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ABSTRACT

Effective resistance is an important metric that measures the simi-

larity of two vertices in a graph. It has found applications in graph

clustering, recommendation systems and network reliability, among

others. In spite of the importance of the effective resistances, we

still lack efficient algorithms to exactly compute or approximate

them on massive graphs.

In this work, we design several local algorithms for estimating

effective resistances, which are algorithms that only read a small

portion of the input while still having provable performance guar-

antees. To illustrate, our main algorithm approximates the effective

resistance between any vertex pair 𝑠, 𝑡 with an arbitrarily small

additive error 𝜀 in time𝑂 (poly(log𝑛/𝜀)), whenever the underlying
graph has bounded mixing time. We perform an extensive empirical

study on several benchmark datasets, validating the performance

of our algorithms.

CCS CONCEPTS

· Mathematics of computing→ Graph algorithms; · Theory

of computation→ Sketching and sampling.
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1 INTRODUCTION

Metrics that capture the similarity between vertices in a graph have

played a pivotal role in the quest for understanding the structure

of large-scale networks. Typical examples include personalized

PageRank (PPR) [32], Katz similarity [20] and SimRank [19], each

of which can be thought of as a random walk-based measure on

graphs. These metrics have found applications in recommender

systems [21], link prediction [27, 35], etc.

A remarkably important random walk-based metric for mea-

suring vertex similarity is the effective resistance. Given a graph

𝐺 treated as a resistor network, the effective resistance 𝑅𝐺 (𝑠, 𝑡)
between two vertices 𝑠, 𝑡 in𝐺 is the energy dissipation in the net-

work when routing one unit of current from 𝑠 to 𝑡 . It is well known

that the effective resistance is inherently related to the behaviour

of random walks on graphs1. Concretely, the effective resistance

between 𝑠 and 𝑡 is proportional to the commute time 𝜅 (𝑠, 𝑡), defined
1We only consider simple random walks in the paper: suppose we are at vertex 𝑣, we
jump to a neighbor of 𝑣 with probability 1/deg(𝑣) , where deg(𝑣) is the degree of
vertex 𝑣.

as the expected number of steps a random walk starting at 𝑠 vis-

its vertex 𝑡 and then goes back to 𝑠 [9]. Using this interpretation,

we can deduce that the smaller 𝑅𝐺 (𝑠, 𝑡) is, the more similar two

vertices 𝑠, 𝑡 are.

Indeed, effective resistance has proven ubiquitous in numer-

ous applications including graph clustering [2, 16], recommender

systems [22], measuring robustness of networks [15], spectral spar-

sification [36], graph convolutional networks [1], location-based

advertising [37], among others. Moreover, in the theoretical com-

puter science community, the use of effective resistance has led

to a breakthrough line of work for provably speeding up the run-

ning time of many flow-based problems in combinatorial optimiza-

tion [3, 11, 29].

Despite of the importance of effective resistance, we still lack

efficient methods to compute or approximate them on massive

graphs. For any two vertices 𝑠, 𝑡 and approximation parameter 𝜀 > 0,

one can (1 + 𝜀)-approximate 𝑅𝐺 (𝑠, 𝑡) in2 �̃� (𝑚 log(1/𝜀)) time [13],

where𝑚 denotes the number of edges in a graph. There exists an

algorithm that (1+𝜀)-approximates all-pairs effective resistances in

�̃� (𝑛2/𝜀) time [18]. These results, though theoretically competitive,

require access to the entire input graph. Given the rapid growth of

modern networks, such polynomial time algorithms (even those

running in near linear time in the number of vertices and edges)

are prohibitively costly. This motivates the following question:

Can we obtain a competitive estimation to 𝑅𝐺 (𝑠, 𝑡) while exploring
only a small portion of the graph?

We address this question by exploiting the paradigm of local or

sub-linear algorithms. This computational model is particularly de-

sirable in applications where one requires the effective resistances

amongst only a few number of vertex pairs. Despite that the effec-

tive resistance is a key tool in large-scale graph analytics, designing

local algorithms for estimating it is a largely unexplored topic.

In this paper, we provide several local algorithms for estimating

pairwise effective resistances with provable performance guaran-

tees. For any specified vertex pair 𝑠, 𝑡 , our algorithms output an

estimate of 𝑅𝐺 (𝑠, 𝑡) with an arbitrarily small constant additive er-

ror, while exploring a small portion of the graph. To formally state

our results, we utilize the well-known adjacency list model [33],

which assumes query access to the input graph𝐺 and supports the

following types of queries in constant time:

2Throughout the paper, we use �̃� to hide polylogarithmic factors, i.e., �̃� (𝑓 (𝑛)) =
𝑂 (𝑓 (𝑛) · poly log 𝑓 (𝑛)) .
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• degree query: for any specified vertex 𝑣 , the algorithm can

get the degree deg(𝑣) of 𝑣 ;
• neighbor query: for any specified vertex 𝑣 and index 𝑖 ≤
deg(𝑣), the algorithm can get the 𝑖-th neighbor of 𝑣 ;

• uniform sampling: the algorithm can sample a vertex 𝑣 of 𝐺

uniformly at random.

Our main objective is to find a good estimate of the pairwise

effective resistance 𝑅𝐺 (𝑠, 𝑡) for any specified vertex pair 𝑠, 𝑡 by

making as few queries as possible to the graph while achieving fast

running time.

Our contributions. We give a systemic study of local algorithms

for estimating 𝑠-𝑡 effective resistances for general graphs.

• Theoretically, we provide three types of local algorithms for

estimating effective resistances. All of them are based on

random walks, but vary from their connections to effective

resistances: (i) the first type is based on approximating the

pseudo inverse of the Laplacian matrix, (ii) the second type

is based on commute times, (iii) the third type is based on

the number of spanning trees.

• We empirically demonstrate the competitiveness of our algo-

rithms on popular benchmarks for graph data. In particular,

for certain real-world networks, we will see that our algo-

rithms run 105 to 106 faster than existing polynomial-time

methods and estimate effective resistance to within a multi-

plicative error of 0.1.

To illustrate, our main local algorithm approximates 𝑅𝐺 (𝑠, 𝑡)
with an arbitrarily small additive error 𝜀 in time 𝑂 (poly(log𝑛/𝜀)),
whenever the underlying graph has bounded mixing time, which

is justified in real-world networks. Previously, the only work on

this problem was by Andoni et al. [4], and it achieves (1 + 𝜀)-
approximation to 𝑅𝐺 (𝑠, 𝑡) in 𝑂 ( 1

𝜀2
poly log 1

𝜀 ) time for 𝑑-regular

expander graphs. Indeed, one of our algorithms for general graphs

is based on [4].

Using the fact that the length of shortest paths and effective

resistances are exactly the same on tree graphs, we can observe

that graphs with large mixing time do not admit efficient local

algorithms. Concretely, let us consider a path graph on 𝑛 vertices.

It is known that the path graph has large mixing time, and there

is no local algorithm that makes a sub-linear number of queries

and approximates the length of shortest paths within a constant

multiplicative factor or additive error, thus giving us the same

impossibility result for effective resistances. This suggests that

our bounded mixing time assumption is necessary to design local

algorithms with sublinear number of queries and running time.

2 RELATED WORK

In this section, we discuss some related work.

