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Abstract: When two rough surfaces are loaded together contact occurs at asperity peaks. An interface

of solid contact regions and air gaps is formed that is less stiff than the bulk material. The stiffness of

a structure thus depends on the interface conditions; this is particularly critical when high stiffness is

required, for example in precision systems such as machine tool spindles. The rough surface interface

can be modelled as a distributed spring. For small deformation, the spring can be assumed to be

linear; whilst for large deformations the spring gets stiffer as the amount of solid contact increases.

One method to measure the spring stiffness, both the linear and nonlinear aspect, is by the reflection

of ultrasound. An ultrasonic wave causes a perturbation of the contact and the reflection depends on

the stiffness of the interface. In most conventional applications, the ultrasonic wave is low power,

deformation is small and entirely elastic, and the linear stiffness is measured. However, if a high-

powered ultrasonic wave is used, this changes the geometry of the contact and induces nonlinear

response. In previous studies through transmission methods were used to measure the nonlinear

interfacial stiffness. This approach is inconvenient for the study of machine elements where only one

side of the interface is accessible. In this study a reflection method is undertaken, and the results are

compared to existing experimental work with through transmission. The variation of both linear and

nonlinear interfacial stiffnesses was measured as the nominal contact pressure was increased. In both

cases interfacial stiffness was expressed as nonlinear differential equations and solved to deduce the

contact pressure-relative surface approach relationships. The relationships derived from linear and

nonlinear measurements were similar, indicating the validity of the presented methods.

Keywords: interfacial stiffness; contact acoustic nonlinearity; nonlinear ultrasound; higher harmonic

generation; dry contact interface; rough surface contact

1. Introduction

When two solid surfaces come into contact, it is the asperity peaks that touch, and
the real area of contact is substantially less than the nominal contact area [1]. Applying a
pressure to the surfaces causes a small approach of the mean lines of their roughness. The
interfacial stiffness (per unit area) is then defined as the rate of change of contact pressure
with approach of the mean lines of the roughness of the contacting surfaces [2]. If the real
contact area is low, then a low nominal contact pressure is all that is required to deflect the
asperities. Increasing the nominal contact pressure brings more asperities into contact and
the interface becomes stiffer; hence interface stiffness is a nonlinear variable. Interfacial
stiffness is important in tribology because it affects machine element deflection, wear, and
friction, since stiffer interfaces tend to less deflection. Machining accuracy, for example,
depends on the stiffness of the joints in the machine tool assembly [2].

Several studies have focused on the interfacial stiffness of rough contact from both
theoretical and experimental perspectives. An early example from Mindlin [3] provided a
theoretical model for elastic contact of a smooth curved surface. Later, Greenwood and
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Williamson (GW model) [4] presented a statistical model for the relation between the
contact area of the rough elastic mating surfaces and applied pressure. The model is limited
by two assumptions: firstly asperities are treated as a distribution of hemispherical capped
peaks, and secondly those peaks are treated as independent such that the deformation
of one peak does not affect its neighbors. The relationship between the contact area and
applied pressure also presented by models such as the Whitehouse-Archard-Onion model
(WAO model) [5,6] and the Buh-Gibson-Thomas model (BGT model) [7]. These models
have been widely used to predict contact stiffness. Campana et al. [8] used Mindlin’s theory
to measure the stiffness ratio of stationary contact.

Digital image correlation (DIC) [9–11] has been used to measure stiffness in joints.
In this method, a series of images prior to applying load and during loading are taken
from the interface and surrounding area. The comparison of the images shows the relative
displacement. A plot of the applied load measured with a load cell against the relative
surface displacement is created; the gradient gives the contact interface. Although it has
advantages such as a full field capability and high resolution, the main limitation is that a
surface near the contacting surfaces must be accessible for the camera to capture images. In
many items of engineering machinery optical access is limited and this limits application
of DIC outside a laboratory setting. Another method is to make direct measurements of
the displacement of the interface under applied load. Burdekin et al. [12] used relative
displacement transducers between the fixed frame and the stack of rings to measure direct
displacement of the interface. Chikate et al. [13] also directly measured displacement of
a smooth surface using strain gauges and spring-loaded pins. For example, Handzel-
Powierza et al. [14] used a tenso-metric bridge to measure the applied load and an indicator
sensor to measure the surface approach. They compared their results to theoretical pre-
dictions from the Greenwood-Williamson model in the range of elastic deformation for
quasi-isotropic surfaces. However, this technique is restricted to low contact stiffness

(1 GPa/µm) [15].
It is also possible to measure contact stiffness from a structure’s resonance frequency.

This contact frequency method uses a relationship between the contact stiffness and the
natural frequency of the mating surfaces [16]. One of the disadvantages of this method is
the need for vibration response equations of the experimental tools [17].

The approach used here, also a vibrational method, is through the reflection or
transmission of ultrasound [11,18–23]. This has the advantage being non-invasive, non-
destructive, and can measure interface inside a machine where desired surfaces are in-
accessible. Reflection and transmission coefficients are defined as the proportion of an
incident wave reflected from or transmitted through the interface, respectively. The re-
flection coefficient depends on the amount of solid contact. The acoustic impedance of
air is significantly small, compared to solid materials, and so the air gap at the interface
causes more incident energy to reflect. Increasing the nominal contact pressure leads to
an increase in the number of the asperities in contact, therefore less incident energy is
reflected and more energy transmitted [18]. Kendal and Tabor [24] and Tattersall [19] used
a spring model, where the interface is treated as a distributed stiffness, to demonstrate that
the reflection coefficient of an imperfect contact (incomplete contact) is dependent on the
interfacial stiffness.

Authors have studied both normal and tangential interface stiffness in the linear regime
using either longitudinal or transverse polarised ultrasound, respectively [11,18–23,25–27].
Both elastic and plastic rough surface contact models have been used to predict interface
stiffness compared to ultrasonic measurement [15,28,29].

