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Dimension-reduction of dynamics on real-world

networks with symmetry

Jonathan A. Ward
j.a.ward@leeds.ac.uk

Abstract

We derive explicit formulae to quantify the Markov chain state-space compression,
or lumping, that can be achieved in a broad range of dynamical processes on real-
world networks, including models of epidemics and voting behaviour, by exploiting
redundancies due to symmetries. These formulae are applied in a large-scale study of
such symmetry induced lumping in real-world networks, from which we identify specific
networks for which lumping enables exact analysis that could not have been done on the
full state-space. For most networks, lumping gives a state-space compression ratio of up
to 107, but the largest compression ratio identified is nearly 1012. Many of the highest
compression ratios occur in animal social networks. We also present examples of types
of symmetry found in real-world networks that have not been previously reported.

1 Introduction

A wide range of phenomena can be modelled as dynamical processes on networks [72], includ-
ing epidemic spreading [47, 73], opinion dynamics [29, 88, 92], the diffusion of innovations
[8, 58, 59, 103], the evolution of languages [6, 10, 15] and cultural polarisation [4, 14]. Math-
ematical models of such processes can be formulated as Markov chains [101, 102], where the
future evolution is determined by the current state, but to analyse such models it is often nec-
essary to resort to low-dimensional approximations [7, 70, 76]. The standard approach is to
make use of mean-field approximations, which at the simplest level ignore network topology
completely, i.e. the system is assumed to be well mixed [76]. More complicated approxi-
mations that make use of network topology include pair approximations [98], degree-based
and heterogeneous mean-field [74], moment closures [47] and approximate master equations
[32, 27]. Such approximations are typically based on intuitive probabilistic reasoning rather
probabilistic reasoning rather than rigorous mathematics, so it is generally difficult to quan-
tify how well a given approximation will do, given the network or dynamical process [33].

In contrast to approximate mean-field theories, there are exact studies of full Markov
chain dynamics on small networks [39, 40, 41, 52, 24] where it is possible to store the full
state-space in computer memory. Constructing the full Markov chain gives access to the
complete time-evolving probability distribution over state-space, which can be used to derive
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detailed statistical information [102], including quantification of stochastic variation (unlike
mean-field theories that only provide averages), to conduct sensitivity analysis [54, 35] and to
consider more complicated models of specific scenarios [55] that include agent heterogeneity
[24, 52]. Furthermore, the full probability distribution can be used in Bayesian methods, e.g.
for parameter estimation and model selection.

Exact analysis of larger networks can be achieved by lumping states together to reduce the
state-space size [44] using network symmetries [86, 47, 45, 101, 102]. Network symmetries
result in redundancies that can be exploited in many applications, for example to reduce
network size via quotients [107], or to perform efficient simulations [90]. Symmetries are
intimately connected to the spectral peaks of the adjacency and Laplacian matrices [20,
21, 56], and hence they impact on a wide range of network ‘structural measures’ [84] and
dynamical phenomena. In particular, network symmetries facilitate cluster synchronisation
[75, 89] and can be used to control group consensus [49]. Symmetry in complex networks has
received increasing interest recently, in part because it has been shown that many real-world
networks have a significant amount of symmetry [108, 57, 5]. This is unexpected since large
networks chosen at random are typically asymmetric [25]. The most common symmetries
found in real-world networks are of particular types associated with “basic symmetric motifs”
[56], which includes subgraphs made up of leaves, cliques and bicliques [108].

In Sections 2 and 3 we set up the mathematics and derive explicit formulae, (3–6), for
the size of the reduced state-space that results from symmetry induced lumping of Markov
chain dynamics on real-world networks, a problem that is extremely difficult for networks
and graphs in general [43]. Practitioners need only consider Figure 1 and equations (3–6)
before moving straight to the summary of the mathematical results in Section 4. In Section 5
we use the formulae to analyse over 1500 real-world networks with one hundred vertices or
less, obtained from the website www.networkrepository.com [77]. We find that over 80% of
the networks analysed have non-trivial symmetry, and the symmetry in 94% of these cases is
entirely due to leaves, cliques, bicliques and repeated isomorphic components. We highlight
other types of symmetry that are more complex than those previously reported in real-world
networks and show that regardless of the computer being used, specific networks can always
be identified whose full state-space cannot be stored in memory but whose lumped state-
space can. Section 5 includes a detailed discussion of potential applications, limitations and
open problems.

2 Network dynamics and symmetry

We focus on dynamical processes on finite networks described by Markov chains in which each
vertex can be in one of a finite number of vertex-states and only one vertex can change vertex-
state at any instant in time. We refer to such processes as single-vertex transition (SVT)
models [101, 102]. An example of an SVT model is the SIR model of epidemics [47, 70], where
the network captures social interactions and the vertex-states are susceptible, infected and
recovered. Let V denote the set of vertices andW the set of vertex-states, then the state-space
of an SVT model is the set of all functions from V to W , denoted S = WV . Thus the vertex-
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state of vertex v ∈ V in state s ∈ S is s(v) ∈ W . The number of states in state-space is MN ,
where M is the number of vertex-states and N is the number of vertices. While the number
of states increases exponentially with the number of vertices, it is finite so we can enumerate
states in state-space, i.e. S = {s1, s2, . . . , sMN}. Let X(t) = (x1(t), x2(t), . . . , xMN (t))T

be the corresponding time-dependent probability distribution over states in S, then the
evolution of X(t) is given by the forward Kolmogorov or master equation [46]

Ẋ = QTX,

where Q is an MN × MN matrix called the infinitesimal generator whose ijth component
describes the transition rate from the state si to the state sj for i 6= j, and whose diagonal
entries ensure the rows sum to zero (i.e. the magnitude of Qii is the transition rate out of
state si). The transition rates in SVT models only depend on the vertex-states of nearest
neighbours [101, 102]. In this paper we will focus on the structure of the network and
state-space and we will not need the infinitesimal generator directly.

