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eICIC configuration of Downlink and Uplink

Decoupling with SWIPT in 5G Dense IoT HetNets
Jie Zheng, Ling Gao, Haijun Zhang, Senior Member, IEEE, Dusit Niyato, Fellow, IEEE, Jie Ren, Hai Wang,

Hongbo Guo, Zheng Wang

Abstract—Interference management and power transfer can
provide a significant improvement over the 5th generation mobile
networks (5G) dense Internet of Things (IoT) heterogeneous
networks (HetNets). In this paper, we present a novel approach
to simultaneously manage inferences at the downlink (DL) and
uplink (UL), and to identify opportunities for power transfer and
additional UL transmissions integrated with existing protocols
and infrastructures for enhanced inter-cell interference coordi-
nation (eICIC) protocol in dense IoT HetNets, while considering
practical non-linear energy harvesting (EH) model. The design is
formulated as the joint optimization of interference aware UL/DL
decoupling, airtime resource allocation and energy transfer. The
key insight of our algorithm is to translate the original, in-
tractable joint-optimization problem into a problem space where
a good approximate solution can be quickly found. We evaluate
our scheme through theoretical analysis and simulation. The
evaluation shows that our approach improves the system utility
by over 20% compared to start-of-the-art in dense IoT HetNets.
Compared to alternative schemes, our approach maintains the
best user fairness and rate experience and can solve the problem
in a fast and scalable way.

Index Terms—Downlink/Uplink decoupling (DUDe), Enhanced
inter-cell interference coordination (eICIC), Simultaneous wire-
less information and power transfer (SWIPT), Internet of Things
(IoT), heterogeneous network (HetNet).

I. INTRODUCTION

By deploying different network infrastructures, such as

macrocells and dense deployment of smallcells (e.g.,picocell

or femtocell), the dense Internet of Things (IoT) heteroge-

neous network (HetNet) is widely seen as a solution for the

5th generation mobile networks (5G) [1]. Unlike human-based

cellular devices, such as smart phones, that can be charged
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easily, these massive IoT devices are usually very difficult to

charge or replace their batteries. This has led to an increasing

interest in energy-efficient communication of IoT devices

from the system design. While there has been considerable

work on optimizing downlink (DL) performance [2] [3] [4],

emerging Machine Type Communication (MTC), and other

upload-intensive applications such as sensing information of

large-scale IoT devices make uplink (UL) performance just

as important.

Meanwhile, there is no consensus on how to make the best

use of the heterogeneous infrastructures within a dense IoT

HetNet. Since smallcells typically share the frequency band

with macrocell, the performance of a low-power smallcell

could be severly impacted by the interference from high-power

macrocell. The 3rd Generation Partnership Project (3GPP) has

proposed the notion of enhanced inter-cell interference coor-

dination (eICIC) to protect the DL smallcell transmissions

by mitigating the interference from neighboring macrocells,

which keeps silent for certain periods, termed Almost Blank

Subframes (ABS) [2].

However, how to set the eICIC parameters, i.e., ABS

subframes configuration and DL association (smallcell range

expansion expand bias (REB) or smallcell selection bias

(CBS)), is left unspecified in eICIC standard. There has

been considerable work on the eICIC configuration, such as

Fixed ABS [5] [6], Dynamic ABS [2] [3], Dynamic ABS with

DUDe [4], UM-ABS with DUDe [7].

• Fixed ABS: This strategy uses the fixed eICIC config-

uration, and sets the fixed ABS, and sets the fixed REB

for each smallcell [5] [6]. In [5] [6], they don’t consider

the dynamic configuration of eICIC.

• Dynamic ABS: The dynamic ABS configuration is to

allocate ABS, and to determine the flexible DL association

rules with REB based on the optimization problem of

eICIC configuration [2] [3], which only focus on the

DL transmission.

• Dynamic ABS with DUDe: With considering the DL/UL

Decoupling (DUDe), this is the dynamic ABS with DUDe

joint optimization approach for user equipment (UE)

associations under dynamic Time-division Duplex (TDD),

and it assumes that the UL and DL could be splitted to

the different BSs [4].

• UM-ABS with DUDe: This is UM-ABS with DUDe, which

exploits the UL transmission for macrocells in ABSs for

dynamic eICIC configuration in HetNets [7], referred

to UM-ABS, to improve the system performance.
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Recently, simultaneous wireless information and power

transfer (SWIPT) technology is gaining tremendous attention

due to its ability in providing sustainable and ubiquitous com-

munications for numerous wireless communication scenarios,

including IoT [8]. Therefore, we design a novel eICIC

configuration with SWIPT for IoT dense HetNets. We

propose to configure energy transfer splitting of DL during

nABSs with DUDe for UL transmission which takes into

eICIC with considering the UL transmission for macro during

ABSs (UM-ABS) in dense IoT HetNets, termed DL energy

power transfer UM-ABS (DPT-UM-ABS). Our approach can

improve the energy problem for IoT, while carrying out the

interference coordination between macrocell and smallcell to

improve the system rate, especially for the UL rate of IoT

UE.

From the perspective of communication, the application of

SWIPT to IoT devices essentially focuses on the optimal

tradeoff between the system rate and the harvested energy

which is usually solved by computational optimization. This

paper aims to push the boundary of computational optimiza-

tion by simultaneously considering DL/UL decoupling (DUDe),

resource allocations and energy transfer. Doing so can lead to

better ABS utilization of SWIPT to dense IoT HetNet. A

key challenge is how to quickly explore the extremely large

design space to find a suitable optimization configuration at

an affordable cost. Our key insight is that the highly complex

optimization space can be mapped and tailored down to a

smaller problem space by using a set of heuristics, where

the alternating direction method of multipliers (ADMM) [9] – a

robust and efficient method for solving large-scale, distributed

optimization problems – can then employed to derive a good

solution in a faster and scalable manner.

We demonstrate how our approach can be integrated with

the existing eICIC under the TDD paradigm to minimize

the disruptions for deployment. We evaluate our approach by

applying it to typical dense IoT HetNet scenarios through

simulations, and we analytically prove that our approach has

a low computation complexity. Experimental results show that

our approach improves the system utility by over 20% com-

pared to state-of-the-art methods [2], [4], [7] that specifically

target ultra-dense network optimizations, delivering 94% of the

up-bound performance (found through exhaustively searching

all possible parameter settings). We show that our approach

not only provides the best network-wide system utility, but

also maintains the most robust and the highest standard of

proportional fairness and user experience (measured by user-

received rates) among all competitive schemes.

The main contributions of this paper can be summarized as

follows:

• First, we propose to configure energy transfer splitting

of DL with practical SWIPT during nABSs with DUDe

which takes into eICIC with considering UM-ABS for

eICIC in dense IoT HetNets, especially the IoT devices

have a non-linear energy harvesting (EH) model for

practical SWIPT.

• Second, we jointly optimize DUDe UE-associations, re-

source allocation of UE, dynamic DPT-UM-ABS alloca-

tion between macrocell and smallcell and energy transfer

splitting for UL and DL in dense IoT HetNets, which

can be modelled as a general form consensus problem

with regularization effectively solved by ADMM;

• Final, we employ the ADMM-based algorithm to

solve the joint-optimization problem by decomposition-

coordination procedure, which is transformed into an

equivalent consensus formulation with separable objec-

tives for macrocell and smallcell. Then the local opti-

mization subproblems can be solved by proposing a two-

step iterative scheme with dynamic programming based

algorithms and the auxiliary variable transferred convex

algorithm, which can be carried out in the distributed

manner.

II. RELATED WORK

The resource allocation of joint DL and UL in HetNet

receives considerable interests in the recent years. Shen et al.