Hayashi et al. [17] gave an algorithm for approximating the

effective resistances of vertex pairs that are endpoints of edges.

Their algorithm is based on sampling spanning trees uniformly at

random, and it (1 + 𝜀)-approximates 𝑅𝐺 (𝑠, 𝑡) for every (𝑠, 𝑡) ∈ 𝐸

in expected running time ⌈log(2𝑚/𝛿)/2𝜀2⌉ ·∑𝑢∈𝑉 𝜋𝐺 (𝑢)𝜅𝐺 (𝑢, 𝑟 ),
where 𝜋𝐺 (𝑢) denotes the stationary probability at a vertex𝑢 ∈ 𝑉 of

a random walk on 𝐺 , 𝜅𝐺 (𝑢, 𝑣) denotes the commute time between

two vertices 𝑢, 𝑣 ∈ 𝑉 and 𝑟 ∈ 𝑉 is some vertex.

There also exist several local algorithms for other random walk

based quantities, such as the stationary distribution, PageRank,

Personalized PageRank and transition probabilities.

The stationary distribution. Lee et al. [23] and Bressan et al. [8]

studied the question of computing the stationary distribution 𝜋 of

a Markov Chain locally. These algorithms take as input any state 𝑣 ,

and answer if the stationary probability of 𝑣 exceeds some Δ ∈ (0, 1)
and/or output an estimate of 𝜋 (𝑣). They only make use of a local

neighborhood of 𝑣 on the graph induced by the Markov chain and

run in sublinear time for some families of Markov Chains.

PageRank. Borgs et al. presented a method for identifying all

vertices whose PageRank is larger than some threshold [6]. Specifi-

cally, for a threshold value Δ ≥ 1 and a constant 𝑐 > 3, with high

probability, their algorithm returns a set 𝑆 ⊆ 𝑉 such that 𝑆 contains

all vertices with PageRank at least Δ and no vertex with PageRank

at least Δ/𝑐 . The algorithm runs in �̃� ( 𝑛
Δ
) time.

Bressan et al. developed a sub-linear time algorithm that employs

local graph exploration [7]. Their algorithm (1 + 𝜀)-approximates

the PageRank of a vertex on a directed graph. For constant 𝜀 > 0,

the algorithm runs in �̃� (min(𝑚3/4
Δ
1/4𝑑−3/4,𝑚6/7𝑑−5/7)), where

Δ and 𝑑 are respectively the maximum and average outdegree.

Personalized PageRank (PPR). The PPR 𝜋𝑠 (𝑡) of a start vertex 𝑠
and target vertex 𝑡 measures the frequency of visiting 𝑡 via short

random-walks from 𝑠 . For a given threshold 𝛿 such that 𝜋𝑠 (𝑡) > 𝛿 ,

Lofgren et al. solved this with small relative error and an expected

running time of 𝑂 (
√︁

𝑑/𝛿) [25], where 𝑑 is the average in-degree

of the graph. Their algorithm is based on a bi-directional search

technique and an improved implementation was presented in [24].

Transition probabilities. Another problem related to effective

resistance is estimating transition probabilities in a Markov chain.

Specifically, given transition matrix 𝑃 , initial source distribution

𝜎 , target state 𝑡 , and a fixed length ℓ , the goal is to estimate the

probability 𝑝 that an ℓ-step random walk starting from distribution

𝜎 ends at 𝑡 . Banerjee and Lofgren developed an algorithm that can

estimate such a probability with respect to a minimum threshold

𝛿 such that 𝑝 > 𝛿 by employing a bi-directional approach [5].

Specifically, their algorithms returns an estimator 𝑝 of 𝑝 such that

with high probability |𝑝 − 𝑝 | < max{𝜀𝑝, 𝛿} for any 𝜀 > 0.

3 PRELIMINARIES

Let 𝐺 = (𝑉 , 𝐸) be an undirected graph. For any 𝑣 ∈ 𝑉 , we let

deg(𝑣) denote the degree of 𝑣 . The volume of a set 𝑆 of vertices,

denoted vol(𝑆), is the sum of their degrees. Furthermore, for a

set 𝑆 ⊆ 𝑉 , the conductance of 𝑆 , denoted 𝜙𝐺 (𝑆), is the number

of edges with one endpoint in 𝑆 and the other in 𝑉 \ 𝑆 divided

by vol(𝑆). The conductance of 𝐺 , denoted 𝜙 (𝐺), is defined to be

min
𝑆⊆𝑉 ,0<vol(𝑆) ≤ vol(𝑉 )

2

𝜙𝐺 (𝑆). A graph 𝐺 is called an expander if

𝜙 (𝐺) ≥ 𝜙 for some universal constant 𝜙 ∈ (0, 1).
Let A denote its adjacency matrix and let D denote the degree

diagonal matrix. Let L = D − A denote the Laplacian matrix of 𝐺 .

Let L† denote the Moore-Penrose pseudo-inverse of the Laplacian

of 𝐺 . Let 1𝑢 ∈ R𝑉 denote the (row) indicator vector of vertex 𝑢

such that 1𝑢 (𝑣) = 1 if 𝑣 = 𝑢 and 0 otherwise. Let 𝜒𝑠,𝑡 = 1𝑠 − 1𝑡 .
2



Definition 3.1. Given any two vertices 𝑢, 𝑣 ∈ 𝑉 , the 𝑠-𝑡 effective
resistance is defined as

𝑅𝐺 (𝑠, 𝑡) := 𝜒𝑠,𝑡L
†𝜒⊤𝑠,𝑡 = L

†
𝑠,𝑠 − 2L†𝑠,𝑡 + L

†
𝑡,𝑡 .

Random walks. Given a graph 𝐺 , we consider the simple ran-

dom walk on 𝐺 : suppose we are currently at 𝑣 , then we jump to a

neighbor 𝑢 with probability 1
deg(𝑣) . We use P := D−1A to denote

the random walk transition matrix. Let 𝜆 = max{|𝜆2 |, |𝜆𝑛 |}, where
𝜆𝑖 is the 𝑖-th largest eigenvalue of the matrix P.

Definition 3.2. The commute time 𝜅 (𝑠, 𝑡) between vertices 𝑠, 𝑡 is the
expected number of steps in a random walk that starts at vertex 𝑠

visits vertex 𝑡 and then comes back to 𝑠 .

Random walks on graphs are a type of Markov Chain. A Markov

chain is said to be positive recurrent if, starting in any state 𝑖 , the

expected time until the process returns to state 𝑖 is finite. A Markov

chain is said to be aperiodic if for any state 𝑖 there are no restrictions

on when it is possible for the process to enter state 𝑖 .

Definition 3.3. AMarkov chain is said to be ergodic if it is aperiodic

and positive recurrent.

Informally, themixing time of the graph𝐺 refers to the number of

steps needed before a random walk on𝐺 converges to its stationary

distribution. We refer to [34] for a formal definition. It is known

that the spectral gap 1 − 𝜆 is intimately related to the mixing time

of𝐺 . That is, the larger 1−𝜆 is, the smaller mixing time is, and vice

versa.

4 THE LOCAL ALGORITHMS

4.1 Algorithms based on approximating
Laplacian inverse

In this section, we provide local algorithms for effective resistances

by approximating the Laplacian pseudo-inverse L† of the graph.