A finite Markov chain is lumpable if there is a partition L = {L1,L2, . . . ,Lr} of state-
space on which the Markov property is preserved [44] and it has been shown that network
symmetries can be used to lump SVT models [86, 101, 102]. Network symmetries, or graph
automorphisms, are permutations of the vertices that leave the edge set unchanged. More
precisely, a symmetry of a network G with vertices V and edges E ⊂ V × V , is a bijection
g : V → V such that (u, v) ∈ E if and only if (g(u), g(v)) ∈ E . We use the shorthand
gv = g(v). The set of symmetries of a network G form a permutation group G = Aut(G)
called the automorphism group of G [34], which we refer to as the symmetry group of the
network. It has been shown that the symmetries in typical real-world complex networks
can be decomposed into a product of subgroups that act independently of one another [57].
Mathematically this means the symmetry group G of a network can be written as a direct
product

G ∼= H1 ×H2 × · · · ×Hm. (1)

The right-hand-side of (1) is known as the geometric decomposition of G and each Hi as
a geometric factor of G. Each geometric factor Hi is associated with a distinct subset of
vertices Vi, so that all pairs of subsets Vi and Vj, i 6= j, are disjoint. We refer to the set of
vertices Vi as a geometric component and the induced subgraph on Vi as a Symmetric Motif
(SM). We use V0 to denote the subset of vertices that are fixed by the symmetry group, i.e.
not moved by any network symmetry.

The symmetry group G of a network can also act on states in state-space in such a way
that vertex-states are permuted rather than vertices. More precisely if u ∈ V , g ∈ G and
s ∈ S then

(gs)(u) = s(g−1u), (2)

i.e. the vertex-state of u in gs is the same as the vertex-state of g−1u in s. This action
defines an equivalence relation on states that partitions state-space into disjoint sets of
states, called orbits [28], and this partition, denoted S/G, is a lumping of S [101, 45, 102]. In
Appendix A we prove that there is a decomposition of state-space that reflects the geometric

3



decomposition of the symmetry group. This means that we can focus on the states of
each geometric component rather than the network as a whole. The states of a geometric
component are Si = WVi and we refer to each Si as a state-space factor. Thus if we can
compute the orbit partition of each state-space factor then we can combine these together to
determine the orbit partition of the whole network. It follows from the results in Appendix A
that if ρi is the number of orbits of the ith state-space factor, then the number of orbits of
S is

ρ := |S/G| =
m∏

i=0

ρi. (3)

Thus we can compute the size of the lumped state-space, ρ, and the compression ratio,
MN/ρ, from the lumping of each geometric component.

3 Orbit representatives of typical symmetric motifs

The symmetries of typical real-world networks are restricted to only a few different types,
examples of which are illustrated in Fig. 1. We refer to the SM illustrated in Figure 1 (a)
as SM (a) and similarly for the other SMs in the figure. We refer to SMs (a)–(f) collectively
as typical SMs and any other type of SM as atypical. Typical SMs include: (a) leaves,
(b) cliques, (c) ‘n-stars’, (d) mirror symmetries and (e) regular trees. Repeated isomorphic
components consisting of a single SM of type (a)–(e), an example of which is illustrated
in Fig. 1 (f), are also common in the data that we analyse so we include this as a type of
typical SM. For each of these typical SMs, we now describe how to construct a set of orbit
representatives, i.e. a sub-set of states such that each is in a distinct state-space orbit, from
which we can determine the number of orbits of the corresponding state-space factor, ρi, and
construct the lumped Markov chain. The construction of orbit representatives can be broken
down into three distinct categories of typical SMs, namely Basic Symmetic Motifs (BSMs),
height regular trees and isomorphic components of typical SMs. These are addressed in
the corresponding sections below. In the following we make repeated use of the number
of combinations of n items chosen from k possibilities (an n-combination) with repetition,
which is given by C(n + k − 1, n) [2], where C(n, k) is the binomial coefficient n choose k.
For context, C(n + k − 1, n) is the number of non-negative integer solutions to the linear
Diophantine equation x1 + x2 + · · · + xk = n [12] and hence it is also the number of states
in a stochastic compartmental model with k compartments and population size n.

