks ascribed to H2O, NH3, O2 and N2O are all maximized 

at the same temperature, ~225 °C. No further desorption of water and NH3 occurs beyond 250 °C but 

O2 and N2O continued to desorb with a second desorption peak centered at ~400 °C. A further distinct 

N2O peak was observed at 481 °C, with a shoulder at ~340 °C. 

This result suggests that the adsorption of NO on PKSCu at room temperature leads to the formation 

of nitrogen, nitrous oxide, oxygen, water and ammonia upon desorption at elevated temperature. 

Additionally, the formation of nitrogen dioxide is also indicated through the simultaneous desorption of 

NO and O2 (NO2 is not stable and rapidly dissociates into NO and O upon desorption) [36]. The 

decomposition of NO into N2 is favorable at a wide temperature range which is desirable for an SCR 

catalyst. In addition, the formation of N2O, ammonia and water implies some reduction activity on the 

catalyst sites even in the absence of a reductant, suggesting that functional groups on the surface of the 

carbon present some catalytic activity.  
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Figure 2. Temperature-programmed reduction at 80 sccm total flow rate with 2 vol.% H2/He over 0.2 g 

catalyst and 2 °C/min heating ramp. (black line: —PKSCu, blue dash: ‒ ‒PKSCuFe) 

 

PKSCuFe contains 50% of the mass of copper as PKSCu; the remainder of the metal content being 

Fe. However, figure 3b shows that the total amount of NO desorbed in the NO-TPD experiment is 

similar over both materials at ~419 and 405 ppm for PKSCu and PKSCuFe, respectively. Over 

PKSCuFe the NO desorption peak is narrower and centered at ~120 °C. Bingnan et al. reported NO 

desorption at 135 °C for a bare activated carbon prepared from coconut shell, which shifted to 210 °C 

when the carbon was impregnated with 10 wt.% copper [39]. The low desorption temperature of NO in 

the present study suggests the presence of physisorbed species, as opposed to the decomposition of 

nitrates to NO. The latter would be characterized by NO desorption at higher temperatures up to 300 °C 

[33]. Additionally, no formation of NO2 is observed over PKSCuFe. 

The formation of N2O is more favorable than N2 over PKSCuFe. The N2O peak at ~225 °C is less 

pronounced over PKSCuFe than for PKSCu, however the peak at ~340 °C is more pronounced. This 

can be attributed to the synergistic sites of Cu-Fe. Even though the total amount of N2O evolved is 

identical in both catalysts, the production of N2 is reduced by a factor of 2.22 when replacing half of 

copper, by mass, with iron. 

3.2.  Nitric oxide adsorption 

During the catalyst activity experiment, the catalysts were exposed to NO in order to observe the 

adsorption behavior at 100 °C. Figure 4 shows the breakthrough curves of the catalyst support (PKS), 

monometallic copper and iron supported over PKS (PKSCu and PKSFe) as well as the bimetallic 

catalyst, PKSCuFe. The breakthrough time increases in the order: PKS < PKSFe < PKSCu < PKSCuFe. 

Adsorption of NO over the bare PKS and iron-impregnated PKS does not form any products (see figures 

4a and 4c) showing that physisorption is the only process occurring. When copper is present, in 

agreement with NO-TPD results, the adsorption is also associated with the production of nitrogen and 

nitrous oxide (see figures 4b and 4d). The formation of N2O is observed during the complete adsorption 
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of NO. For PKSCu, the formation of N2O is replaced by the formation of nitrogen as the partial pressure 

of NO on the catalyst sites equilibrates with the bulk NO concentration. However, for PKSCuFe, N2O 

is continually produced alongside nitrogen because of the affinity of Cu-Fe sites for N2O production, as 

confirmed by NO-TPD analysis (Section 3.1). 

 

Figure 3. Nitric oxide- temperature-programmed desorption for; a) PKSCu and b) PKSCuFe. 