High-level idea. Our algorithm works for general graphs and is

based on the aforementioned sublinear-time algorithm for𝑑-regular

graphs [4]. The basic idea is as follows. Recall that by definition

of effective resistance, 𝑅𝐺 (𝑠, 𝑡) = 𝜒𝑠,𝑡L
†𝜒⊤𝑠,𝑡 and P = D−1A is the

random walk transition matrix. Using the Neumann series of the

matrix L† (see Lemma 4.3), we can write

𝑅𝐺 (𝑠, 𝑡) = 𝜒𝑠,𝑡

∞
∑︁

𝑖=0

P𝑖D−1𝜒⊤𝑠,𝑡

= 𝜒𝑠,𝑡

ℓ−1
∑︁

𝑖=0

P𝑖D−1𝜒⊤𝑠,𝑡 + 𝜒𝑠,𝑡
∞
∑︁

𝑖≥ℓ
P𝑖D−1𝜒⊤𝑠,𝑡 .

for any ℓ > 0. For graphs with large spectral gap (i.e., expander

graphs or graphs with low random walk mixing time), we can

show that for any additive error 𝜀, we can choose ℓ appropriately

such that the second term is at most 𝜀/2, and the first term can

be approximated within additive error 𝜀/2. For the latter, we use a
simple Monte Carlo approach (i.e., to use the empirical distribution

of the endpoints of a small number of randomwalks) to approximate

the quantity 1𝑠P
𝑖1⊤𝑡 , the (transition) probability that a length-𝑖

random walk starting from 𝑠 ends at 𝑡 , for any 𝑖 ≥ 1.

Now we introduce one assumption, building upon which we

present and analyze two local algorithms.

Assumption 4.1. Let𝐺 be a connected graph with minimum vertex

degree at least 1. Further, assume that the Markov chain corresponding

to the random walk on 𝐺 is ergodic.

The first algorithm: EstEff-TranProb. We first present an

algorithm that uses the above idea. Recall that 𝜆 = max{|𝜆2 |, |𝜆𝑛 |},
where 𝜆𝑖 is the 𝑖-th largest eigenvalue of the matrix P.

Theorem 4.2. Under Assumption 4.1, there is an algorithm EstEff-

TranProb(𝐺, 𝜀, 𝑠, 𝑡) (see Algorithm 1) that outputs an estimate 𝛿𝑠,𝑡
such that with probability at least 9/10, it holds that

|𝑅𝐺 (𝑠, 𝑡) − 𝛿𝑠,𝑡 | ≤ 𝜀.

The running time and query complexity of the algorithm are

𝑂 (ℓ4 (log ℓ)/𝜀2) for ℓ = log(4/(𝜀−𝜀𝜆))
log(1/𝜆) .

The above algorithm is very efficient, if the graph has small 𝜆,

or has low mixing time, a property that is satisfied by many real

networks. Now we present the algorithm EstEff-TranProb.

Algorithm 1: EstEff-TranProb(𝐺, 𝜀, 𝑠, 𝑡)

1 ℓ =
log(4/(𝜀−𝜀𝜆))

log(1/𝜆)
2 𝑟 ← 40ℓ2 (log(80ℓ))/𝜀2
3 for 𝑖 := 0, 1, . . . , ℓ − 1 do
4 Perform 𝑟 independent random walks of length 𝑖

starting at 𝑠 , and let 𝑋𝑖,𝑠 (resp., 𝑋𝑖,𝑡 ) be the number of

walks that end at 𝑠 (resp., 𝑡 ).

5 Perform 𝑟 independent random walks of length 𝑖

starting at 𝑡 , and let 𝑌𝑖,𝑠 (resp., 𝑌𝑖,𝑡 ) be the number of

walks that end at 𝑠 (resp., 𝑡 )

6 Set 𝛿
(𝑖)
𝑠,𝑡 =

𝑋𝑖,𝑠

𝑟 deg(𝑠) −
𝑋𝑖,𝑡

𝑟 deg(𝑡 ) −
𝑌𝑖,𝑠

𝑟 deg(𝑠) +
𝑌𝑖,𝑡

𝑟 deg(𝑡 )

7 return 𝛿𝑠,𝑡 =
∑ℓ−1
𝑖=0 𝛿

(𝑖)
𝑠,𝑡

Proof of Theorem 4.2 We first note that the running time and

query complexity of the algorithm are 𝑂 (𝑟 ℓ2) = 𝑂 (ℓ4 (log ℓ)/𝜀2).
In the following, we prove the correctness of the algorithm.

We first present a basic property of effective resistance. Let Q =

D−1/2AD−1/2. Recall that L = D − A = D1/2 (𝐼 − Q)D1/2 and that

𝑅𝐺 (𝑠, 𝑡) = 𝜒𝑠,𝑡L
†𝜒⊤𝑠,𝑡 . Note thatQ = D−1/2AD−1/2 = D1/2PD−1/2 is

symmetric and is similar to P (as the diagonal matrixD is invertible,

which in turn follows from Assumption 4.1). We let 𝜆1 ≥ 𝜆2 ≥
𝜆3 ≥ · · · ≥ 𝜆𝑛 be the eigenvalues of Q (and also P by the similarity

of P and Q), with corresponding (row) orthonormal eigenvectors

𝑤1,𝑤2,𝑤3, . . . ,𝑤𝑛 , i.e,. 𝑤 𝑗Q = 𝜆 𝑗𝑤 𝑗 . It is known that 𝜆1 = 1 and

𝑤1 =
1𝑉𝐷1/2
√
2𝑚

.

Lemma 4.3. It holds that

𝑅𝐺 (𝑠, 𝑡) = 𝜒𝑠,𝑡

∞
∑︁

𝑖=0

P𝑖D−1𝜒⊤𝑠,𝑡 .

Proof. By the spectral decomposition of Q, we have that for

any integer 𝑖 ≥ 0, Q𝑖
=

∑𝑛
𝑗=1 𝜆

𝑖
𝑗𝑤
⊤
𝑗 𝑤 𝑗 = 𝑤⊤1 𝑤1 +

∑𝑛
𝑗=2 𝜆

𝑖
𝑗𝑤
⊤
𝑗 𝑤 𝑗 .

Since L = D − A = D1/2 (𝐼 − Q)D1/2, we have that

L† = D−1/2 (𝐼 − Q)†D−1/2
3



= D−1/2
𝑛

∑︁

𝑗=2

1

1 − 𝜆 𝑗
𝑤⊤𝑗 𝑤 𝑗D

−1/2
= D−1/2

𝑛
∑︁

𝑗=2

∞
∑︁

𝑖=0

𝜆𝑖𝑗𝑤
⊤
𝑗 𝑤 𝑗D

−1/2

= D−1/2
∞
∑︁

𝑖=0

𝑛
∑︁

𝑗=2

𝜆𝑖𝑗𝑤
⊤
𝑗 𝑤 𝑗D

−1/2
= D−1/2

∞
∑︁

𝑖=0

(

Q𝑖 −𝑤⊤1 𝑤1

)

D−1/2 .