Basic symmetric motifs

BSMs have k ≥ 1 orbits each with n vertices that are permuted simultaneously by the
symmetry group Sn, so that the vertices in pairs of orbits are either connected in a one-to-
one or one-to-all-but-one fashion [57, 56]. This includes SMs (a)–(d) in Figure 1 and the
set of orbit representatives can be constructed in essentially the same way for each of these.
Assign a vertex from each of the k orbits to the set U , then the set of possible states for
the vertices in U is WU . A set of orbit representatives can be constructed by selecting all
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Figure 1: Examples of the main types of symmetry observed in real-world networks, referred
to here as typical SMs, indicated by coloured vertices and black edges. Grey vertices are
fixed (not permuted by any symmetry) and represent the point of connection (if any) to a
larger network. SM vertices are coloured by orbit, i.e. there is a permutation that moves
one vertex to any other with the same colour. Grey edges link to the fixed vertices. The
number of leaf vertices in SM (a) and the size of the clique in SM (b) are denoted by n; (a)
and (b) illustrate the case n = 3 and k = 1 in (4). SM (c) is an n-star, having k vertices
on each of the n paths from the centre of the star (the fixed vertex); (c) illustrates the case
n = 3 and k = 2 in (4). The number of vertices permuted in SM (d) is 2k; (d) corresponds
to the case n = 2 and k = 2 in (4). The number of branches connected to the fixed node
in SM (e) is denoted η2 and the number of leaves on each branch is denoted η1 in (5); (e) is
the case η1 = η2 = 2. The number of isomorphic components in SM (f) is denoted n in (6);
(f) illustrates the case n = 2.

possible combinations of n states chosen with repetition from the Mk possibilities in WU .
Thus the number of orbits of a BSM is

ρi = C(n+Mk − 1, n). (4)

For clarity, we now relate the general construction of orbit representatives to each of the
BSMs in turn. The symmetry groups of SMs (a) and (b) are both the symmetric group Sn

acting naturally on n vertices (i.e. all possible permutations of the n vertices), so k = 1 and
both SMs (a) and (b) correspond to the case n = 3. There is a permutation in Sn that maps
a state to any other with the same number of vertices in each vertex-state. Thus the set of
all possible combinations of n vertex-states chosen with repetition from the M possibilities
in W forms a set of orbit representatives. The symmetry group of SM (c) is the symmetric
group Sn having k orbits on vertices, where each orbit has n vertices. SM (c) corresponds
to the case k = 2 and n = 3. The symmetry group of SM (d) is the cyclic group of order
two, C2, which is isomorphic to S2, hence n = 2 and (4) reduces to Mk(Mk + 1)/2.
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Height-regular trees

The symmetry group of SM (e) is Sη1 ≀Sη2 , where ≀ denotes the wreath product [81]. This SM
consists of η2 stars, each having η1 leaves, and the central vertex of each star is connected
to a fixed vertex. We call this a height-regular tree of height two. SM (e) is the case
where η1 = η2 = 2. The wreath product in the symmetry group Sη1 ≀ Sη2 captures the fact
that the η1 leaves of each of the stars can be permuted according to the symmetric group
Sη1 , but also that the η2 stars can be permuted according to Sη2 . Thus Sη1 ≀ Sη2 consists
of (η1!)

η2η2! permutations. A set of orbit representatives can be identified via a recursive
procedure described in detail in Appendix B. In short, this procedure computes the orbit
representatives for one of the stars, and then η2 of these are chosen with repetition to form
the set of orbit representatives for SM (e). Thus the number of orbits of this SM is

ρi = C(η2 +MC(η1 +M − 1, η1)− 1, η2). (5)

Isomorphic components of typical symmetric motifs

Suppose that there are n isomorphic components and that H is the symmetry group of
any one of the components in isolation (note that H could be the trivial group), then the
symmetry group of the n isomorphic components together is H ≀ Sn. This captures the fact
that it is possible to permute any of the vertices in an isomorphic component according
to H independently of the other components, and one can also permute the n components
according to Sn. SM (f) is the case n = 2 and H ∼= C2. Let R∼= denote a set of orbit
representatives for a single component, then a set of orbit representatives can be determined
for the collection of isomorphic components by choosing n states from R∼= with repetition.
Thus if R = |R∼=| then the number of orbits of this SM is

ρi = C(n+R− 1, n). (6)

We consider symmetry due to repeated isomorphic components as typical if each repeated
component only has symmetry due to SMs (a)–(e), in which case we can determine R∼= using
the methods described for BSMs and height regular trees.

4 Summary of mathematical results

The mathematical results that we have presented use group theory and combinatorics, how-
ever a practitioner need only make use of the formulae (3–6) that we have derived. Figure 2
illustrates how these results may be used in practice. Given a network, the first step is to
compute the network symmetries and identify typical SM geometric components (see [57]
for computational tools). Once these have been identified, the formulae (3–6) can be applied
directly to the corresponding SMs to compute the total number of orbit representatives and
the corresponding states. Figure 2 illustrates this for a network with 2 fixed vertices and
SMs (a), (b), (c) and (f).
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Figure 2: Example application of the mathematical results. The network we consider has
N = 17 nodes, which with M = 2 corresponds to 131,072 states. There are two fixed
vertices in V0 and four SMs: geometric components V1,V2,V3,V4 correspond to SMs (a), (b),
(c) and (f) respectively. Having identified the SM symmetries, we can compute the number
of orbit representatives using Eq. (3–6), yielding ρ = 4, 800. We also illustrate the orbit
representatives for each state-space factor, the Cartesian product of which yields the orbit
representatives of the whole network.

5 Application to real-world network data

We now apply the methods of computing orbit representatives described in the previous
section to real-world network data. In Table 1 in Appendix C we present information about
fifteen large real-world networks. The key observation is that the number of vertices fixed
by the symmetry group, Nfixed, is large in all cases, and the lumped state-space will be larger
than MNfixed when Nfixed < N . Thus the size of the lumped state-space of these networks
remains far beyond practical computation.