Krolikowski et al. [15,28] presented a spring-damper model in a parallel configuration
to address the effect of ultrasound attenuation. However, the results were still far beyond
those predicted by the GW model. Rokhlin et al. [30] modeled the interface as a layer
of equivalent materials such as viscoelastic materials. Their study is accurate in cases
where the Poisson’s ratio of the layer model is known. The principle has been modified by
Du. et al. [31], Xiao et al. [32] and Sun et al. [17].
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These studies have been based around the linear response of an interface to an ul-
trasonic wave. The pressures generated by the wave and the resulting deflections are
normally very small and so the process is elastic and reversible. However, in recent years
there have been a number of studies based around higher power ultrasound that causes
nonlinear behaviour. The nonlinear behaviour may originate from the material itself, as the
stress-strain relationship of the medium exceeds Hooke’s law (nonlinear elasticity) [33,34].
Alternatively, the interface may also be a source of nonlinearity. If the wave is of sufficient
power, it can cause opening and closing of the air gaps and this can lead to the generation
of higher harmonics in the reflected/transmitted waves. This is known as Contact Acoustic
Nonlinearity CAN [35–37]. In Section 2, a description of the higher harmonics generation
(mechanics of CAN) is described.

Richardson [38] studied one-dimensional nonlinear wave propagation through iden-
tical contacting materials by considering the concept of CAN. He defined an analytical
relation between the incident wave and the relative surface approach of the interface. Biwa
et al. [39] used Richardson’s findings to propose a nonlinear nominal contact pressure-
relative surface approach relationship using a polynomial Taylor series to define the linear
and nonlinear interfacial stiffnesses using the reflection coefficient. Nonlinear interfacial
stiffness is important when a high-power ultrasound is employed to define the interface.
The wave itself causes a distortion of the interface and hence a linear model can no longer
describe the proper interface response. In previous studies only through transmission
methods had been used to measure the nonlinear interfacial stiffness. The aim of this
paper is to evaluate linear and nonlinear interfacial stiffnesses measured with a reflection
method to demonstrate that they are both based on the same fundamental relationship be-
tween contact pressure and relative surface approach. The result is compared to published
experimental work using through transmission.

Both the linear and nonlinear interfacial stiffness have been deduced using a reflection
coefficient R and a second order nonlinear parameter for reflected ultrasound from the
interface γ. A fourth-order polynomial expression for the linear and nonlinear interfacial
stiffness variation with nominal contact pressure based on experimental data is used. Since
the accuracy of the nonlinear stiffness measured with ultrasound has not been studied, a
first order nonlinear homogenous differential equation of the linear interfacial stiffness and
a second order nonlinear homogenous differential equation of the nonlinear interfacial
stiffness have been used to derive the relationship between nominal contact pressure and
approach of the surface. The study shows the nominal contact pressure–relative surface
approach measured from the linear and nonlinear interfacial stiffness both give similar
results. This indicates the equations proposed by [39] for the linear and nonlinear interfacial
stiffness can accurately measure the interfacial stiffness.

2. Theoretical Approach

2.1. Governing Equation

Consider two linear elastic media in contact subjected to a one-dimensional elastic
longitudinal ultrasonic wave (Figure 1).

The direction of ultrasound propagation is through the thickness of the media which is
defined as the x-axis. The origin of the x-axis is the point of first contact of the surfaces. The
roughness mean lines above and below the interface are located at X− and X+, respectively
(Figure 1a). The separation (mean gap) between the two surfaces under zero load is then
given by (X+ − X−). When there is no elastic wave the surfaces are in static equilibrium
under a nominal contact pressure p0 causing an equilibrium separation of h0 (Figure 1b,c).
When an elastic wave passes through the interface the surface separation, h(t) is cyclically
reduced and then increased about the equilibrium value h0. The relative surface approach
Y(t) is defined as the difference between the separation variation with time h(t) and
equilibrium separation h0, (Y(t) = h(t)− h0). In the absence of an elastic wave, the relative
surface approach Y(t) is zero. The sign of relative surface approach Y(t) is opposite to the
direction of loading/unloading by the wave. During the loading process by the elastic



Appl. Sci. 2021, 11, 5720 4 of 20

wave, the relative surface approach Y(t) is negative, whereas during the unloading process
it is positive. In order to clearly illustrate the relative approach of the surfaces (assuming
the lower body is fixed and the upper moving), the upper body is considered to be rigid
and flat whilst the lower body is elastic and rough (Figure 1c).

𝑥 𝑥 𝑋 𝑋 ,𝑋 − 𝑋 𝑝ℎℎ(𝑡) ℎ𝑌(𝑡)ℎ(𝑡) ℎ (𝑌(𝑡) = ℎ(𝑡) − ℎ ) 𝑌(𝑡)𝑌(𝑡) 𝑌(𝑡)
𝑝𝑌(𝑡)𝑝

𝜌 𝜕 𝑢𝜕𝑡 = 𝜕𝜎𝜕𝑥 
𝜎(𝑥, 𝑡) + 𝑝 = 𝐸 𝜕𝑢𝜕𝑥 

Figure 1. Schematic diagram of the asperity junctions and ultrasonic wave propagation through the media: (a) aluminium

blocks and aspeiry contact in the absence of normal load; (b) origin and direction of the positive propagation axis; (c)

contacting surfaces in the absence of elastic wave under static equilibrium contact; (d) relative surface approach and surface

separation due to propagating elastic wave.

The elastic wave pressure superimposed on the nominal contact pressure p0 generates
a relative surface approach Y(t) which varies with time (shown in Figure 1d). Increasing
nominal contact pressure p0 decreases separation of the surfaces.