Nowwewrite 𝜒𝑠,𝑡D
−1/2

=

∑𝑛
𝑗=1 𝛼 𝑗𝑤 𝑗 .We note that𝛼1 = 𝜒𝑠,𝑡D

−1/2·
𝑤⊤1 = 𝜒𝑠,𝑡D

−1/2D1/21⊤
𝑉
/
√
2𝑚 = 0. Thus 𝜒𝑠,𝑡D

−1/2
=

∑𝑛
𝑗=2 𝛼 𝑗𝑤 𝑗 .

Then 𝜒𝑠,𝑡D
−1/2Q𝑖D−1/2𝜒⊤𝑠,𝑡 =

∑𝑛
𝑗=1 𝛼

2
𝑗 𝜆

𝑖
𝑗 .

Note that P𝑖D−1 = (D−1A)𝑖D−1 = D−1/2 (D−1/2AD−1/2)𝑖D−1/2 =
D−1/2Q𝑖D−1/2. Thus

𝑅𝐺 (𝑠, 𝑡) = 𝜒𝑠,𝑡L
†𝜒⊤𝑠,𝑡 = 𝜒𝑠,𝑡D

−1/2
∞
∑︁

𝑖=0

(Q𝑖 −𝑤⊤1 𝑤1)D−1/2𝜒⊤𝑠,𝑡

=

∞
∑︁

𝑖=0

𝜒𝑠,𝑡D
−1/2Q𝑖D−1/2𝜒⊤𝑠,𝑡 =

∞
∑︁

𝑖=0

𝜒𝑠,𝑡P
𝑖D−1𝜒⊤𝑠,𝑡 .

By Assumption 4.1, the Markov chain corresponding to the ran-

domwalk on𝐺 is ergodic. Then 𝜆2 < 1. Recall that 𝜆 = max{|𝜆2 |, |𝜆𝑛 |}
and that 𝜒𝑠,𝑡D

−1/2
=

∑𝑛
𝑗=1 𝛼 𝑗𝑤 𝑗 , where 𝛼1 = 0. Furthermore, by

the assumption that each vertex has degree at least 1, we have
∑𝑛

𝑗=2 𝛼
2
𝑗 = ∥𝜒𝑠,𝑡D

−1/2∥22 ≤ ∥𝜒𝑠,𝑡 ∥
2
2 = 2. Now we prove the follow-

ing two claims.

Claim 4.4. It holds that |𝑅𝐺 (𝑠, 𝑡) −
∑ℓ−1
𝑖=0 𝜒𝑠,𝑡P

𝑖 · D−1𝜒⊤𝑠,𝑡 | ≤ 𝜀
2 .

Proof. It holds that
�

�

�

�

�

𝑅𝐺 (𝑠, 𝑡) −
ℓ−1
∑︁

𝑖=0

𝜒𝑠,𝑡P
𝑖 · D−1𝜒⊤𝑠,𝑡

�

�

�

�

�

=

�

�

�

�

�

∞
∑︁

𝑖=0

𝜒𝑠,𝑡P
𝑖 · D−1𝜒⊤𝑠,𝑡 −

ℓ−1
∑︁

𝑖=0

𝜒𝑠,𝑡P
𝑖 · D−1𝜒⊤𝑠,𝑡

�

�

�

�

�

=

�

�

�

�

�

∞
∑︁

𝑖=ℓ

𝜒𝑠,𝑡D
−1/2Q𝑖D−1/2𝜒⊤𝑠,𝑡

�

�

�

�

�

=

�

�

�

�

�

�

∞
∑︁

𝑖=ℓ

𝑛
∑︁

𝑗=2

𝛼2𝑗 𝜆
𝑖
𝑗

�

�

�

�

�

�

≤
∞
∑︁

𝑖=ℓ

𝜆𝑖
𝑛

∑︁

𝑗=2

𝛼2𝑗 ≤
2𝜆ℓ

1 − 𝜆 ≤
𝜀

2
,

where the last inequality follows from ℓ =
log(4/(𝜀−𝜀𝜆))

log(1/𝜆) .

Claim 4.5. With probability at least 9/10,
�

�

�

�

�

𝛿𝑠,𝑡 −
ℓ−1
∑︁

𝑖=0

𝜒𝑠,𝑡P
𝑖 · D−1𝜒⊤𝑠,𝑡

�

�

�

�

�

≤ 𝜀

2
.

Proof. We observe that for any 𝑖 ≥ 0,

𝜒𝑠,𝑡P
𝑖 · D−1𝜒⊤𝑠,𝑡 = (1𝑠 − 1𝑡 )𝑃𝑖 · D−1 (1𝑠 − 1𝑡 )⊤

=

1𝑠𝑃
𝑖1⊤𝑠

deg(𝑠) −
1𝑠P

𝑖1⊤𝑡
deg(𝑡) −

1𝑡P
𝑖1⊤𝑠

deg(𝑠) +
1𝑡P

𝑖1⊤𝑡
deg(𝑡) .

Note that for any 0 ≤ 𝑖 ≤ ℓ − 1, in the algorithm, we perform 𝑟

random walks of length 𝑖 from 𝑠 . Since 𝑋𝑖,𝑠 is the number of walks

that end at 𝑠 and 1𝑠P
𝑖1⊤𝑠 is exactly the probability of a random walk

of length 𝑖 from 𝑠 ends at 𝑠 , we have that

E𝑋𝑖,𝑠 = 𝑟 · 1𝑠P𝑖1⊤𝑠 .

Furthermore, by the Chernoff-Hoeffding bound,

P

[�

�

�

�

𝑋𝑖,𝑠

𝑟 deg(𝑠) −
1𝑠P

𝑖1⊤𝑠
deg(𝑠)

�

�

�

�

≥ 𝜀

8ℓ

]

= P

[�

�

�

�

𝑋𝑖,𝑠

𝑟 deg(𝑠) −
E[𝑋𝑖,𝑠 ]
𝑟 deg(𝑠)

�

�

�

�

≥ 𝜀

8ℓ

]

= P

[

�

�𝑋𝑖,𝑠 − E[𝑋𝑖,𝑠 ]
�

� ≥ 𝑟 deg(𝑠)𝜀
8ℓ

]

≤ 2 exp(−2deg(𝑠)2𝜀2𝑟2/(64ℓ2𝑟 )) ≤ 2 exp(−𝜀2𝑟/(32ℓ2)) ≤ 1

40ℓ
,

where the last inequality follows from 𝑟 = 40ℓ2 (log(80ℓ))/𝜀2. Simi-

larly,

P

[�

�

�

�

�

𝑋𝑖,𝑡

𝑟 deg(𝑡) −
1𝑠P

𝑖1⊤𝑡
deg(𝑡)

�

�

�

�

�

≥ 𝜀

8ℓ

]

≤ 1

40ℓ
,

P

[�

�

�

�

𝑌𝑖,𝑠

𝑟 deg(𝑠) −
1𝑡P

𝑖1⊤𝑠
deg(𝑠)

�

�

�

�

≥ 𝜀

8ℓ

]

≤ 1

40ℓ
,

P

[�

�

�

�

�

𝑌𝑖,𝑡

𝑟 deg(𝑡) −
1𝑡P

𝑖1⊤𝑡
deg(𝑡)

�

�

�

�

�

≥ 𝜀

8ℓ

]

≤ 1

40ℓ
.