We focus instead on 1524 real-world networks with one hundred vertices or less obtained
from the website networkrepository.com [77]. We downloaded all networks from the repos-
itory having N ≤ 100 vertices on three occasions during 2018 and 2019, resulting in a total
of 1524 networks. For each network, we removed all isolated nodes and self-edges, and made
the networks undirected and unweighted. The format of the repository has changed since
our first download and naturally new graphs get added over time, thus we have made the
processed network data available online [100]. We used the program saucy [42] to compute
generators of the symmetry groups of the networks and processed the symmetry groups using
the computational algebra program GAP [30]. We found that 1227 of the 1524 networks,
more than 80%, have non-trivial symmetry. This supports the conclusions from previous
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Figure 3: Number of orbit representatives ρ against number of vertices N . Light grey shading
indicates the range of possible values; markers indicate individual networks, coloured by type.
The vertical axis is logarithmic with base 10. The horizontal dark grey solid line indicates the
threshold τ = 109 and the vertical dark grey solid line indicates the corresponding number
of vertices. The dark grey dashed line corresponds to significance ∆ = 7. (Note that the
network considered in Figure 2 has ∆ = 1.44.) Highlighted markers correspond to networks
in Figure 4.

studies [57, 5] that most real-world networks have symmetry.
Our data set contains twelve different types of networks according to the classification

on networkrepository.com, including ‘social’, ‘brain’ and ‘protein’, but the majority of
networks (79%) were either chemical or animal social networks. The animal social networks
can also be found on the ‘Animal Social Network Repository’1 [83]. Most of the networks
have between 10 and 50 vertices, with an average of 38 vertices. Of the 1227 networks
with non-trivial symmetry, 1151 (nearly 94%) have symmetry entirely due to SMs (a)–(f),
of which roughly 93% have SMs of types (a) and (b), 25% have type (d) and 27% have type
(e); only 4 networks had type (c). The average fraction of vertices moved in networks with
nontrivial symmetry is 0.4. More detailed network statistics can be found in Appendix D.

We now turn to the computation of the number of orbit representatives, ρ, for the
case where the number of vertex-states is M = 2, which corresponds to most SVT mod-
els [101, 102] and includes the SIS model of epidemics [47] and the voter model [88] of
opinion dynamics. In Figure 3 we plot (N, ρ) for each network with non-trivial symmetry,
where the colour indicates the type of network. The ρ-axis is scaled logarithmically and

1https://github.com/bansallab/asnr/

8



the light grey region indicates the area of possible values of (N, ρ), the largest value of ρ
being 2N , corresponding to no symmetry, and the smallest being N + 1, corresponding to
a complete graph. On a particular computer there will be a limit to the size of the state-
space that can be used, which we denote by τ , and we call cases where ρ ≤ τ feasible and
we call feasible cases where 2N > τ significant. The dark grey horizontal line in Figure 3
corresponds to the feasible threshold τ = 109, which is indicative of the size of state-space
that can be stored in memory on a typical laptop computer at the time of writing2. The
vertical dark grey line indicates the number of vertices that corresponds to the threshold
τ = 109, which is roughly N = 30. At the feasible threshold level of τ = 109, there are
a total of 62 networks with significant lumping. To quantify the amount of lumping, we
introduce the relative significance ∆ = N log10(2) − log10(ρ), which measures the logarith-
mic reduction in the size of state-space. Thus 10∆ is the compression ratio. The dark grey
dashed line in Figure 3 corresponds to ∆ = 7, i.e. the full state-space is 107 times larger
than the lumped state-space. Under exponentially increasing computer power and memory
(e.g. Moore’s law), we would expect the threshold τ to increase at a constant rate and so ∆
can be thought of as a proxy for how long a particular network would be classed as having
significant lumping. Moreover, any network with non-trivial symmetry will at some point in
time (possibly in the past) have significant lumping. Crucially, Figure 3 shows that for any
value of τ within the limits of our data, we can find specific examples of networks that have
significant lumping.

In Figure 4 we plot examples of some of the networks in our data set and these are
labelled (a)–(i) in correspondence to those labels in Figure 3. In each network, fixed ver-
tices are coloured light grey and other vertices of the same colour are in the same vertex
orbit (i.e. there is a permutation that takes a vertex to any other in the same orbit). The
majority of networks with significant lumping for τ = 109 are animal social networks [83]
and networks (a) and (b) exemplify the sorts of structures that give rise to this signifi-
cant lumping. Network (a) corresponds to the animal social network ‘mammalia-voles-bhp-
trapping-63’ whose large amount of symmetry comes from repeated isomorphic components,
including pairs, triangles and paths of length two. Network (b) is the animal social network
‘mammalia-bat-roosting-indiana’ whose symmetry is due to cliques. Network (c) corresponds
to the animal social network ‘mammalia-voles-rob-trapping-51’ and has the largest relative
significance of ∆ = 11.93, i.e. the full state-space of this network is nearly 1012 times as
large as the lumped state-space. Many of the other examples of networks with high ∆ are
from animal social networks with symmetry due to isomorphic components, but networks (d)
and (e) are two other examples with relatively high ∆. Network (d) is the brain network
‘bn-macaque-rhesus brain 2’ [1, 13, 99], which has several instances of Sn symmetry due to
bicliques and has ∆ = 5.90. Network (e) is the retweet network ‘rt-retweet’ [78, 79] whose
symmetry is due to leaves and has ∆ = 3.50. This is perhaps to be expected in retweet
networks, which capture the spread of information, and so are likely to be tree-like with few
short cycles.