The equations described in this section follow the method presented in [38,39]. The
equation of the interface subjected to a one-dimensional longitudinal ultrasonic wave is
given by:

ρ
∂2u

∂t2
=

∂σ

∂x
(1)

The stress-displacement relation is given by:

σ(x, t) + p0 = E
∂u

∂x
(2)

where ρ is the density of the media, σ(x, t) is the normal stress generated by the ultrasonic
wave and p0 in the media, u(x, t) is the displacement of the ultrasonic wave and p0 is the
nominal contact pressure. The general solution of Equation (1) results in the displacement
of each side of the interface:

{

u(x, t) = f (x − ct) + G(x + ct) , x < X−
u(x, t) = H(x − ct) , x > X+

(3)

where u(x, t) is the displacement of the interface, c is the speed of sound in the me-
dia which is

√

E/ρ, t is the time of flight of ultrasound, f (x − ct) is the incident wave,
G(x + ct) and H(x − ct) are the reflected and transmitted wave, respectively. The displace-
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ment through the upper and lower media is as x < X− and x > X+, respectively. The
boundary condition at the interface is defined by:

σ(X+, t) = σ(X−, t) = −p(h(t)) , p(h0) = p0 (4)

where h(t) is the rough surface mean line separation (surface separation) variation with
time and h0 is the separation under static equilibrium p0 in the absence of the elastic wave
(as shown in Figure 1). A negative sign pressure term indicates compression at the interface.
Substituting Equation (4) into Equation (2) gives:

{

∂u(X− ,t)
∂x = −1

E p(h(t)) + 1
E p0

∂u(X+ ,t)
∂x = −1

E p(h(t)) + 1
E p0

(5)

The relative surface approach Y(t) of the mating surfaces is defined as the difference
in the wave displacement u(x, t) of both sides of the interface (Figure 1d):

Y(t) = {u(X+, t)− u(X−, t)} = h(t)− h0 (6)

Equation (6) shows that the relative surface approach Y(t) can be used instead of the
surface separation h(t). The translational motion of the interface is defined by:

X(t) = {u(X+, t) + u(X−, t)}/2 (7)

In order to simplify the calculation, the displacement of the interface is represented
only in terms of incident wave [38]:

X(t) = f (x − ct) (8)

Differentiation of Equations (6) and (8) with respect to time gives:

.
X =

−c ∂ f (X_ − ct )

∂(X_ − ct)
(9)

where dots denote the differentiation with respect to time.

.
Y = c

{

− ∂H(X+ − ct)

∂(X+ − ct)
+

∂ f (X− − ct)

∂(X− − ct)
− ∂G(X− + ct)

∂(X− + ct)

}

(10)

Equation (10) is expressed in terms of incident, reflected, and transmitted ultrasonic
waves; it is necessary to reduce this in terms of only the incident wave and nominal contact
pressure. To do this Equation (3) is differentiated with respect to x:







∂u(X− ,t)
∂x = ∂ f (X−−ct)

∂(X−−ct)
+ ∂G(X−+ct)

∂(X−+ct)
∂u(X+ ,t)

∂x = ∂H(X+−ct)
∂(X+−ct)

(11)

Rearranging Equation (11) to make the reflected and transmitted waves the subject
gives:







∂G(X−+ct)
∂(X−+ct)

= ∂u(X− ,t)
∂x − ∂ f (X−−ct)

∂(X−−ct)
∂H(X+−ct)
∂(X+−ct)

= ∂u(X+ ,t)
∂x

(12)

Substituting Equation (5) into Equation (12) gives:







∂G(X−+ct)
∂(X−+ct)

= −1
E p(h(t)) + 1

E p0 − ∂ f (x−ct)
∂(x−ct)

∂H(X+−ct)
∂(X+−ct)

= −1
E p(h(t)) + 1

E p0

(13)
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Substituting Equation (13) into Equation (10) gives:

.
Y = 2c

∂ f (X_ − ct)

∂(X_ − ct)
+

2

ρc
{ p(h0 + Y)− p0} (14)

Equation (14) is a first order differential equation describing the relative surface
approach in terms of the incident wave and the nominal contact pressure p(h0 + Y). Solving
this differential equation results in an equation for the relative separation of the interface.
Equation (14) can be written in terms of surface separation h(t):

.
h = 2c

∂ f (X_ − ct)

∂(X_ − ct)
+

2

ρc
{ p(h)− p0} (15)

The reflected ultrasonic wave is now defined in terms of relative surface approach.
Equations (5) and (6) give the relationship between relative surface approach Y(t) and
translational motion of the contact interface X:

u(X−, t) = X(t)− 1

2
Y(t) (16)

Substituting Equation (3) (for x < X−) and Equation (7) into Equation (15) gives:

G(x + ct) = −1

2
Y

(

t +
x − X−

c

)

(17)

It can be seen from Equation (17) that the reflected ultrasonic wave G(x + ct) is
expressed only in terms of the relative surface approach. The negative sign of the reflected
wave indicates propagation in the opposite direction to the incident wave through the
upper body.

2.2. Determination of Contact Acoustic Nonlinearity (CAN)

An interface consists of asperity contacts and air gaps. In the regions of the interface
with the air gap, there is no contact between the surfaces (Figure 2a). The approach of the
two surfaces depends on the magnitude of the applied pressure [40]. The applied pressure
is the sum of the externally applied pressure and the pressure applied by the incident wave.

𝜔𝐴 𝑡
𝑓(𝑥 − 𝑐𝑡) = 𝐴𝑐𝑜𝑠 𝜔𝑐 (𝑥 − 𝑋 − 𝑐𝑡)  
ℎ = 2𝐴𝜔 sin𝜔𝑡 + 2𝜌𝑐 { 𝑝(ℎ) − 𝑝  } 𝑡 = 0𝑡 ℎ 𝑌ℎ 𝑡

𝜎(𝑋 , 𝑡) = 𝜎(𝑋 , 𝑡) = −𝑝 ℎ(𝑡) = 0 
𝑡 𝑐𝑜𝑠𝜔𝑡 + 𝑝𝜌𝑐𝐴 𝑡 − 1 = 0 

𝑡 𝑡 , 𝑡 ]
ℎ(𝑡) − ℎ(𝑡 ) = −2𝐴{𝑐𝑜𝑠𝜔𝑡 − 𝑐𝑜𝑠𝜔𝑡 }  − 2𝜌𝑐 𝑝 (𝑡 − 𝑡 ) ; 𝑡 ≤ 𝑡 ≤ 𝑡  

𝑡𝑡

Figure 2. Schematic diagram of higher harmonic generation at an incomplete interface: (a) rough surface interface modelled

as array of gaps; (b) incidents ultrasonic wave interacts with the interface; (c) approaching surfaces; (d) being apart surfaces.
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A longitudinal incident cosinusoidal wave with centre angular frequency ω and
amplitude A strikes the interface at time t0.