Thus by a union bound, it holds that
�

�

�

�

�

𝛿𝑠,𝑡 −
ℓ−1
∑︁

𝑖=0

𝜒𝑠,𝑡P
𝑖 · D−1𝜒⊤𝑠,𝑡

�

�

�

�

�

=

�

�

�

�

�

ℓ−1
∑︁

𝑖=0

(

𝑋𝑖,𝑠

𝑟 deg(𝑠) −
𝑋𝑖,𝑡

𝑟 deg(𝑡) −
𝑌𝑖,𝑠

𝑟 deg(𝑠) +
𝑌𝑖,𝑡

𝑟 deg(𝑡)

)

−
ℓ−1
∑︁

𝑖=0

(

1𝑠P
𝑖1⊤𝑠

deg(𝑠) −
1𝑠P

𝑖1⊤𝑡
deg(𝑡) −

1𝑡P
𝑖1⊤𝑠

deg(𝑠) +
1𝑡P

𝑖1⊤𝑡
deg(𝑡)

)�

�

�

�

�

≤ 𝜀

8ℓ
· ℓ · 4 = 𝜀

2

with probability 1 − 4 · ℓ · 1
40ℓ =

9
10 .

Therefore, with probability at least 9/10, it holds that

|𝑅𝐺 (𝑠, 𝑡) − 𝛿𝑠,𝑡 | ≤ 𝜀.

This finishes the proof of Theorem 4.2.

The second algorithm: EstEff-TranProb-Collision. In

the previous algorithm, we used the simple Monte Carlo approach

to approximate the transition probabilities (which correspond to

Line 4 and 5 in Algorithm 1). Nowwe give amore efficient procedure

to estimate the transition probability 1𝑠P
𝑖1⊤𝑡 . Such an algorithm is

based on the idea of treating the term 1𝑠P
𝑖1⊤𝑡 (roughly) as a collision

probability of two random walks of length 𝑖/2, starting from 𝑠 and

𝑡 , respectively. In particular, if 𝑝 = 1𝑠P
𝑖1⊤𝑡 , then for typical vertices

𝑠, 𝑡 , we can approximates the probability 𝑝 in 𝑂 (1/√𝑝) time, in

contrast to the 𝑂 (1/𝑝) time from the Monte Carlo approach. This

idea of approximating transition probability has been given in [5].

We use this idea to present a new algorithm whose performance

guarantee is given in the following theorem.

Theorem 4.6. Suppose that Assumption 4.1 holds. Suppose further

that for any 𝑖 ≤ ℓ ,

∥1𝑠P𝑖D−1/2∥22, ∥1𝑡P
𝑖D−1/2∥22 ≤ 𝛽𝑖 ,

for some parameters 𝛽𝑖 ’s. The Algorithm 2 (i.e., EstEff-TranProb-

Collision(𝐺, 𝑠, 𝑡 )) outputs an estimate 𝛿𝑠,𝑡 such that with probability

4



at least 9/10, it holds that

|𝑅𝐺 (𝑠, 𝑡) − 𝛿𝑠,𝑡 | ≤ 𝜀.

The running time and query complexity of the algorithm are

𝑂 (∑ℓ−1
𝑖=0 𝑟𝑖 ) = 𝑂 ( ℓ3/2𝜀

∑ℓ−1
𝑖=0

√︁

𝛽𝑖 + ℓ3

𝜀2
∑ℓ−1
𝑖=0 𝛽

3/2
𝑖 ).

On the choice of 𝛽𝑖 : Note that the algorithm is parametrized by

𝛽𝑖 ’s. We note that for expander graphs or graphs with low mixing

time, it holds that 𝛽𝑖 is a number that exponentially decreases in

terms of 𝑖 , i.e,. 𝛽𝑖 ≤ 𝑐𝑖 for some constant 𝑐 < 1, as long as ℓ is not too

large. The reason is that in an expander graph𝐺 with 𝜙 (𝐺) ≥ 𝜙 for

some constant 𝜙 , it holds that | |1𝑠P𝑖D−1/2 | |22 ≤
1

vol(𝑉𝐺 ) + (1−
𝜙2

4 )2𝑖
for any starting vertex 𝑠 (see e.g., [12]). Therefore, in this case, the

running time in Theorem 4.6 will be dominated by 𝑂 ( ℓ3
𝜀2
), which is

faster than Algorithm 1.

Algorithm 2: EstEff-TranProb-Collision(𝐺, 𝜀, 𝑠, 𝑡)

1 ℓ ← log(4/𝜀 (1−𝜆))
log(1/𝜆)

2 for 𝑖 := 0, 1, . . . , ℓ − 1 do

3 𝑟𝑖 ← 20000(
√︃

ℓ3𝛽𝑖
𝜀2
+ ℓ3𝛽

3/2
𝑖

𝜀2
)

4 Perform 𝑟𝑖 independent random walks of length

𝑖1 := ⌈𝑖/2⌉ starting at 𝑠 (resp., 𝑡 ), and let
−→
𝑋 𝑠 ∈ R𝑉

(resp.,
−→
𝑋 𝑡 ∈ R𝑉 ) be a row vector whose 𝑣 ’th component

is the fraction of random walks from 𝑠 (resp., 𝑡 ) that

end up at 𝑣 , divided by
√︁

deg(𝑣)
5 Perform 𝑟 independent random walks of length

𝑖2 := ⌊𝑖/2⌋ starting at 𝑠 (resp., 𝑡 ), and let
−→
𝑌 𝑠 ∈ R𝑉

(resp.,
−→
𝑌 𝑡 ∈ R𝑉 ) be a row vector whose 𝑣 ’th component

is the fraction of random walks from 𝑠 (resp., 𝑡 ) that

end up at 𝑣 , divided by
√︁

deg(𝑣)
6 Set 𝛿

(𝑖)
𝑠,𝑡 =

−→
𝑋 𝑠 ·
−→
𝑌 ⊤𝑠 −

−→
𝑋 𝑠 ·
−→
𝑌 ⊤𝑡 −

−→
𝑋 𝑡 ·
−→
𝑌 ⊤𝑠 +

−→
𝑋 𝑡 ·
−→
𝑌 ⊤𝑡

7 return 𝛿𝑠,𝑡 =
∑ℓ−1
𝑖=0 𝛿

(𝑖)
𝑠,𝑡

Proof of Theorem 4.6. W.l.o.g. we consider the case that the

length 𝑖 of the random walk is even. Note that for any 𝑠, 𝑡 ,

1𝑠P
𝑖1⊤𝑡 = 1𝑠 (D−1A)

𝑖
1⊤𝑡 = 1𝑠 (D−1A)

𝑖/2
D−1

(

(D−1A)⊤
)𝑖/2

D1⊤𝑡

= 1𝑠P
𝑖/2D−1 (P⊤)𝑖/2D1⊤𝑡 = 1𝑠P

𝑖/2D−1 (P⊤)𝑖/2D1⊤𝑡
= ⟨1𝑠P𝑖/2D−1/2, 1𝑡DP𝑖/2D−1/2⟩

= deg(𝑡) · ⟨1𝑠P𝑖/2D−1/2, 1𝑡P𝑖/2D−1/2⟩.

Thus,

1𝑠P
𝑖1⊤𝑡

deg(𝑡) = ⟨1𝑠P𝑖/2D−1/2, 1𝑡P𝑖/2D−1/2⟩.