[10] show that it can be profitable to dynamically configure

the DL and UL in a HetNet of TD-LTE. Nikolaos et al. [4]

study joint α-fair optimization of user association and TDD

allocation. The [11] studies the joint DL and UL traffic offload-

ing under asymmetric information for CSI. Taking all possible

TDD subframes configuration, coupled and decoupled cell

associations strategies are investigated based on a geometric

probability approach [12]. The [13] focuses on optimizing the

average UL-DL per user Degrees of Freedom with considering

a backhaul constraint. The joint scheme with DUDe, multiple

region frequency allocation, convergent power control under

non-uniform user distribution is proposed to improve the

performance of UL [14]. Finally, our work aims to maximize

the utility of network’s capacity to improve rate and fairness of

user. It can benefit from other complementary works on energy

optimization [15], D2D [16], or quality of services [17].

The recent work presented in [18] has exploited the property

of channel reciprocity to develop resource allocation schemes

for SWIPT for single-tier networks. Kishk et al. [19] study

joint UL and DL coverage of cellular-based ambient RF energy

harvesting IoT in the single-tier cellular network. However,

both prior approaches do not consider the multi-tier HetNets

where the cross-tier interference is non-negligible. An energy

efficiency (EE) optimized strategy based on eICIC technol-

ogy is proposed by taking into account the user assocation,

ABS ratio, resource allocation in the frequency domain, and the

power transmission of the macro BSs, but without considering

the UL transmission [20]. It has found that resource allocation

with a practical non-linear EH model can achieve larger rate-

energy region than the linear EH model for SWIPT [21] [22].

The [23] investigates the energy efficiency (EE) maximization

problem of non-orthogonal multiple-access (NOMA) with

non-linear EH model SWIPT in HetNets. As a departure

from prior work, our approach considers the dynamic eICIC

configuration problem of non-linear EH SWIPT and cross-

tier interference for UL and DL in dense IoT HetNets.

For future, our work can be extend with NOMA Network

with imperfect CSI [24], intelligent reflecting surface-aided

coordinated multipoint [25] and the mobile edge computing

with fairness [26] in dense IoT HetNets.
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Figure 1. Overview of our network model. We consider a two-tier HetNet
that consists of macro and pico cells where a user’s UL and DL can be
associated with different cells.

Table I
LIST OF PARAMETERS AND NOTATIONS USED IN THE PAPER

Parameter Description

u ∈ U A user, u, in a set of users, U
m ∈ M A macrocell, m, from a set of macrocells, M
s ∈ S A smallcell, s, from a set of smallcells, S
i The index of a BS, where i ∈ M ∪ S
vBS The range expansion bias BS (m or s) in the DL

F The number of subframes for one period of ABS

As The number of ABS subframes for small BS, s
Bm The number of nABS subframes for macro BS, m

cUL
u,A The allocated resource for ABS from macrocell m on the UL

dUL
u,A The allocated resource for ABS from smallcell s on the UL

cUL
u,nA The allocated resource for nABSs from macrocell m on the UL

dUL
u,nA The allocated resource for nABSs from smallcell s on the UL

cDL
u,nA The allocated resource for nABSs from macrocell m on the DL

dDL
u,nA The allocated resource for nABSs from smallcell s on the DL

PRx
u The received power of user equipment (UE) u

PDL
m The transmitting power of macrocell m on the DL

PDL
s The transmitting power of smallcell s on the DL

PUL
u The transmitting power of user u from UE u on the UL

Im(s) The interference set suffer from macrocell (smallcell)

Iu The set of users that interfere with user, u (UE-to-UE)

Hu,u The channel gain for different two users

Hu,BS The channel gain between user and BS, BS ∈ {m, s}
HBS,BS The channel gain for different BS, BS ∈ {m, s}

III. SYSTEM MODEL

In this work, we consider a two-tier HetNet consisting of

macrocell and smallcell, and target dynamic TDD where the

UL/DL subframes for users can be dynamically allocated. As

depicted in Figure 1, we use SWIPT in the DL transmission

so that a user can first harvest the energy in the DL and then

uses it for UL transmission. The UL and DL can access to

different BS e.g. MBS or SBS in Figure 2. UL and DL with

SWIPT leverages eICIC so that it can be easily integrated

with existing protocols and infrastructures. As is shown in

Figure 3, we allow UL transmissions to a macrocell within an

ABS (UM-ABS) [7] and identify opportunities for transferring

energy during nABSs and ABSs. Furthermore, to add clarity,

Table I gives the frequently used parameters of the paper.

A. Problem Scope

Our work aims to improve the overall network performance

by considering three optimization strategies: interference-

aware UL/DL decoupling, airtime resource allocation and en-

ergy transfer in ultra-dense HetNets. We focus on improving

radio access but not backhaul because DUDe does not impose

a tight requirement on the backhaul capacity [27]. For per-

formance evaluation, we consider three network-wide metrics:

(1) the system utility, (2) the average UL, DL and overall rates

across users, and (3) the proportional fairness. These metrics

are defined in Section VII-A.

 !"  #"  $"  %"

Figure 2. The four user association modes considered in this work.

B. Asymmetric Association Models

User association: We consider four association modes in a

HetNet, as illustrated in Figure 2. The first two modes (a and

b in Figure 2) are when the UL and DL of a UE are associated

with the same type of cell (macrocell or smallcell). The other

two modes are when the UL and DL are associated with two

cells (c and d in Figure 2) where the UL is associated with

a smallcell and the DL can be associated with a macrocell or

a smallcell. Allowing the DL and UL to be associated with

different cells enable us to use heterogenous cells to better

distribute the traffic loads, which is particularly attractive for

cell edge users.

DL association: The DL of a UE can be associated with

either a macrocell or a smallcell in HetNets. If the DL of

a UE chooses to associate a suitable cell with maximum

received signal strength traditionally, this strategy leads to

overloading a macrocell and by underutilizing the densely

deployed smallcells. To offload the DL traffic from an MBS

to a SBS, we associate a UE according to a configurable BS

selection bias factor, vBS , between the MBS and the SBS.

Specifically, a UE can associate with a BS by considering the

reference signal received power (RSRP), RSRPu,BS between

the UE and a BS (i.e., a macrocell or smallcell) in the whole

bandwidth. This goal is defined as:

UEDL = argmax {RSRPu,BS + vBS} (1)

There are scenarios where the DL of a cell-edged UE can be

associated with either an MBS or a SBS (see Section III-B).

The determine the cell assignment, we firstly calculate the

difference of the RSRP between the candidate MBS and

SBS [3]. The difference, ǫu, is calculated as ǫu = RSRPDL
u,m−

RSRPDL
u,s , where RSRPDL

u,m and RSRPDL
u,s are the RSRP

(measured by the UE) of the MBS and SBS, respectively. Then,

we look at the range expansion bias (REB), vs. We assign UEs

with a ǫu value that is smaller than the REB to a smallcell,

and the remaining to a macrocell.

In practice, the REB is determined on an MBS-SBS pair

basis. Because a smallcell typically defines the minimum

adjustment for changing the REB, we use this setting to map

the range of possible REB values to a set of discrete integers

between zero and the total number of candidate UEs that can

be associated with the target smallcell s. Here, the total number

of candidate UEs is denoted as νmax
s . In the boundary cases

where the REB takes 0 or νmax
s , all candidate UEs will be

assigned to a SBS or MBS cell respectively.

UL association: Unlike the DL, performing power control

on the UL has little benefit for interference management in an

ultra-dense cellular network due to the short distance between

the UE and a cell. Therefore, we assume the UE uses the

maximum transmit power and associates with a cell (macro or
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Figure 3. Our approach extends the current eICIC (a) for UL transmission
during ABS subframes and energy transfer during subframes (b).

pico) that gives the strongest signal power. Note that utilizing

power control on UL to improve the cell’s energy efficiency

is out of the scope of this work.