f (x − ct) = Acos
{ω

c
(x − X− − ct)

}

(18)

Substituting Equation (18) into Equation (15) at the interface gives:

.
h = 2Aω sin ωt +

2

ρc
{ p(h)− p0} (19)

It is assumed at time t0 = 0 that the gap is closed and remains closed until just before
time t1. For the sake of derivation, the gap is assumed to be fully closed; however, in reality
even under high pressure there will remain air gaps and the contact does not fully close.
Therefore, the gap separation h and relative surface separation Y are zero, subsequently,
the initial surface separation h0 is zero. When the gap is open at time t1, the pressure at the
interface is zero, so the boundary condition in Equation (4) is:

σ(X+, t) = σ(X−, t) = −p(h(t)) = 0 (20)

Substituting Equation (20) into Equation (19) and integrating with respect to time
gives time t1:

cosωt1 +
p0

ρcA
t1 − 1 = 0 (21)

Equation (21) is different from those presented in [38]. Equation (21) is a nonlinear
equation and in the present work it is solved by the Newton-Raphson method.

The gap remains open until time t2. Integration of Equation (19) with respect to time
and substituting Equation (20) in the interval [t1, t2] gives opening interval:

h(t)− h(t1) = −2A{cosωt − cosωt1} −
2

ρc
p0(t − t1) ; t1 ≤ t ≤ t2 (22)

Hence at time t2 the gap is just about to be closed; the right-hand side of Equation (21)
is zero. Time t2 can be found using the Newton-Raphson method:

cosωt2 +
p0

ρcA
t2 − cosωt1 −

p0

ρcA
t1 = 0 (23)

The gap remains closed until time t3. The opening-closing gap transition is repeated
periodically:

h(t) =

{

h(t2n) ; t2n ≤ t < t1 + nT

h(t2n)− 2A{cos ωt − cos ω(t1 + nT)} − 2
ρc p0(t − t1 − nT); t1 + nT ≤ t < t2 + nT

(24)

where n = 0, 1, 2, . . . and T is the period of the incident wave.
A single longitudinal incident ultrasonic wave cycle consists of two parts causing

tension and compression (Figure 2b). Figure 3 shows surface separation at the interface
of aluminium blocks subjected to a longitudinal wave with centre frequency 2 MHz and
amplitude 20 nm. The gap is initially assumed to be closed at time t0 = 0. It is seen from
Figure 3a that, when the compressional part of wave reaches the interface (corresponding
to zero to point a on the incident wave), the applied pressure is sufficiently large to keep the
gap closed in the interval [t0, t1] (also see Figure 2c). As the wave passes (corresponding to
part of the wave between point a and b on the incident wave), the applied pressure reduces
so the surfaces of the gap are open at time t1 and be pulled apart away from the mean
position (also see Figure 2d). After that, the applied pressure increases (corresponding to
part of the wave between point b and c on the incident wave) and presses the surfaces of
the gap closer together.
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𝑐𝑜𝑠𝜔𝑡 + 𝑝𝜌𝑐𝐴 𝑡 − 𝑐𝑜𝑠𝜔𝑡  − 𝑝𝜌𝑐𝐴 𝑡 = 0 
𝑡

ℎ(𝑡) = ℎ(𝑡 ) ;  𝑡 ≤ 𝑡 < 𝑡 + 𝑛𝑇ℎ(𝑡 ) − 2𝐴{cos𝜔𝑡 − cos𝜔(𝑡 + 𝑛𝑇)} − 2𝜌𝑐 𝑝 (𝑡 − 𝑡 − 𝑛𝑇); 𝑡 + 𝑛𝑇 ≤ 𝑡 < 𝑡 + 𝑛𝑇 
𝑛 = 0,1,2, … 𝑇

2 MHz20 nm 𝑡 = 0
𝑡 , 𝑡 ] 𝑡

 

Figure 3. A theoretical approach for Contact Acoustic Nonlinearity (CAN) mechanics at incident

wave amplitude 20 nm: (a) comparison between incident wave and gap separation h variation with

time; (b) comparison between reflected wave from solid-air contact (reference signal) and solid-solid

contact at 2 MPa; (c) effect of nominal contact pressure on reflected wave from solid-solid contact at

2 MPa and 3 MPa; (d) frequency spectrum comparison between incident wave, solid-solid contact at

2 MPa and 3 MPa.

In the time interval [t2, t3] the gap is closed as the applied pressure increases (corre-
sponding to part of the wave between point c and d on the incident wave). The opening-
closing gap transition is repeated periodically. Figure 3b shows solid–solid contact and
solid–air contact. Time domain signals presented in Figure 3b,c were converted to fre-
quency domain using Fast Fourier Transform (FFT). It is seen that the surface of a solid-air
contact freely moves, therefore no higher harmonic is generated. However, higher harmon-
ics are generated (both even and odd) in solid–solid contact (Figure 3d). Figure 3c shows
the effect of nominal contact pressure on the opening and closing the gap in the interface.
It is seen that the higher nominal contact pressure closes the gap for longer period and the
surfaces are separated less.

2.3. Theoretical Analysis

Evaluation of the general equations presented in Section 2.1 requires further theoretical
analysis to drive the equations of interfacial stiffness.

