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Background: Other than its direct impact on cardiopulmonary health, Coronavirus

Disease 2019 (COVID-19) infection affects additional body systems, especially in older

adults. Several studies have reported acute neurological symptoms that present at

onset or develop during hospitalisation, with associated neural injuries. Whilst the acute

neurological phase is widely documented, the long-term consequences of COVID-19

infection on neurocognitive functioning remain unknown. Although an evidence-based

framework describing the disease chronic phase is premature, it is important to lay the

foundations for future data-driven models. This systematic review aimed at summarising

the literature on neuroimaging and neuropathological findings in older over-60 patients

with COVID-19 following a cognitive neuroscientific perspective, to clarify the most

vulnerable brain areas and speculate on the possible cognitive consequences.

Methods: PubMed and Web of Science databases were searched to identify relevant

manuscripts published between 1st March 2020 and 31th December 2020. Outputs

were screened and selected by two assessors. Relevant studies not detected by

literature search were added manually.

Results: Ninety studies, mainly single cases and case series, were included. Several

neuroimaging and neuropathological findings in older patients with COVID-19 emerged

from these studies, with cerebrovascular damage having a prominent role. Abnormalities

(hyperintensities, hypoperfusion, inflammation, and cellular damage) were reported in

most brain areas. The most consistent cross-aetiology findings were in white matter,

brainstem and fronto-temporal areas. Viral DNA was detected mainly in olfactory,

orbitofrontal and brainstem areas.
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Conclusion: Studies on COVID-19 related neural damage are rich and diverse, but

limited to description of hospitalised patients with fatal outcome (i.e., in neuropathological

studies) or severe symptoms (i.e., in neuroimaging studies). The damage seen in

this population indicates acute and largely irreversible dysfunction to neural regions

involved in major functional networks that support normal cognitive and behavioural

functioning. It is still unknown whether the long-term impact of the virus will be

limited to chronic evolution of acute events, whether sub-clinical pathological processes

will be exacerbated or whether novel mechanisms will emerge. Based on current

literature, future theoretical frameworks describing the long-term impact of COVID-19

infection on mental abilities will have to factor in major trends of aetiological and

topographic heterogeneity.

Keywords: neuroimaging, neuropathology, COVID-19, ageing, stroke, encephalopathy, encephalitis

INTRODUCTION

At the end of 2020, the global pandemic of Coronavirus Disease
2019 (COVID-19) has already affected more than 77 million
people and caused over 1.8 million deaths worldwide. Although
COVID-19 manifests primarily with respiratory problems, the
detrimental consequences of this infection may be much wider.
A fast-growing body of recent publications has been showing
that infection due to COVID-19 may attack multiple organ
systems to a variable extent, especially in vulnerable people
with prior medical conditions. In particular, older adults are
among those most severely affected by the current pandemic and
mortality rates have been reported to be particularly high in older
populations (Shahid et al., 2020). Possible causes of such increase
in vulnerability to the COVID-19 infections include ageing-
related changes occurring naturally in the immune system,
associated with a reduction in the effectiveness of the immune
response (Oh et al., 2019). As a consequence, older adults appear
to be more vulnerable than younger adults and children to
the cytokine storm activated as a response to the infection
(Nidadavolu and Walston, 2020). This older population is also
the cohort at greatest risk of neurodegenerative diseases.

The first pathological examinations carried out on patients
deceased because of complications associated with COVID-
19 showed that signs of this infection extend beyond body
tissues directly associated with the respiratory system (Xu et al.,
2020). These findings have raised several concerns about the
consequences COVID-19 may have on extra-respiratory body
systems in older patients, in particular the nervous system. In
fact, a variety of neurological complications has been reported
in about 25% of patients in some reports (e.g. Romagnolo et al.,
2020), even though high variability in symptom prevalence and
incidence has been observed across studies (Herman et al.,
2020). At present, no evidence-based link exists between COVID-
19 and risk of neurodegeneration; however, at this stage it
is particularly important to outline a data-driven framework
that could inform the study of the long-term neurological
consequences of this infectious disease. Since COVID-19 was
identified only in December 2019 and declared a pandemic
in March 2020, thorough and incessant efforts have been

made to prioritise the characterisation of its acute effects on
the nervous system. Although studies of the acute effects of
COVID-19 are, undoubtedly, a priority, it remains unknown
whether the infection and its acute neurological effects play
a role as part of long-term neurological trajectories. Acquired
neural damage may increase the risk of initiating or worsening
neurodegenerative processes (Heneka et al., 2020), possibly in a
differential manner depending on the type of neurodegenerative
condition (Ferini-Strambi and Salsone, 2020). The study of
the effects of COVID-19 on cognitive decline is an area
of interest that might become central in the study of the
pathophysiological mechanisms of neurodegeneration and in the
future management of neurological patients.

Multiple sources of evidence have already been accumulating
on the impact of the current pandemic on mental health of
older adults both with and without cognitive decline (Manca
et al., 2020). A systematic examination of the literature reporting
findings on neural damage observed as a consequence of COVID-
19 infection in older adults will provide an understanding of
its impact on cognitive (and neuropsychiatric) symptoms in
this population. In particular, this systematic review focusses on
neuroimaging and neuropathology findings from the viewpoint
of cognitive neuroscience, in order to inform a theoretical
framework that could be used to predict the long-term
consequences on cognitive functioning triggered by the virus
and its acute neurological manifestation. To do so, we were
particularly interested in articles describing the consequences
of COVID-related acute neurological events on the brain, and
that included details on the regions affected. This was done
to elucidate whether some brain regions may show variable
degrees of vulnerability to the infection in older adults. Such
consideration may provide new insights that could inform
prognosis and treatment of the possible consequences of COVID-
19 on brain health of older patients.

METHODS

A systematic literature search was carried out in PubMed and
Web of Science to identify studies that included neuroimaging
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and neuropathological examinations of older adults who
tested positive for COVID-19. The keywords used to carry
out this search were: (1) “COVID-19,” “COVID19,” and
“SARS-CoV-2” for the COVID-19 infection; (2) “dementia,”
“mild cognitive impairment,” “MCI,” “neurodegeneration,”
“neurodegenerative,” “Alzheimer’s disease,” “AD,” “FTD,”
“frontotemporal dementia,” “older adults,” “ageing,” and “aging”
for the populations of interest; (3) “neuropathology,” “autopsy,”
“post-mortem,” “neuropathological,” “neuroimaging,” “brain,”
“MRI,” “magnetic resonance imaging,” “PET,” “positron emission
tomography,” “SPECT,” “Single-photon emission computed
tomography,” “neuroradiology,” “neuroradiological,” “nuclear
medicine,” “stroke,” “ischaemia,” “ischaemic,” “ischemia,”
“ischemic,” “vascular,” “encephalitis,” “meningitis,” “vasculitis,”
and “encephalopathy” for the neuroimaging/neuropathological
variables of interest. Papers published between March 2020 and
31st December 2020 (last day of literature search) were included.
All publication entries resulting from the initial search were
screened to identify papers reporting original data, with no
restrictions on the type of article.

Inclusion criteria were defined as follows: original data
describing changes to the nervous tissue associated with COVID-
19 infection. The intent was to focus on studies mentioning or
illustrating the regional properties of neural abnormalities in
order to inform the theoretical basis of a model of cognitive
dysfunction due to brain damage or increased vulnerability
associated with the virus. Two partially distinct sets of exclusion
criteria were then defined to identify eligible studies based
on neuroimaging and neuropathology, respectively. Due to the
“intra-vitam” and routine nature of neuroimaging procedures,
exclusion criteria for neuroimaging evidence were defined
according to the following four principles: (1) manuscripts not
in English or not having completed a peer-review process; (2)
manuscripts based on study participants whose inclusion was not
associated with COVID-19 infection; (3) studies not distinctively
focussing on adults older than 59; (4) studies not including
adequate information on how regional properties of brain tissue
were affected. Exclusion criterion 2 served to discard all studies
run “in the era/at the time of COVID-19” not directly focussing
on the physiological effects of the virus, or studies exploring the
indirect effects of COVID-19-related factors, e.g., those triggered
by lockdown or social-limitation policies. Exclusion criterion
3 was introduced to limit the remit of the review to adults
typically defined as “older adults” by neurological studies. By
doing so, single-cases of adults aged 59 or less were excluded
and case-series were filtered to retain only patients meeting
inclusion criteria. Similarly, cohort studies were discarded
when no clear age group meeting criteria was identifiable or
when the central-tendency and dispersion measures for the
“age” variable were suggestive of a sample excessively skewed
towards a younger age or excessively heterogeneous. Finally,
exclusion criterion 4 was set to discardmanuscripts not exploring
or investigating the brain, as well as manuscripts describing
cerebrovascular abnormalities (e.g., as informed by angiographic
scans) without a specific focus on damage of the nervous tissue.
Exclusion criteria for neuropathology studies were the same
as above with the exception of criterion 3. Given the unique

nature of neuropathological studies, no age-based exclusion
was applied.

Two independent assessors (MDM and RM) reviewed the
search output to process each entry and either exclude or retain
it. A third assessor (AV) helped resolving any disagreement on
publications to be included. Additional papers relevant to this
review identified through other sources (i.e., references and key
journals) were also screened and manually added.

RESULTS

A flow diagram illustrating the process of manuscript inclusion is
reported in Figure 1. The above search strings resulted in a total
of 1,972 articles. After removal of duplicates and objects with no
digital object identifier (DOI), 1,621 elements were retained, 50 of
which were immediately discarded. These included manuscripts
not in English (n = 30), manuscripts deposited in pre-print
servers and not having yet completed a process of peer review
(n = 3) and non-article objects (i.e., figures, tables, and data
sheets) that had their own DOI (n = 17). The remaining
manuscripts were screened and separated according to the
central medical specialty of reference (reported in Figure 1).
Following this classification, 527 manuscripts on neurological
or neurology-related themes (e.g., cardiological studies including
reference to the cerebrovascular system or articles of mixed
neurological-psychiatric interest) were retained and assessed for
study eligibility. In addition, all pathology-related studies were
also included in the list shortlisted for study eligibility since in this
first year of COVID-19, pathological studies have investigated a
wide-range of post-mortem tissues (including the brain) in amore
general rather than specialised way. Following the procedures of
assessment, 437 of the 527 manuscripts were excluded. These
were categorised based on the reason behind failed suitability
(see Figure 1 for a complete list). In particular, 16 studies were
excluded because, although describing patients with stroke, they
limited their description to the cerebrovascular accidents without
focussing on the damage to the neural tissue. Based on the same
principle, 20 studies of pathology were discarded because they did
not describe properties of the neural tissue, but instead limited
the investigation to other organs or to aspects relevant to the
nervous system other than tissue involvement (e.g., analysis of
cerebrospinal fluid). Similarly, pathological studies that solely
investigated the presence of the virus were not considered. As
a result, 90 articles met study eligibility criteria and were thus
included in this systematic review. These mainly included single-
case reports and case series plus a small number of group studies
(a summary for each article is reported in Table 1).

Neuroimaging Examinations
A total of 77 manuscripts reported neuroimaging examinations
of older adults aged 60 or older who tested positive for
COVID-19. Studies investigated a variety of neural abnormalities
associated with viral infection that fall into three main categories:
encephalopathy, encephalitis and cerebrovascular injuries. Three
radiological/nuclear-medicine techniques were most commonly
used to monitor brain damage, especially in hospitalised
patients with severe symptoms: computerised tomography (CT),
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FIGURE 1 | Flow chart outlining the study selection process according to the PRISMA framework.

magnetic resonance imaging (MRI), and fluorodeoxyglucose-
positron emission tomography (FDG-PET).

Encephalopathy
Thirteen studies reported exclusively encephalopathy in either
single cases or small case series of older patients with COVID-
19. Comorbidities were not reported by all studies and were
highly variable across cases, with hypertension being the most

common. Other comorbidities included: history of cardiac arrest,
history of lymphoma, Parkinson’s disease, anorexia, depression,
schizophrenia, neuropathic pain, atrial fibrillation, and epilepsy
due to prior Herpes Simplex Virus-1 encephalitis.

In a case series of five patients with epileptic seizures, CT
abnormalities were observed in three cases, with seizures mainly
left-lateralised in frontal, parietal and temporal cortices while

Frontiers in Aging Neuroscience | www.frontiersin.org 4 June 2021 | Volume 13 | Article 646908
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TABLE 1 | Summary of the characteristics and findings of the studies included in the review.

Study Design N Age Sex

(F/M)

Aetiology Comorbidities Method Country Brain findings

Neuroimaging findings

Anand et al.

(2020)

Case series 5 61, 75, 81,

88, 88

4/1 Encephalopathy -

seizures

TBI, remote left MCA infarct,

PD, history of cardiac arrest,

end-stage renal disease,

intellectual disability

CT USA CT abnormalities in left frontal, parietal, and temporal lobes

(and in left MCA territory, due to a prior infarct); right frontal

and bilateral cerebellar leukoencephalopathy and gyral

diffusion alterations; no abnormalities in two cases.

Delorme et al.

(2020)

Case series 4 60, 66, 69,

72

2/2 Encephalopathy None reported MRI and

FDG-PET

France Hypometabolism in bilateral frontal cortices in all cases

(prefrontal in three and orbitofrontal in one case) and in

posterior associative cortices in two cases (only left

parieto-temporal in one case); hypermetabolism in the

cerebellar vermis in all, bilateral striatum in two cases. In one

case, right orbitofrontal hyperintensities,

Fernández-

Domínguez

et al. (2020)

Single case 1 74 1/0 Encephalopathy—

Miller-Fisher-like

syndrome

Hypertension and follicular

lymphoma treated from 2014

to 2015

MRI Spain No abnormalities.