Note that for any vertex 𝑣 , the quantity [1𝑠P𝑖/2D−1] (𝑣) is the
probability of a length-(𝑖/2) random walk that starts from 𝑠 and

ends at vertex 𝑣 , divided by
√︁

deg(𝑣); and the quantity [1𝑡P𝑖/2] (𝑣)
is the probability of a length-(𝑖/2) random walk that starts from 𝑠

and ends at vertex 𝑣 , divided by
√︁

deg(𝑣).

Now we use the argument in the proof of Lemma 19 in [10].

Specifically, let 𝑍𝑠,𝑡 =
−→
𝑋 𝑠 ·
−→
𝑌 ⊤𝑡 , where

−→
𝑋 𝑠 ·
−→
𝑌 ⊤𝑡 are defined in Al-

gorithm 2. Then E(𝑍𝑠,𝑡 ) = (D−1/2P𝑖1𝑎)⊤ (D−1/2𝑃𝑖1𝑎). By Cheby-

shev’s inequality and Lemma 19 in [10], we get P[|𝑍𝑠,𝑡 −E(𝑍𝑠,𝑡 ) | >
𝜀
8ℓ ] < (

8ℓ
𝜀 )2 (

𝛽𝑖
𝑟 2
𝑖

+ 2𝛽
3/2
𝑖

𝑟𝑖
) ≤ 1

40ℓ , as we have chosen 𝑟𝑖 = 20000(
√︃

ℓ3𝛽𝑖
𝜀2
+

ℓ3𝛽
3/2
𝑖

𝜀2
) in the algorithm. Then the statement of the theorem follows

by analogous argument from the proof of Theorem 4.2.

Finally, we remark that the success probabilities of both algo-

rithms EstEff-TranProb and EstEff-TranProb-Collision can

be boosted to 1 − 1
poly(𝑛) by standard median trick, i.e., repeat-

edly run these algorithms 𝑂 (log𝑛) times and output the median.

On graphs with bounded mixing time, which correspond to graphs

such that 1−𝜆 ≥ 1
poly(log𝑛) , the algorithms run in𝑂 (poly(log𝑛/𝜀))

time.

4.2 Algorithms based on commute times of
random walks

In this section, we provide two algorithms based on the well known

connections between effective resistances and commute time/visiting

probability in random walks. Let 𝛾 > 0 be a threshold parameter.

The first algorithm: EstEff-MC. We can use the commute

time 𝜅 (𝑠, 𝑡) to approximate 𝑅𝐺 (𝑠, 𝑡). We make use of the following

results.

Lemma 4.7 ([9, 30]). It holds that 𝜅 (𝑠, 𝑡) = 2𝑚𝑅𝐺 (𝑠, 𝑡).

Lemma 4.8 (Proposition 2.3 in [26]). The probability that a random

walk starting at 𝑠 visits 𝑡 before returning to 𝑠 is 1/(𝜅 (𝑠, 𝑡) · 𝜋 (𝑠)),
where 𝜋 (𝑠) = deg(𝑠)

2𝑚 is the stationary probability of 𝑠 .

We obtain the following corollary by Lemmas 4.7 and 4.8.

Corollary 4.9. The probability 𝑝 (𝑠, 𝑡) that a random walk starting

at 𝑠 visits 𝑡 before returning to 𝑠 is 1
𝑅𝐺 (𝑠,𝑡 ) ·deg(𝑠) . In particular, if

𝑅𝐺 (𝑠, 𝑡) ≤ 𝛾 , then 𝑝 (𝑠, 𝑡) ≥ 1
𝛾 ·deg(𝑠) .

The corollary above suggests the Monte Carlo algorithm below.

The algorithm performs a number of random walks, starting at

vertex 𝑠 . Then it essentially count how many times the random

walk traverses from 𝑠 to 𝑡 and back.

Algorithm 3: EstEff-MC(𝐺, 𝑠, 𝑡, 𝛾, 𝜀)
1 W.l.o.g. suppose that deg(𝑠) ≤ deg(𝑡)
2 𝑁0 ← 3 ln 6·𝛾 ·deg(𝑠)

𝜀2
, 𝑋 ← 0

3 for 𝑖 = 1, . . . , 𝑁0 do

4 Perform a random walk from 𝑠 , and stop the walk

(1) if the walk has visited 𝑡 and then returns to 𝑠 .

(2) or if the walk has return to 𝑠 before visiting 𝑡 .

If the item (1) occurs, 𝑋 ← 𝑋 + 1
5 return 𝑁0

deg(𝑠) ·𝑋

5



Theorem4.10. Assume that that𝑅𝐺 (𝑠, 𝑡) ≤ 𝛾 . Let𝑁0 =
3 ln 6·𝛾 ·deg(𝑠)

𝜀2
.

Then with probability 2/3, Algorithm 3 (i.e., EstEff-MC) returns an

(1+𝜀)-approximation for 𝑅𝐺 (𝑠, 𝑡). The running time of the algorithm

is 𝑂 (𝑚 ·deg(𝑠) ·𝛾
2

𝜀2
).

We remark that the above algorithm runs in sublinear time if

𝛾 = 𝑜𝑛 (1), i.e., 𝑅𝐺 (𝑠, 𝑡) is small enough. In other words, when the

two vertices 𝑠, 𝑡 are łsimilarž enough, our algorithm will be fast.

Proof of Theorem 4.10. In Algorithm 3, let𝑋𝑖 be the indicator

variable that denotes the 𝑖-th random walk to be successful (where

we do not abort the walk because of its length). Then P(𝑋𝑖 = 1) =
𝑝 (𝑠, 𝑡) where 𝑝 (𝑠, 𝑡) is as defined in Corollary 4.9. Furthermore, let

𝑋 =

∑𝑁0
𝑖=1 𝑋𝑖 . Observe that E(𝑋 ) = 𝑁0 · 𝑝 (𝑠, 𝑡) = 𝑁0

𝑅eff (𝑠,𝑡 ) ·deg(𝑠) ,

where we have used that 𝑝 (𝑠, 𝑡) = 1
𝑅eff (𝑠,𝑡 ) ·deg(𝑠) .

Next, assume that 𝑅eff (𝑠, 𝑡) ≤ 𝛾 ; let 𝑁0 =

ln(1/𝛿) ·3·𝛾 ·deg(𝑠)
𝜀2

≥
ln(1/𝛿) ·3·𝑅eff (𝑠,𝑡 ) ·deg(𝑠)

𝜀2
, where 𝛿 > 0 is a parameter that will be

specified later. Using Chernoff and union boundswe find that P[|𝑋−

E(𝑋 ) | > 𝜀 ′ ·E(𝑋 )] < 2 ·𝑒−
𝜀′2 ·𝑁0

3·𝑅eff (𝑠,𝑡 ) ·deg(𝑢) ≤ 2 ·𝛿 for any 𝜀 ′ > 0. Thus,

we find that with probability at least 1 − 2𝛿 , (1 − 2𝜀 ′)𝑅eff (𝑠, 𝑡) ≤
𝑁0

deg(𝑢) ·𝑋 ≤ (1 + 2𝜀
′)𝑅eff (𝑠, 𝑡). Now, choosing 𝜀 ′ = 𝜀/2 yields the

desired approximation ratio.

As a second step, we will show that each of the random walks

in Algorithm 3 is expected to terminate within at most 2𝑚𝛾 steps.