2.3.1. Linear and Nonlinear Interfacial Stiffness

The stiffness of an interface can be modelled as a series of springs created by the
individual asperity contacts [20,24]. The series of the springs is then equivalent to a single
distributed spring with an equivalent stiffness K (expressed per unit area) [2]:

K = −dp0

dh
(25)
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For practical rough surface contacts, the spring is nonlinear since the relation between
the applied pressure and surface separation is not directly proportional. As the contact
pressure is increased, more asperity contact occurs and the interface becomes stiffer. If
the deflection is small (and less than the elastic limit of the spring material [41]) the
nonlinearity can be neglected. For large deflections, the pressure–separation relationship
and the resulting nonlinear stiffness must be considered. One of the approaches to deal
with the nonlinear contact pressure-relative surface approach of the interface (boundary
or contact nonlinearity) is to express it as a series of polynomial terms in a Taylor series
around h = h0 [39]:

p(h) = p(h0 + Y) = p0 − K1Y + K2Y2 (26)

where K1 and K2 are the linear and second order nonlinear interfacial stiffness and p0 is
the nominal contact pressure at h0. The linear K1 and nonlinear K2 terms of the interfacial
stiffness are then defined by:

K1 = − dp

dY
, h = h0 (27)

K2 =
1

2

d2 p

dY2
, h = h0 (28)

2.3.2. Incident and Reflected Elastic Waves

Differentiation of Equation (18) with respect to argument of the function at the interface
x = X− results in:

∂ f (X_ − ct)

∂(X_ − ct)
= A ω sin ωt (29)

Substituting Equations (26) and (29) into (14) gives:

.
Y +

2K1

ρc
Y − 2K2

ρc
Y2 = 2Aω sinωt (30)

which is a first order nonlinear differential equation. An approximate solution, such as the
homotopy perturbation method (HPM) [42], is required to derive the particular solution of
the relative approach of the contacting surfaces. To do this, the solution of the differential
equation is defined as the sum of the linearized equations of the differential equation which
is known as a perturbation series [42]:

Y = Y0 + α Y1 + α2 Y2 + α3 Y3 (31)

where Y0 , Y1, Y2 and Y3 are the first, second, third and fourth terms of the perturbation
series and α is an imbedding parameter which is assumed to be 1 to derive the particular
solution of the differential equation. It should be noted that α is a small parameter in
the range of [0, 1]. As α approaches 1, Equation (31) gives an approximate solution to
the nonlinear differential Equation (30) [42]. In order to solve the nonlinear differential
equation (Equation (30)), the differentiation of Equation (31) with respect to time is sub-
stituted into Equation (30). A series of differential equations in terms of only Y0, Y1, Y2

and Y3 are derived. The differential equations containing Y0 and Y2 are in transient state
(homogeneous differential equations). The initial surface approach is zero, subsequently,
Y0 = Y2 = 0. Therefore, the transient behaviour of the differential equation was ignored
and only the steady state behaviour was considered.

Y1 =
2A

√

1 + (2K1/ρcω)2
sin(ωt − δ1) (32)

Y3 =
2K2 A2

K1

{

1 + (2K1/ρcω)2
}







1 − sin (2ωt − 2δ1 + δ2)
√

1 + (K1/ρcω)2







(33)
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Substituting Equations (32) and (33) into Equation (31) gives the relative surface
approach Y(t):

Y(t) =
2A

√

1 + (2K1/ρcω)2
sin(ωt − δ1) +

2K2 A2

K1

{

1 + (2K1/ρcω)2
}







1 − sin (2ωt − 2δ1 + δ2)
√

1 + (K1/ρcω)2







(34)

where δ1 = tan−1(ρcω/2K1) and δ2 = tan−1 (K1/ρcω).
Substituting Equation (34) into Equation (17) results in an analytical equation for the

reflected wave:

G(x + ct) = − K2 A2

K1

{

1+
(

2K1
ρcω

)2
} − A

√

1+
(

2K1
ρcω

)2
sin

{

ωt + ω
c (x − X−)− δ1

}

+ K2 A2

ρcω

√

1+
(

K1
ρcω

)2
{

1+
(

2K1
ρcω

)2
} sin

{

2ωt + 2ω
c (x − X−)− 2δ1 + δ2

} (35)

The terms in this equation with a frequency ω and 2ω represent the fundamental and
second order harmonics, respectively. So, the coefficient of terms containing ω and 2ω
are the amplitude of the fundamental frequency A1 and second harmonic A2, respectively.
The reflection coefficient R is defined as the ratio of the amplitude of the reflected pulse
from the interface to the amplitude of the incident wave [2]. The reflection coefficient R
at imperfect contact is dependent on the interfacial stiffness per unit area of the interface
(where the wavelength of elastic wave is large compared to the air gap). The reflection
coefficient of the fundamental frequency is given by [19]:

R =

∣

∣

∣

∣

A1

A

∣

∣

∣

∣

=
1

√

1 + (2K1/ρcω)2
(36)

where A1 is the amplitude of the fundamental frequency of reflected pulse from the contact
interface. In practice, A1 can be found from the experimental pulses from the amplitude
of Fast Fourier Transform (FFT) of the fundamental frequency. Rearranging Equation (36)
gives the linear interfacial stiffness K1 in terms of reflection coefficient:

K1 =
ρcω

2

√
1 − R2

R
(37)

The second order nonlinear parameter for the reflected ultrasound from the interface
γ (derived from Equation (35)) is defined by [39]:

γ =

∣

∣

∣

∣

∣

A2

A2
1

∣

∣

∣

∣

∣

=
K2

ρcω

√

1 + (K1/ρcω)2
(38)

where A2 is the amplitude of the second harmonic of the reflected wave. In the analytical ap-
proach (Equation (38)), A2 is the coefficient of the 2ωt term. Again, experimentally, A2 can
be obtained from the amplitude of the second order harmonics obtained using a Fast Fourier
Transform (FFT). It should be noted that the amplitude of the third harmonic is small
compared to the amplitude of the second harmonic, therefore only the second harmonic is
considered here.

K2 is the second order nonlinear interfacial stiffness. The second order nonlinear
parameter for reflected ultrasound γ can be measured by the experiment with the values
of A1 and A2 . In order to derive the nonlinear stiffness per unit area of the interface K2,
Equation (38) is rearranged:

K2 = γ ρcω

√

1 + (K1/ρcω)2 (39)
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The nonlinear nominal contact pressure relationship (Equation (26)) can then be
defined at any nominal contact pressure p0 with the corresponding linear and nonlinear
interfacial stiffness, K1 and K2 from Equations (37) and (39).

