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We propose thermally-driven, voltage-controlled superparamagnetic ensembles as low-energy platforms for
hardware-based reservoir computing. In the proposed devices, thermal noise is used to drive the ensembles’
magnetization dynamics, while control of their net magnetization states is provided by strain-mediated voltage
inputs. Using an ensemble of CoFeB nanodots as an example, we use analytical models and micromagnetic
simulations to demonstrate how such a device can function as a reservoir and perform two benchmark machine
learning tasks (spoken digit recognition and chaotic time series prediction) with competitive performance. Our
results indicate robust performance on timescales from microseconds to milliseconds, potentially allowing such
a reservoir to be tuned to perform a wide range of real-time tasks, from decision making in driverless cars
(fast) to speech recognition (slow). The low energy consumption expected for such a device makes it an ideal
candidate for use in edge computing applications that require low latency and power.

Artificial intelligence, and in particular machine learn-
ing (ML) techniques, are widely used across a variety of
sectors, but the associated energy cost of training highly
complex models has become a significant challenge®.
This has led to a desire to produce efficient, hardware-
based neuromorphic platforms to replace the current
state of the art i.e. software-based models evaluated on
traditional CMOS computing architectures?.

Recurrent neural networks (RNN) are inspired by the
high interconnectivity of biological systems and can solve
complex time-dependent tasks, such as speech recogni-
tion. However, their temporal interconnectivity requires
complex training methods that are computationally ex-
pensive and difficult to implement on hardware®. The
reservoir computing (RC) paradigm provides a solution
to this by using a RNN with fixed synaptic weights (the
reservoir) to transform inputs into a higher dimensional
representation prior to them being passed to a simple,
feed-forward output layer with trainable weights?. Time
multiplexing allows RC to be performed even if the reser-
voir consists of only a single dynamical node®.

RC is also particularly well suited to hardware-based
implementations as the reservoir can be replaced with
any suitable physical system providing it has the correct
properties: (a) the ability to produce nonlinear transfor-
mations of input data and (b) fading memory of past
inputs. Such implementations have the potential for
lower energy costs than reservoirs simulated on conven-
tional computers as they can directly utilise the intrin-
sic functionalities of the physical systems. This has led
to a wide range of systems being proposed as suitable

a)a.welbourne@sheffield.ac.uk

reservoirs®. In particular, magnetic systems exhibit non-
volatility and nonlinearity, and thus are positioned as
ideal candidates”. Previous investigations have demon-
strated the suitability of a wide range of magnetic sys-
tems for use as reservoirs, including spin-torque nano-
oscillators, dipole-coupled nanomagnets, and arrays of
interconnected nanowires® 4.

Here, we propose strain-mediated, voltage-controlled
superparamagnetic ensembles as platforms for creating
ultra-low-energy hardware-based reservoirs. Using a
combination of micromagnetic simulations and analytical
modelling, we will show that these ensembles possess the
reproducible behaviour, non-linearity and fading memory
required for RC and demonstrate (using a model of the
system) competitive performance on two benchmark ma-
chine learning tasks: spoken digit recognition and chaotic
time series prediction.

The modelled systems consist of ensembles of circu-
lar CoFeB nanodots with diameters in the range 40 nm
to 90nm and thicknesses of 4nm (Fig. 1(a)). The
dots’ diameter is fixed within a single ensemble, but
different values allow access to different timescales of
the ensembles’ responses. We assume a large ensemble
(over 1000 dots, or a 6.3pm square array) with nan-
odots spaced by 160nm to minimise dipolar coupling.
The dots are assumed to have saturation magnetisation
M, = 1200kAm~!, exchange stiffness A,, = 10pJm~!
and a growth or shape-induced'®'6 uniaxial anisotropy
K =8kJm™3.