2If each state in state-space is stored as a long integer (4 bytes), then 4GB of memory are needed to store
109 states.
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Figure 4: Examples of networks with the most significant lumping and complex symmetry.
Grey vertices are fixed and other vertices are coloured by orbit. The labels (a)–(i) of these
networks correspond to those in Figure 3. Networks (a) and (b) are two of the most significant
for τ = 109. Nodes inside the red circle in (b) are fully connected. Network (c) has the largest
relative significance. Networks (d) (brain) and (e) (Twitter) have large relative significance
out of those that are not animal social networks. Nodes inside the red circle in (d) are fully
connected; there are no connections between nodes outside of the white circle. Networks (f)–
(i) have complex symmetries that have not been reported before in real-world networks.
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We now give some examples of networks with significantly more complex symmetric
structures than those previously reported [57]. There are 54 real-world networks with atypical
SMs, of which 41 have geometric components with a “mirror” symmetry, i.e. the geometric
component can be partitioned into a pair of isomorphic motifs with symmetric connections to
one or more fixed vertices, and in some cases with connections between the mirror symmetric
motifs. The geometric factor for such components is of the form H ≀C2, where we have found
that H is either C2, S3 or C2 × C2, examples of which can be seen in networks (f) and
(g), the animal social network ‘mammalia-voles-bhp-trapping-47’ and the chemical network
‘ENZYMES g186’ respectively. There are also 15 networks with other types of complex
symmetry. Network (h) is the animal social network ‘reptilia-tortoise-network-pv-2010’, in
which the geometric factor with blue vertices has D8 symmetry with three vertex orbits (D8

symmetry on one vertex orbit also arises via a four-cycle in other networks). Network (i) is
the network ‘cage4’ [97] and is derived from a model of DNA electrophoresis. This network
has C2 × C2 symmetry, in which the blue vertices can be permuted independently of the
green vertices, but the yellow vertices are moved by all permutations.

Discussion

In this paper, we have shown how network symmetries can be used to reduce the size of the
state-space of dynamical processes on real-world networks described by Markov chains. This
approach makes use of the special structure of the symmetries present in real-world networks,
which allowed us to obtain explicit formulae for the size of the reduction, something that
is extremely difficult to compute for networks in general [43]. We applied this method to
more than 1500 real-world networks that have one-hundred vertices or less, we found 62
networks with significant lumping and illustrated examples of more complex types of real-
world network symmetry than previously reported.

We have observed that the most significant lumping arises in animal social networks
(although these are also the most prevalent type of network in our data). Dynamical pro-
cesses on animal social networks have been used to model the spread of diseases [82, 106]
and parasites [96] using epidemic models, and the spread of social information via diffusion
[3]. There are also network dynamics models of evolutionary dynamics [51, 105, 11], social
evolution, co-evolution, population stability, dispersal and invasion [50]. Studies that use
observational data typically involve relatively small population sizes and Monte Carlo simu-
lations [106]. Thus such studies could benefit from the lumping techniques discussed in this
paper, particularly the use of exact distributions for Bayesian statistics.

We stress that there are limitations to the use of exact lumping, in particular it is not
a technique that can be applied directly to typical large networks and when it can be used,
our study suggests that it may only allow one to consider an additional 20 nodes at most.
However, there is real value in studying small networks exactly, where these gains are signifi-
cant, particularly for modelling hospital- and healthcare-acquired infections [54, 53], and the
effects of peripatetic health-care workers [93]. We also note that often the most significant
lumping arises in networks which have multiple isomorphic components. In such cases, using

11



the lumped state-space to directly compute the evolution of the full probability distribution
may not be the most efficient approach, particularly if only basic summary statistics are
required, like the mean and variance of the number of infected individuals, since the inde-
pendence of each component can be exploited. However, the lumping approach described
facilitates the computation of more detailed statistics, for example the probability of a given
number of infected individuals, and can be used to construct efficient algorithms.

This work suggests a number of unsolved mathematical problems. Firstly, what sort of
networks or graphs give rise to highly significant lumping? It is easy to show from Pólya
enumeration [81] that a lower bound on the number of state-space orbits for a network withN
vertices and symmetry group G is MN/|G|. Thus clearly networks with significant lumping
must have very large symmetry groups. We conjecture that the next smallest lumping after
the complete graph is the star graph, but how does this sequence continue? Note that
the hierarchy of graph symmetry [34], namely vertex-transitive, arc-transitive and distance-
transitive, does not necessarily correspond to significant lumping. For example, cycle graphs
are vertex-transitive and the symmetry group of an N cycle is the dihedral group of order
2N . For these graphs it can be shown that the number of state-space orbits is asymptotic to
MN/2N for largeN , i.e. the lumped state-space is a similar size to the unlumped state-space.
We have found that this is also qualitatively true for other vertex-transitive graphs.

For certain families of graph it is possible to determine formulae for the number of state-
space orbits [86, 45]. Moreover, using the results for SM (e), we can construct networks for
which the number of state-space orbits can scale like a polynomial in the number of nodes N
with any degree m, by having m isomorphic cliques of size N/m. Related asymptotic results
might shed light on the structure of the (N, ρ) space, e.g. the sparsity of ‘realisable’ pairs. In
addition to complete graphs, star graphs and multiple isomorphic components, other families
of graph that have relatively small numbers of state-space orbits include bipartite graphs,
multipartite graphs and lexicographic products of complete graphs [38]. The symmetry
groups of these graphs consist of direct and wreath products of symmetric groups — similar
to what we have observed in real-world networks. This suggests that the symmetries of real-
world networks are exactly the right sorts of symmetry to give rise to significant lumping.