An asymmetric UL/DL association scheme might associate a

UE with different cells or BSs. This means the scheme might

associate a UE with a nearby SBS in the UL, even the UE is

associated with the MBS in the DL, because doing so gives

a better channel gain. To model the composite channel gain

from a UE to a BS, the UL association of UE u is decided by:

UEUL = argmin {Hu,BS} (2)

where Hu,BS is the channel gain of the association – which

includes the path-loss, shadowing, and fading. We maximize

the rate gain by minimizing Hu,BS .

C. Resource Allocation Modeling and Extensions

eICIC was introduced in LTE R10 to support inference

management in HetNets using the ABS. As depicted in

Figure 3(a), the idea is to keep the macrocells periodically

silent (by only transferring reference signals with reduced

power) to allow smallcells to send information to UEs with

little interference during an ABS (i.e., an ABS time slice).

Resource modeling: Suppose an ABS cycle of F subframes

in TDD has As ABSs and Bm nABSs, where Bm nABSs is

the number of subframes transmitted by MBS m and As ABSs

is the number of subframes transmitted by SBS s. It is clear

that As ABSs and Bm nABSs must be an integer because

we cannot further divide a subframe. Because an UE can

occupy the entire bandwidth, we can extend the subchannel or

subcarrier allocation. Our work can be extended to the OFDM

for HetNets. For example, the total available subchannels or

subcarriers are N for one subframe, so the total available NF
an ABS cycle, and NAs ABSs and NBm nABSs.

Our extensions: As depicted in Figure 3(b), we utilize an

ABS cycle in two ways. Firstly, we allow UL transmissions to

a macrocell within an ABS to improve the network throughput

[7]. Secondly, we identify opportunities for transferring energy

during nABSs and ABSs (the latter was not exploited in prior

work). We refer the first strategy as UM-ABS (UL transmission

in ABSs) and the latter as DPT-nABS (DL power splitting in

nABSs). We jointly consider the UM-ABS and DPT-nABS

for eICIC in dense IoT HetNets, termed DPT-UM-ABS.

D. The Energy Harvesting Model

The received power of UE u from the associating BS is:

PRx
u = pDL

BS ·Hu,BS + pIntu (3)

where pDL
BS · Hu,BS is the useful signal, pIntu is the average

inter-cell interference measured by the UE, pDL
BS is the trans-

mitting power of BS (m or s) in the DL.
Using this formula, the rate received by a UE is obtained

from a fraction of the received power ρuP
Rx
u , ρu is the power

splitting ratio that is allocated for information processing for
the UE [22]. The input power at the energy harvest receiver UE
is P IN

u = (1− ρu)P
Rx
u , where 1− ρu is the energy splitting

ratio for energy harvest given by the target user. It has been
found that the energy conversion efficiency with traditional
linear EH model is irrelevant to the input power at the EH
receiver [21] [23]. Therefore, we adopt a practical parametric
non-linear EH model based on the logistic (sigmoidal) function
which captures the dynamics of the RF energy conversion
efficiency for different input power levels [21]. The harvested
energy at UE u, PUL

u , can be modelled as:

PULu =
Ψu −MuΩu

1− Ωu
,Ωu =

1

1 + exp(aubu)
,

Ψu =
Mu

1 + exp(−au(P INu − bu))
.

(4)

E. The Rate Model

The DL and UL in our work can associate with an MBS

or SBS. Like prior work [3], [7], we assume the signal-

to-interference-plus-noise ratio (SINR) of UL/DL (measured

from the UE) of the candidate cells are known for a given

power fraction ρu (see Eqs. (5) - (8)). We convert the SINR

to the data rate using the Shannon capacity formula, which

is then used to calculate the data rate per resource unit for a

given UE u. This conversion is described as follows.

We denote rUL
u,A,m and rUL

u,nA,m as the per-resource-unit data

rate for the ABS A and nABS nA respectively, when the UL

of UE u is associated to macrocell m. In a similar vein, we use

rUL
u,A,s and rUL

u,nA,s to denote the per-resource-unit data rate for

ABS A and nABS nA respectively, when the UL is assigned

to smallcell (e.g pico) s. Following this naming convention,

for UE u, rDL
u,nA,m is the per-resource-unit data rate for nABS

when its DL is associated to macrocell m, rDL
u,A,s and rDL

u,nA,s

are the per-resource-unit data rates for ABS and nABS when

its DL is assigned to smallcell s.

The resources units allocated to UE u are denoted as cUL
u,A,

cUL
u,nA, cDL

u,nA for MBS m, and dUL
u,A, dUL

u,nA, dDL
u,A dDL

u,nA for

SBS s. Here cUL
u,A (dUL

u,A) is the number of allocated resource

for ABS from MBSm (or SBS s) on the UL; cUL
u,nA (dUL

u,nA) and

cDL
u,nA (dDL

u,nA) are the numbers of allocated resource units for

nABSs from MBSm (or SBS s) on the UL and DL respectively.

dDL
u,A is the number of allocated resource units in ABS from

SBS s on the DL.
Thus, the rate of UE u is the sum of the UL and DL data

rates: R(u) = RUL
u +RDL

u , with RUL
u and RDL

u defined as:

RULu =







cULu,A · rULu,A,m + cULu,nA · rULu,nA,m,UL-MBS

dULu,A · rULu,A,s + dULu,nA · rULu,nA,s,UL-SBS

(9)

RDLu =







cDLu,nA · rDLu,nA,m,DL-MBS

dDLu,A · rDLu,A,s + dDLu,nA · rDLu,nA,s.DL-SBS

(10)
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SIDL
s,A(u) =

ρuP
DL
s ·Hu,s∑

s∈Is
ρuPDL

s Hu,s+
∑

u∈Iu
PUL

u Hu,u+N0
for ABS subframes

SIDL
s,nA(u) =

ρup
DL
s ·Hu,s∑

s∈Is
ρuPDL

s Hu,s+
∑

m∈Is
ρuPDL

m Hu,m+
∑

u∈Iu
PUL

u Hu,u+N0
for nABS subframes

(5)

SIUL
s,A(u) =

pUL
u ·Hu,s∑

s∈Is
ρuPDL

s Hs,s+
∑

u∈Iu
PUL

u Hu,s+N0
for ABS subframes

SIUL
s,A(u) =

pUL
u ·Hu,s∑

s∈Is
ρuPDL

s Hs,s+
∑

m∈Is
ρuPDL

m Hm,s+
∑

u∈Iu
PUL

u Hu,s+N0
for nABS subframes

(6)

SIDL
m (u) =

ρuP
DL
m ·Hu,m

∑

s∈Is
ρuPDL

s Hu,s +
∑

m∈Im
ρuPDL

m Hu,m +
∑

u∈Iu
PUL
u Hu,u +N0

for nABS subframes (7)

SIUL
m,A(u) =

pUL
u ·Hu,m∑

s∈Is
ρuPDL

s Hs,m+
∑

u∈Iu
PUL

u Hu,m+N0
for ABS subframes

SIUL
m,nA(u) =

pUL
u ·Hu,m∑

s∈Is
ρuPDL

s Hs,m+
∑

m∈Im
ρuPDL

m Hm,m+
∑

u∈Iu
PUL

u Hu,m+N0
for nABS subframes

(8)

IV. FORMULATION OF THE OPTIMIZATION PROBLEM

In the section, we first describe the optimization constraints

of our problem before we formulate it.