A schematic diagram illustrating the geometry of an
individual dot is shown in Fig. 1(b). A fixed magnetic
field (40 % of the anisotropy field) is applied at 90° to
the anisotropy axis. Magnetoelastic control of the ar-
rays’ magnetic states is provided by voltage-controlled
uniaxial strain applied at 45° to the anisotropy axis (an
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FIG. 1. (a) Schematic of a 25 dot ensemble. V; and V, show where voltage is input and output. The remainder of this figure
considers single nano-dots from the larger ensemble. (b) Schematic of the control mechanism for the dots. Application of an
additional strain-mediated anisotropy acts to rotate the anisotropy axis with respect to the fixed field. Behaviour in a single
dot is shown, but the strain is applied to the whole ensemble. (c¢) Energy landscape for a nano-dot under strain as given by
Eq. 1 for ko = £0.2, h = 0.4, ¢ = 45° and p = 90°. (d) Micromagnetic simulations of thermally activated switching in a single
40nm diameter, 4nm thickness CoFeB cylinder with 8.2kJm™? intrinsic uniaxial anisotropy and a field (b = 0.4) applied at
90° to the anisotropy axis. Top, no strain (k. = 0), unbiased. Middle, tensile applied strain (k, = 40.2), rightward pointing
state preferred. Bottom, compressive applied strain (ko = —0.2), leftward pointing state preferred. (e) Multiple switches are
sampled from the tensile strain micromagnetic simulation to plot the probability of not-switching as a function of time in
the state. Average dwell time in the leftward state is shorter than in the rightward state. (f) Switching rate versus applied
anisotropy for a single nano-dot. The points are for the micromagnetic simulations. The curves are rates for the energy barriers
given by the Stoner-Wohlfarth model (Eq. 1).

ultra-lower-power consumption technique!”). We base nitude K, = 3/2AsFe, where Ay is the magnetostric-
our parameters for this on the artificial multiferroic het- tion coefficient (31-75 ppmlg’zz)7 E the Young’s modulus

erostructure PMN-PT (011)/CoFeB where strains of up
to 0.175% can be applied, leading to a strain anisotropy
of comparable magnitude to typical growth-induced in-
trinsic anisotropies'®'9. Input is via voltage applied per-
pendicularly across the PMN-PT layer. An output de-
rived from, for example, giant magnetoresistance would
be proportional to the magnetisation of the array (see
Fig. 1(a)).

To model strain-mediated voltage control of the CoFeB
nanodots, we express their energy using the Stoner-
Wohlfarth model?®?!.  The application of strain to
isotropic, amorphous CoFeB results in the addition of
a uniaxial magnetoelastic anisotropy term with mag-

(216 GPa?®), and e the voltage-induced strain®*. When
combined with an intrinsic uniaxial anisotropy (K) the
normalized energy per unit volume e(f) = E(0)/KV is
then:

e() = sin®(0) + ko sin?(0 — ¢) — 2hcos(d — p) (1)

where 6 is the angle of the magnetization to the intrinsic
anisotropy axis, k, = K, /K, h = poMsH/2K = H/H
is a fixed applied field, and ¢, p are the angles of the
strain anisotropy axis and field direction to the intrin-
sic anisotropy respectively. The two anisotropies can be
combined into a single term®® (see supplementary), re-
sulting in a anisotropy axis that is rotated by chang-
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ing the magnitude of K, through application of strain
(Fig. 1(b).

Fig. 1(c) shows how the energy barriers of the sys-
tem evolve under tensile and compressive strains. Here,
¢ =45°, p =90°, h = 0.4 and k, = £0.2. The strain
changes the energy profile such that the energy barri-
ers are no longer equal for the two states. The super-
paramagnet’s magnetization exhibits stochastic behav-
ior, switching between the minimum energy states with
a characteristic dwell time controlled by these energy bar-
riers. Using the Néel-Arrhenius law, the switching rate
from state ¢ (magnetization right) to j (magnetization
left) is:

1 EY
wij = — = fo' exp (f kB’T> = [ en (-ef) (@)

ij

where féj is the attempt frequency (typically 10°
101 571 26)| kp the Boltzmann constant, £, is the en-

ergy barrier from state i to j, ezj the reduced energy, and
B = KV/kgT the scaled thermal energy. The thermal
switching of superparamagnets has previously been used
for random number generation?”?8, adiabatic computing
algorithms?®, and encoding nonlinear functions.