We might also consider whether there are computationally efficient algorithms to compute
the number of state-space orbits and a set of orbit representatives for an arbitrary network.
We found that a naive application of Pólya enumeration in the computational algebra package
GAP [30] was limited by the size of the group, so it was not possible to compute the number
of state-space orbits for precisely those networks that have significant lumping. Whilst
computing the number of state-space orbits may be a very difficult problem in general,
recent advances in algorithms to compute generators for symmetry groups of graphs are
encouraging [42]. The development of general algorithms to compute orbit representatives
may benefit from consideration of how do to this theoretically, for example by making use
of methods from permutation group theory. When analysing a permutation group, one can
reduce the scale of the problem through the connections between intransitive, imprimitive
and primitive groups, and it may be possible to use this approach to construct a set of orbit
representatives.
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So far we have also focused on reductions in state-space with no loss of information.
However, one can also derive reduced dimensional Markov chains by lumping states together
in a non-exact way, but where the transition rates between lumped states is optimal in some
sense. Recent attempts to do this have made use of ‘local symmetries’ [45] and reductions to
‘Markov Population Models’ [36]. We have also focused on dynamics on networks that are
Markovian, but non-Markovian models are important when modelling epidemics on networks,
since the distribution of recovery times of real diseases are not necessarily exponential [19].
There is a significant body of work on approximations of non-Markovian epidemic dynamics
on networks [48, 91, 80, 26, 85] and there are also non-Markovian models of temporal networks
[60] and infectious diseases on temporal networks [19]. We expect that network symmetries
will also be relevant to non-Markovian models since network symmetry is a consequence of
invariance under relabelling of vertices. Alternative notions of symmetry such as ‘stochastic
invariance’ [31] and isospectral ‘latent symmetries’ [87] may also be useful when modelling
dynamics on networks.

In summary, we have derived explicit formulae for the number of state-space orbits of typ-
ical symmetric motifs and used these to study a large number of real-world networks, finding
many examples with significant state-space compression. This is a remarkable property of
real-world networks and is due to the special types of symmetry present.

Data Accessibility

The data used in this study were obtained from www.networkrepository.com, which is
re3data registered repository and is licensed under a Creative Commons Attribution-Share
Alike License. Derived data have been made available on the Research Data Leeds Reposi-
tory, DOI 10.5518/911 [100].
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A State-Space Decomposition

The support of an automorphism g is the set of vertices permuted by g, denoted supp(g) =
{v ∈ V | gv 6= v}, and similarly the support of the automorphism group of a network is the
union of the supports of its automorphisms. We say that two automorphisms g and h are
support disjoint if their respective supports are disjoint. Similarly, ifH1 andH2 are subgroups
of G, then we we say that H1 and H2 are support disjoint if all pairs of automorphisms
h1 ∈ H1 and h2 ∈ H2 are support disjoint. Thus the geometric decomposition (1) is a direct
product of support disjoint subgroups.

We can decompose state-space in a way that reflects the geometric decomposition of the
automorphism group, allowing us to focus on the state-space associated with each individual
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geometric component. Let V0 be the set of vertices fixed by G, then {V0,V1, . . . ,Vm} is a
partition of V , i.e. Vi ∩ Vj = ∅ for each i 6= j. For 0 ≤ i ≤ m, let Si = WVi , and we refer
to each Si as a state-space factor. Mirroring the geometric decomposition of G into a direct
product of geometric factors in (1), we can similarly decompose S into a Cartesian product
of state-space factors,

P = S0 × S1 × · · · × Sm. (7)

The automorphism group G then acts on P in the natural way. Specifically, for every g ∈ G
we can write g = (h0, h1, · · · , hm), where hi ∈ Hi and H0 is the trivial group consisting of
just the identity permutation (since the vertices in V0 are fixed by every g ∈ G). Then for
g ∈ G and p = (p0, p1, . . . , pm) ∈ P , we define the action of G on P to be

gp = (h0p0, h1p1, . . . , hmpm), (8)

where the action of hi on pi is as in (2).
We now show that there is an equivalence between the action of G on the full-state space

S and on the Cartesian product decomposition P . The notion of equivalence we need comes
from permutation group theory [22].

Definition A.1. Let X and Y be finite sets and let G be a permutation group with an action
defined on X and an action defined on Y . We say that the actions of G on X and Y are
equivalent if there is a bijection f : X → Y that satisfies

f(gx) = gf(x)

for all g ∈ G and x ∈ X.

Theorem A.1. Let G be the automorphism group of a network with geometric decomposition
given by (1), state-space S and Cartesian product of state-space factors P, as defined in (7).
Then the actions of G defined on S by (2) and on P by (8) are equivalent.

Proof. Let f : S → P such that for s ∈ S,

f(s) = (s0, s1, . . . , sm),

where for each 0 ≤ i ≤ m and v ∈ Vi, s(v) = si(v). The map f is one-to-one since if x, y ∈ S
and f(x) = f(y), then for each 0 ≤ i ≤ m and v ∈ Vi, xi(v) = yi(v) and so x = y. The map
f is onto since |S| = |P| and f is one-to-one. For g ∈ G, we can write g = (h0, h1, . . . , hm)
and so

f(gx) = (h0x0, h1x1, . . . , hmxm),

= g(x0, x1, . . . , xm),

= gf(x).