A. Optimization Constraints

Interference: For MBS-SBS interference management, the
number of ABSs allocated to a smallcell must not exceed the
maximize number of ABSs provided by any of its neighboring
macrocells in the set Is that interfere with smallcell (see also
Section III-B):

As +Bm ≤ F, ∀s,m ∈ Is (11)

Total airtime: This ensures that the total average airtime

for wireless transmission allocated to users from macrocell or

smallcell is within the total available number of subframes.

This is expressed as (see also Section III-E):
∑

u∈Um

(cULu,nA + cDLu,nA)≤Bm, ∀m∈M (12)

∑

u∈Um

cULu,A ≤ (F −Bm), ∀m ∈M (13)

∑

u∈Us

(dULu,A + dDLu,A) ≤ As, ∀s ∈ S (14)

∑

u∈Us

(dULu,nA + dDLu,nA) ≤ (F −As), ∀s ∈ S (15)

Valid values: The number of allocated resource units must

be non-negative integer numbers. The constraints can be

formulated as:

As, Bm∈ [0, 1, ..., F ], ∀s∈S,m∈M (16)

νs∈ [0, 1, ..., νmax], ∀s∈S (17)

cULu,A, c
UL
u,nA, c

DL
u,nA∈N+

(18)

dULu,A, d
UL
u,nA, d

DL
u,A, d

DL
u,nA∈N+

(19)

where N+ is the set of non-negative integers, and F is

typically set to 40 [2].

Energy transfer: The energy transfer optimization depends

on the energy splitting for DL receive power as well as

interference for the target UE. The dynamic energy splitting

ratio decided by the user is limited between 0 to 1, described

as:

0≤ρu≤1 (20)

B. Problem Formulation

Our goal for maximizing the total utility for user rates can be

formulated as maximizing the sum of the outputs of the utility

function, η, where the utility function is applied to the UL and

DL rates of all UEs in the system. Our goal can be formulated

as maxψ
∑

u η(Ru), where η(Ru)=η(R
UL
u ) + η(RDL

u ). The

utility function should have the properties of being concave

non-decreasing and continuously differentiable [28]. We use

ln(Ru) as our utility function as it can maintain proportional

fairness for users [28]. Our optimization variables include

ψ={As, Bm, νs, ρu, c
UL
u,A, c

UL
u,nA, c

DL
u,nA, d

UL
u,A, d

UL
u,nA, d

DL
u,A, d

DL
u,nA},

where As, Bm represent the ABS allocation for smallcell

and nABS allocation for macrocell, νs is the REB for

smallcell, ρu is the energy transfer for UE, cUL
u,A, c

UL
u,nA, c

DL
u,nA

denote the resource allocation of UL and DL for macrocell,

dUL
u,A, d

UL
u,nA, d

DL
u,A, d

DL
u,nA represent the resource allocation

of UL and DL for smallcell. Using these annotations, we

formulate the optimization problem (OP) as follows:

max
ψ

∑

u

ln(Ru)

s.t.(11)− (20)

(21)

The hardness of the eICIC configuration problem has been

stated in [2], and we will introduce the DPT-UM-ABS with

DUDe into the eICIC configuration. Due to the continuous

variable for energy transform and integer variable for eICIC

configuration, the formulation of our optimization problem OP

is a mixed-integer program that is hard to solve in general.

So, a good approximate solution can be quickly found by an

efficient distributed algorithm in the later parts.

V. PROBLEM CONVERSIONS

We design a novel algorithm to decompose the OP defined

in Section IV-B into subproblems that can be quickly solved.

Specifically, we translate the OP to a general consensus op-

timization problem with regularization [9]. This conversation

allows us to develop an efficient solution (Section VI) to solve
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the UL and DL association and airtime resource allocation

problems for a BS and its UEs.

A. Global Variable Consensus with Regularization

In practice, OP will be processed by multiple agents (e.g.,

BSs or UEs) in parallel. However, the overhead of communi-

cations and synchronization among multiple parallel agents

could be prohibitively expensive. To have a cost-effective

solution, we translate the original problem to an equivalent

linearly-constrained problem under the consensus formulation

paradigm, defined as follows:

max
xm,xs,z

∑

m∈M

gm(xm) +
∑

s∈S

gs(xs) + ℓ(z)

s.t.xm − zm=0,m∈M

xs − zs=0, s∈S

xs(As), xm(Bm), zs(As), zm(Bm)∈ [0, 1, ..., F ]

zs(vs), xm(vs), xs(vs)∈ [0, 1, ..., vmax], ∀s,m∈ Is

(22)

We note that after reformulation, the problem is trans-

formed into M dimensions, i.e., (gm(xm)) and S dimensions

i.e.,(gs(xs)) subproblems, which has a global variable z and

two local variables, xs and xm. Meanwhile, the constraint is

that all the local variables, xm and xs must agree with z.

However, each local vector only contains a small number of

the global variables. Each component of each local variable

corresponds to some global variable component.

Variable settings: The global variable z in our problem

consists of all the ABS components to be optimized for all

MBS and SBS, respectively. The local variable xm is the

local copy at MBS m and xs is the local copy at SBS

s. Furthermore, any xi consists of a selection of the opti-

mized ABS components. Then we have the local variables

xm :={Bm ∪ vs|∀s∈ Im}, xs :={As ∪ vs}. So, we define

z={zm, zs}, zm :={Bm ∪ vs|∀s∈ Im}, zs :={As ∪ vs}. It

is obvious that zm, zs are the global variable’s view of what

the local variable xm, xs should be.

Optimizing MBS: The objective function for macrocell m is
denoted as:

gm(xm)= max
{cUL

u,A
,cUL

u,nA
,cDL

u,nA
,ρu}

∑

u∈Um

ln(Ru) (23)

which is subject to:
∑

u∈Um

(cULu,nA + cDLu,nA)≤Bm, ∀m∈M

∑

u∈Um

cULu,A≤ (F −Bm), ∀m∈M

0≤ρu≤1

cULu,A, c
UL
u,nA, c

DL
u,nA∈N+

(24)

Optimizing SBS: The objective function for smallcell s is
denoted as:

gs(xs)= max
{dUL

u,A
,dUL

u,nA
,dDL

u,A
,dDL

u,nA
,ρu}

∑

u∈Us

ln(Ru) (25)

which is subject to:
∑

u∈Us

(dULu,A + dDLu,A)≤As, ∀s∈S

∑

u∈Us

(dULu,nA + dDLu,nA)≤ (F −As), ∀s∈S

0≤ρu≤1

dULu,A, d
UL
u,nA, d

DL
u,A, d

DL
u,nA∈N+

(26)

Regularization: The regularization function g(z) for OP is

checked if the DPT-UM-ABS subframes (see Figure 3) for

the global variable z violates the interference constraint C1
or not. This is expressed as:

ℓ(z)=

{

−∞, z[F −Bm]<z[As], ∀(s,m∈ Is).

0, otherwise,
(27)

where z(As), z(Bm)∈ [0, 1, ..., F ].

VI. SOLVING THE CONVERTED OPTIMIZATION PROBLEM

In this section, we first describe how to solve the converted

optimization problem for UL/DL association and resource

allocation based the ADMM algorithm [9] which is an efficient

tool for distributed optimizations. We then describe how to

jointly optimize UL/DL association and resource allocation

and energy transfer, before analyzing the complexity of our

solution.

A. The ADMM-based Algorithm

Our consensus optimization problem can be formulated as
an augmented Lagrangian dual problem [29] as:

L(x, z,y)=ℓ(z) +
∑

i∈P∪M

(gi(xi)− yTi (xi − zi)−
λ

2
‖xi − zi‖

2
2

(28)

This formula includes a penalty factor λ>0 and dual variables

yi∈{ym ∪ ys} (m∈M, s∈S). The dual variables ys has the

same optimized components as xs, i.e., Ω(ys)=Ω(xs), which

the variable ym is the same as. Note that ‖, ‖22 is the Euclidean

norm. The corresponding dual function is defined as:

J(y)=max
x,z

L(x, z,y) (29)

And the dual problem is defined as:

min
y

J(y) (30)

Using this formulation, we can construct an iterative ADMM-

based algorithm according to [3]. To update variables for the

n+1 step using results of the n step, we perform the following

operations:

1) x is updated as following, where x={xm, xs}.