Consider the two cases in which the walks terminates. Let 𝛾𝑖 , 𝑖 ∈
{1, 2} denote the number of steps taken in the randomwalk in some

iteration, such that 𝑖 = 1 if the first termination criterion of the loop

is fulfilled and 𝑖 = 2 in the other case. Then clearly, the number of

steps taken in a random walk is min{𝛾1, 𝛾2}. Furthermore, it holds

that min{𝛾1, 𝛾2} ≤ 𝛾1. Note that E(𝛾1) is the commute time 𝜅 (𝑠, 𝑡).
Then we find that E(min{𝛾1, 𝛾2}) ≤ E(𝛾1) = 𝜅 (𝑠, 𝑡).

Finally, let 𝛿 = 1/3. Then we find that Algorithm 3

• runs in expected time 𝑅eff (𝑠, 𝑡) · 𝑁0 ∈ 𝑂 (𝑚 ·deg(𝑠) ·𝛾
2

𝜀2
) and

• with probability at least 1 − 𝛿 = 2/3, 𝑁0

deg(𝑢) ·𝑋 is an (1 + 𝜀)-
approximation of 𝑅eff (𝑠, 𝑡).

This concludes the proof.

The second algorithm: EstEff-MC2. For the special case

that there is an edge (𝑠, 𝑡) between the two specified vertices 𝑠, 𝑡 ,

we can also make use of the following probabilistic interpretation

of effective resistance.

Lemma 4.11 ([31]). Consider an edge (𝑠, 𝑡). Then 𝑅𝐺 (𝑠, 𝑡) is the
probability that a random walk from 𝑠 visits 𝑡 for the first time using

(𝑠, 𝑡).

This suggests the following Monte Carlo algorithm.

Theorem 4.12. For 𝑅𝐺 (𝑠, 𝑡) > 𝛾 , Algorithm 4 (i.e., EstEff-MC2)

returns with probability (1-𝛿) a (1 + 𝜀)-approximation of 𝑅𝐺 (𝑠, 𝑡).

The proof of the above theorem is deferred to Appendix B. Note

that in contrast to Algorithm 3, the random walks in Algorithm 4

stop as soon as we have reached the destination vertex 𝑡 . Hence,

one can expect that Algorithm 4 runs faster than Algorithm 3.

Experimental comparisons of the running times can be found in

Section 5.1.

Algorithm 4: EstEff-MC2(𝐺, 𝑠, 𝑡, 𝜀, 𝛾, 𝛿)
1 W.l.o.g. suppose that deg(𝑠) ≤ deg(𝑡)
2 𝑀0 ← ln(1/𝛿) ·3

𝜀2 ·𝛾 , 𝑋 ← 0

3 for 𝑖 = 1, . . . , 𝑀0 do

4 Perform a random walk from 𝑠 , and stop the walk

(1) if the walk visits 𝑡 for the first time using the edge (𝑠, 𝑡)
(2) or if the walk visits 𝑡 for the first time using any other edge.

If the item (1) occurs, 𝑋 ← 𝑋 + 1
5 return 𝑋

𝑀0

4.3 An algorithm based on estimating the
number of spanning trees

Now we present a local algorithm based on a connection to the

number of spanning trees of a graph. Let 𝑇 (𝐺) denote the number

of spanning trees of 𝐺 .

Lemma 4.13 (Corollary 4.2 in [26]). Let 𝐺 be a graph and 𝑠, 𝑡 ∈ 𝑉 .

Let 𝐺 ′ be the graph obtained by identifying 𝑠 and 𝑡 . Then

𝑅𝐺 (𝑠, 𝑡) =
𝑇 (𝐺 ′)
𝑇 (𝐺)

Lyons and Oveis Gharan gave a local algorithm for estimating

the number of spanning trees [28].

Lemma 4.14 (Corollary 1.2 in [28]). Let 𝐺 = (𝑉 , 𝐸) be a graph. In
the adjacent list model, together with knowledge of 𝑛 and |𝐸 |, there
exists a randomized algorithm that for any given 𝜀, 𝛿 > 0, outputs an

estimate 𝑍 that approximates
log𝑇 (𝐺)
|𝑉 | within an additive error of 𝜀,

i.e.,
�

�

�

log𝑇 (𝐺)
|𝑉 | − 𝑍

�

�

� ≤ 𝜀 with probability at least 1 − 𝛿 , by using only

�̃� (𝜀−5 + 𝜀−2 log2 𝑛) log𝛿−1 number of queries.

This suggests the following algorithm based on estimating the

number of spanning trees. As remarked in [28], the assumption

of having the knowledge of |𝐸 | in Algorithm 6 might not even be

necessary.

Algorithm 5: AppNumST(𝐺, 𝜀, 𝛿) [Algorithm 2 in [28]]

1 𝑟 ← ⌈903𝜀−3⌉
2 𝑠 ← ∑

1≤𝑡<2𝑟 1/𝑡
3 𝑁 ← ⌈ 8 log(4/𝛿)𝑠

2

𝜀2
⌉

4 for 𝑖 = 1← 𝑁 do

5 Let x be a randomly chosen vertex of G.

6 Sample 1 ≤ 𝑡 < 2𝑟 with probability 1/𝑠𝑡 .
7 Run a 𝑡-step lazy simple random walk from 𝑥 , and let

𝑌𝑖 ← I[𝑋𝑡 = 𝑥]
8 Sample ⌈256 log(1/𝛿) (log𝑛)2/𝜀2⌉ random vertices of 𝐺 , and

let �̃� be the average of the logarithm of twice the degree

of sampled vertices.

9 return 𝑍 := −𝑛−1 log(4|𝐸 |) + �̃� − 𝑠 (∑𝑁
𝑖=1 𝑌𝑖 )/𝑁 + 𝑠/𝑛

6



Algorithm 6: EstEff-SpanTree(𝐺, 𝜀, 𝛿,𝑢, 𝑣)
1 𝑎 ← AppNumST(𝐺, 𝜀2 ,

𝛿
2 )

2 𝑏 ← AppNumST(𝐺, 𝜀2 ,
𝛿
2 )

3 return 𝑒𝑎 (𝑛−1)

𝑒𝑏𝑛

Theorem 4.15. Algorithm 6 returns with probability at least 1 − 𝛿
an estimator 𝑋 such that

𝑒−𝜀𝑛𝑅𝐺 (𝑠, 𝑡) ≤ 𝑋 ≤ 𝑒𝜀𝑛𝑅𝐺 (𝑠, 𝑡) .
The algorithm uses �̃� (𝜀−5 + 𝜀−2 log2 𝑛) log𝛿−1 queries.

We give the proof of Theorem 4.15 in Appendix B and remark

that the above algorithm seems of theoretical interest only, as it

does not perform well in practice.

5 EXPERIMENTS

In this section, we show our experimental results. The experiments

were conducted on a Linux server with Intel Xeon E5-2643 (3.4GHz)

and 768GB of main memory, and all the programs were imple-

mented in C++ and compiled with g++ 4.8.4. The graphs used in the

experiments are taken from SNAP3 and basic information about the

graphs is given in Table 1. We generated query pairs by randomly

sampling edges 1, 000 times with replacements.