Guedj et al.

(2020)

Single case

(#2 from a

case series)

1 62 0/1 Encephalopathy No significant prior conditions FDG-PET

(whole body)

France Hypometabolism in: bilateral medial temporal lobe,

cerebellum, hypothalamus, left thalamus, right gyrus rectus,

medulla oblongata, pons, left cingulate gyrus and right

precentral, postcentral and superior temporal gyri.

Jang et al.

(2020)

Single case 1 67 0/1 Encephalopathy Anorexia and depression CT and MRI USA No abnormalities on CT; mild scattered deep periventricular

and subcortical WM ischaemic lesions on MRI, but no

evidence of encephalitis, posterior reversible

encephalopathy, or leukoencephalopathy.

Logmin et al.

(2020)

Single case 1 70 1/0 Encephalopathy -

recurrent non-epileptic

seizures/convulsive

syncope

Syncope, neuropathic pain,

paroxysmal atrial fibrillation

MRI Germany No abnormalities, apart from three hyperintensities due to

minimal prior ischaemic events.

Manganelli

et al. (2020)

Case series 2 66, 67 1/1 Encephalopathy None reported CT and MRI Italy No MRI abnormalities in male patient; scattered gliosis in

right pons on CT in one case.

Palomar-Ciria

et al. (2020)

Single case 1 65 0/1 Encephalopathy Schizophrenia CT and MRI Spain Deep WM leukoencephalopathy due to small vessel

pathology on CT (unclear relation to COVID-19); dilatation of

ventricles and subarachnoid spaces in line with the patient’s

age on MRI.

Vollono et al.

(2020)

Single case 1 78 1/0 Encephalopathy—

non-convulsive status

epilepticus

Hypertension, epilepsy due to

prior Herpes Simplex Virus-1

encephalitis

CT and MRI Italy No abnormalities on CT; old gliosis and atrophy involving the

left temporal/parietal lobes on MRI, but no recent acute

lesions.

Young et al.

(2020)

Single case 1 ≥ 60 0/1 Encephalopathy—

Creutzfeldt-Jakob

disease

None reported MRI and

FDG-PET

USA Hyperintensities and hypometabolism diffuse throughout the

left hemisphere cortex, the left caudate nucleus and

thalamus and the right cerebellum.

Muccioli et al.

(2020)

Case series 4 (out of 5) 75, 69, 69,

67

1/3 Encephalopathy Type 2 diabetes,

hypertension, ischaemic heart

disease, previous stroke, MCI,

bipolar disorder, iatrogenic

parkinsonism, hypertensive

cardiopathy

MRI Italy Encephalopathy developed after sedation in two patients

who showed chronic cerebral small vessel disease; cerebral

atrophy and non-specific diffuse parietal WM hyperintensity

in one case; old right fronto-parietal stroke in one case.

(Continued)
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TABLE 1 | Continued

Study Design N Age Sex

(F/M)

Aetiology Comorbidities Method Country Brain findings

Parauda et al.

(2020)

Case series 4 64, 73, 65,

74

2/2 Encephalopathy Hypertension, diabetes,

hypothyroidism,

hyperlipidaemia

CT and MRI USA #1: CT at admission was unremarkable, but new bilateral

occipital confluent WM hypodensities and lucencies in

fronto-parietal WM and in left posterior limb of the internal

capsule after 6 days; MRI-confirmed hyperintensities in

same locations after 32 days. #2, #3, #4: hypoattenuation in

bilateral parietal-occipital WM on CT and hyperintensities in

same areas on MRI.

Pugin et al.

(2020)

Case series 5 75 (69-78)a 2/3 Encephalopathy Hypertension, diabetes,

smoking, immunodepression,

COPD, chronic kidney

disease, cerebrovascular

disease

MRI Switzerland All patients under mechanical ventilation. Abnormal contrast

enhancement, consistent with inflammation of endothelial

cells, in vascular walls of: vertebral artery (all cases), internal

carotid (three cases), basilar artery (two cases) and both

PCAs (one case); bilateral small watershed ischaemia in one

case; no other brain abnormalities or enhancements in

leptomeningeal spaces.

Chaumont

et al. (2020)

Single case 1 69 0/1 Encephalitis—

meningoencephalitis

None reported MRI France -

Guadeloupe

No abnormalities.

Hosseini et al.

(2020)

Single case

(#2 from a

case series)

1 79 1/0 Encephalitis—limbic

encephalitis

None reported CT and MRI UK Chronic small vessel ischaemic damage on first MRI;

diffusion alterations in mediotemporal and limbic areas on

subsequent CT and MRI.

Khoo et al.

(2020)

Single case 1 65 1/0 Encephalitis—

brainstem

encephalitis

Osteoarthritis and

gastro-oesophageal reflex

disease, suspected AD

MRI UK No abnormalities.

Le Guennec

et al. (2020)

Single case 1 69 0/1 Encephalitis—

orbitofrontal

encephalitis

Diabetes, hypertension, one

previous seizure

CT and MRI France No abnormalities on CT; hyperintensity in the right

orbitofrontal cortex, mesial prefrontal cortex and caudate

nucleus. The hyperintensity persisted in the right caudate

after 15 days, but completely resolved after 30 days.

Novi et al.

(2020)

Single case 1 64 1/0 Encephalitis—ADEM Vitiligo, hypertension, and

monoclonal gammopathy

MRI Italy ADEM characterised by gadolinium-enhancing lesions in

spinal cord, optic tract and in temporal/ occipital and frontal

areas.

McCuddy

et al. (2020)

Single case

(#3 from a

case series)

1 70 1/0 Encephalitis—ADEM Obesity, peripheral

neuropathy, glaucoma, type 2

diabetes, hypertension,

chronic kidney disease,

hyperlipidaemia

MRI USA Hyperintense lesions, mostly with restricted diffusion, in

deep WM, corpus callosum and left brachium pontis. Slight

improvement after 8 days.

Pilotto et al.

(2020)

Single case 1 60 0/1 Encephalitis None reported CT and MRI Italy No abnormalities.

Avula et al.

(2020)

Case series 4 73, 83, 80,

88

3/1 Cerebrovascular—

ischaemia

Hypertension, dyslipidaemia,

carotid stenosis, frequent

urinary tract infections, type 2

diabetes and neuropathy

CT and MRI USA #1: Left parieto-occipital territory; #2: Right posterior frontal

lobe; #3: Right middle-cerebral-artery stroke with

hypoperfusion extending to almost the entire hemisphere;

#4: Left mediotemporal lobe.

Basi et al.

(2020)

Single case 1 66 0/1 Cerebrovascular—

ischaemia

COPD, atrial fibrillation and

previous ischaemic stroke

CT UK Right inferior medial prefrontal lobe with suspected infarction

in the right cerebellum.

(Continued)
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TABLE 1 | Continued

Study Design N Age Sex

(F/M)

Aetiology Comorbidities Method Country Brain findings

Katz et al.

(2020)

Single case

(from a case

series)

1 (with

neuroimaging

details out of

86 cases)

62 1/0 Cerebrovascular—

ischaemia

None reported CT USA Bilateral middle cerebral artery infarction with anterior frontal

involvement.

Morassi et al.

(2020)

Case series 4 from a

series of 6

cases

64, 75, 82,

76

1/3 Cerebrovascular—

ischaemia

History of smoking, history of

myocardial infarction,

hypertension, diabetes

mellitus, previous TIA,

previous stroke, aortic valve

replacement

CT Italy #1: Various cortical and subcortical regions of both

hemispheres (including left occipital and right precentral

territory); #2: Right cingulate gyrus, right fronto-parietal, left

pericentral, bilateral occipital and vermian/left cerebellar

areas; #3: Right thalamus and right temporal centrum

semiovale; #4: Right caudate, left prerolandic and superior

frontal areas.

Zayet et al.

(2020)

Case series 2 84, 74 0/2 Cerebrovascular—

ischaemia

Diabetes mellitus, arterial

hypertension, coronary heart

disease, peripheral arterial

disease and atrial fibrillation,

multiple cardiovascular

diseases (including atrial

fibrillation)

MRI France #1: Multiple regions including bilateral cerebellum, right

occipital cortex, bilateral parieto-occipital cortical territory

and fronto-parietal subcortical regions; #2: Large left frontal

ischaemia and additional ischaemic areas in the cerebellum

and in the parieto-occipital cortex, bilaterally.

Barrios-López

et al. (2020)

Case series 3 from a

series of 4

cases (#2, #3,

#4)

64, 85, 87 2/1 Cerebrovascular—

ischaemia

Hypertension, type 2

diabetes, hypertensive heart

disease, asthma, atrial

fibrillation and ischaemic heart

disease

CT Spain #2: Left cerebellar and occipito-temporal regions; #3: Right

fronto-temporal regions; #4: Right middle cerebral artery

territory.

Mohamud

et al. (2020)

Case series 4 from a

series of 6

cases (#2, #3,

#4, #6)

78, 62, 74,

67

1/3 Cerebrovascular—

ischaemia

Diabetes, hypertension,

chronic kidney disease and

hyperlipidaemia

CT USA #2: Left caudate, putamen, and left fronto-parietal and

paracentral cortices; #3: Right frontal and temporal lobes; #4

and #6: No abnormalities.

Papi et al.

(2020)

Single case 1 79 1/0 Cerebrovascular—

ischaemia

Hypertension, ischaemic heart

disease, type 2 diabetes and

atrial fibrillation

CT Italy Left frontal, parietal, insular and temporal areas of penumbra.

Bolaji et al.

(2020)

Single case 1 63 0/1 Cerebrovascular—

ischaemia

Diabetes and asthma CT UK Right parietal cortex.

Goldberg

et al. (2020)

Single case 1 64 0/1 Cerebrovascular—

ischaemia

Hypertension, aplastic

anaemia and splenectomy

CT USA Bilateral fronto-parietal regions.

Tunç et al.

(2020)

Case series 3 from a

series of 4

cases (#2, #3,

#4)

67, 72, 77 1/2 Cerebrovascular—

ischaemia

Hypertension MRI Turkey #2: In proximity to the caudate body; #3: Left fronto-parietal

regions; #4: Right pons.

Viguier et al.

(2020)

Single case 1 73 0/1 Cerebrovascular—

ischaemia

None reported CT and MRI France Left fronto-parietal regions.

Zhang et al.

(2020)

Case series 3 69, 65, 70 1/2 Cerebrovascular—

ischaemia

Hypertension, diabetes and

stroke, coronary artery

disease, emphysema and

nasopharyngeal carcinoma

CT China #1: Frontal, parietal and occipital lobe, basal ganglia,

brainstem and cerebellum (bilaterally); #2: Right frontal and

bilateral parietal lobe; #3: Bilateral frontal, right parietal,

temporal and occipital lobe, and bilateral cerebellar

hemispheres.

(Continued)
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TABLE 1 | Continued

Study Design N Age Sex

(F/M)

Aetiology Comorbidities Method Country Brain findings

Diaz-Segarra

et al. (2020)

Case series 2 from a

series of 4

cases (#3 and

#4)

65, 68 1/1 Cerebrovascular—

ischaemia

Hypertension and type 2

diabetes

MRI USA #3: Scattered punctuated foci in both cerebral hemispheres;

#4: Right medial occipital lobe.

Janjua and

Moscote-

Salazar

(2020)

Single case 1 65 1/0 Cerebrovascular—

ischaemia

Diabetes and mild dementia CT Colombia Bilateral basal ganglia, occipital lobes and cerebellar

hemispheres.

Co et al.

(2020)

Single case 1 62 1/0 Cerebrovascular—

ischaemia

Hypertension, prediabetes,

dyslipidaemia and history of

TIA

CT Philippines Left centrum semiovale and corona radiata.

Zhai et al.

(2020)

Single case 1 79 0/1 Cerebrovascular—

ischaemia

Atrial fibrillation CT China Lacunar infarctions at the level of the insula, bilaterally,

hippocampus and anterior temporal lobe, bilaterally.

Sparr and

Bieri (2020)

Case series 2 from a

series of 4

cases (#1 and

#3)

84, 62 2/0 Cerebrovascular—

ischaemia

Hypertension and diabetes

mellitus

CT and MRI USA #1: Splenium of the corpus callosum; #3: Multiple bilateral

cerebral and cerebellar infarctions and the right side of the

splenium of the corpus callosum.

Jillella et al.

(2020)

Case series 10 from a

sample of 13

(#2, #3, #5,

#6, #7, #8,

#9, #11, #12,

#13)

8 in their

60’s, 2 in

their 70’s

1/9 Cerebrovascular—

ischaemia

Atrial fibrillation or flutter,

hypertension, hyperlipidaemia,

diabetes, deep venous

thrombosis/pulmonary

embolism

CT and MRI USA #2: Left parietal, right frontal and occipital lobe, bilaterally;

#3: Right insula; #5: Left frontal and temporal lobe,

bilaterally; #6: Left parieto-occipital; #7: Left

temporo-parietal; #8: Right frontal, temporal and parietal; #9:

Right thalamus, left cerebellum and left capsula; #11: Left

frontal; #12: Basal ganglia, cerebellum and parieto-occipital

lobe, bilaterally; #13: fronto-parietal regions.