For each MBS m∈M , it updates xm as:

xn+1
m =argmax

m
(gm(xm)− ynTm (xm − znm)−

λ

2
‖xm − znm‖22)

(31)

where xm={xm(Bm), xm(vs)|∀s∈ Im}, and gm(xm) is

computed by Eq. 23 with the value {cUL
u,A, c

UL
u,nA, c

DL
u,nA, ρu}.

For each SBS s∈S, it updates xs as:

xn+1
s =argmax

s
(gs(xs)− ynTs (xs − zns )−

λ

2
‖xs − zns ‖

2
2) (32)
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where xs={xs(As), xs(vs)}, and gs(xs) is computed by Eq.

25 with {dUL
u,A, d

UL
u,nA, d

DL
u,A, d

DL
u,nA, ρu}.

2) y is updated as following, where y={ym, ys}.

For each MBS m∈M , the update of ym is conducted by:

yn+1
m =ynm + λ(xn+1

m − zn+1
m ) (33)

For each SBS s∈S, the update of ys is conducted by:

yn+1
s =yns + λ(xn+1

s − zn+1
s ) (34)

3) z is updated as following, where x={zm, zs}.

For each MBS m∈M , the zm∈z update is denoted as:

zn+1
m =argmax

zm
(ℓ(z) +

∑

m∈M

(ynTm zm −
λ

2
‖xn+1

m − zm‖22) (35)

where zm={zm(Bm), zm(vs)|∀s∈ Im}.

For each SBS s∈S, the zs∈z update is denoted as:

zn+1
s =argmax

zs
(ℓ(z) +

∑

s∈S

(ynTs zs −
λ

2
‖xn+1

s − zs‖
2
2) (36)

where zs={zs(As), zs(vs)}.

The z update in the REB component (zs[νs]) is denoted as:

zn+1
s (νs)= Int(

xn+1
s [νs] +

∑

m∈Is
xn+1
m [νs]

1 + |Is|

+
yns [νs] +

∑

m∈Is
ynm[νs]

λ(1 + |Is|)
)

(37)

where Int(.) maps the input to an integer between 0 and νmax
s .

The z update step for the DPT-UM-ABS components, i.e.,

z(As)={As|s∈ Im}, is obtained by computing:

zn+1(As)=argmin
As

∑

s∈Im

‖z(As)− (xn+1
s (As) + yns (As)/λ)‖

2
2

(38)

We note that the aforementioned steps 2 and 3 for updating y
and z are straightforward to calculate. In the next sub-section,

we discuss how to implement step 1 for updating xs, xm.

B. Updating xs for SBS

Basic idea: There are three components xs(As) , xs(νs)
and xs(ρu) for xs. For any given xs, the second and third

parts in Eq. 32 can be computed within a constant time,

O(1). Thus, Eq. 32 is solved by applying any possible xs to

gs(xs). The xs(As), xs(νs) belong to a finite positive integer,

while the xs(ρu) is the continuous value between 0 to 1.

Therefore, we optimize alternatively the integer variable and

continuous variable. The number of steps for possible xs is

(1+F )∗(1+νmax
s ) (see Section III-B), if we only optimize two

components in xs(As), xs(νs). Then, we transform the non-

convex problem with xs(ρu) for given xs(As), xs(νs) into the

convex problem based on the structure of the problem.

DL/UL association and resource allocation: To optimize the

smallcell objective function, g(xs), in Eq. 25, we start by

sorting users in UC
s ∪ UE

s according to ǫu (Section III-B),

where |UC
s |= |UUL

s ∪ UC,DL
s | denotes all UEs that can be

associated with smallcell s (including UL associations and the

DL association of the center UE), and UE
s denotes all edge

UEs’ DL that can be associated with for smallcell s. We denote

the jth UE in the sorted list as UE j. Then, the auxiliary

function hs(j(vs), dA, dnA, ρu) is defined as the maximum

utility obtained by giving dA=As and dnA=F−As resource

units in ABSs and nABSs respectively to UEs that precede

UE j. We can then obtain:

gs(xs)=h(|U
C
s + xs(νs)|, As, F −As, ρu) (39)

We can calculate gs(xs) using divide and conquer. Start-
ing from an empty sorted user list, i.e., n=0, we have
hs(0, dA, dnA, ρs)=0 for any dA and dnA. We solve the
problem by iteratively dividing the available resources into two
parts using the jth UE as the pivot and then solving resource
allocation for each part individually. The Bellman equation is
expressed as:

h(j, dA, dnA, ρu)=max
ψh

[h(j − 1, dA − d∗,ULu,A − d∗,DLu,A ,

dnA − d∗,ULu,nA − d∗,DLu,nA , ρu)

+ ln(dULu,A · rULu,A,s + dULu,nA · rULu,nA,s)

+ ln(dDLu,A · rDLu,A,s + dDLu,nA · rDLu,nA,s)]

(40)

Due to the problem structure for a given ρu, dynamic

programming can then be used to compute gs(xs(As), xs(vs))
and dUL

u,A, d
UL
u,nAd

DL
u,A, d

DL
u,nA according to Eqs. 39 and 40.

Energy transfer optimization: If we determined the asso-

ciation and resource allocation by the dynamic programming

for smallcell, we adopt the non-linear EH model for energy

transfer optimization. To improve the energy efficient of IoT

device, the energy transfer optimization with practical non-

linear EH model is to maximize the total harvested power.

Furthermore, we directly use practical Ψu (eq. 4) to represent

the harvested power at IoT device of user u for simplicity.

Then the energy transfer optimization can be transformed into:

max
ρu

∑

u∈Us

Ψu

s.t. : 0≤ρu≤1

(41)

In order to obtain a tractable solution, the non-convex objective

function can be transformed into an equivalent objective

function in subtractive form [21].

max
ρu,µu,βu

∑

u∈Us

µu[Mu − βu(1 + exp(−au((1− ρu)P
Rx
u − bu)))]

s.t. : 0≤ρu≤1
(42)

where µu, βu is a non-negative parameter. It is easy to prove

that (42) is convex, which can be solved by standard numerical

algorithms for convex programs [30].

Joint optimization: The first step, for an initial ρ0u, u∈Us,

we can obtain xs(As), xs(vs) and dUL
u,A, d

UL
u,nAd

DL
u,A, d

DL
u,nA.

If the UL/DL association and resource allocation are deter-

mined by the dynamic programming. Then, second step, the

ρu, u∈Us is computed by the convex algorithm [29]. For

the ρn,∗u , u∈Us obtained, we iterate the first step again. The

first and second step is alternately iterated until the stop

condition |gs(xs)
n+1−gs(xs)

n|<δs is satisfied in Algorithm

1. The choices of δ depend on the application and the iterated

algorithm is implemented in SBS.
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C. Updating xm for MBS

Basic idea: There are three components xm(Bm),
xm(νs)|s∈ Im and xm(ρu) for xs. The number of components

to be optimized in local variable xm is Π(xm)=1 + |Im|.
However, due to the large number of possible values, we

cannot simply search for an optimal value for xm. Instead, we

divide all UEs that can be assigned to macro m into 1+ |Im|
groups. Group G0=U

UL
m ∪ UC,DL

m includes the UEs whose

UL is associated with macrocell m (UUL
m ) as well as the center

UE whose DL is associated with macrocell m ( UC,DL
m ). Group

Gj =U
DL
m ∩UE,DL

sj
(1≤ j≤|Im|) are the edge UEs whose DL

can be associated with macrocell m or the jth neighboring

smallcell sj , sj ∈ Im.