This stochastic switching is illustrated in Fig. 1(d),
which presents micromagnetic simulations (T = 300K)
of thermal switching between two ground states in a
40nm diameter CoFeB cylinder performed using the
MuMax33!32 software package. Changing the strain ap-
plied manipulates the dwell time of the magnetisation
in the two states: tensile(compressive) strain results in
an increased dwell time in the right(left) magnetization
state.

Fig. 1(e), plots the probability of not switching as a
function of time in a state for the tensile strain case.
The decay rate of these exponential distributions gives
the dwell time and switching rate for the state. Fig. 1(f)
compares rates extracted from the micromagnetic sim-
ulations (points) with those derived from energy barri-
ers defined by the macrospin model (Eq. 1). A value of
fo = 0.5 x 10° Hz is selected such that the values of Wi
at zero applied strain match between the two models.
The macrospin model agrees reasonably with the micro-
magnetic simulations, however, the data match less well
at higher magnitudes of strain. The deviation occurs for
values of k, (high) and 3’ (low) where the assumption
of Néel-Arrhenius like switching between two states ap-
proaches the limit of its validity (Ej ~ 3k,T)%*. We do
not calculate micromagnetic rates for all values of 8’ as
the run time required for the simulations scales exponen-
tially. However, we expect the agreement is as good or
better for larger 8’ where the assumption Ej, > 3k,T is
always met. The macrospin model is, therefore, used to
model the CoFeB dots throughout the reminder of this
paper.

We now consider how the stochastic behaviour of sin-
gle nanodots manifests in an extended ensemble as pre-
dictable collective behavior. The average magnetization

obeys simple rules that, when subject to a temporally
varying input in the form of a globally applied strain, pro-
duce a reproducible, complex, nonlinear response with
fading memory, thus fulfilling the basic requirements of
a hardware-based reservoir.

We model the extended ensemble as a two-state system
governed by the master equation®?:

% = Paw21 — P1wi2 (3)
where p; is the normalized population in state i such that
p1 + p2 = 1, and w;; is the transition rate as defined in
Eq. 2. This model does not take into account the error
introduced by a finite system size. However, it is appro-
priate for systems with a large number of nanodots (as
we assume here) since the error scales as 1/y/n. Integrat-
ing Eq. 3 gives the time-dependent probability for fixed
transition rates:

pi(t) = % [1 - exp (—wt)] +p1(0) exp (—wt)  (4)

Excitation Decay

where w = wy1 + wia. Given our system with a fixed ap-
plied field, the reduced magnetization (unit length) along
the x direction (magnetization right) can be written:

mq(t) = pi(t) cos (31 (F)) — pa(t) cos (32(1))  (5)

where 0; refers to the slight rotation of the energy mini-
mum away from the x axis due to the fixed field.