Kananeh

et al. (2020)

Single case

(from a case

series)

1 from a

sample of 4

(#2)

70 1/0 Cerebrovascular—

ischaemia

Atrial fibrillation (new onset) CT USA The majority of the right hemisphere.

Tiwari et al.

(2020)

Case series 8 from a

sample of 16

(#8, #9, #11,

#12, #13,

#14, #15,

#16)

73, 82, 80,

74, 60, 62,

64, 67

4/4 Cerebrovascular—

ischaemia

Hypertension, previous

cerebrovascular accident,

diabetes mellitus, chronic

kidney disease, coronary

artery disease, congestive

heart failure

CT and MRI USA #8: Left parieto-occipital; #9: Left frontal; #11: Basal ganglia

and capsula; #12: Thalamus and capsula; #13: Capsula;

#14: Left putamen; #15: Unspecified right territory; #16: Left

parieto-occipital.

Ghani et al.

(2020)

Single case

(from a case

series)

1 out of 3

cases

61 0/1 Cerebrovascular—

haemorrhage

Diabetes CT USA Scattered subarachnoid haemorrhages and a subdural

hematoma involving the cerebellum.

Benger et al.

(2020)

Single case

(from a case

series)

1 out of 5

cases

54 1/0 Cerebrovascular—

haemorrhage

None reported CT and MRI UK Posterior division of the right capsule.

Keaney and

Mumtaz

(2020)

Single case

(from a case

series)

1 out of 2

cases

72 1/0 Cerebrovascular—

haemorrhage

Hypertension, type 2

diabetes, mild asthma

CT UK Extensive damage to the right hemisphere including frontal,

temporal and parietal lobes.

Sharifi-Razavi

et al. (2020)

Single case 1 79 0/1 Cerebrovascular—

haemorrhage

None reported CT Iran Extensive damage in the right temporal lobe.

Roy-Gash

et al. (2020)

Single case 1 63 1/0 Cerebrovascular—

haemorrhage

None reported CT and MRI France Bilateral temporal.

(Continued)
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TABLE 1 | Continued

Study Design N Age Sex

(F/M)

Aetiology Comorbidities Method Country Brain findings

Al-Dalahmah

et al. (2020)

Single case 1 73 0/1 Cerebrovascular—

haemorrhage

Hypertension, type 2 diabetes CT USA Large portion of the cerebellum.

Muhammad

et al. (2020)

Single case 1 60 1/0 Cerebrovascular—

haemorrhage

None reported CT Germany Ruptured aneurysm with damage of left ventromedial

prefrontal cortex.

Fitsiori et al.

(2020)

Case series 7 out of 9

cases (#A,

#C, #D, #F,

#G, #I, #J)

66, 76, 78,

79, 65, 72,

62

1/6 Cerebrovascular—

haemorrhage

COPD, human

immunodeficiency virus,

Waldenstrom

macroglobulinemia, coronary

artery disease, cardiac

valvulopathy, hypertension,

hypercholesterolemia,

prostate cancer, diabetes,

dyslipidaemia, sleep apnoea,

MCI, vitiligo and obesity

MRI Switzerland #A: Microbleeds in subcortical white matter, corpus

callosum, basal ganglia, right anterior limb of the anterior

capsule and left middle cerebellar peduncle; #C:

Microbleeds in the corpus callosum, subcortical white matter

and left parietal lobe; #D: Microbleeds in subcortical white

matter, corpus callosum, left middle cerebellar peduncle and

lacunar infarct in the external capsule; #F: Microbleeds in

subcortical white matter and corpus callosum; #G: Lacunar

infarcts in subcortical white matter, microbleeds in corpus

callosum, middle cerebellar peduncle, posterior limb of the

internal capsule, subcortical white matter and pontine

myelinolysis; #I: Infarct in the centrum semiovale,

microbleeds in the corpus callosum, subcortical white

matter, posterior limb of the internal capsule, left middle

cerebellar peduncle and cerebellum; #J: Microbleeds in

corpus callosum and posterior limb of the internal capsule.

Pavlov et al.

(2020)

Case series 2 from a

sample of 3

(#2, #3)

64, 60 0/2 Cerebrovascular—

haemorrhage

Hypertension, smoking

history, type 2 diabetes, type

1 diabetes, hyperlipidaemia

CT Russia #2: Right basal ganglia, capsula; #3: Right ganglia, capsula,

posterior temporal.

Sabayan et al.

(2021)

Single case

(from a case

series)

1 out of 15

cases (#9)

60 0/1 Cerebrovascular—

haemorrhage

Hypertension CT Iran Parietal lobe, bilaterally.

Radmanesh

et al. (2020a)

Retrospective

database

analysis

242 (n = 6

with

neuroimaging

description:

#1, #2, #3,

#4, #5, #6)

68.7

(16.7)b (74,

61, 62, 77,

63, 78)

92/150

(2/4)

Cerebrovascular—

haemorrhage (#1, #2),

ischaemia (#3, #4, #5,

#6)

Not systematically described

(#1: stented carotid artery, #2:

hepatic cirrhosis)

CT and MRI USA #1: Right temporal lobe; #2: Left superior parietal regions;

#3: Left inferior frontal regions; #4: Right-sided damage

extending to the frontal and temporal lobe, capsula and

basal ganglia; #5: Left lateral cerebellum; #6: Cingulate gyrus

and body of the corpus callosum.

Hernández-

Fernández

et al. (2020)

Retrospective

database

analysis

12 from a

sample of 23

(#2, #4, #5,

#8, #10, #11,

#12, #19,

#20, #21,

#22, #23)

83, 65, 75,

76, 62, 86,

65, 69, 61,

64, 68, 66

1/11 Cerebrovascular—

ischaemia (#2, #4, #5,

#8, #10, #11, #12),

ischaemia and

haemorrhage (#19,

#21), haemorrhage

(#20, #22),

encephalopathy and

haemorrhage (#23)

Hypertension, dyslipidaemia,

ischaemic cardiopathy,

rheumatic valve disease and

atrial fibrillation, smoking,

schizophrenia, type 2

diabetes, COPD, vitamin B12

deficiency, stable angina,

sleep apnoea

CT and MRI Spain #2: Bilateral cerebellum, left thalamus and occipital regions;

#4: Right fronto-temporal regions; #5: Right parietal regions,

thalamus and left frontal lobe; #8: Right insula; #10:

Cerebellum; #11: Left insula; #12: Right parietal lobe; #19:

Extensive left frontal and small right frontal haemorrhages;

Bilateral parieto-occipital FLAIR hyperintensities; #20: Left

lateral temporal extending to the Sylvian fissure; #21: Multiple

foci of cortical-subcortical and subarachnoid haemorrhage in

temporal and occipital regions; Bilateral parieto-occipital and

cerebellar hyperintensities; #22: Left ventrolateral prefrontal

regions and right parieto-occipital white matter; #23:

Leukoencephalopathy in the right posterior frontal lobe and

in parietal-occipital regions bilaterally (with microbleeding).

(Continued)
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TABLE 1 | Continued

Study Design N Age Sex

(F/M)

Aetiology Comorbidities Method Country Brain findings

Beyrouti et al.

(2020)

Case series 5 from a

series of 6

cases (#1, #3,

#4, #5, #6)

64, 85, 61,

83, 73

0/5 Cerebrovascular—

Ischaemia and

haemorrhage (#1),

ischaemia (#3, #4, #5

and #6)

Hypertension,

hypercholesterolaemia, atrial

fibrillation, ischaemic heart

disease, prostate cancer,

stroke, chronic leg ulcers,

diabetes, smoking and

alcohol consumption, Gastric

carcinoma and benign

essential tremor

CT and MRI UK #1: Left inferior posterior cerebellar petechial haemorrhage

and ischaemia in posteromedial temporal, occipital and

thalamic territory; #3: Left temporal stem and cerebral

peduncle; #4: Right striatum; #5: Right anterior-temporal

and lateral temporal/perisylvian; #6: Ischaemia in the left

haemi-pons and right parieto-occipital patchy pattern.

Fan et al.

(2020)

Case series

(from a

cohort)

7 from a

cohort of 86

cases with

AIS

All in the

age range

65-70 y.o.

2/5 Cerebrovascular—

ischaemia (#1, #2, #3,

#4, #5, #6) and

haemorrhage (#7)

Hypertension, diabetes

mellitus, coronary artery

disease, ischaemic stroke,

hyperlipidaemia, ischaemic

stroke in the cerebellum,

nasopharyngeal carcinoma,

myocardial infarction

developed after COVID-19

onset and COPD

CT China #1: Right occipital lobe and bilateral frontal and parietal

lobes; #2: Left hemisphere and bilateral occipito-temporal

regions; #3: Parieto-frontal regions, bilaterally; #4: Right

hemisphere; #5: Left midbrain; #6: In proximity of the right

periventricular tissue; #7: Sub-arachnoid space and lateral

ventricles.

Saggese

et al. (2020)

Single case 1 62 1/0 Cerebrovascular—

ischaemia and

haemorrhage

Hypertension, diabetes,

previous smoker, and

previous myocardial infarction

CT Italy Bilateral basal fronto-temporal area of ischaemia with left

haemorrhagic transformation.

Chougar et al.

(2020)

Single case 1 72 0/1 Cerebrovascular—

ischaemia and

haemorrhage

None reported CT and MRI France Bilateral hypo/hyperdensities in various areas, including

thalamus, basal ganglia, internal capsule, splenium of the

corpus callosum, deep white matter, cerebral peduncle and

pons.

Jaunmuktane

et al. (2020)

Single case

(from a case

series)

1 out of 2

cases

#2 in her

60’s

1/0 Cerebrovascular—

ischaemia and

haemorrhage

Hypertension MRI UK Involvement of multiple brain regions, including the right

thalamus, the right intraparietal sulcus, and bilateral

cerebellum.

Mohamed

et al. (2020)

Single case 1 Patient in

her 70’s

1/0 Cerebrovascular—

ischaemia and

haemorrhage

Severe obesity, asthma and

diabetes

CT UK Left ischaemic infarction with areas of haemorrhage involving

frontal-to-occipital territory.

Hanafi et al.

(2020)

Single case 1 65 0/1 Cerebrovascular—

ischaemia and

haemorrhage

None reported CT and MRI France Ischaemic foci in deep white matter and centrum semiovale,

basal ganglia, middle cerebellar peduncle and cerebellum;

haemorrhage in the globus pallidus, bilaterally.

Chen et al.

(2020)

Case series 5 from a

sample of 11

(#2, #3, #5,

#6, #8)

81, 68, 87,

70, 89

4/1 Cerebrovascular—

ischaemia (#2, #5, #6,

#8) and haemorrhage

(#3)

Hypertension and diabetes

(none in 3 cases)

CT China #2: Left fronto-temporal; #3: Brainstem; #5: Pons; #6: Left

parietal; #8: Basal ganglia.

Sierra-

Hidalgo et al.

(2020)

Case series 6 from a

sample of 8

(#1, #2, #3,

#4, #5, #7)

78, 83, 77,

60, 76, 61

1/5 Cerebrovascular—

ischaemia (#1, #2, #3,

#5) and ischaemia and

haemorrhage (#4, #7)

Hypertension, diabetes,

dyslipidaemia, atrial fibrillation,

coronary heart disease

CT Spain #1: Left temporo-occipital; #2: Left fronto-temporal; #3: Left

basal ganglia and fronto-temporal cortex; #4: Frontal and

parietal regions, bilaterally, with right frontal haemorrhagic

transformation; #5: Right posterior parietal; #7: Right

cerebellum and mediotemporal, bilaterally, with

haemorrhagic transformation in right mediotemporal and

bilateral frontal, temporal and occipital regions.

(Continued)

F
ro
n
tie
rs

in
A
g
in
g
N
e
u
ro
sc

ie
n
c
e
|
w
w
w
.fro

n
tie
rsin

.o
rg

1
0

Ju
n
e
2
0
2
1
|
V
o
lu
m
e
1
3
|A

rtic
le
6
4
6
9
0
8



M
a
n
c
a
e
t
a
l.

C
O
V
ID
-1
9
-R

e
la
te
d
B
ra
in

C
h
a
n
g
e
s
in

O
ld
e
r
A
d
u
lts

TABLE 1 | Continued

Study Design N Age Sex

(F/M)

Aetiology Comorbidities Method Country Brain findings

Oliveira et al.

(2020)

Single case 1 69 0/1 Cerebrovascular—

vasculitis

Hypertension MRI Brazil Regional vasculitis (at the level of the brainstem) with no

nervous tissue involvement.

Franceschi

et al. (2020)

Single case

(from a case

series)

1 out of 2

cases

67 0/1 Cerebrovascular—

encephalopathy and

haemorrhage

Hypertension, diabetes,

coronary artery disease, gout

and asthma

CT and MRI USA Oedemas in the right frontal lobe, basal ganglia, cerebellum

and parieto-occipital regions, with superimposed

haemorrhage in the right parieto-occipital territory.

Benameur

et al. (2020)

Single case

(#3 from a

case series)

1 64 0/1 Encephalopathy and

encephalitis

None reported MRI USA Non-enhancing abnormality in the right anterior-medial

temporal lobe.