160 sccm total helium flow rate over 0.2 g catalyst and 2 °C/min heating ramp. (—Nitric oxide, 

‒ - - ‒nitrous oxide, ···nitrogen, - - -water, —ammonia, ---oxygen) 
 

As the equilibrium is reached, hydrogen was introduced at excess concentration and the temperature 

was increased at a constant low rate to investigate the effect of reaction temperature. Figure 5 shows the 

nitric oxide consumption and the products formed during the reaction. PKS and PKSFe only 

demonstrated conversion at temperatures in excess of 175 °C while the copper-based catalysts are able 

to convert NO at temperatures as low as 50 °C. The maximum temperature (Tmax) and temperature 

window (temperature from which 50 % conversion is achieved, T50% to the Tmax) decreased when iron 

is incorporated into the catalyst from Tmax = 125 to 175 °C and T50% = 115 to 125 °C for PKSCu and 

PKSCuFe respectively.  

From the formation of the by-products, it can be deduced that the following reactions occur on 

PKSCuFe [23], [24], [40]; 2𝑁𝑂 + 2𝐻2 → 𝑁2 + 2𝐻2𝑂 (3) 2𝑁𝑂 + 𝐻2 → 𝑁2𝑂 + 𝐻2𝑂 (4) 𝑁𝑎𝑑𝑠 +𝑁𝑎𝑑𝑠 → 𝑁2 (5) 𝑁𝑎𝑑𝑠 +𝑁𝑂𝑎𝑑𝑠 → 𝑁2𝑂 (6) 𝑁𝑎𝑑𝑠 + 3𝐻𝑎𝑠𝑑 → 𝑁𝐻3 (7) 𝑁𝑂𝑎𝑑𝑠 +𝑁𝐻𝑥,𝑎𝑑𝑠 → 𝑁2 +𝐻𝑥𝑂 (8) 𝑁𝑂𝑎𝑑𝑠 +𝑁𝐻𝑥,𝑎𝑑𝑠 → 𝑁2𝑂 + 𝐻𝑥,𝑎𝑑𝑠 (9) 

Reactions (3) and (4) are common and well accepted in the study of H2-SCR where the extent of the 

reactions determines the selectivity towards N2 formation. The adsorption of NO and hydrogen on the 

catalyst surface can initiate the reactions (5) and (6), where Nads indicates the nitrogen atom from NO 

dissociated during adsorption. In addition, hydrogen can also dissociate upon adsorption as Hads giving 
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rise to the possibility that ammonia is formed by the interaction with Nads as described by reaction (7). 

Any ammonia produced can also facilitate NO reduction with hydrogen as shown in 

equations (8) and (9) resulting in competing reduction pathways [40]. Additionally, significant 

production of N2O occurs on PKSCuFe but the formation of ammonia is suppressed, occurring at a 

higher temperature as compared to on PKSCu. 

 

 

Figure 4. Adsorption profile for; a) PKS, b) PKSCu, c) PKSFe, and d) PKSCuFe. 250 sccm total flow 

of 330 ppm NO + 8000 ppm H2 at atmospheric pressure and 100 °C over 1.0 g catalyst. (—Nitric oxide, 

‒ - - ‒nitrous oxide, ···nitrogen) 
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Figure 5. Temperature-programmed reaction profiles for; a) PKS, b) PKSCu, c) PKSFe, and d) 

PKSCuFe. 250 sccm total flow of 330 ppm NO + 8000 ppm H2 at atmospheric pressure and increasing 

temperature from 40 to 200 °C by 2 °C/min over 1.0 g catalyst. (■Converted nitric oxide, ▲Nitrous 

oxide, ●Nitrogen, Ammonia, ▼Nitrogen dioxide) 

 

3.3.  Nitric oxide reduction  

Commercial copper catalyst (9.2 %Cu-mordenite) and ferric catalyst (4.7 % Fe2O3) have shown 95 % 

NOx conversion by NH3 in the range of 224 – 440 °C and 310 – 560  °C, respectively [41]. As the 

temperature used in this work is lower than in those studies, the conversion is expected to be lower. 