Fig. 2(a) plots the equilibrium (¢ — oo) response of
reduced magnetization to an applied strain anisotropy
(ks). The response is nonlinear and While the exact
form depends on the scaled thermal energy (5’), it main-
tains sigmoidal like features that sharpen with increasing
KV/kpT. Importantly, the curve remains nonlinear as
required for reservoir computing. Fig. 2(b) illustrates
the complex response of the reduced magnetisation to a
temporal input sequence. Section A, where a single in-
put is turned on and held, demonstrates excitation of the
magnetisation away from zero net magnetisation. Sec-
tion B, where no input is present, demonstrates decay
behavior back towards zero net magnetisation. In all
other sections, applied strain inputs are held for a dura-
tion less than the zero-input base time (7j) of the sys-
tem, and thus the system response exhibits both excita-
tion and decay terms. The zero-input timescale scales as
To o exp(0.364'), a variation from nanoseconds to mil-
liseconds for 3 = 10 to 50, which allows a reservoir to be
designed with a timescale to match a particular real-time
task (see supplementary for further details). The sharp
transitions upon changes of input are due to the slight
rotations of the minimum energy states within single dots
(change in §;) and are expected to occur on a timescale
much faster than the thermally driven response of the
ensemble. Since p;(t) depends on p;(t — At), the system
exhibits a fading memory: the response of the reservoir
depends on the current and previous inputs.
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FIG. 2. Collective response from an ensemble of nanodots.
(a) The equilibrium magnetization response of the reservoir
to input strain anisotropy for 8’ = 10 to 50. (b) Reservoir
magnetization over time in response to an input sequence.
Sections A and B show the excitation and decay responses of
magnetisation as described in Eqs. 4 & 5.

Together, the reproducible response, nonlinearity, and
fading memory of the superparamagnetic ensembles sug-
gest they have the correct properties to be used as hard-
ware reservoirs. Furthermore, as discussed by Hu et al. 7
the estimated power consumption for magnetoelastically
driven MRAM is 160aJ per bit written (a rotation of
90°). Our system uses ~1000 such bits, but less than
15 % of the strain required for a 90° rotation; this gives
an approximate estimate of 24 fJ per input. This com-
pares favorably to the write energy per bit of STT-RAM
of 100£J'7. While this figure is not precise, it indicates
the potential for ultra-low-energy consumption. Further-
more, Safranski et al.>* have verified that uncorrelated
thermally-driven switching can be observed in CoFeB
MTJs for dwell times of 5ns and above, which we can
take as a floor for the operational speed of these nan-
odots. Longer dwell times can easily be induced by scal-
ing up the size of the magnetic elements, thus increas-

ing the energy barrier between states. Therefore, the
timescale of the ensembles’ responses could be easily en-
gineered across many orders of magnitude to allow them
to perform a wide range of real-time tasks.

Having established that strain-mediated, voltage-
controlled superparamagnetic ensembles possess the
qualities required for RC, we now test our system’s per-
formance against two common ML tasks. We treat the
nanodot array as a single dynamical node with complex
internal behavior and thus adopt the approach described
by Appeltant et al.® (Fig. 3(a)-(d)).

The RC process is as follows. A raw input signal with
Ni, dimensions is discretized such that S(ndt) = S,, giv-
ing a 2d matrix of size Nsamples by Nin. For the training
part, each input sample has a corresponding desired out-
put y, of dimension Noyu¢, forming a matrix of Nsamples
by Nout- A mask matrix is used to project a random
combination of the input dimensions on to each of the
N, virtual neurons and is constant for all samples of the
input. For a 1d input signal, such as the NARMA10 task
(Fig. 3(b)), the random nature of the mask is designed
to stimulate a range of dynamics. For a sample index n
and virtual neuron 7 the total input voltage is:

Nin

Uny = Av Z SngMij + VT (n—1is (6)
=1

where Av represents a scaling factor to give an input
voltage into the reservoir, v is the feedback strength and
T(n—1); the output value of the reservoir for virtual neu-
ron 4 but for sample n — 1.

This matrix of input voltages is serialized as 1d time
series with each virtual node presented in order before the
applying the next input sample. This is demonstrated in
Fig. 3(c), which shows the masked input, masked input
with added feedback term, and finally the raw output
of the reservoir at the transition point between samples
56 and 57. The masked input voltage for each virtual
neuron is held constant for the neuron duration 6, thus
the reservoir time between each input sample is ( = N,0.
The raw output of the reservoir is measured at the end of
each virtual neuron duration to give a transformed value,
which for the nth input sample and virtual neuron i is

Tpi = My ('Uni) (7)