Farhadian

et al. (2020)

Single case 1 78 1/0 Encephalopathy and

encephalitis

History of kidney transplant,

on immunosuppression

MRI USA Atrophy and widespread periventricular and subcortical WM

hyperintensities due to small vessel ischaemic disease

across all lobes.

Hayashi et al.

(2020)

Single case 1 75 0/1 Encephalopathy and

encephalitis

Mild AD MRI Japan One reversible hyperintense area in the splenium of the

corpus callosum.

Abdelnour

et al. (2020)

Single case 1 69 0/1 Encephalopathy,

encephalitis,

cerebrovascular

Hypertension, type 2 diabetes

and mild chronic obstructive

pulmonary disease

MRI UK No abnormalities apart from old infarcts in the left frontal,

parietal and occipital lobes.

Mahammedi

et al. (2020)

Case series 108 71

(60.5-79)a
39/69 Encephalopathy,

encephalitis,

cerebrovascular

Hypertension, diabetes,

coronary artery disease,

cerebrovascular disease,

malignancy, MS, HIV, Behçet

disease, haemoglobinopathy

CT and MRI Italy Neuroimaging abnormalities in 51 out of 108 cases: mostly

acute ischaemic infarcts (34 out of 51), especially in the MCA

territory, but in the basal ganglia in seven cases; six

intracranial haemorrhages (location not specified); WM

lesions in subcortical WM and the basal ganglia; rare

encephalopathies in three cases and PRES in 1 case.

Paterson

et al. (2020)

Case series 15 (out of 43) 60-85 3/12 Encephalopathy (#1,

#2, #8), encephalitis

(#12, #14, #19),

cerebrovascular (#23,

#24, #25, #28, #29)

and PNS signs (#31,

#33, #35, #38)

CADASIL, previous right

occipital stroke, TIA, bladder

cancer, nephrectomy,

hypercholesterolemia,

hypothyroidism,

hysterectomy, osteoarthritis,

degenerative spine disease,

diabetes, hypertension,

cellulitis, increased BMI, Conn

Syndrome, recurrent DVT,

atrial fibrillation, ischaemic

heart disease, prostate cancer

(Gleason Score 4+5), gastric

carcinoma, benign essential

tremor, cluster headache,

cervical myelopathy,

arrhythmia, depression,

myeloma, cerebellar stroke

CT and MRI UK Encephalopathies: no abnormalities. Encephalitis:

hyperintensities in upper pons, limbic lobes, medial thalami

and subcortical cerebral WM in one case; multifocal and

confluent lesions in the cerebral hemispheric WM and

several microhaemorrhages in the subcortical regions in one

case; multifocal lesions in periventricular WM and corpus

callosum in one case. Cerebrovascular: Acute infarct in the

right striatum and multiple cortical and subcortical

microhaemorrhages in one case; acute left cerebellar and

bilateral PCA infarctions in one case; subacute infarcts in

frontal WM and arterial border-zones bilaterally in one case;

hyperdensity due to thrombus in the left PCA and acute

infarction in the left temporal stem and cerebral peduncle in

one case; infarction in the right thalamus, left pons, right

occipital lobe and right cerebellum in one case. PNS signs:

no abnormalities.

(Continued)
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TABLE 1 | Continued

Study Design N Age Sex

(F/M)

Aetiology Comorbidities Method Country Brain findings

Pons-Escoda

et al. (2020)

Cohort 103 74 (50-90)c 40/63 Encephalopathy,

encephalitis,

cerebrovascular

Only patients with

cerebrovascular accidents:

hypertension,

hypercholesterolemia,

diabetes, smoker, atrial

fibrillation

CT and MRI Spain No abnormalities due to COVID-19 infection in 80 patients;

23 with mainly vascular damages: one basilar strip

aneurysm, one cerebellar aneurysm, three basal ganglia

haematomas, one left parietal haematoma, three lobar

haematomas (location not specified), one cerebellar small

vessel infarction, two left prefrontal infarctions, three small

vessel and eight large vessel occlusions (location not

specified), one left parietal haemorrhage due to TBI.

Helms et al.

(2020a)

Case series 58 63d Not

reported

Encephalopathy,

cerebrovascular

TIA, epilepsy, MCI (in seven

out of 58)

MRI (only in 13

cases)

France Leptomeningeal enhancements in eight cases

(occipito-parietal and right frontal in one case and left parietal

in another case); bilateral fronto-temporal hypoperfusion in

11 cases; cerebral ischaemic stroke in three cases (right

cerebellar in one case).

Helms et al.

(2020b)

Cohort 140 (118 with

delirium)

62

(52–70)a;

with

delirium:

62

(52–71)a

40/100;

with

delirium:

29/89

Encephalopathy,

cerebrovascular

Stroke, TIA; epilepsy, MCI,

migraine, TBI, aneurysm,

cardiovascular diseases,

haemopathies, immune

diseases, diabetes, chronic

liver disease, chronic renal

disease, COPD, asthma, OSA

MRI (only in 32

cases with

severe delirium)

France WM microhaemorrhages across all lobes and cerebellum in

seven cases and one left frontal intraparenchymal

haematoma; WM hyperintensities in four cases (location not

specified); subarachnoid enhancements in 17 cases

(location not specified); cerebral ischaemic stroke in three

cases (location not specified); hypoperfusion in 17 cases,

especially in medial temporal and right frontal areas.

Krett et al.

(2020)

Single case 1 69 0/1 Encephalopathy,

cerebrovascular

Hypertension, diabetes,

coronary artery disease

CT and MRI Canada CT assessment at hospital admission and after 13 days

showed no abnormalities and no vasculopathy. MRI at day

13 showed diffuse multicompartmental haemorrhages

(location not specified), including subarachnoid, with

surrounding oedema.

Lin et al.

(2020)

Cohort 278 (with

CT/MRI)

71.8

(15.4)b
113/165 Encephalopathy,

cerebrovascular

Atrial fibrillation, hypertension,

hyperlipidaemia, diabetes,

coronary artery disease,

chronic kidney disease, COPD

CT and MRI USA Encephalopathy: PRES in three cases; Enhancements in the

optic nerve in two cases and in the olfactory bulb, in the

absence of volume changes, in four cases. No evidence of

cortical hyperintensities, haemorrhagic encephalitis and

leptomeningeal enhancements. Cerebrovascular: Acute and

subacute cerebral infarctions in 31 cases: mainly

multiterritory, but without a consistent pattern; Intracranial

haematomas in 10 cases (no location specified);

Microhaemorrhages in 26 cases: mainly mild and without a

consistent pattern (cortical, WM, basal ganglia, cerebellum),

apart from three cases with predominant damage in the

corpus callosum, internal capsules, and juxtacortical WM.

Nicholson

et al. (2020)

Single case

(#3 from a

case series)

1 62 0/1 Encephalopathy,

cerebrovascular

None reported CT and MRI Canada No abnormalities on CT. On MRI: enhancements in the

subarachnoid and subpial spaces (no location specified);

widespread hyperintensities along small cortical veins (no

location specified); abnormal signal in subcortical areas,

especially the corpus callosum.

(Continued)

F
ro
n
tie
rs

in
A
g
in
g
N
e
u
ro
sc

ie
n
c
e
|
w
w
w
.fro

n
tie
rsin

.o
rg

1
2

Ju
n
e
2
0
2
1
|
V
o
lu
m
e
1
3
|A

rtic
le
6
4
6
9
0
8



M
a
n
c
a
e
t
a
l.

C
O
V
ID
-1
9
-R

e
la
te
d
B
ra
in

C
h
a
n
g
e
s
in

O
ld
e
r
A
d
u
lts

TABLE 1 | Continued

Study Design N Age Sex

(F/M)

Aetiology Comorbidities Method Country Brain findings

Radmanesh

et al. (2020b)

Case series 5 from a

series of 11

cases (#3, #5,

#6, #10 and

#11)

60, 64, 63,

64, 62

2/3 Encephalopathy,

cerebrovascular

Hypertension, diabetes,

coronary artery disease,

hyperlipidaemia, atrial

fibrillation, obesity

MRI USA All cases: leukoencephalopathy in bilateral deep and

subcortical WM, especially in posterior regions of temporal

and occipital horns; abnormalities in precentral gyrus

juxtacortical WM, centrum semiovale and corona radiata; no

abnormalities in deep GM nuclei. In four cases:

microhaemorrhages, mostly acute, especially in juxtacortical

WM and the splenium of the corpus callosum.

Neuropathology findings

Al-Dalahmah

et al. (2020)

Single case 1 73 0/1 Neuropathology

examination (and CT)

Hypertension, type 2 diabetes Macroscopic

and

microscopic

examinations

USA Macroscopic: Upward herniation of the midbrain;

subarachnoid haemorrhage at the base of the brain;

haematoma and oedema in the right deep cerebellar WM;

bilateral tonsil herniation; intra-ventricular haemorrhage and

dilatation of the lateral and third ventricles; alterations in brain

stem structures; cortex and cerebral WM were spared.

Microscopic: Severe hypoxic damage to neurons in the

cerebral cortex, striatum, thalamus, amygdala,

hippocampus, midbrain, pontine nuclei, medullary nuclei and

Purkinje cells; red blood cells and neutrophilic infiltration in

the cerebellar WM; no evidence of vasculitis; microglial

activation in inferior olives and dentate nuclei; inflammatory

infiltrates in corpus callosum, striatum, thalamus,

hippocampus, midbrain and pons, but cortex and other

subcortical structures were spared; astrogliosis in OFC and

SFC; inflammation in olfactory epithelium. COVID-19 present

in cerebellum (including clot) and olfactory bulb, but not in

the medulla oblongata.

Hernández-

Fernández

et al. (2020)

Case series 2 (#19 and

#20, out of 23

cases)

69, 61 0/2 Neuropathology

examination (and CT)

Hypertension, dyslipidaemia Macroscopic

and

microscopic

examinations

Spain Macroscopic: In both cases: large intraparenchymal

haemorrhage (one left frontal and one left parieto-temporal)

with diffuse fibrin microthrombi. Microscopic: Disappearance

of endothelial cells in arterioles, capillaries and venules;

degeneration of the neuropil in the capillary periphery; local

inflammation; rare inflammation of blood vessel walls; no

evidence of arteriolosclerosis and cerebral amyloid

angiopathy.

Jaunmuktane

et al. (2020)

Case series 2 F in her

60’s, M in

his 50’s

1/1 Neuropathology

examination (and MRI)

Hypertension Macroscopic

and

microscopic

examinations

UK Macroscopic: Bilateral pallidal infarcts, widespread acute

and subacute microinfarcts and microbleeds, especially in

occipital lobe WM in one case; ischaemic lesions in

watershed areas in the centrum semiovale and in the right

lentiform nucleus, infarcts in bilateral occipital lobe and left

hippocampus and thalamus in the other case. Microscopic:

Axonal damage but no demyelination; no evidence of

microglial nodules, neuronophagia, vascular injury and

vasculitis (apart from infarct areas) in either cases;

inflammation in the medulla was similar to patients with other

neurological diseases; leptomeningeal inflammation in right

intraparietal sulcus in one case.

(Continued)
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TABLE 1 | Continued

Study Design N Age Sex

(F/M)

Aetiology Comorbidities Method Country Brain findings

Bradley et al.

(2020)

Case series 5 (with brain

examination

out of 14

cases)

57, 76, 84,

81, 42

3/2 Neuropathology

examination

End-stage renal disease, type

2 diabetes, hypertension,

OSA, obesity, osteoporosis,

hyperlipidemia, chronic kidney

disease, COPD, mitral

regurgitation, complete heart

block, chronic pain, arthritis,

breast cancer, demyelinating

neuropathy, lacunar infarcts,

pneumonia, AD, anaemia

Macroscopic

and

microscopic

examinations

USA Macroscopic: Scattered subarachnoid haemorrhages in one

case in one case; no abnormalities in the other four cases.

Microscopic: Scattered subarachnoid haemorrhages and

microhaemorrhages in the brainstem in one case; no

abnormalities in the other four cases.

Buja et al.

(2020)

Case series 3 (with brain

examination

out of 23

cases)

77, 42, 48 0/3 Neuropathology

examination

Obesity, hypertension,

splenectomy, myotonic

dystrophy

Macroscopic

and

microscopic

examinations

USA Macroscopic: No abnormalities in all cases. Microscopic: No

histopathological changes in one case (no histopathology in

the other two cases).

Bulfamante

et al. (2020)

Single case 1 54 0/1 Neuropathology

examination

None reported Microscopic

ultrastructural

examinations of

ON, GR and

MO

Italy Severe and widespread damage to neurons, glia, axons and

myelin sheath (ON > GR > MO); detection of viral particles

compatible with COVID-19; preservation of mitochondria.

Kantonen

et al. (2020)

Case series 4 63, 82, 38,

90

1/3 Neuropathology

examination

Hypertension, gout, chronic

kidney disease, smoking, sick

sinus syndrome, coronary

artery disease, myocardial

infarction, peripheral artery

disease, stroke, PD, type 2

diabetes, COPD, colorectal

cancer, obesity, retinopathy,

polyneuropathy, cellulitis,

asthma, AD, osteoporosis,

spinal stenosis, lung infection

Macroscopic

and

microscopic

examinations

Finland Macroscopic: Mild swelling, depigmentation of substantia

nigra and locus coeruleus, enlarged perivascular spaces,

microhaemorrhages in cerebral and cerebellar WM in one

case; no information for the other three cases. Microscopic:

Hypoxic injury and perivascular degeneration in all cases;

WM lesions and PD pathology in one case; AD, cerebral

amyloid angiopathy and Lewy bodies in one case; no

evidence of COVID-19 in the neural tissue.