Table 1: Datasets

𝑛 𝑚

Facebook 4,039 88,233

DBLP 317,080 1,049,869

YouTube 1,134,891 2,987,627

We implemented the following algorithms:

• Exact: Thismethod first applies the QR decomposition to the

Laplacian as preprocessing and computes effective resistance

according to its definition, i.e., 𝑅𝐺 (𝑠, 𝑡) := 𝜒𝑠,𝑡L
†𝜒⊤𝑠,𝑡 .

• HAY [17]: This method computes effective resistances of all

the edges at once by sampling spanning trees and it is still.

state-of-the-art for this problem. We fixed the number of

sampled spanning trees to 10,000.

• TP: Implementation of Algorithm 1. We set 𝜀 = 𝜆 = 0.1.

• TP-C: Implementation of Algorithm 2. We set 𝜀 = 𝜆 = 0.1.

• MC: Implementation of Algorithm 3. We set 𝜀 = 𝛾 = 0.1.

• MC2: Implementation of Algorithm 4. We set 𝜀 = 𝛾 = 0.1.

• ST: Implementation of Algorithm 6. We set 𝜀 = 0.1.

To implement each algorithm, we used the same number of random

walks as the one given in the corresponding pseudocode.

5.1 Running time

Figure 1 shows the running time of each method. For our methods,

we plotted the running time for the 1,000 queries in increasing

order. For Exact and HAY, we plotted their preprocessing time.

3https://snap.stanford.edu

We do not show the running time of Exact on DBLP and YouTube

because it did not terminate in 8 hours.

We can first observe that MC and ST on Facebook are as slow

as previous (polynomial-time) algorithms, and hence we do not

consider those algorithms for other graphs.

We can observe that TP, TP-C, and MC2 are much faster than

the existing methods. Note that the running time of MC2 depends

on the queried edge (𝑠, 𝑡) because it runs until the random walk

starting at 𝑠 reaches 𝑡 . In contrast, the running time of TP and TP-C

is almost independent of the queried edge, which is preferable. A

reason that TP-C is slower than TP is that we need to compute

inner products in TP-C (Line 6 of Algorithm 2).

5.2 Accuracy

Figure 2 shows the accuracy of existing and our methods. For each

method, we computed the relative error as |𝑅 − �̃� |/𝑅 for each query,

where 𝑅 is the exact effective resistance for Facebook using Exact

and the one estimated by HAY for DBLP and YouTube, and �̃� is the

estimated effective resistance. Then, we plotted the 1, 000 relative

errors after sorting them in increasing order. Except for ST, the

relative error of our methods are within 0.1 for most of the queries,

as expected from the choice 𝜀 = 0.1. Also, the results for Facebook

justifies the use of HAY on DBLP and YouTube as the baseline

method. In Figure 2(a), the results of TP and TP-C are very close

such that their lines overlap. The fact that the lines change concav-

ity twice appears to be a universal phenomenon for probabilistic

distributions.

In Figure 3, each blue point represents (𝑅, �̃�) for a query, where 𝑅
and �̃� are as we defined in the paragraph above.MC2 shows the best

accuracy on DBLP and YouTube. Accuracy of TP-C is comparable to

that of TP. Recalling that TP runs faster than TP-C, we can conclude

that TP is superior to TP-C.

6 CONCLUSION

In this paper, we developed a number of local algorithms for es-

timating the pairwise effective resistances, a fundamental metric

for measuring the similarity of vertices in a graph. Our algorithms

explore only a small portion of the graph while provides a good

approximation to 𝑅𝐺 (𝑠, 𝑡) for any specified 𝑠, 𝑡 . Our algorithms are

desirable in applications where the effective resistances of a small

number of vertex pairs are needed. Our experiments on benchmark

datasets validate the performance of these local algorithms.
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A THE CHERNOFF-HOEFFDING BOUND

We make use of the following Chernoff-Hoeffding bound (see The-

orem 1.1 in [14]).

Theorem A.1 (The Chernoff-Hoeffding bound). Let 𝑠 ≥ 1. Let

𝑋 :=
∑

1≤𝑖≤𝑠 𝑋𝑖 , where 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑠 , are independently distributed

in [0, 1]. Then for all 𝑡 > 0,

P[|𝑋 − E[𝑋 ] | > 𝑡] ≤ 𝑒−2𝑡
2/𝑠 .

B MISSING PROOFS OF SECTION 4

We present here the proofs of two theorems in Section 4.
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Proof of Theorem 4.12. In Algorithm 4, let 𝑋𝑖 be the indicator

variable that denotes the 𝑖-th random walk to be successful (re-

gardless of its length). Then P(𝑋𝑖 = 1) = 𝑅𝐺 (𝑠, 𝑡). Furthermore, let

𝑋 =

∑𝑀0

1 𝑋𝑖 . Observe that E(𝑋 ) = 𝑀0 · 𝑅𝐺 (𝑠, 𝑡).
Next, assume that 𝑅𝐺 (𝑠, 𝑡) > 𝛾 ; let 𝑀0 =

ln(1/𝛿′) ·3
𝜀2 ·𝛾 >

ln(1/𝛿′) ·3
𝜀2 ·𝑅𝐺 (𝑠,𝑡 ) .

Using Chernoff and union bounds we find that P[|𝑋 − E(𝑋 ) | >

𝜀 · E(𝑋 )] < 2 · 𝑒−
𝜀2𝑀0𝑅𝐺 (𝑠,𝑡 )

3 < 2 · 𝛿 ′ for any 𝜀, 𝛿 ′ > 0. Thus,

we find that with probability at least 1 − 2𝛿 ′, (1 − 𝜀)𝑅𝐺 (𝑠, 𝑡) ≤
𝑋/𝑀0 ≤ (1 + 𝜀)𝑅𝐺 (𝑠, 𝑡). Now, choosing 𝛿 ′ = 𝛿

2 yields the desired

approximation ratio.

Proof of Theorem 4.15. By Lemma 4.14, with probability 1− 𝛿
2 ,

the 𝑎 returned in line 1 of Algorithm 6 satisfies |𝑎− log(𝑇 (𝐺′))
𝑛−1 | ≤ 𝜀

2 .

Similarly, with the same probability, |𝑏 − log(𝑇 (𝐺))
𝑛 | ≤ 𝜀

2 . By the

union bound, this implies that with probability 1 − 𝛿 , 𝑎(𝑛 − 1) −
𝑏𝑛 ≤ 𝜀

2 (2𝑛 − 1) − log(𝑇 (𝐺)) + log𝑇 ((𝐺 ′)). Thus, we find that
𝑒𝑎 (𝑛−1)

𝑒𝑏𝑛
≤ 𝑒𝜀𝑛 · 𝑇 (𝐺

′)
𝑇 (𝐺) . Similarly, it holds that 𝑒𝑎 (𝑛−1)

𝑒𝑏𝑛
≥ 𝑒−𝜀𝑛 · 𝑇 (𝐺

′)
𝑇 (𝐺) .

Let 𝑋 =
𝑒𝑎 (𝑛−1)

𝑒𝑏𝑛
. Then by Lemma 4.13, 𝑒−𝜀𝑛𝑅𝐺 (𝑠, 𝑡) ≤ 𝑋 ≤

𝑒𝜀𝑛𝑅𝐺 (𝑠, 𝑡). This yields the desired approximation ratio.
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