The aim of RC is that transformed values from e.g. dif-
ferent input classes are now linearly separable by a hy-
perplane due to the higher dimensional transformation.
Thus, a set of linear output weights are used to classify
the output. The predicted output of sample n and output
dimension k is

N,

gnk = Z Tnj Wk_7'7 (8)

j=0

where Wp; is the output weight matrix (Fig. 3(d)). A
constant bias term is included as the j = 0 element of
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FIG. 3. Reservoir computing using the superparamagnetic ensemble. (a) Schematic of reservoir computing. (b) Raw input

to the system; here, random numbers from the interval [0,0.5]

for the NARMAI10 task. (c) A single input value from (b) is

transformed by the mask into masked inputs. A snapshot is shown from just before to just after the raw data time step 57¢.
Feedback is then added: the output from the each virtual node one time step (¢) previously is multiplied by a feedback strength
and added to the masked inputs. The raw output is the response of the reservoir to the masked input with feedback. (d)
Output after trained linear layer compared to desired output. Here, the desired NARMA10 output from Eq. 10 is compared to
the output provided by the trained reservoir. (e) Machine learning performance on speech recognition task. (f) Performance

on NARMAI10 task.

the weights with an extra column in z as x,o = 1 for
all n. The output weights are found by using ridge (or
Tikhonov) regression.?®. This gives a direct solution for
the weights as

W=y x (x"x + A1), 9)

where A is the L2-norm regularisation hyper-parameter
and I the identity matrix. A is found through a grid
search to find the lowest mean-square error which is sam-
pled using 5-fold cross validation of the training data set
for each task to prevent overfitting.

We use two common machine learning tasks as proof of
principle of the reservoir’s operation: spoken digit recog-
nition (TI-46 dataset) and chaotic time series prediction
(NARMA10). These require a reservoir with good non-
linearity and memory respectively. Performance heat
maps for the spoken digit task are shown in Fig. 3(e).

The task requires the recognition of the spoken digits 0
9 by five female speakers from the NIST TI-46 dataset®°.
Preprocessing separates the data into 13 frequency bands
using a MFCC filter®” before it is masked. Training and
validation was performed on 100 utterances per speaker,
testing on 160. The input rate (0/7p) and the scaling of
the input (maximum k,) are varied and the error rate
for the test dataset is plotted. 50 virtual nodes was
found to give good performance. The left hand heat
map is for an ensemble with a base timescale Tp = 1.4 s
(KV/kyT = 20, nanodot diameter 57 nm), the right hand
heat map for Ty = 66 ms (KV/k,T' = 50, nanodot diam-
eter 90nm). In both cases, an error rate of 5% can be
achieved, showing that this reservoir can perform well at
this task across a range of timescales. To provide a base-
line, the error rate when the reservoir is removed and
the masked input is treated as the output is 23 %. The
relatively high base level is due to the inherent nonlin-
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earity in the preprocessing discussed by Abreu Araujo
et al.?®. However, the important demonstration here is
the increase in performance with the reservoir, which is
comparable to other hardware based reservoirs®®3%. The
complexity of the maps, while not discussed in further de-
tail here, may be due in part to coupling between input
strength and internal timescale (see supplementary).

The goal of the chaotic time series task (NARMA10)
is to predict the response to white noise (random num-
bers drawn from [0,0.5]) of a discrete-time tenth order
nonlinear auto-regressive moving average3®19:

10
Yn = Yn—1 (0.3 +0.05) y,,,,k>

k=1
+1.58,_18n_10 +0.1. (10)

The task for the network is to predict the NARMA10
output ¥, given the input S,,. We can characterize the
success of the network via the metric, Normalized Root
Mean Squared Error (NRMSE):

N./~ .
L Ew, (yn - yn)z

NRMSE =
RMS Var(y)