Matschke

et al. (2020)

Case series 43 76

(70–86)a
16/27 Neuropathology

examination

COPD, dementia, ischaemic

heart disease, renal

insufficiency, atrial fibrillation,

cardiac insufficiency,

myelofibrosis, emphysema,

hypertension, diabetes,

stroke, aortic aneurysm,

cardiac hypertrophy, acute

myeloid leukaemia,

cardiomyopathy, thyroid

cancer, PD, trisomy 21,

epilepsy, hypoxic brain

damage, cardiac arrhythmia,

OSA, ulcerative colitis, lung

granuloma, aortic valve

Macroscopic

and, for 23 out

of 43,

microscopic

examinations of

OB, SFC, basal

ganglia

(including the

putamen),

upper and

lower medulla

oblongata,

Germany Macroscopic: No abnormalities in 13 cases; old infarctions in

five cases; GM heterotopia in one case; one cerebellar

metastasis from lung cancer; new infarctions in six cases

(three in PCA, two in MCA, and one in ACA territories);

oedema in 23, but none in 20 cases; atrophy in 20, but none

in 23 cases; arteriosclerosis in all cases (mild in 12,

moderate in 22, severe in 9). Microscopic: Astrogliosis in all

cases, to variable extent, but severe in the olfactory bulb;

microglia activation mainly in the olfactory bulb, medulla

oblongata and cerebellum, but also in subpial and

subependymal regions (sign of encephalitis); cytotoxic T cells

in brain stem, frontal cortex, basal ganglia; evidence of

COVID-19 in 21 patients, in the frontal lobe in nine cases

(out of 23), medulla oblongata in four cases (out of eight), but

also in cranial nerves.

(Continued)
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TABLE 1 | Continued

Study Design N Age Sex

(F/M)

Aetiology Comorbidities Method Country Brain findings

replacement, hypothyroidism,

lung cancer, colon cancer,

paranoid schizophrenia,

myelodysplastic syndrome,

liver cirrhosis, dysphagia,

multiple myeloma

cerebellar

hemispheres

Menter et al.

(2020)

Case series 3 + 1e (with

brain

examination

out of 21

cases)

68, 96, 71 1/2 Neuropathology

examination

Hypertension, atherosclerosis,

obesity, MS, PD, dementia,

coronary artery disease,

myocardial infarction,

peripheral arterial disease,

infrarenal aortic aneurysm,

coronary heart disease,

valvulopathy, double bypass

Microscopic

examinations

Switzerland No inflammatory infiltrates or neuronal necrosis in any of the

cases; mild hypoxic injury in three of the cases;

hydrocephalus internus in two cases; pathological changes

consistent with neurological comorbidities (MS and PD);

COVID-19 presence in the brain was less prominent than in

other organs, higher presence in the olfactory bulb than in

the brainstem.

Reichard

et al. (2020)

Single case 1 71 0/1 Neuropathology

examination

ischaemic heart disease,

coronary artery

atherosclerosis

Macroscopic

and

microscopic

examinations

USA Macroscopic: Widespread WM haemorrhagic lesions and

mild general swelling. Microscopic: WM haemorrhagic

lesions with macrophages, axonal injuries and myelin loss,

but no reactive astrogliosis; general reactive gliosis and

myelin loss in WM; additional WM lesions surrounding blood

vessels with macrophages, myelin loss and axonal injuries;

cortical infarcts with astrogliosis; preserved subpial myelin;

scattered hypoxic damage to neurons in neocortex,

hippocampus (CA1), cerebellum (Purkinje cells); no infarcts

in rest of the brain, basal ganglia, brainstem and spinal cord;

only age-related corpora amylacea in the olfactory bulb.

Remmelink

et al. (2020)

Case series 11 (with brain

examination

out of 17

cases)

77, 68, 64,

56, 66, 49,

63, 75, 61,

70, 53

3/8 Neuropathology

examination

Coronary artery disease,

cerebrovascular disease,

diabetes, COPD, cancer,

hypertension, chronic renal

failure, liver transplant

Macroscopic

and

microscopic

examinations

Belgium Macroscopic: Recently drained subdural haematoma in one

case; cerebral haemorrhage in one case. Microscopic:

Cerebral haemorrhage or haemorrhagic suffusion in eight

cases; focal ischaemic necrosis in three cases; oedema

and/or vascular congestion in five cases; diffuse or focal

spongiosis in 10 cases; no evidence of viral encephalitis,

vasculitis, neuronal necrosis, or perivascular lymphocytic

infiltration.

(Continued)
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TABLE 1 | Continued

Study Design N Age Sex

(F/M)

Aetiology Comorbidities Method Country Brain findings

Youd and

Moore (2020)

Case series 9 (3 positive

to COVID-19,

3 likely false

negatives, 3

with other

respiratory

infections)

88, 86, 73,

67, 33, 70,

87, 77, 68

5/4 Neuropathology

examination

Type 1 an type 2 diabetes,

hypertension, COPD, asthma,

heart diseases, dementia,

DVT, alcoholism, PD, stroke,

HIV

Macroscopic

examinations

UK No abnormalities in three cases; brain atrophy in case with

COVID-19 and dementia; old infarct and head injury in one

case; circle of Willis atheroma in four cases.

Hanley et al.

(2020)

Case series 9 (with brain

analysis out

of 10)

61, 64, 69,

78, 22, 24,

79, 97, 79

2/7 Neuropathology

examination

COPD, ischaemic heart

disease, migraine, prostatic

hyperplasia, OSA,

hypertension, type 2 diabetes,

peripheral neuropathy,

dementia, osteoarthritis,

hypercholesterolaemia,

trigeminal neuralgia, past

bladder cancer, anaemia,

glaucoma, alcohol-related

liver disease, hypothyroidism,

cutaneous systemic lupus

erythematosus, vitamin B12

deficiency

Macroscopic

and

microscopic

examinations

on eight regions

(unnamed)

UK No necrosis was noted in any of the cases, apart from a

macroscopic infarction; microglia activation and mild T cell

infiltrations were observed in all the cases where these

pathological features were examined (five cases); no mention

of brain findings in three cases. Viral genetic material was

detected in brain samples, but with variable load across

cases.

Lee et al.

(2021)

Case series 19 50 (5–73)f 4/15 Neuropathology

examination

Obesity, cardiovascular

disease, hypertension, type 2

diabetes, old TBI, drug use

disorders

Microscopic

examinations

and

post-mortem

11.7T MRI of

OB and

brainstem (in 13

cases), but also

frontal cortex,

basal ganglia

and cerebellum

in some cases.

USA On post-mortem MRI: punctuate hyperintensities in nine

cases, with microvascular injuries and fibrinogen leakage;

punctuate hypointensities in 10 cases, with blood vessel

congestion and fibrinogen leakage, but preserved

vasculature; microhaemorrhages. Microscopic: No vascular

occlusion; minimal perivascular inflammation (activated

microglia, macrophage infiltrates and hypertrophic

astrocytes) in 13 patients; T cells adjacent to endothelial cells

in eight cases; activated microglia adjacent to neurons in five

cases, suggesting neuronophagia in OB, substantia nigra,

dorsal motor nucleus of the vagal nerve and the

pre-Bötzinger complex. Viral genetic material was not

detected in any of the brain samples.

Schurink et al.

(2020)

Case series 21 68 (41–78)f 5/16 Neuropathology

examination

Diabetes, cardiovascular

disease, COPD, asthma,

active solid malignancy, active

haematological malignancy

Macroscopic

and

microscopic

examinations

covering all

brain, spinal

cord and

meninges.

Analysis of viral

presence only

in 11 cases.

The

Netherlands

Macroscopic: most brains and meninges were normal with

no atrophy, infarctions and haemorrhages. One case of

pre-existing necrotising encephalopathy and one case of

medial temporal atrophy due to AD. Microscopic: Hypoxic

changes in all cases; all cases had moderate to severe

microglial activation and perivascular accumulation of T cells

in the most severe cases; no loss of myelin or bleeding; mild

to moderate isomorphic reactive astrogliosis. Alterations

were most severe in OB and medulla oblongata, but they

were observed in all brain areas. COVID-19 was not

detected in brain tissue in any of the cases.

(Continued)
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M
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ro
s
c
o
p
ic
:
L
o
ss

o
f
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rf
a
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e
e
p
ith

e
liu
m

w
ith

n
o
su

rf
a
c
e

fib
rin

,
in
fla
m
m
a
to
ry

e
xu

d
a
te
,
e
o
si
n
o
p
h
ils

o
r
m
a
st

c
e
lls
;

m
in
im

a
lc
h
ro
n
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ly
m
p
h
o
c
yt
ic
in
fla
m
m
a
to
ry

in
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tr
a
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n
o

a
b
n
o
rm

a
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e
u
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n
a
li
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a
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o
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p
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u
la
tio

n
o
f
th
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a
n
g
io
te
n
si
n
-c
o
n
ve
rt
in
g
e
n
zy
m
e
2
re
c
e
p
to
rs
.

a
M
e
d
ia
n
(I
n
te
rq
u
a
rt
ile

ra
n
g
e
).

b
M
e
a
n
(S
ta
n
d
a
rd

d
e
vi
a
ti
o
n
).

c
M
e
d
ia
n
(5
–
9
5
th
p
e
rc
e
n
ti
le
).

d
M
e
d
ia
n
fo
r
th
e
w
h
o
le
s
a
m
p
le
,
b
u
t
n
o
d
a
ta
fo
r
th
e
s
u
b
g
ro
u
p
w
h
o
u
n
d
e
rw
e
n
t
M
R
I
a
s
s
e
s
s
m
e
n
ts
.

e
N
o
t
p
o
s
s
ib
le
to
tr
a
c
k
o
n
e
c
a
s
e
w
it
h
n
e
u
ro
p
a
th
o
lo
g
ic
a
le
xa
m
in
a
ti
o
n
fr
o
m
a
ll
th
e
m
a
te
ri
a
ls
m
a
d
e
a
va
ila
b
le
.

f M
e
d
ia
n
(r
a
n
g
e
).

A
C
A
,
A
n
te
ri
o
r
c
e
re
b
ra
l
a
rt
e
ry
;
A
D
,
A
lz
h
e
im
e
r’
s
d
is
e
a
s
e
;
A
D
E
M
,
A
c
u
te
d
is
s
e
m
in
a
te
d
e
n
c
e
p
h
a
lo
m
ye
lit
is
;
A
IS
,
A
c
u
te
is
c
h
a
e
m
ic
s
tr
o
ke
;
B
M
I,
B
o
d
y
m
a
s
s
in
d
e
x;
C
A
1
,
C
o
rn
u
A
m
m
o
n
is
1
;
C
A
D
A
S
IL
,
C
e
re
b
ra
l
a
u
to
s
o
m
a
l
d
o
m
in
a
n
t
a
rt
e
ri
o
p
a
th
y

w
it
h
s
u
b
c
o
rt
ic
a
l
in
fa
rc
ts
a
n
d
le
u
ko
e
n
c
e
p
h
a
lo
p
a
th
y;
C
O
P
D
,
C
h
ro
n
ic
o
b
s
tr
u
c
ti
ve

p
u
lm
o
n
a
ry
d
is
e
a
s
e
;
C
T,
C
o
m
p
u
te
ri
s
e
d
to
m
o
g
ra
p
h
y;
D
V
T,
D
e
e
p
-v
e
in
th
ro
m
b
o
s
is
;
F
D
G
-P
E
T,
F
lu
o
ro
d
e
o
xy
g
lu
c
o
s
e
-p
o
s
it
ro
n
e
m
is
s
io
n
to
m
o
g
ra
p
h
y;
G
R
,
G
yr
u
s

re
c
tu
s
;
M
C
A
,
M
id
d
le
c
e
re
b
ra
l
a
rt
e
ry
;
M
C
I,
M
ild

c
o
g
n
it
iv
e
im
p
a
ir
m
e
n
t;
M
O
,
M
e
d
u
lla

o
b
lo
n
g
a
ta
;
M
R
I,
M
a
g
n
e
ti
c
re
s
o
n
a
n
c
e
im
a
g
in
g
;
M
S
,
M
u
lt
ip
le
s
c
le
ro
s
is
;
O
B
,
O
lfa
c
to
ry
b
u
lb
;
O
N
,
O
lfa
c
to
ry
n
e
rv
e
;
O
S
A
,
O
b
s
tr
u
c
ti
ve

s
le
e
p
a
p
n
o
e
a
;
O
F
C
,

O
rb
it
o
fr
o
n
ta
lc
o
rt
e
x;
P
C
A
,
P
o
s
te
ri
o
r
c
e
re
b
ra
la
rt
e
ry
;
P
D
,
P
a
rk
in
s
o
n
’s
d
is
e
a
s
e
;
P
N
S
,
P
e
ri
p
h
e
ra
ln
e
rv
o
u
s
s
ys
te
m
;
P
R
E
S
,
p
o
s
te
ri
o
r
re
ve
rs
ib
le
e
n
c
e
p
h
a
lo
p
a
th
y
s
yn
d
ro
m
e
;
S
F
C
,
S
u
p
e
ri
o
r
fr
o
n
ta
lc
o
rt
e
x;
T
B
I,
Tr
a
u
m
a
ti
c
b
ra
in
in
ju
ry
;
T
IA
,
Tr
a
n
s
ie
n
t

is
c
h
a
e
m
ic
a
tt
a
c
k;
W
M
,
W
h
it
e
m
a
tt
e
r.

leukoencephalopathy was detected in the right frontal lobe and
in the cerebellum bilaterally (Anand et al., 2020). Delorme et al.
(2020) also reported mainly frontal alterations using MRI and
FDG-PET: hypometabolism in the frontal cortex bilaterally in
all four reported cases (prefrontal in three and orbitofrontal in
one) and in posterior associative parieto-temporal cortices in
two cases, but also hypermetabolism in the cerebellar vermis
in all cases and bilaterally in the striatum in two cases.
Moreover, hyperintensities were evident in the right orbitofrontal
cortex in one case. Similarly, widespread hypometabolism was
found in a 62-year-old man particularly in mediotemporal,
brainstem, thalamic/hypothalamic, and right inferior frontal
areas (Guedj et al., 2020). Hyperintensities and hypometabolism
were found throughout the left hemisphere cortex, the left
caudate nucleus, the thalamus, and the right cerebellum in a
case with concomitant Creutzfeldt-Jakob disease (Young et al.,
2020). White matter (WM) damage was observed in multiple
cases with encephalopathy: deep periventricular and subcortical
WM ischaemic lesions in a patient with anorexia and depression
(Jang et al., 2020), and widespread WM alterations, mainly in
parietal and occipital areas, in two case series (Muccioli et al.,
2020; Parauda et al., 2020). Manganelli et al. (2020) found signs
of gliosis in the right pons of a woman with COVID-19 using
CT, but no abnormalities were found on MRI examination.
Additionally, signs of inflammation of endothelial cells were
observed in several cerebral arteries in a small case series where
only one patient had bilateral ischaemic damage detectable on
MRI (Pugin et al., 2020).