14



It follows that there is a one-to-one correspondence between the orbits of S and the orbits
of P . Moreover, each orbit in P corresponds to the Cartesian product of an orbit from each
of the state-space factors.

Theorem A.2. For s ∈ S and f defined in the proof of Theorem A.1, let f(s) = (s0, s1, . . . , sm),
C = Gs be the orbit of s, and Ci = Hisi be the orbit of si for each 0 ≤ i ≤ m. Then

{f(x) | x ∈ C} = C0 × C1 × · · · × Cm.

Thus the orbit of s ∈ S corresponds to the Cartesian product of an orbit from each of
the state-space factors.

Proof. Let C ′ =
∏

i Ci and
F (C) = {f(x) | x ∈ C}.

Suppose x ∈ C and f(x) = (x0, x1, . . . , xm). Thus there is g ∈ G such that x = gs and
consequently f(x) = gf(s). From the geometric decomposition of G, we can write g =
(h0, h1, . . . , hm) and so for each 0 ≤ i ≤ m, we have xi ∈ Ci since xi = hisi. Thus f(x) ∈ C ′

and so F (C) ⊂ C ′. Suppose (x0, x1, . . . , xm) ∈ C ′ then, from the geometric decomposition of
G, for each 0 ≤ i ≤ m there is hi ∈ Hi such that xi = hisi and from the definition of the
action of G on P

(x0, x1, . . . , xm) = (h0s0, h1s1, . . . , hmsm),

= gs.

Since gs ∈ C we have that C ′ ⊂ F (C) and consequently F (C) = C ′.

B Orbit representatives of height-regular trees

We now give a detailed description of how a set of orbit representatives can be constructed
for height-regular trees via a recursive procedure that makes use of the results for SM (a).
This process is illustrated in Figure 5 for SM (e). Recall that the leaves of a tree have height
zero. In step (i) of the recursive procedure, we pick one vertex at height one and consider
the state-space of its η1 children. Since the child vertices are only connected to the parent
vertex, we can use the method described for SM (a) to determine the orbit representatives
of their state-space, of which there are C(η1 + M − 1, η1). We denote this set of orbit
representatives R1. In step (ii), we include the parent node, resulting in a star graph, and
determine the orbit representatives of the corresponding state-space. This is simply each
possible vertex-state appended to each of the states in R1, so there are MC(η1 +M − 1, η1)
orbit representatives. We denote this set of orbit representatives by R∗

1. This star can be
permuted with any of the η2 − 1 other isomorphic stars at the same height. In step (iii) we
determine the orbit representatives of the SM by choosing all possible combinations of η2

15



Orbit representatives

(i)

1 2

R1 = {00, 01, 11}

(ii)
3

1 2

R
∗

1
= {00 0, 00 1, 01 0, 01 1, 11 0, 11 1}

(iii) 3 6

1 2 4 5

R2 = {000 000, 000 001, 000 010, 000 011, 000 110, 000 111,

001 001, 001 010, 001 011, 001 110, 001 111,

010 010, 010 011, 010 110, 010 111,

011 011, 011 110, 011 111,

110 110, 110 111,

111 111}

Figure 5: Recursive method of obtaining orbit representatives for SM (e). The orbit repre-
sentatives listed are for binary vertex-states, i.e. W = {0, 1}. States correspond to vertex
labels numbered from left to right, so state 01 means vertex 1 has vertex-state 0 and vertex
2 has vertex-state 1.

states chosen from R∗
1 with repetition. Consequently, if the ith geometric factor is Sη1 ≀ Sη2

then the number of orbits of the corresponding state-space factor is

ρi = C(η2 +MC(η1 +M − 1, η1)− 1, η2).

This procedure can be easily extended to height-regular trees of arbitrary height, although
such subgraphs are not common in real-world networks.

C Symmetries in large real-world networks

Information about fifteen large real-world networks is presented in Table 1. The information
for each network includes the number of vertices N , the number of edges |E|, the order
(number of permutations) of the symmetry group |G|, the number of vertices moved by a
permutation in the symmetry group Nmoved, the number of vertices fixed by all permutations
in the symmetry group Nfixed, the number of geometric factors m, the number of orbit
representatives of the moved vertices ρmoved and the relative significance of the moved vertices
∆moved = Nmoved log10(2)− log10(ρmoved). In all cases the number of fixed vertices means that
the lumped state-space is beyond practical computation. While the relative significance is
high in several cases (and hence the compression ratio is very high), the number of orbit
representatives of the vertices moved by the symmetry group are also very large in most
cases.
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Name N |E| |G| Nmoved Nfixed m ρmoved ∆moved