3. Experimental Approach

In this experiment the reflection coefficient from an interface subjected to normal
applied load was measured. Two transducers were placed on the upper specimen to act in
pitch-catch mode. Reflections were recorded as loads were applied to the specimen pair.

3.1. Loading Apparatus and Specimens

Figure 4 illustrates the experimental apparatus designed for capturing reflected pulses
from the interface. Two cylindrical aluminium 6082 T6 blocks, of diameter 39 mm and
thickness 32 mm, were loaded together creating a dry contact interface. The load was
applied using with a hydraulic material testing machine and measured using a load cell. A
spacer was used to protect the sensor location as shown in the figure.

𝑅 𝑅𝑅
𝑹𝒂(𝛍𝐦) 𝑹𝒒(𝛍𝐦) 𝑹𝒛(𝛍𝐦)

 MPa 5 MPa
18 mm2 MHz 5 MHz 2 MHz 90 V 140 V 210 V

60 V 5 MHz

Figure 4. Schematic diagram of ultrasound reflection measuring apparatus.

The two specimen contact faces were polished with silicon carbide papers to P2500
grit size and lapped. The arithmetic mean deviation Ra, root mean square Rq and mean
roughness depth Rz were measured according to ISO 4287 with an optical roughness
measurement device (Alicona SL) as shown in Table 1.

Table 1. Roughness measured before loading/unloading and after 10 loading/unloading cycles.

Process Ra (µm) Rq (µm) Rz (µm)

Before loading/unloading 0.446 0.577 3.092
After 10 loading/unloading

cycles
0.404 0.522 2.745

Whilst the mean contact pressure is well below the yield stress of the materials, the
asperity contacts are at much higher pressure [18] and so experience plastic flow. The
plastic flow is greatest at the first loading and then the contact points conform or build up
residual stress so subsequent loading is elastic. To ensure all measurements were recorded
for an elastic contact, prior to the capturing, 10 loading/unloading cycles at a nominal
contact pressure up to 5.5 MPa (which is beyond the nominal contact pressure decided
to compress the contacting surfaces (5 MPa)) were applied. Further deformation of the
asperity contacts was then expected to be fully elastic.

3.2. Instrumentation

Two piezoelectric longitudinal transducers (18 mm diameter) with centre frequencies
of 2 MHz and 5 MHz were attached on the upper surface of the top aluminium blocks
using a couplant gel. The transducer generated the incident wave and caught the signal
reflected from the interface. A 2 MHz longitidinal toneburst with 11 cycles at different
peak-to-peak excitation voltages of 90 V, 140 V or 210 V was generated and amplified using
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a high-power amplifier (RITEC RAM-5000). The power generated at these voltages was
sufficiently large to generate higher harmonics in reflected pulses from the interface. In this
experiment, higher harmonics were observed when the incident wave had a voltage greater
than 60 V peak-to-peak. The reflected pulses from the contact interface were captured
with the longitudinal transducer with centre frequency 5 MHz and stored using a digital
oscilloscope. A reference signal was captured from a solid–air contact to eliminate the
inherent effect of the materials and consider only the influence of the interface. A PC
running LabView was used to trigger the pulsing and receive the digitized reflection data.

3.3. Signal Processing

Figure 5a shows the first and second reflected pulses from the interface of the solid–air
contact (reference). This solid–air reflection acts as a reference. Since almost all the sound
energy will be reflected from a solid–air interface, this is equivalent to the incident signal.
Figure 5d shows the same pulses from a solid–solid contact at nominal contact pressure
4 MPa. In the present analysis, only the first reflected pulse was used as this contains most
information from the interface.

4 MPa

4 MPaFigure 5. Signal processing of the reflected pulses from interface using a 140 V excitation with

incident frequency 2 MHz: (a–c) solid-air contact (reference signal); (d–f) solid-solid contact at

nominal contact pressure 4 MPa; (a,d) time domain of generated, first and second reflected pulses;

(b,e) Hanning window and zero pad result of the first reflected pulse; (c,f) Fast Fourier Transform

(FFT) results of the first reflected pulse.

This first peak was extracted and a Hanning window function and a zero-pad function
were applied to increase the resolution of the signals (Figure 5b,e). It should be noted that
the type of window function as well as the length of zero-pad function are dependent on
the quality of captured signals. In this study, other window functions, such as Hamming
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window function and Blackman window function were employed, but showed insignificant
difference in the results, so the Hanning window function was adopted throughout.

The time domain signals cannot precisely (in most cases this is impossible) indicate
the existence of a super-harmonic (higher harmonics), subharmonic, or a mix of both.
Therefore, a Fast Fourier Transform was employed to convert the time domain reflected
signal to the frequency domain as shown in Figure 5c,f. These peaks are clearly visible
corresponding to the fundamental frequency, as well as both, and even and odd (second)
harmonics.

Since Figure 5c shows solid–air contact, the source of the higher order harmonics in
this case cannot be due to the interfacial contact. This nonlinearity might be generated
by the bulk material, bonding nonlinearity (transducers to the specimen), the transducers
themselves, or in the amplifier circuitry [29,33,43]. A test to see whether the interface (in
the solid-solid case) is a source of harmonics is to increase the nominal contact pressure;
this causes a reduction in the amplitude of higher harmonics indicating that the inter-
face is also the source of nonlinearity generated in the reflected signals. To eliminate all
sources of nonlinearity apart from those generated by the contact [44,45], Equation (38) is
reformulated as:

γ =

∣

∣

∣

∣

∣

A2

A2
1

−
A2 re f

A2
1 re f

∣

∣

∣

∣

∣

=
K2

ρcω

√

1 + (K1/ρcω)2
(40)

where A1 re f and A2 re f are amplitudes of fundamental frequency and second order har-
monic from a solid-air contact, respectively. In this way all nonlinearities not associated
with the interface are subtracted out.