A considerable proportion of studies found either no
abnormalities or old/unrelated signs of neural damage on
MRI including: four single cases, two of which also included
CT examinations; a patient with Miller-Fisher-like syndrome
(Fernández-Domínguez et al., 2020); one with schizophrenia
(Palomar-Ciria et al., 2020); and two with non-epileptic seizures
(Logmin et al., 2020; Vollono et al., 2020). Moreover, no evidence
of abnormalities was also found by Anand et al. (2020) on the CT
scans of two out of five patients with epilepsy and by Manganelli
et al. (2020) in one of the two cases investigated.

Encephalitis
Signs of encephalitis were investigated specifically in seven
patients with COVID-19: four men (Chaumont et al., 2020; Le
Guennec et al., 2020; McCuddy et al., 2020; Pilotto et al., 2020),
three women (Hosseini et al., 2020; Khoo et al., 2020; Novi et al.,
2020), one of whom had suspected Alzheimer’s disease (AD)
(Khoo et al., 2020). The majority of these studies (Chaumont
et al., 2020; Khoo et al., 2020; Pilotto et al., 2020) observed
no abnormalities on either MRI (all cases) or CT examinations
(Pilotto et al., 2020). Diagnosis of encephalitis was variable
across studies, based mainly on MRI findings and confirmed
by cerebrospinal fluid abnormalities only in three studies
(Chaumont et al., 2020; Novi et al., 2020; Pilotto et al., 2020).
In one case encephalitis was suspected on the basis of clinical
presentation and response to corticosteroid treatment (Khoo
et al., 2020). However, in the case investigated by Hosseini et al.
(2020), alterations of diffusion in left mediotemporal and limbic
areas were found over time, on both CT andMRI scans, and these
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alterations were interpreted as limbic encephalitis. Le Guennec
et al. (2020) found no abnormalities on CT examination, but
a right-lateralised area of MRI hyperintense signal was found
encompassing the orbitofrontal and medial prefrontal cortices
and the caudate nucleus, that gradually resolved over one
month. Similarly, hyperintensities with restricted diffusion were
observed in deepWM, the corpus callosum and the left brachium
pontis in a patient, with clinical improvement over a period
of 8 days (McCuddy et al., 2020). Another case presented with
multiple gadolinium-enhancing lesions affecting the spinal cord,
the optic tract, temporal, occipital and frontal areas suggesting
acute disseminated encephalomyelitis (Novi et al., 2020).

Cerebrovascular Events
Forty-five studies in total, mostly single-case or case-series
reports, described the topological features of brain involvement
due to acute cerebrovascular events occurring concomitantly
with COVID-19 infection.

The only group study (Radmanesh et al., 2020a) included
a total of 242 adults (68.7 ± 16.7 years old) and was based
on recruitment carried out in a single academic clinical centre.
The most common finding in this cohort was the presence
of acute/sub-acute infarcts (∼19.4% of patients), followed by
radiological evidence of abnormal microangiopathy (∼11%),
intracranial COVID-19-related haemorrhage (∼3%), and in one
patient there was an anoxic injury due to supra- and infra-
tentorial haemorrhage. Additional details were provided for the
following six patients: a 74-year-old man with a right inferior
frontal haemorrhage, a 61-year-old woman with a left parietal
haemorrhage, a 62-year-old man with a left frontal ischaemic
stroke, a 77-year-old woman with a large right fronto-temporal
ischaemia, a 63-year-old man with an acute infarct in the left
cerebellum and a 78-year-old man with ischaemic involvement
of the middle cingulate and the body of the corpus callosum.
The map of neural damage for the remaining patients was
not described.

When single cases and case series were assessed, a total of
120 patients met the demographic and methodological criteria
set by this review study. These clinical reports included 84
cases of ischaemic stroke, 23 cases of haemorrhagic events, 10
patients with significant mixed ischaemic and haemorrhagic
processes, two patients with a form of encephalopathy and
microhaemorrhages and one case of vasculitis without any
noticeable involvement of brain tissue.

Ischaemia
Various vascular findings (including coagulopathy and
cardioembolism, with vessel occlusion, thrombosis, or stenosis)
were responsible for the ischaemic events described in the
literature, and the territory affected by the CT/MRI-informed
changes involved multiple neural structures. All cerebral lobes
have been reported to be affected by ischaemic events associated
with COVID-19 including the frontal lobe (Avula et al., 2020;
Basi et al., 2020; Fan et al., 2020; Hernández-Fernández et al.,
2020; Jillella et al., 2020; Katz et al., 2020; Mohamud et al., 2020;
Morassi et al., 2020; Papi et al., 2020; Tiwari et al., 2020; Zayet
et al., 2020; Zhang et al., 2020) with additional involvement

of pericentral areas (Mohamud et al., 2020; Morassi et al.,
2020), the temporal lobe (Beyrouti et al., 2020; Jillella et al.,
2020; Mohamud et al., 2020; Morassi et al., 2020; Papi et al.,
2020; Tiwari et al., 2020; Zhai et al., 2020; Zhang et al., 2020),
fronto-temporal regions (Barrios-López et al., 2020; Chen
et al., 2020; Hernández-Fernández et al., 2020; Mohamud et al.,
2020; Papi et al., 2020; Sierra-Hidalgo et al., 2020), the parietal
lobe (Bolaji et al., 2020; Chen et al., 2020; Fan et al., 2020;
Hernández-Fernández et al., 2020; Jillella et al., 2020; Papi et al.,
2020; Sierra-Hidalgo et al., 2020; Zayet et al., 2020; Zhang et al.,
2020), fronto-parietal regions (Fan et al., 2020; Goldberg et al.,
2020; Jillella et al., 2020; Mohamud et al., 2020; Morassi et al.,
2020; Tunç et al., 2020; Viguier et al., 2020; Zayet et al., 2020;
Zhang et al., 2020), the occipital lobe (Diaz-Segarra et al., 2020;
Fan et al., 2020; Hernández-Fernández et al., 2020; Janjua and
Moscote-Salazar, 2020; Jillella et al., 2020; Morassi et al., 2020;
Zhang et al., 2020), and the parieto-occipital (Avula et al., 2020;
Beyrouti et al., 2020; Jillella et al., 2020; Tiwari et al., 2020;
Zayet et al., 2020), temporo-parietal (Jillella et al., 2020), or
temporo-occipital territory (Barrios-López et al., 2020; Fan et al.,
2020; Sierra-Hidalgo et al., 2020). Seven of the 84 cases with
cerebral ischaemia did show a cerebral involvement but no
detailed description was provided to map brain damage with
accuracy (Barrios-López et al., 2020; Co et al., 2020; Diaz-Segarra
et al., 2020; Fan et al., 2020; Hanafi et al., 2020; Kananeh
et al., 2020; Tiwari et al., 2020; Tunç et al., 2020; Zhang et al.,
2020). Additionally, a number of studies have documented an
involvement of the insular region (Hernández-Fernández et al.,
2020; Jillella et al., 2020; Papi et al., 2020; Zhai et al., 2020), of
limbic regions located in the mediotemporal lobe (Avula et al.,
2020; Zhai et al., 2020) and in the cingulate gyrus (Morassi et al.,
2020), and of the dorsal striatum (Beyrouti et al., 2020; Hanafi
et al., 2020;Mohamud et al., 2020;Morassi et al., 2020; Tunç et al.,
2020) or, more generally, of the basal-ganglia territory (Chen
et al., 2020; Janjua and Moscote-Salazar, 2020; Jillella et al., 2020;
Sierra-Hidalgo et al., 2020; Tiwari et al., 2020; Zhang et al., 2020).
Two patients presented with an infarction affecting the corpus
callosum (Sparr and Bieri, 2020). Other than the cerebrum,
evidence of diencephalic ischaemia affecting the thalamus has
been reported in six patients (Hernández-Fernández et al., 2020;
Jillella et al., 2020; Morassi et al., 2020; Tiwari et al., 2020), and
cerebellar involvement in 11 cases (Barrios-López et al., 2020;
Basi et al., 2020; Hanafi et al., 2020; Hernández-Fernández et al.,
2020; Janjua and Moscote-Salazar, 2020; Jillella et al., 2020;
Morassi et al., 2020; Sierra-Hidalgo et al., 2020; Sparr and Bieri,
2020; Zayet et al., 2020). Brainstem infarction was described in
six patients: three in the pons (Beyrouti et al., 2020; Chen et al.,
2020; Tunç et al., 2020); one in the midbrain (Fan et al., 2020);
one in the cerebral peduncle (Beyrouti et al., 2020); and one in
an unspecified brainstem area (Zhang et al., 2020). Two cases
of cerebrovascular occlusion with no acute neural damage were
described by Mohamud et al. (2020).

Haemorrhage
A heterogeneous pattern was also observed in the case series
with a pure haemorrhagic presentation (without any concurrent
significant ischaemic or encephalopathic features). In the 11 cases
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presenting with a large haemorrhage, the regions involved were
the left temporal lobe (Ghani et al., 2020; Hernández-Fernández
et al., 2020; Sharifi-Razavi et al., 2020), the right temporal/insular
territory (Benger et al., 2020), the temporal lobe bilaterally (Roy-
Gash et al., 2020), the left frontal lobe (Hernández-Fernández
et al., 2020), the parietal lobe bilaterally (Sabayan et al., 2021),
the cerebellum (Al-Dalahmah et al., 2020), the basal ganglia
(Pavlov et al., 2020), and a large portion of the right hemisphere
(Keaney and Mumtaz, 2020). In one case, the regions affected
included the lateral ventricles and the subarachnoid space with
no additional details reported (Fan et al., 2020). In the case
of a patient, a frontal haemorrhage was due to the rupture of
an aneurysm (Muhammad et al., 2020). Eight patients, finally,
showed evidence of subcortical white-matter microbleeds with
the involvement of the brainstem (Chen et al., 2020) and of the
corpus callosum (Fitsiori et al., 2020), and of these latter, four
also presented with a mixed pattern of widespread microbleeds
and lacunar haemorrhagic infarcts.

Mixed Ischaemia and Haemorrhage Pattern
Of the cases with a mixed ischaemic-haemorrhagic presentation,
one patient showed evidence of right frontal subarachnoid
bleeding, left intraparenchymal hematoma, and a concurrent
pattern of confluent hyperintensities affecting parieto-occipital
regions bilaterally (Hernández-Fernández et al., 2020). A
second patient presented with cortical/sub-cortical haemorrhage
in the temporal and occipital lobe, multiple sub-arachnoid
haemorrhages and bilateral parieto-occipital hyperintensities
(Hernández-Fernández et al., 2020). A third patient suffered
from ischaemia with haemorrhagic transformation in left
temporo-parietal regions (Saggese et al., 2020). A fourth
patient showed haemorrhage in proximity of the left cerebellar
hemisphere and concurrent ischaemic changes in occipital,
thalamic and posteromedial territories (Beyrouti et al., 2020). A
fifth patient showed a subcortical ischaemic event affecting the
thalamus, basal ganglia, internal capsule and the splenium, with
concomitant haemorrhage in the right cerebral peduncle and
pons (Chougar et al., 2020). A sixth patient showed numerous
hyperintensities, leukoaraiosis in the right intraparietal sulcus
and microhaemorrhages in the left centrum semiovale, thalamus,
left cerebellum and left anterior temporal lobe (Jaunmuktane
et al., 2020). A seventh patient presented with bilateral
ischaemic-haemorrhagic infarctions affecting, above all, a large
proportion of the left hemisphere from frontal to occipital
regions (Mohamed et al., 2020). An eight patient had several
ischaemic regions scattered across his white matter including
the cerebellum, deep white matter and centri semiovale, with
a concomitant lenticular haemorrhage (Hanafi et al., 2020). A
ninth patient showed ischaemic changes affecting frontal and
parietal regions, bilaterally, with haemorrhagic transformation in
the right frontal lobe (Sierra-Hidalgo et al., 2020). A tenth patient
presented with multiple infarctions in regions such as the medial
temporal lobe and cerebellum, and showed concurrent bilateral
haemorrhages in frontal, temporal and occipital territories, and
also in the right medial temporal lobe (Sierra-Hidalgo et al.,
2020).