The component of xm(Bm) can be used for UL and DL

transmission while F − xm(Bm) is only used for UL trans-

mission. Here, the objective value in Eq. 31 is treated as the

sum of the gain of all UE groups when the number of the total

available resources are F . We also note that the optimizing

components of xm[νs] will only affect the UL/DL gain of one

UE group at a time.

The grouping strategy allows us to reduce the search space

by only enumerating a much smaller number of integer values

(between 0 and F – typically is 40, which is the total number

of subframes in one ABS cycle [2] [3]) of xm(Bm) to

maximize the objective function of Eq. 31, formulated as:

max
xm(Bm)

q1[xm(Bm)]− ynm(Bm)[xm(Bm)− znm(Bm)]

−(λ/2)‖xm(Bm)− znm(Bm)‖22

(43)

where q1(c) decides how to allocate c resource units among

the UE groups, i.e.,

q1(c)=

|Im|
∑

j=0

q2(j, cj), s.t. 0≤

|Im|
∑

j=0

cj ≤ c. (44)

where q2(j; c) is the objective value obtained from the UEs in

Gj with the consideration of optimized component xm(νsj ).
We have q2(0; c)= qr(G0; c) for j=0 and the following

expressions for j 6=0.

q2(j; c)= max
xm(νsj

)
[qr(G(j, xm(νsj )), c)

− ynm(νsj )[xm(νsj )− zn(νsj )]

− (λ/2)‖xm(νsj )− zn(νsj )‖
2
2]

(45)

where G(j;xm(νsj ))=U
DL
m ∪ (UE,DL

sj
, xm(νsj ))⊆Gj de-

notes the set of UEs which are associated with macrocell m
in line with xm(νsj ).

Next, we define qr(G, cA, cnA) to be the Bellman equation
to perform resource allocation for a UE in G (u∈G), where
there are cA, cnA numbers of available resource units. This is
expressed as:

qr(G, b)=max
ψq

∑

u∈G

[ln(cULu,Ar
UL
u,A,m + cULu,nAr

UL
u,nA,m)

+ ln(cDLu,nAr
DL
u,nA,m)]

s.t
∑

u∈Um

(cULu,nA + cDLu,nA)≤Bm, ∀m∈M

∑

u∈Um

cULu,A≤ (F −Bm), ∀m∈M

(46)

where ψq ={cUL
u,A, c

UL
u,nA, c

DL
u,nA}.

DL/UL association and resource allocation: To compute
the resource allocation function, q1, q2, and qr, for a given
UE group Gj , we turn again to divide and conquer (see
Section VI-B). We start by sorting the UEs in descending order
of ǫu, the RSRP difference in Section III-B). We denote the jth
UE in the sorted list as UE j. We then apply a similar divide
and conquer strategy described in Section VI-B to macrocells.
The utility function used for allocation is Gj(j, cA, cnA),
where cA=F − Bm and cnA=Bm are the resource units in
ABSs and nABSs respectively given to UEs that precede UE
j. This process is modeled as:

Gj(j, cA, cnA)=max
ψG

[Gj(j − 1, cA − c∗,ULu,A , cnA − c∗,ULu,nA − c∗,DLu,nA)

+ ln(cULu,Ar
UL
u,A,m + cULu,nAr

UL
u,nA,m)

+ ln(cDLu,nAr
DL
u,nA,m)]

(47)

where ψG={cUL
u,A, c

UL
u,nA, c

DL
u,nA}.

For Eq. 45, we have q2(0; c)=G0(|G0|, cA, cnA) for the

macro center UE group of the DL as well as UEs whose UL

is associated with macro G0. For a given UE group Gj where

j 6=0, the components of xm(νsj ) to be optimized are mapped

into two parts of the sorted list, using Gj as the partitioning

pivot. We then assign the first and second parts to a macro

and a small cells respectively by applying q2. Specifically, q2
can be expressed as:

q2(j; c)= max
xm(νsj )

((Gj [(xm(νsj ), cA, cnA]

−ynm(vsj )(xm(νsj )−z
n(νsj ))]

−(λ/2)‖xm(νsj )−z
n(νsj )‖

2
2)

(48)

In the same vein, we can define an auxiliary function and

use it to solve q1(c) of Eq. 44. The auxiliary function, V (j; c),
is defined as the maximum value obtained by giving the first

j UE groups c available resources. As a result, we have:

q1(c)=V (|Im|+ 1, c) (49)

Like our previous divide-and-conquer strategy, we itera-

tively solve q1. We start by computing V (0; c), where we

have V (0; c)= q2(0; c) for any c. We then use UE j to divide

the sorted list of UEs into two parts, and solve each part

individually. This process is formulated as:

V (j; c)= max
0≤c∗≤c

[V (j − 1; c− c∗) + q2(j, c
∗)] (50)

If we get all possible values of q1(c), we can compute Eq.

43 through enumerating all possible values (typically no more

than 40 values) of xm(Bm) and F − xm(Bm).

Finally, the results of resource allocation for function qr(.)
are solved with dynamic programming based algorithm by

implementing the iterative steps of Eqs. 49 and 50.

Energy transfer optimization: Similar to the VI-B, if we

determined the association and resource allocation by the

dynamic programming for macrocell, the energy transfer op-

timization with non-linear EH model is to maximize the total

harvested power and can be formulated into:

max
ρu

∑

u∈Um

Ψu

s.t. : 0≤ρu≤1

(51)
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The non-convex objective function can also be transformed

into an equivalent function [21].

max
ρu,µu,βu

∑

u∈Um

µu[Mu − βu(1 + exp(−au((1− ρu)P
Rx
u − bu)))]

s.t. : 0≤ρu≤1
(52)

where µu, βu is a non-negative parameter. It is easy to prove

that (42) is convex, which can be solved by standard numerical

algorithms for convex programs [30].

Joint optimization: We solve the joint optimization problem

using a two-step iterative algorithm that runs on an MBS

in Algorithm 1. In the first step, for an initial ρ0u, u∈Um,

we obtain xm(Bs), xm(vs) and cUL
u,A, c

UL
u,nAc

DL
u,nA. Here, the

DL/UL association and resource allocation for macrocell users

are determined by the dynamic programming solution de-

scribed in Eqs.49 and 50. In the second step, we compute

ρu, u∈Um using the convex algorithm [29]. To obtain the

optimal ρn,∗u , u∈Um, we iterate the first step. Then, the

first and second steps are alternately iterated until the stop

condition, |gm(xm)n+1 − gm(xm)n|<δm, is met, where δm
is a configurable parameter.

D. Complexity Analysis

The overhead of our approach mainly comes from determin-

ing the smallcell and macrocell associations, corresponding

to the computation of gs(xs) (Section VI-B) and gm(xm)
(Section VI-C), respectively. The energy transform ρu is

obtained by convex algorithm, of which the complexity is

common in polynomial time between
√

2|U | to 2|U |, where

|U | is the number of users [29]. The complexity of joint

optimization mainly depends on the DL/UL association and

resource allocation in a SBS or MBS.

SBS DL/UL association and resource allocation: The initial

step for computing gs(xs) is to calculate h(j, dA, dnA, ρu).
The time complexity for this is O(|UUL

s ∪ UDL
s |F 4)<

O(2|Us|F
4). Once gs(xs) is obtained, we can compute the

objective result for every possible xs in Eq. 32 within constant

time, i.e., O(1). As the number of possible values of xs is

(1 + F )(1 + |UE
s |), the time complexity of each x update for

smallcell s is O(F |UE
s |).