The amplitude of the fundamental frequency of the reflected pulse in solid–solid
contact (Figure 5f) was divided by the amplitude of the corresponding harmonic from the
reference solid-air contact (Figure 5c) to derive the reflection coefficient R (Equation (36)).
For the second order nonlinear parameter γ, the amplitude of the fundamental frequency
was divided by the square of the amplitude of the second harmonic (Equation (40)).

3.4. Voltage to Meter Conversion

Reflected and transmitted signals received by the transducer from the interface are
in units of voltage, therefore, the second order nonlinear parameter for the reflected
ultrasound from the interface γ is in V−1. To compute the nonlinear stiffness K2, the
nonlinear parameter for the reflected ultrasound amplitude from the interface γ must be
in units of meters. A method for determining the amplitude (in meters) from the piezo
voltage was required. A Laser Doppler vibrometer (Polytec with laser sensor head OFV
354 and the vibrometer controller OFV 2500) was employed, as shown in Figure 6. A laser
beam was incident on the free surface of the aluminium block with a transducer connected
to the back face. While the transducer generated longitudinal waves in the aluminium
block at different excitation voltages from 70 V to 350 V at center frequency 2 MHz, the
laser beam was reflected from the free surface and captured by the laser sensor head. The
captured laser beam returns velocity information. A numerical integral with respect to time
results in the displacement of the surface in meters. The same signal processing procedure
as explained in Section 3.3 was used to measure the displacement of the surface at different
piezo voltages and hence incident amplitudes.

Figure 7 presents the linear variation of amplitude of the reflected signal from the
interface in voltage unit against the displacement of solid–air contact in meter. The slope of
the curve δ (V/m) gives voltage to meter conversion [46]:

γ
(

m−1
)

= δ

(

V

m

)

γ
(

V−1
)

(41)
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𝛾 = 𝐴𝐴 − 𝐴  𝐴  = 𝐾𝜌𝑐𝜔 1 + (𝐾 /𝜌𝑐𝜔)  𝐴  𝐴  

𝑅𝛾

𝛾 V 𝐾𝛾

70 V 350 V 2 MHz

𝛿 (V/m) 𝛾(m ) = 𝛿 Vm 𝛾(V ) 

Figure 6. Schematic diagram of voltage to meter conversion apparatus.

𝑅 90 V140 V 210 V

𝑝90 V 140 V 210 V
𝐾

Figure 7. Voltage to meter conversion at ultrasonic incident amplitudes 70 V, 90 V, 140 V, 210 V, 280 V

and 350 V.

4. Results and Discussion

Figure 8a shows the reflection coefficient R for incident waves of excitations 90 V, 140 V
and 210 V as a function of the nominal contact pressure, determined from the amplitude of
the first order reflection from the solid interface divided by that from the solid-air interface
according to Equation (36). They were measured after 10 loading/unloading cycles to
remove any asperity plasticity effects. It can be seen that the reflection coefficient decreases
with increasing the nominal contact pressure due to increase in the real contact area.

The data of Figure 8a was used to determine the first order linear interfacial stiffness
K1 using Equation (37) (Figure 8b). Higher pressures cause a stiffer interface. As expected,
the reflection coefficient and linear stiffness determined at any voltage is identical. The
amplitude of the ultrasonic wave does not change the linear stiffness component.
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𝑅 90 V140 V 210 V

𝑝90 V 140 V 210 V
𝐾

Figure 8. The influence of nominal contact pressure p0: (a) reflection coefficient; (b) linear interfacial

stiffness; (c) pressure-relative surface approach derived from the linear interfacial stiffness at incidents

amplitude excitations of 90 V, 140 V and 210 V.

A best fit curve to the linear interfacial stiffness shown in Figure 8b is a fourth-order
polynomial expression:

K1(p0) =
4

∑
n=0

an p0
n (42)

where an is a constant coefficient. This coefficient will depend on factors such as surface
topography and elastoplastic deformation of the asperities in contact.

The nominal contact pressure p0 can be expressed in terms of the relative surface ap-
proach Y of the contacting surfaces. To do this, the linear interfacial stiffness K1 (Equation (42))
was substituted into Equation (27) creating a first order nonlinear homogeneous differential
equation:

dp

dY
+ K1(p0) = 0 , p(0) = 0 (43)

The initial condition indicates that in the absence of elastic wave (ultrasound), there is
zero relative surface approach. The homotopy perturbation method (HPM) was employed
to solve Equation (43) with respect to relative surface approach:

p0(Y) =
2

∑
n=0

bnYn (44)

where bn is a constant coefficient. This coefficient, as with an, will also depend on the
surface asperity and material properties. A numerical differential equation (ode45 function
in MATLAB [47]) of the data in Figure 8b according to Equation (43) was used to determine
the nominal contact pressure-relative surface approach relationship, as shown in Figure 8c.

The shape of the nonlinear nominal contact pressure-relative surface approach curve
demonstrates the stiffening behaviour of the interfacial spring under increasing contact
pressure. In other words, increasing the nominal contact pressure leads to a reduction
in the gap, more solid contact, and hence a stiffer interface. In the absence of an elastic
wave, the relative surface approach was zero (Y = 0) under nominal contact pressure
p0 = 0 MPa (nominal contact pressure generated by the weight of upper body is negligible).
The negative sign of the relative surface approach Y indicates the reduction of the interface
separation (greater deflection in the asperities). The gradient of the curve increases with
increase in nominal contact pressure demonstrating stiffer interfacial contact.

Figure 9a shows the second order nonlinear parameter γ at excitations 90 V, 140 V,
and 210 V as a function of the nominal contact pressure. This nonlinear parameter is
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determined from the amplitude of the second harmonic divided by the square of the
first harmonic (Equation (40)). To evaluate the second order nonlinear stiffness K2, the
experimental results of the second order nonlinear parameter γ were substituted into
Equation (39) (Figure 9b).