C. Elegans Neural [104, 63] 297 2,148 8.709× 107 14 283 2 55 2.474
C. Elegans metabolic [23, 62] 453 2,025 1.932× 1010 62 391 27 1.898 × 1014 4.386
Airports500 [18, 61] 500 2,980 8.404× 1035 142 358 47 1.190 × 1029 13.671
Facebook Caltech [94, 95] 762 16,651 4 4 758 2 9 0.250
Interacting proteins [16, 17, 67] 4,713 14,846 2.157× 10430 857 3,856 189 (1) *8.780 × 10122 *135.038
Power grid [69] 4,941 6,594 5.185× 10152 823 4,118 302 1.104 × 10184 63.705
Facebook Georgetown [94, 95] 9,388 425,619 5.898× 105 31 9,357 14 1.063 × 107 2.305
PGP Network [37, 9, 68] 10,680 24,316 4.496× 101,251 4,196 6,484 1,386 1.325 × 10819 444.000
Facebook Oklahoma [94, 95] 17,420 892,524 1.887× 107 44 17,376 21 1.860 × 1010 2.976
Facebook North Carolina [94, 95] 18,158 766,796 9.437× 106 42 18,116 20 6.199 × 109 2.851
AS Internet [64] 28,311 56,688 1.038× 1014,570 17,065 11,246 2,703 1.074 × 101,872 3,265.046
Facebook Florida [94, 95] 35,111 1,465,654 5.242× 105 38 35,073 19 1.162 × 109 2.374
Co-authorships [71, 66] 39,577 175,693 5.554× 105,271 15,746 23,831 5,124 (11) *2.455 × 102,816 1,923.628
ITDK Internet [65] 192,244 609,066 1.600× 1020,948 62,364 129,880 1,9184 (4) *1.875 × 1011,693 *7,080.162
World-Wide Web 325,729 1,117,563 1.354× 10246,428 235,052 90,677 19,110 (230) *2.329 × 1018,312 *52,445.335

Table 1: Large network information: number of vertices N , number of edges |E|, symmetry group order |G|, number of
vertices moved by the symmetry group Nmoved, number of vertices fixed by the symmetry group Nfixed, the number of
geometric factors m, the number of orbit representatives of the moved vertices ρmoved and the relative significance of the
moved vertices ∆moved = Nmoved log10(2)− log10(ρmoved). Where present, the numbers in brackets in the m column are the
number of geometric factors whose number of orbit representatives could not be computed; all other cases were computed
in full. The corresponding ρmoved and ∆moved are labelled with an asterisk to indicate that these are lower and upper
bounds respectively.
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D Network Statistics

The following statistics are computed over the networks with non-trivial symmetry. The
network repository website includes labels indicating the type of network and in Figure 6 we
illustrate how the number of networks breaks down according to these types. Each coloured
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Figure 6: Number of network datasets by type. The vertical extent of each coloured bar in-
dicates the number of networks of the corresponding type and the horizontal extent indicates
the mean number of nodes across those networks. Thus the area of each bar corresponds to
the total number of nodes of all networks of each type.

rectangle indicates one type of network; the height of the rectangle is scaled to the number
of networks of that type and the width is scaled to the mean number of nodes over the
networks of that type. The majority of the networks correspond to chemical networks and
animal social networks. Whilst most of the networks collected represent real-world networks,
our data set does include ‘synthetic’ networks, which can generally be identified via their
type or information provided on the website.

Figure 7(a) is a histogram of the number of nodes in each network with non-trivial
symmetry, coloured by type, and shows that the majority of networks have between 10 and
50 nodes. In Figure 7(b) we plot a histogram of mean degree, z, coloured by network type
up to z = 6 and in Figure 7(c) we plot the same for z > 6. The mean degree of the animal
social networks is peaked around z = 2, and we saw that many of these networks include
multiple small components. The mean degree of the chemical networks is peaked at around
4, while the networks from graph theory tend to have relatively large degrees.
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Figure 7: Panel (a): histogram of the number of vertices N in each network, coloured by
type. Panel (b): histogram of mean degree z for z < 6, coloured by type. Panel (c): same
as panel (b) but for z > 6.

Figure 8 illustrates the fraction of vertices moved by the automorphism group, specifically
θmoved = |supp(G)|/N , coloured by type. Of the animal social networks, there is a roughly
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Figure 8: Histogram of the fraction of vertices moved by each graph’s automorphism group,
θmoved = |supp(G)|/N , coloured by type.

constant number of networks for values of θmoved between 0 and 1, but with a larger fraction at
θmoved = 1. In contrast, the number of chemical and protein networks decays with increasing
θmoved, more quickly in the latter case. All but one of the graph theoretic networks have
θmoved = 1, i.e. these graphs are vertex-transitive.

In Figure 9 we plot a Venn diagram of the number of networks that have at least one
geometric factor corresponding to Sn acting naturally [SMs (a) and (b)], C2 [SM (d)] or
multiple isomorphic components [SM (f)], and no other types of SMs. Figure 9 shows
that the majority of symmetry is Sn, i.e. SMs (a) and (b), and there is roughly an equal
number of networks that have geometric factors corresponding to C2 or repeated isomorphic
components.
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Figure 9: Venn diagram illustrating the main types of symmetry in networks whose symmetry
is entirely due to SMs (a), (b), (d) and (f). The blue circle represents symmetric group Sn

where symmetry is due to leaves and cliques, the red circle represents the cyclic group of order
two, C2, and the yellow circle represents symmetry due to multiple isomorphic components,
indicated by the symbol ∼=. Example SMs are illustrated next to the corresponding circles.
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[54] M. López-Garćıa, M.-F. King, and C. J. Noakes. A multicompartment SIS stochas-
tic model with zonal ventilation for the spread of nosocomial infections: Detection,
outbreak management, and infection control. Risk Analysis, 2019.
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