Figure 6 depicts the relationship between the catalyst performance in terms of NO conversion and N2 

selectivity for PKSCu and PKSCuFe. For PKSCu, the conversion reaches its maximum plateau beyond 

150 °C at 96 % while selectivity decreases with temperature reaching 38 % at 200 °C. Considering 

PKSCuFe, constant conversion is also achieved at 150 °C but the selectivity has a maxima at 160 °C 

with 60 % of NO converted to N2. The low selectivity as compared to the manganese-based TiO2-

supported catalysts is due to the formation of ammonia and nitrous oxide [38].  

As hydrogen is in excess, the reaction is presumed to be first order, equation (10), with regards to 

NO and the Arrhenius behavior, equation (11), is assumed: 𝑟 = 𝑘[𝑁𝑂] (10) 𝑘 = 𝐴𝑒−𝐸𝑎 𝑅𝑇⁄  (11) 
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 where r is the rate of reaction (mol/g.s), k is the reaction constant (/s), [NO] is the NO concentration 

(mol), A is the pre-exponential constant (/s), Ea is the apparent activation energy (kJ/mol), R is the 

universal gas constant (8.314 X 10-3 kJ/mol.K) and T is the reaction temperature (K). Five temperatures 

were selected from 80 to 200 °C to study the effect of the temperature on the reaction parameters. 

Figure 7 shows the Arrhenius plot for PKSCu and PKSCuFe where it can be seen that Ea decreases by 

almost 30 % from 96.86 to 69.50 kJ/mol when using PKSCu and PKSCuFe respectively. Both values 

are relatively high when compared to the reported values for NH3-SCR with zeolitic materials (including 

some with copper loading) which range from 24 to 89 kJ/mol [42]. 

 

Figure 6. Conversion (■X) and selectivity (●S) profiles for; a) PKSCu and b) PKSCuFe. 250 sccm total 
flow of 330 ppm NO + 8000 ppm H2 at atmospheric pressure and temperature from 90 to 200 °C by 2 

°C/min over 1.0 g catalyst. 

 

Figure 7. Arrhenius plot. (■PKSCu, ●PKSCuFe) 
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4.  Conclusion 

Copper-iron catalyst (PKSCuFe) was prepared under mild conditions using active carbon prepared from 

palm kernel shell (PKS) as the support via incipient wetness. In order to investigate the role of Cu-Fe in 

a hydrogen-selective catalytic reduction (H2-SCR), monometallic catalysts of copper (PKSCu) and iron 

(PKSFe) were also synthesized using the same carbon support. Temperature-programmed reduction of 

PKSCu and PKSCuFe shows two main peaks at ~135 and ~309 °C that are attributed to highly dispersed 

CuxOy and/or isolated Cu2+ ions and to the bulk catalyst respectively. In addition, PKSCuFe possess 

synergistic Cu-Fe sites that increases the reducibility of the copper-carbon system. Nitric oxide-

temperature-programmed desorption demonstrates that NO is both physisorbed and chemisorbed, with 

the latter leading to the formation of nitrogen, nitrous oxide, oxygen, water and ammonia. Additionally, 

PKSCuFe shows higher basicity strength compared to PKSCu, resulting in the formation of N2O. This 

phenomena has been corroborated by adsorption studies conducted at 100 °C where N2O is continually 

evolved during the adsorption over PKSCuFe. PKSCuFe has the longest NO breakthrough time among 

the other materials used (PKS, PKSFe and PKSCu). As hydrogen was added into the system, NO 

reduction occurs commencing at temperatures as low as 50 °C over PKSCu and PKSCuFe. The 

maximum temperature and temperature window decreased when comparing PKSCuFe with PKSCu. 

Several possible reactions from the literature have been proposed to take place during the reaction which 

alter the selectivity towards nitrogen formation. Arrhenius plots for PKSCu and PKSCuFe show that 

PKSCuFe presents a lower activation energy. These findings motivate the development of a sustainable 

catalyst for H2-SCR as an attractive alternative in mitigating nitrogen oxide emissions. 
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