MBS DL/UL association and resource allocation: The time

complexity in the initial step for obtaining all the possi-

ble values for utility function Gj(j, cA, cnA) is O(|UDL
m +

UUL
m |F 2)<O(2|Um|F 2). Thus, the time complexity for ev-

ery x update step for macrocell m is O(|Im|(UEM,DL
m +

UUL
m )F + |Im|F 2 +F )=O(|Im|F (UEM,DL

m +UUL
m +F ))<

O(2SF |Um|+SF 2)), where UEM,DL
m is the maximum num-

ber of edge UEs whose DL can be associated with one of the

neighboring macrocells.

We can note that the time complexity is linear with the

number of users, and the maximum exponent of F is 4.

Moreover, F is typically 40. In general, |Um|< |Us|< |U |,
where |U | is the number of IoT devices.

E. Our proposed Algorithm and Practical Implementation

The proposed ADMM based algorithm is to coordinate the

solutions from local subproblems on MBS and SBS to find
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Figure 4. Practical implementation of the proposed joint optimization.

a solution to the global problem for the whole network. The

local REB, ABS adaptation and UL/DL association and resource

allocation are performed in MBS and SBS, and then global

consensus variable z is used to coordination among local

solutions for the upper layer, as is shown in Algorithm 1.

Algorithm 1 Joint optimization of DL/UL association, resource

allocation and energy transfer.

1: Initialize:

To take the channel gain Hu,BS and HBS,BS , BS∈
{m, s};

To compute the signal-to-interference-plus-noise ratio

(SINR) of UL/DL by Eqs. (5) - (8);

To obtain the rate UL/DL of UE by Eqs. (9)-(10).

2: Joint optimization:

Repeat Update xm, xs, ym, ys;

Calculate zs(vs), gm(xm) gs(xs);
DL/UL association and resource allocation by dynamic

programme: Eqs. (39) and (40) for SBS, Eqs. (49) and

(50) for MBS;

To solve energy transfer ρu with Eqs. (42) and (52) by

the convex algorithm [30] ;

Until (|gm(xm)n+1 − gm(xm)n|<δm).

Our algorithm is based on the alternating direction method

of multipliers (ADMM) in which the solutions to local sub-

problems on each MBS and SBS are coordinated to find

a solution to the global problem for the whole network.

If it is carried out in central manner, which can be easily

implemented in MBS. We discuss the distributed manner for

z update, which is shown in Figure.4. xm(Bm), xm(vs), ym
are updated in MBS, and the gm(xm) is calculated by Eq. 23.

UL/DL association and resource allocation cUL
u,A, c

UL
u,nA, c

DL
u,nA

are obtained by dynamic programme with Eqs. 49 and 50 in

MBS. The energy transfer ρu∈M of user accessing to MBS is

solved by convex tool [30]. xs(As), xs(vs), ys are updated

in SBS, and the is calculated by Eq. 25. UL/DL association

and resource allocation dUL
u,A, d

UL
u,nA, d

DL
u,A, d

DL
u,nA are obtained

by dynamic programme with Eqs. 39 and 40 in SBS. The
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Table II
SIMULATION SETUP FOR BASE STATIONS

Parameter Value Parameter Value

Tx power of

macrocells

46dBm Tx power of

smallcells

30dBm

Carrier

frequency

2GHz Thermal

noise power

-174dBm/Hz

Path-loss of

macrocells

28.3+22.0log10l, lkm Path-loss of

smallcells

30.5+36.7log10l, lkm

F frame 40 Bandwidth 1.4MHz

energy transfer ρu∈S of user accessing to SBS are also solved

by convex method [30]. The z update is responsible to find a

solution to the global problem for the whole network among

local solutions. The SBS collects the values xm(vs), ym(vs) of

from it suffered interference from MBS zm(vs)=zs(vs). Then

the SBS computes the by Eq. 36 and sends back to the MBS

xm(Bm), ym(Bm) . For z update of ABS, MBS broadcasts

xm(Bm), ym(Bm) and SBS broadcasts xs(As), ys(As), then

MBS and SBS compute zm(Bm),zs(As) by Eqs. 35 and 36.

VII. PERFORMANCE EVALUATION

A. Evaluation Methodology

Simulation setup: We evaluate our approach via Matlab

simulations. Table II lists the BS parameters used in the

simulation, which are chosen according to 3GPP [31] and prior

work [3] [4] for enhanced MTC (eMTC) [32]. We consider

three typical deployment scenarios of different user densities,

sub-urban, urban and dense-urban, which respectively have

250, 550, and 950 IoT devices per km2. In this work, the

utility function for a user i, Util(ri) (see Section IV-B), is

set to ln(ri) where ri is the total rate of the UL and DL.

However, other utility functions can also be used. We set the

macrocell density to be 5 cells / km2. We consider two types

of smallcell densities, sparse (100 smallcells/km2) where we

can compare to the optimal performance found by exhaustive

search, and dense (300 smallcells/km2) which is a typical

scenario. Finally, the locations of the small cells and users

follow a uniform distribution in the simulation.

Competitive schemes: We compare our approach to the

following alternative schemes:

• Fixed ABS: This strategy uses the fixed eICIC config-

uration that gives the best averaged performance across

UEs in our evaluation scenarios. It equally splits the time

between the UL and DL of a BS, and sets the ABS to
5
40F , 10

40F , 15
40F for each macrocell and the REB to 5dB,

10dB, 15dB for each smallcell [5] [6]. The Fixed ABS is

obtained by the three (ABS, REB) combinations: ( 5
40F , 5

dB),( 1040F , 10 dB), ( 1540F , 15 dB). The UL and DL of a

UE are associated with the same BS based on the RSRP

of DL.

• Dynamic ABS: The dynamic ABS configuration of

eICIC parameters is to allocate ABS between macro-

cells and smallcells, and to determine the flexible users

association rules with REB [2] [3]. The time of UL and DL

are split equally. The UL and DL of a UE are associated

with the same BS based on the association of DL.

Sub-urban Urban Dense-urban
0

20

40

60

80

100

120

140

160

180

Sy
st

em
 u

til
ity

Fixed ABS
Dynamic ABS
Dynamic ABS with DUDe
UM-ABS with DUDe
Linear DPT-UM-ABS with DUDe
Non-Linear DPT-UM-ABS with DUDe
ORACLE

(a) Sparse

Sub-urban Urban Dense-urban
0

200

400

600

800

1000

1200

Sy
st

em
 u

til
ity

Fixed ABS
Dynamic ABS
Dynamic ABS with DUDe
UM-ABS with DUDe
Linear DPT-UM-ABS with DUDe
Non-Linear DPT-UM-ABS with DUDe

(b) Dense
Figure 5. The achieved system utility under the sparse (a) and dense (b)
smallcell densities.

• Dynamic ABS with DUDe: This is the dynamic ABS with

DUDe joint optimization approach for UE associations

under dynamic TDD, and it assumes the UL and DL can

be splitting to the different BS. But, it does not consider

the UM-ABS and SWIPT for UL/DL [4]. The α is set to

1 so as to optimize the user throughout within ln function

[4] [28].

• UM-ABS with DUDe: This is UM-ABS with DUDe,

which exploits the UL transmission for macrocells in

ABSs referred to UM-ABS. The UM-ABS and DL/UL

Decoupling (DUDe) are formulated as an optimization

problem for dynamic eICIC configuration in HetNets,

which doesn’t consider the SWIPT [7].

• Linear DPT-UM-ABS with DUDe: Under the linear EH

models of IoT device, the jointly identify the opportunity

for power energy transfer of DL during nABS (DPT-

nABS) and UM-ABS with DUDe is to optimize dynamic

eICIC configuration.