Vasculitis
One patient presented with systemic vasculitis but no changes to
the nervous tissue were reported (Oliveira et al., 2020).

Multiple Findings
Twelve studies used neuroimaging to investigate a multiplicity
of different types of neural damage. Studies on five single
cases reported a range of different findings, most consistently
involving WM damage. A non-enhancing abnormality in the
right anterior-medial temporal lobe was noted by Benameur et al.
(2020). Atrophy and widespread periventricular and subcortical
WM ischaemic lesions were found in a 78-year-old woman
(Farhadian et al., 2020). Both studies investigated inflammatory
changes compatible with encephalitis, by means of neuroimaging
and cerebrospinal fluid (CSF) analysis, although the relationship
with COVID-19 infection remained unclear. One reversible WM
hyperintensity due to encephalopathy/encephalitis (diagnosed on
the basis of MRI findings only) was found in the splenium of
the corpus callosum in one patient with mild AD (Hayashi et al.,
2020). One study (Nicholson et al., 2020), instead, foundmultiple
abnormalities only on MRI, but not on CT scans, spreading
from subarachnoid and subpial spaces (enhancements) to areas
of hyperintense signal in perivascular regions and in subcortical
WM, especially across the corpus callosum. Similarly, Krett et al.
(2020) observed diffuse haemorrhages on MRI, in the absence
of vasculopathy, across multiple brain compartments, including
the subarachnoid space. Finally, two patients were reported
having posterior reversible encephalopathy syndrome: the first
one presented with hyperintensities (but no evidence of stenosis)
in the right posterior frontal lobe, in the left centrum semiovale
and in parieto-occipital regions bilaterally, accompanied by
microbleeds in this latter territory (Hernández-Fernández et al.,
2020); while the second one showed oedema extending to
parieto-occipital regions bilaterally, cerebellum, right frontal lobe
and basal ganglia, with evidence of an haemorrhagic process in
left parieto-occipital areas (Franceschi et al., 2020).

Case series and cohort studies included patients with a
variety of comorbidities, especially cardiovascular pathologies
such as hypertension, history of stroke and transient ischaemic
attack, atrial fibrillation and deep-vein thrombosis. However,
multiple cases with diabetes, a history of cancer, mild cognitive
impairment, chronic obstructive pulmonary disease and kidney
pathologies were reported. Paterson et al. (2020) investigated
patients falling into four main categories, depending on the
predominant type of neural damage found: encephalopathy,
encephalitis, cerebrovascular involvement, and peripheral
nervous system signs. No brain abnormalities were reported in
those with encephalopathy and peripheral nervous dysfunctions.
Three patients with encephalitis, defined by means of both
MRI and cerebrospinal fluid assessments, showed different
pathological changes: hyperintense areas in the pons, limbic
areas, medial thalamic nuclei, and subcortical cerebral WM were
detected in one patient, while in the other two cases different
types of subcortical WM lesions were mainly observed. Great
variability in the type of cerebrovascular injuries and in the brain
areas affected was also observed in five cases, since haemorrhages
and infarcts were detected mainly in cerebellar/brainstem areas,
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but also in cerebral WM (frontal and occipital) and in the
basal ganglia. Thirteen out of 58 cases reviewed by Helms et al.
(2020a) showed different cerebral abnormalities, yet almost
all patients (11 out of 13) presented with bilateral fronto-
temporal hypoperfusion detected with arterial spin labelling
MRI. The same research group also found a similar pattern
of hypoperfusion, mainly in mediotemporal and right frontal
areas, in 17 out of 32 patients with COVID-19 who presented
with severe delirium (Helms et al., 2020b). Moreover, WM
microhaemorrhages were noted across all cerebral lobes and the
cerebellum in seven cases and a left frontal intraparenchymal
haematoma was detected in one case. Radmanesh et al. (2020b),
instead, observed in five cases that WM damage, both as
leukoencephalopathy and microhaemorrhages, was especially
present in posterior occipital and temporal areas, in the
corpus callosum, centrum semiovale, corona radiata, and in
juxtacortical WM in the precentral gyrus, while deep grey matter
nuclei were spared.

A cohort study (Pons-Escoda et al., 2020) found that
only 23 out of 103 patients with COVID-19 presented with
cerebrovascular accidents, mainly located in the basal ganglia
(three cases), prefrontal (two cases), parietal, and cerebellar
(one case each) regions. However, the location of some of
the cerebrovascular injuries (three lobar haematomas) was not
included. No cases of encephalitis were detected by neuroimaging
examinations. Similarly, the largest cohort including 278 patients
assessed with either CT or MRI (Lin et al., 2020) found
little evidence of encephalopathy due to COVID-19: posterior
reversible encephalopathy syndrome was present in three cases,
while areas of signal enhancement in the optic nerve were
present in two cases and in the olfactory bulb (with no evidence
of volume changes) in four cases. However, cerebrovascular
events were reported to be more common: infarctions were
present in 31 cases, mainly in multiple vascular territories and
without a consistent pattern across patients. Microhaemorrhages
(26 cases) were mild and without a consistent pattern in the
overall sample, but in three patients lesions were predominantly
localised in the corpus callosum, in both internal capsules and in
juxtacortical WM. Similarly, Mahammedi et al. (2020) observed
neuroimaging abnormalities, especially of cardiovascular origin,
in 47% of 108 hospitalised patients with COVID-19 presenting
with neurological symptoms. Ischaemic infarcts represented the
most common finding observed in various vascular territories,
but also in the basal ganglia, with WM damage found in
subcortical and basal ganglia areas. Encephalopathy was rare and
only one case of posterior reversible encephalopathy was reported
in this series.

A few more studies observed no recent and acute neural
changes that could be ascribed to COVID-19 infection:
Abdelnour et al. (2020) reported the case of a man who
presented only with old infarcts and no signs of encephalitis
on MRI, no brain abnormalities were found in 80 out of
103 patients by Pons-Escoda et al. (2020) and two studies
detected either no signs of encephalopathy (Paterson et al., 2020)
or no cortical hyperintensities, haemorrhagic encephalitis and
leptomeningeal enhancement in all patients included (Lin et al.,
2020).

Cognitive Correlates of Neuroimaging Findings
A subset of neuroimaging studies carried out in older patients
also reported details of cognitive symptoms, although the
relationship between neural damage and cognitive deficits was
rarely discussed and not always transparent. For example,
delirium was not associated with specific neuroimaging findings:
Helms et al. (2020b) observed this symptom in people
with WM damage, fronto-temporal hypoperfusion, stroke, and
haematomas, while other patients with delirium had no MRI
abnormalities at all (Paterson et al., 2020). Decline in, or
loss of, consciousness was also reported in patients with right
frontal ischaemia (Basi et al., 2020), right temporal haemorrhage
(Sharifi-Razavi et al., 2020), lesions of the left midbrain (Fan
et al., 2020) and of the left ventromedial prefrontal cortex
(Muhammad et al., 2020), extensive right-sided (Fan et al.,
2020) or left-sided lesions (Mohamed et al., 2020), diffuse WM
lesions (McCuddy et al., 2020; Muccioli et al., 2020), diffuse
cerebrovascular alterations (Pugin et al., 2020) and also in the
absence ofMRI abnormalities (Manganelli et al., 2020; Mohamud
et al., 2020). Similarly, altered mental status was observed in
patients with one lesion in the splenium (Sparr and Bieri, 2020),
scattered WM lesions (Farhadian et al., 2020), and microbleeds
(Fitsiori et al., 2020), in a case with haemorrhage in the right
parieto-occipital territory (Franceschi et al., 2020), but in most
cases alterations in mental state were not associated with any
specific MRI finding (Radmanesh et al., 2020a,b).

A few cases were also described of patients presenting with
some degree of unspecified cognitive decline, present either at
hospital admission or developing during hospitalisation, that was
associated with multiple haemorrhages in one case (Krett et al.,
2020) and no structural neuroimaging findings in other two cases
(Khoo et al., 2020; Pilotto et al., 2020). More specific cognitive
symptoms were also observed: executive dysfunction in patients
with frontal hypometabolism (Delorme et al., 2020), memory and
attention deficits associated with persistent delirium in a patient
with diffuse ischaemic damage mainly in temporal and limbic
areas (Hosseini et al., 2020), left-sided neglect due to right frontal
ischaemia (Avula et al., 2020) and aphasia in cases of diffuse
left-sided (Beyrouti et al., 2020), left frontal (Jillella et al., 2020),
and bilateral cerebrovascular injuries, mainly in temporal areas
(Jillella et al., 2020; Roy-Gash et al., 2020; Saggese et al., 2020).

Neuropathological Examinations
Sixteen studies reported various macroscopic and microscopic
results of neuropathological examinations: four single cases,
three post-mortem examinations (Al-Dalahmah et al., 2020;
Bulfamante et al., 2020; Reichard et al., 2020) and one ante-
mortem biopsy of the olfactory epithelium (Vaira et al., 2020),
and 12 case series (Bradley et al., 2020; Buja et al., 2020; Hanley
et al., 2020; Hernández-Fernández et al., 2020; Jaunmuktane
et al., 2020; Kantonen et al., 2020; Matschke et al., 2020; Menter
et al., 2020; Remmelink et al., 2020; Schurink et al., 2020; Youd
and Moore, 2020; Lee et al., 2021), for a total of 132 patients
who died with COVID-19 (65 of whom aged 60 or older).
Many comorbidities were reported in 14 out of the 16 studies,
especially: hypertension, diabetes, kidney diseases and a range
of cardiovascular pathologies. A few patients were also affected
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by other neurodegenerative conditions, such as AD, Parkinson’s
disease and multiple sclerosis.

Macroscopic Findings
All but two studies (Bulfamante et al., 2020; Menter et al.,
2020) reported the results of macroscopic inspections of patients’
brains. The majority of the papers observed cerebrovascular
damage of different type. Haemorrhages were found in seven
patients and damage was located in: the right cerebellum (Al-
Dalahmah et al., 2020), left frontal and left parieto-temporal
lobes (Hernández-Fernández et al., 2020), subarachnoid space
(Bradley et al., 2020), and both cerebral and cerebellar WM
(Kantonen et al., 2020; Reichard et al., 2020). Cerebrovascular
damage either without a specific localisation or widespread
throughout the brain was reported by three studies (Hanley et al.,
2020; Remmelink et al., 2020; Lee et al., 2021). New infarctions
were found in eight cases in: bilateral globus pallidum, occipital
lobe WM and left hippocampus and thalamus (Jaunmuktane
et al., 2020); and in territories of the posterior (three cases),
middle (two cases), and anterior (one case) cerebral arteries
(Matschke et al., 2020). Ischaemic lesions were noted in the
centrum semiovale and in the right lentiform nucleus in
one case (Jaunmuktane et al., 2020). Matschke et al. (2020)
reported non-specific oedema in 23 cases, atrophy in 20 cases
and arteriosclerosis in all 43 cases. Additionally, tentorial and
foramen magnum herniations were found in one case (Al-
Dalahmah et al., 2020), while depigmentation of the substantia
nigra and locus coeruleus, and enlarged perivascular spaces were
noted in another case (Kantonen et al., 2020). However, no
evidence of macroscopic brain abnormalities was observed in
50% of the neuropathological cases (Bradley et al., 2020; Buja
et al., 2020; Hanley et al., 2020; Matschke et al., 2020; Remmelink
et al., 2020; Schurink et al., 2020; Vaira et al., 2020; Youd and
Moore, 2020) (Figure 2).

Microscopic Findings
All but one study (Youd and Moore, 2020) carried out
microscopic pathological analyses on samples of neural tissue.
Null findings were observed in the microscopic examination of
only 11 cases of older adults deceased with COVID-19 included
in three studies (Bradley et al., 2020; Buja et al., 2020; Hanley
et al., 2020) (Figure 2).

Damage was observed in a wide variety of neural cells.
Hypoxic damage was found in a single case in neurons across
the cerebral cortex, striatum, thalamus, amygdala, hippocampus,
midbrain, pontine nuclei, medullary nuclei, and Purkinje cells
(Al-Dalahmah et al., 2020). Non-specific hypoxic damage was
also reported by other studies (Kantonen et al., 2020; Menter
et al., 2020; Schurink et al., 2020). WM axonal loss and
demyelination were detected in sites of vascular damage in
combination with scattered hypoxic damage to neurons in
neocortex, hippocampus (CA1) and the cerebellum in one case
(Reichard et al., 2020). Moreover, non-specific WM axonal
damage in the absence of demyelination (Jaunmuktane et al.,
2020) andWM lesions (Kantonen et al., 2020) were also reported.
In one patient, severe damage to neurons, glia, axons and
myelin sheath was found to be more prominent in the olfactory

nerve, followed by the gyrus rectus and the medulla oblongata
(Bulfamante et al., 2020).