; (11)

where y,, is the true output (Eq. 10) and g, the predicted
output from the network (Eq. 8). For this task, we make
use of the delay line feedback (Fig. 3(a)) similar to the
Mackey-Glass reservoir discussed by Appeltant et al.®.
This delay line (an addition of the output at time ¢ — ¢
to the input at time t¢) serves to boost the memory ca-
pacity of the system; an important requirement for the
NARMAI10 task. Fig. 3(f) presents a heat map where
NRMSE is plotted for varying feedback strength (y) and
intrinsic timescale (change in KV/kgT). Previous opti-
misation lead to the use of 400 virtual nodes, input rate
0/Ty = 0.3, and input scaling of 0.003. 2000 samples
were used for training and validation (10-fold), 1000 for
testing. It can be seen that good performance (around
NRMSE = 0.42, c.f Ref. 39) can be maintained from
the ps to ms regime by varying the feedback strength.
Fig. 3(d) demonstrates a typical predicted and true sig-
nal for this level of NRMSE. As with the speech recogni-
tion task, we can compare to the value achieved when the
reservoir is removed and the masked input taken as the
output to be trained: a NRMSE ~ 1. Using a Mackey-
Glass reservoir (with optimisation parameters based on
those in Appeltant et al.®) a value of 0.50 was achieved.
It should be noted that this value differs from that given
by Appeltant; this is believed to be due to a differing
definition of NRMSE.

While we have demonstrated the feasibility of this sys-
tem for machine learning, we now address two of the key
potential challenges in realising it as an experimental de-
vice. Firstly, reproducibility of the magnetic behaviour.
Whether due to deviations from the Stoner-Wohlfarth
model, small pertubations from long-range magnetostatic
coupling, or variation in PMN-PT response from nanodot
to nanodot, the magnetic response curve may differ from

that presented in Fig. 2. However, one of the chief ad-
vantages of the system envisaged is that the behaviour
does not have to be realised exactly in order to produce
the behaviour required for machine learning, as long as
the response of the system is nonlinear, reproducible and
has fading memory. As the output is derived from an
average across an ensemble, slight changes in behaviour
from nanodot to nanodot are averaged out across the
whole array. This should give the device high tolerance
to small deviations. This is in contrast to typical mag-
netic logic and memory devices where slight device to
device variations can cause significant problems with re-
producibility. We have also demonstrated, in Fig. 3(e),
that high performance can be achieved for systems with
differing magnetization response curves. This leads to
the second consideration: how reproducible the device
will be run-to-run. The reproducibility of the signal will
largely depend on the size of the array, with the error
scaling as 1/y/n. By increasing the size of the array, the
error can be made arbitrarily small. It will be impor-
tant to determine how large an error can be tolerated,
and this will be an avenue of future research. We an-
ticipate that the threshold of the noise tolerance will be
problem specific. The tolerance of the system to changes
in magnetic response and the increase in reproducibility
due to the aggregate nature of the device should help to
mitigate the key challenges of realizing a physical device.

In conclusion, we have proposed strain-mediated
voltage-controlled superparamagnetic ensembles as plat-
forms for hardware-based reservoir computing. We have
demonstrated competitive outcomes on two machine
learning benchmark tasks (spoken digit recognition and
chaotic time series prediction) as well as explaining the
properties of the ensemble which give rise to their ability
to act as a reservoir. By tuning internal parameters (in-
put rate, input scaling, and feedback strength), this per-
formance can be delivered across a range of timescales,
from ps to ms. This would allow a physical realization
of such a reservoir to be tuned to provide computation
in real time for a wide range of possible physical inputs:
from decision-making in driverless cars (fast) to speech
recognition (slow). The simplicity of the system, cou-
pled with the low energy consumption for such a voltage-
controlled, thermally-driven device, makes it an ideal
candidate for use in edge computing applications where
high performance is needed at low latency and power.

SUPPLEMENTARY MATERIAL

See the supplementary material for a discussion of the
full form of the anisotropy, and the tunable behaviour of
the timescales.
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