𝑝𝛾90 V 140 V 210 V
𝐾𝐾

𝐾 (𝑝 ) = 𝑐 𝑝   
𝑐 𝑝𝑌𝐾

12 𝑑 𝑝𝑑𝑌 − 𝐾 (𝑝 ) = 0 , 𝑑𝑝𝑑𝑌 = 0 , 𝑝(0) = 0 

Figure 9. The influence of nominal contact pressure p0: (a) second order nonlinear parameter for

the reflected ultrasound from the interface γ; (b) nonlinear interfacial stiffness; (c) pressure-relative

surface approach derived from the nonlinear interfacial stiffness at incidents amplitude excitations of

90 V, 140 V and 210 V.

It is seen from Figure 9b that the second order nonlinear stiffness increases as the nom-
inal contact pressure increases up to 2.5 MPa. However, beyond this value the nonlinearity
decreases, so the nonlinear stiffness decreases. The comparison shows that K2 is indepen-
dent of the amplitude of the incident wave. A best fit curve to the second order nonlinear
interfacial stiffness K2 shown in Figure 9b is a fourth-order polynomial expression:

K2(p0) =
4

∑
n=0

cn p0
n (45)

where cn is a constant coefficient. This coefficient depends on some factors such as surface
topography and elastoplastic deformation of the asperities in contact. However, further
studies are required. As before, the nominal contact pressure p0 is expressed in terms of the
relative surface approach Y of the contacting surfaces. To do this, the nonlinear interfacial
stiffness K2 (Equation (45)) was substituted into Equation (28) creating a second order
nonlinear homogeneous differential equation:

1

2

d2 p

dY2
− K2(p0) = 0 ,

dp

dY
= 0 , p(0) = 0 (46)

The initial conditions indicate that in the absence of an elastic wave (ultrasound), there
is zero relative surface approach and linear interfacial stiffness. The homotopy perturbation
method (HPM) was again employed to solve Equation (46) with respect to relative surface
approach. A numerical differential equation (ode45 function in MATLAB [47]) of the
data in Figure 9b according to Equation (46) was used to determine the nominal contact
pressure–relative surface approach relationship, as shown in Figure 9c. The result was the
same as Equation (44).

The comparison between the pressure–relative surface approach derived from lin-
ear and nonlinear interfacial stiffness is presented in Figure 10. Figure 10a shows the
pressure-relative surface approach derived from the present experimental data. Figure 10b
is included for comparison, and shows the pressure–relative surface derived from the
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experimental data from [22]. It should be noted that the experiment presented in [22] was
through transmission while the current paper considered reflected signal. Both approaches
yield a similar relationship.

90 V 140 V210 V 374 V 𝐾𝐾   

. 

Figure 10. Pressure-relative surface approach derived from linear and nonlinear interfacial stiffness:

(a) experimental data of the current study at incidents amplitude excitations of 90 V, 140 V and 210 V;

(b) experimental data from [22] at incidents amplitude excitations of 374 V.

It is seen that the pressure–approach relationship derived from the linear stiffness
K1 and second order nonlinear stiffness K2 are very similar for all excitation voltage
cases. As expected, the pressure–approach response should not depend on whether it was
determined from either linear or nonlinear stiffness measured data. This gives confidence
in the robustness of the measurement method and the analysis approach. The interfacial
spring can be modelled with a stiffness described by a Taylor expansion with first and
second order components (Equation (26)). Further, an experimental measurement of either
one of these components, using ultrasonic reflection, is sufficient to deduce the other and
hence characterise the spring stiffness.

5. Conclusions

In this work, the stiffness of a rough surface contact has been expressed in terms of
a linear and second order nonlinear stiffness. Both these interfacial stiffness components
were determined from the refection of a high-power ultrasonic wave. The high-power wave
causes a non-linear response of the interface and generates higher order harmonics. The
first order linear stiffness was deduced from the reflection of the fundamental frequency
wave; whilst the second order nonlinear stiffness was deduced from the second harmonic
frequency reflection. A fourth-order polynomial expression for the linear and nonlinear
interfacial stiffness as a function of nominal contact pressure were defined. A first order
nonlinear homogeneous differential equation of linear stiffness and a second order nonlin-
ear homogeneous differential equation of the nonlinear stiffness with respect to relative
surface approach was used to determine the relationship between the nominal contact
pressure and relative surface approach. The results derived from both linear and nonlin-
ear interfacial stiffness were similar. This indicates both linear and nonlinear interfacial
stiffness subjected to the same nominal contact pressure can be measured by ultrasound.
Further, the Taylor series used to represent the contact pressure–relative surface approach
relationship can accurately represent the interface behaviour.
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Nomenclature

A Amplitude of incident wave (V)
A1 Amplitude of fundamental harmonic reflected pulse (V)
A2 Amplitude of second harmonic reflected pulse (V)
c Speed of sound (m/s)
E Elastic modulus (Pa)
f (x, t) Incident ultrasonic wave (m)
G(x, t) Reflected ultrasonic wave (m)
H(x, t) Transmitted ultrasonic wave (m)
h(t) Rough surface mean line separation (surface separation) variation with time (m)
h0 Equilibrium separation of the rough surface mean lines (m)

K1 Linear interfacial stiffness (Pa/m)
K2 Second order nonlinear interfacial stiffness

(

Pa/m2
)

p
Total nominal contact pressure (summation of externally applied and applied by

ultrasound) (Pa)
p0 Nominal externally applied contact pressure (Pa)

R Reflection coefficient

u(x, t) Displacement of ultrasonic wave (m)
X(t) Translational motion of the contact interface (m)
Y(t) Relative surface approach (m)

α Imbedding parameter (Homotopy Perturbation Method).

γ Second order nonlinear parameter for reflected ultrasound

δ Voltage to amplitude (meter) conversion (V/m)
ν Poisson’s ratio

ρ Density of the media
(

kg/m3
)

σ(x, t) Normal stress (contact pressure) generated by the ultrasonic wave (Pa)
ω Angular frequency (rad/s)
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