• Non-Linear DPT-UM-ABS with DUDe: Under the non-

linear EH models of IoT device, we jointly identify

DPT-UM-ABS with DUDe to optimize dynamic eICIC

configuration.

• ORACLE: The best-possible performance found by ex-

positively trying all available configurations. It gives the

theoretical perfect solution, which is used to quantify how

close a schemes performance is to the up-bound.

Evaluation criteria: We use three metrics: (1) the system

utility (a widely used metric for network capacity [3]), defined

as ln(R) (where R is the total rate of UL and DL); (2) the UL,

DL and overall rates, measured as bits/s/Hz; and (3) the propor-

tional fairness, evaluated using the Jain’s fairness index [28].

All the three metrics are higher is better metrics. Furthermore,

because the user and cell are randomly generated, we run each

simulation scenario 100 times. We then report the geometric

mean performance and variances across the 100 runs to make

sure our results are robust.

B. Overall System Performance

Sparse smallcell density: Figure 5(a) reports the system

utility achieved by all considered schemes under different user

densities and the sparse smallcell density. The min-max bars

show the range of performance across 100 simulation runs.

Compared with the best-averaged Fixed ABS configuration,

Dynamic ABS outperforms about 28.4% benefit by solving

a ABS configuration and REB optimization problem, because
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the optimal ABS received by each smallcell and the associated

bias can be obtained by using Dynamic ABS algorithm. Due to

the UL and DL be splitting of the same user between different

BSs, Dynamic ABS with DUDe can improve the about 17.6%

average performance gain than the Dynamic ABS. Further,

by exploiting UL transmissions during macrocell ABSs (UM-

ABS), UM-ABS with DUDe can improve average system

performance gain average 18.3% compared with Dynamic

ABS with DUDe. Compared to UM-ABS with DUDe, our

proposed Non-Linear and Linear DPT-UM-ABS with DUDe

can improve the system performance gain 24.2% and 20.2%

and since we jointly identify the opportunity for energy

transfer during nABS and UM-ABS with DUDe to optimize

dynamic eICIC configuration in dense IoT HetNets. The

ORACLE is an upper bound to the optimal solution of DTP-

UM-ABS in sparse smallcell density i.e.,small-scale problem,

we can obtain the gap by comparing our approach produced

by the ADMM-based scheme. By contrast, our approach out-

performs all alternative schemes, delivering on average, 94%

(up to 96%) of the ORACLE performance. We also check

results of individual simulation runs and can confirm that our

approach outperforms other schemes in each run. Therefore,

our approach gives the best and most reliable performance.

Dense smallcell density: Figure 5(b) compares the achieved

system utilities across evaluation schemes. Note that for this

scenario, we are unable to use exhaustive search to find the

ORACLE performance due to the massive optimization space.

Nonetheless, our approach consistently outperforms all other

schemes across user density settings. Our proposed Linear

DPT-UM-ABS with DUDe scheme can improve the network

performance gain average by 26.4%, 40.7%, 59.5% and 103%,

compared to UM-ABS with DUDe, Dynamic ABS with DUDe,

Dynamic ABS and Fixed ABS respectively. It gives, on av-

erage, over 20% of improvement on system utility when

compared to the second-best method, UM-ABS with DUDe.

Furthermore, the proposed Non-Linear DPT-UM-ABS with

DUDe can further improve the system performance gain 14.2%

compared with the Linear DPT-UM-ABS with DUDe. The

reasons is that the linear scheme does not utilize the system

resources efficiently since it causes saturation at some IoT

devices and underutilization at others. By jointly considering

a larger set of optimization parameters in a dense HetNet,

our approach leads to the best performance.

C. User Experience

Figure 6 shows the cumulative distribution function (CDF)

for the user-received DL, UL and total rates under the dense-

urban user density and dense smallcell setting. The y-axis

shows the percentage of users (between 0 and 1) who have

a rate that is no less than a given rate on the x-axis. In

general, the lower a curve as the scheme has, the better the

user experience it provides. The Fixed ABS scheme delivers

poor performance as about 85.5% of the users have a rate that

is less than 1/bit/s/Hz. This is because a fixed strategy achieves

lower performance for many user-cell associations and often

overloads the cells. For DL, our proposed Non-Linear and

Linear DPT-UM-ABS achieves almost similar performance

as Dynamic ABS with DUDe and UM-ABS with DUDe.

Considering that Dynamic ABS with DUDe and UM-ABS with

DUDe does not split the DL power for energy transfer, this

means that our proposed DPT-UM-ABS with DUDe does not

compromise the user experience on UL transmissions. For UL,

our proposed Non-Linear and Linear DPT-UM-ABS delivers

better performance over all other schemes with more users

obtaining a higher rate. Depending on the scheme to compare

against, the improvement can due to either the exploitation of

the macrocell ABS for UL transmissions, stronger UL transmis-

sion power (by using harvested energy), and a combination of

both. Due to the further improved UL performance with Non-

linear energy harvest model, the Non-Linear DPT-UM-ABS

gives the best overall rates which translate to the shortest user-

perceived delay time.

D. Proportional-user Fairness

Figure 7 shows the Jain’s fairness index (taking a value

between 0 and 1) for the DL, UL and overall rates under the

dense-urban setting. For a given network setting, Jain’s index

can be used to evaluate the degree of fairness, and a larger

Jain’s index corresponds to a more fair allocation [33]. It is

observed that our approach consistently outperforms all other

approaches across smallcell settings from Figure 7. We also

observe that the index drops as the smallcell density increases.

This is expected because when the number of available cells

for associations goes up, there will be more room to give some

users a higher bandwidth in order to maximize the overall sys-

tem capacity. Nonetheless, our approach maintains the highest

proportional-user fairness compared to other approaches.

E. Computational Cost

We now compare the computational cost between RELAX-

ROUND [2] [7] and our scheme because of both first translate

problem and then find a solution to the converted problem

space. This RELAX-ROUND first relaxes the problem con-

straints and then rounds up the approximated solutions to

find a feasible solution [2] [7]. Figure 8 shows the number

of iteration counts and simulation running time respectively

for RELAX-ROUND and our approach under the dense-urban

user setting. The min-max bars show the variations across

simulation runs. As expected, the overhead for the solver

increases as the smallcell density increases. However, our

approach can find a solution to several magnitude orders faster

than RELAX-ROUND. Therefore, our approach is faster and

more scalable to larger networks. Note that the simulation

running time can be significantly reduced by using parallel

specialized hardware (e.g., FPGAs and DSPs), for which we

expect a solution can be found within milliseconds in practice

using our approach.

VIII. CONCLUSIONS

This paper has presented a novel approach to enhance the

capacity of dense IoT HetNets. Our approach leverages

an existing interference coordination protocol to combine

practical non-linear energy harvest model for SWIPT in the
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Figure 6. The CDFs of DL, UL and total rates under the dense-urban user setting. There are more users having a higher rate using our approach.
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Figure 7. The Jain’s index of the UL, DL and total (DL + UL) rates under the dense-urban user setting.
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Figure 8. Comparing the number of iterations (a) and simulation running
time (b) for RELAX-ROUND and our approach for problem solving.

DL transmission. It further utilizes the silent DL transmission

windows of macrocells to identify opportunities for additional

UL transmissions. Then, we jointly optimize UL/DL associ-

ations, resource allocation and DL energy transfer because

doing so can significantly boost the performance. To tackle

the huge problem space, we map the highly complex co-

optimization problem into a space where a solution can be

quickly derived. Compared to state-of-the-arts, our approach

improves the system utility, delivers a higher standard in user

fairness and rate experience, and can solve the program in a

fast and scalable way.
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