Signs of inflammation were also found throughout the
central nervous system (CNS) in the corpus callosum,
striatum, thalamus, hippocampus, midbrain and pons, and
olfactory epithelium of one patient (Al-Dalahmah et al., 2020),
leptomeningeal inflammation in the right intraparietal sulcus
in one case (Jaunmuktane et al., 2020), and widespread across
the brainstem, the frontal cortex and the basal ganglia in a case
series (Matschke et al., 2020). In particular, microglial activation
was reported by several studies (Hanley et al., 2020; Schurink
et al., 2020; Lee et al., 2021) and across different regions, namely:
the inferior olives and dentate nuclei (Al-Dalahmah et al., 2020),
the medulla oblongata, cerebellum, olfactory bulb, and subpial
and subependymal regions (Matschke et al., 2020). Additionally,
astrogliosis was found in all cases analysed by Matschke et al.
(2020), especially in the olfactory bulb, and in the orbitofrontal
and superior frontal cortices of a patient examined by Al-
Dalahmah et al. (2020). A few studies, instead, found no traces of
either increased microglia activation (Jaunmuktane et al., 2020),
vasculitis (Al-Dalahmah et al., 2020; Jaunmuktane et al., 2020;
Remmelink et al., 2020), which was reported to a mild extent
only by one neuropathological study (Hernández-Fernández
et al., 2020), or of any inflammatory processes (Menter et al.,
2020; Remmelink et al., 2020).

A variety of cerebrovascular injuries, often reported as a
general finding without brain localisation (Remmelink et al.,
2020), was observed in endothelial cells in arterioles, capillaries,
and venules and degeneration of the pericapillary neuropil
(Hernández-Fernández et al., 2020). Subarachnoid haemorrhages
and microhaemorrhages in the brainstem were reported in
one patient (Bradley et al., 2020) and a haemorrhagic WM
lesion in one case (Reichard et al., 2020). The absence of
cerebrovascular damage was recorded by one neuropathological
study (Jaunmuktane et al., 2020).

One study that investigated the olfactory epithelium of a
patient with COVID-19 and anosmia found a reduction in
surface withminimal levels of chronic lymphocytic inflammatory
infiltrates (Vaira et al., 2020). MRI examination revealed no
macrostructural abnormalities in the olfactory bulb.

Finally, a few studies also investigated the presence of COVID-
19 in the CNS tissue samples. Although three studies (Kantonen
et al., 2020; Schurink et al., 2020; Lee et al., 2021) found
no evidence of viral infection in the CNS, this was observed
repeatedly across different brain regions: the olfactory nerve
(Al-Dalahmah et al., 2020; Bulfamante et al., 2020; Matschke
et al., 2020; Menter et al., 2020), frontal lobe (Bulfamante et al.,
2020; Matschke et al., 2020), and brainstem (Bulfamante et al.,
2020; Matschke et al., 2020; Menter et al., 2020), especially in
the medulla oblongata, and in the cerebellum of a patient with
cerebellar haemorrhage (Al-Dalahmah et al., 2020) (Figure 3).
Hanley et al. (2020) detected the presence of COVID-19 across
the brain, but viral load was highly variable across cases.

Only a minority of the neuropathological investigations
assessed whether microscopic alterations and viral presence in
the neural tissue was associated with neuroimaging and clinical
findings. Pervasive vascular damage due to haemorrhages,
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as expected, was consistently detected by both macroscopic
and microscopic examinations (Al-Dalahmah et al., 2020;
Hernández-Fernández et al., 2020) and linked to the presence of

FIGURE 2 | Summary of the rates of null neuropathological findings.

viral genetic material in the brainstem in one patient, possibly
due to blood contamination (Al-Dalahmah et al., 2020). Anosmic
patients with COVID-19 presented with alterations in both the
olfactory epithelium (Vaira et al., 2020) and bulb (Bulfamante
et al., 2020); however, such microstructural alterations did
not correlate with volumetric changes in the olfactory bulb
as assessed by means of MRI (Vaira et al., 2020). Similarly,
patients who presented with delirium and altered mental status
before death showed no specific neuropathological signatures
(Kantonen et al., 2020; Schurink et al., 2020; Lee et al., 2021) and
some had no CNS tissue abnormalities at all (Bradley et al., 2020).

DISCUSSION

As of December 2020, the COVID-19 pandemic has become
established across the planet for at least 12 months. The medical
community has promptly responded to the emergency to the best
of their capabilities and has documented the mechanistic and
clinical features of this viral infection, putting emphasis on the
nervous system as one of its major targets. It is thus particularly
important for cognitive and clinical neuroscientists to study the

FIGURE 3 | Summary of the most common neural findings across the brain.
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link between the neural effects of COVID-19 and changes in
cognitive and psychiatric/behavioural functioning. At present,
however, the evidence available in the literature is limited to (1)
the acute effects of the virus and (2) patients who have contracted
the infection and developed symptoms of sufficient concern to
justify hospitalisation and radiological investigations. As a result,
we have only partial knowledge of the link between COVID-
19 infection and mental abilities. Although characterisation of
the long-term neural effects of COVID-19 infection will be
investigated in due course, and indeed there are several ongoing
studies at present, it is of primary importance to review the
current evidence in order to define a theoretical backbone in
support of future experimental studies.

At first glance, the literature currently available on the neural
changes observed in older adults with COVID-19 shows great
variability of findings across studies. While variability is expected
in any condition (in this case, especially when the damage
route is via cerebrovascular and inflammatory mechanisms of
typical patchy presentations), it is possible that a better defined
pattern will be apparent in the long term. Many examples of
brain damage of vascular aetiology associated with COVID-19
infection were noted, thus suggesting that the cerebrovascular
system may be particular susceptible. In general, neuroimaging
findings do not appear to be distinctly associated with a set
of specific brain areas (Jang et al., 2020; Krett et al., 2020;
Mahammedi et al., 2020) and a variety of neural changes have
been observed everywhere in the brain, the meninges and the
cerebrovascular system (Lin et al., 2020; Pons-Escoda et al.,
2020) (Figure 3). However, some recurrent findings emerged
from the studies focussing on encephalopathies. In particular,
multiple papers reported WM lesions of variable aetiology,
presentation, and location (Anand et al., 2020; Benameur
et al., 2020; Farhadian et al., 2020; Hayashi et al., 2020;
Jang et al., 2020; Nicholson et al., 2020) that have also been
commonly observed in larger cohorts (Paterson et al., 2020;
Radmanesh et al., 2020b). A considerable amount of older
adults with COVID-19 examined with FDG-PET and arterial
spin labelling MRI presented with hypoperfusion in bilateral
frontal and temporal cortices (Delorme et al., 2020; Guedj et al.,
2020; Helms et al., 2020a,b), while both hyperperfusion and
hypoperfusion have been observed in the cerebellum (Delorme
et al., 2020; Young et al., 2020). It must be noted, however,
that, encephalopathy, is an umbrella term and that different
pathophysiological changes, some primarily related to COVID-
19 infection and some related to collateral events, might have
contributed to such condition. While accounts of patients
with encephalopathy responsive to corticosteroids suggest an
immune-mediated pathogenesis (Pilotto et al., 2020; Pugin et al.,
2020), intubation and mechanical ventilation might have also
contributed to neural damage in a minority of patients (Delorme
et al., 2020; Parauda et al., 2020). Indeed, a few patients
with diffuse subcortical damage developed encephalopathy after
sedation (Muccioli et al., 2020) and extubation (Lin et al.,
2020). Therefore, it cannot be excluded that invasive medical
procedures as well as several pre-existing comorbidities in
older patients might have contributed to the heterogeneity of
neuroimaging findings.

In several cases, brain abnormalities of any type were
detected bilaterally across most cerebral and cerebellar regions.
Cerebrovascular damage, instead, was most frequently lateralised
to a single hemisphere at the individual level, although both
brain sides appeared to be equally affected, overall. A trend for
a higher rate of cerebrovascular findings on the right side of
the brain was observed across all lobes, but, since no studies
have investigated whether one of the two hemispheres may be
more prone to COVID-19-related damage, any speculation on
this issue appears premature. However, vascular injuries of any
type appeared to be more often located in the frontal lobes,
followed by parietal, temporal and occipital areas. This pattern
appears to be similar to that detected in other critical illnesses,
e.g., sepsis is associated with dysfunction in cerebrovascular
regulation and, consequently, hypoperfusion, particularly in
mediotemporal and frontal areas, is frequently observed (Tauber
et al., 2021). Moreover, a case series of three patients with
Middle East respiratory syndrome coronavirus showed similar
widespread bilateral brain abnormalities in frontal, temporal as
well as subcortical areas onMRI assessment (Arabi et al., 2015). A
study that compared the clinical profiles of patients with COVID-
19 and patients with Influenza virus revealed that the flu virus
was associated with a lower risk of developing an ischaemic
stroke (Merkler et al., 2020). No information on the anatomical
localisation of these acute vascular events was provided in this
study, however.

In a minority of cases, several cognitive alterations were
reported. Delirium, loss of consciousness and altered mental
status appeared not to be associated with specific pathological
signatures, possibly because such symptoms are vaguely defined
and, therefore, may arise in patients because of different medical
and environmental conditions. However, they could also be
caused mainly by functional, rather than structural, cerebral
alterations that have not been investigated by the majority
of the studies currently available. Indeed, hypoperfusion of
medial temporal and right frontal areas was observed to be
pronounced in patients who presented with severe delirium
(Helms et al., 2020b). In contrast, more specific impairments
were observed in cases with injuries of differing aetiologies
to brain structures known to be involved in the functions
affected: executive function decline in patients with frontal
hypometabolism (Delorme et al., 2020), memory impairment due
to limbic damage (Hosseini et al., 2020), neglect in a case with
right frontal damage (Avula et al., 2020), and aphasia due to left-
sided and temporal injuries (Beyrouti et al., 2020; Jillella et al.,
2020; Roy-Gash et al., 2020; Saggese et al., 2020).

Although longitudinal investigations on neural and cognitive
alterations are not available yet, these findings are particularly
relevant for the long-term cognitive health of older patients.
Indeed, signs of hypoperfusion in frontal and temporal lobes
were consistently highlighted across studies; these brain regions
mainly consist of associative cortex, implicated in memory,
executive functions as well as complex behavioural control (Badre
and Nee, 2018; Jackson et al., 2018). Such negative consequences
of COVID-19 on the neural tissue in these areas may either
be transient or a driver for long-lasting effects on mental and
cognitive health of patients. The increased frequency of acute
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ischaemic strokes following COVID-19 infections in comparison
to other respiratory conditions might also reduce brain reserve
in older individuals. These negative neural consequences, in
turn, might increase the risk of developing a variety of
neurodegenerative conditions leading to dementia, e.g., sporadic
AD or fronto-temporal lobar degeneration (Maillet and Rajah,
2013; Mann and Snowden, 2017), or might accelerate the clinical
manifestation of existing latent sub-clinical conditions. The
possibility exists that significant CNS involvement in COVID-
19 infection may join other vascular components of “brain-
at-risk” for cognitive decline alongside mid-life hypertension,
diabetes, smoking, and many other reported factors. This might
be particularly evident in carriers of the ε4 variant of the
apolipoprotein E (ApoE) gene, the most strongly established
genetic risk for sporadic AD that also modulates cardiovascular
diseases and cellular processes related to viral infections (Finch
and Kulminski, 2020). ApoE ε4 appears to be a risk factor
common to both AD and COVID-19-related outcomes, since
symptom severity (Kuo et al., 2020a) and mortality rates (Kuo
et al., 2020b) have been found to be significantly worse in ε4
homozygotes, independently of any common comorbidities (i.e.,
coronary heart disease, dementia, diabetes, and hypertension).
Therefore, longitudinal monitoring of older adults who have
recovered from COVID-19 infection, especially those with
known genetic vulnerabilities, should be taken into consideration
not only to ascertain the long-term impact of COVID-19 on
the central nervous system, but also to detect any signs of
cognitive decline early and arrange a prompt management plan.
In fact, one study on young patients who have been assessed
with MRI 3 months after recovery from COVID-19 found
increased volumes in olfactory, cingulate and both medial and
lateral temporal cortices that correlated negatively with loss of
olfactory and memory functions (Lu et al., 2020), thus suggesting
a compensatory role of these hypertrophic neurovolumetric
changes to sustain functional recovery.

It must be noted that a considerable number of cases included
in these studies reported null neuroimaging findings (Abdelnour
et al., 2020; Anand et al., 2020; Fernández-Domínguez et al., 2020;
Logmin et al., 2020; Manganelli et al., 2020; Palomar-Ciria et al.,
2020; Vollono et al., 2020). This was especially the case for those
that investigated COVID-19-related encephalitis (Chaumont
et al., 2020; Khoo et al., 2020; Pilotto et al., 2020), a condition
that was not always confirmed by abnormal cerebrospinal fluid
findings and in some cases diagnosed only on the basis of
clinical manifestations. Consistently, one of the largest studies
here reviewed found no brain abnormalities in about 80% of
the cases examined (Pons-Escoda et al., 2020). This may mean
either that the majority of older patients does not experience
neurological complications or that functional brain alterations,
rather than structural ones, might represent the predominant
neural consequences of COVID-19 infection as suggested by
hypoperfusion detected by means of PET and functional MRI.
However, it is also possible that COVID-19 infection may
mainly cause microstructural damage, at least at the acute/early
stage, as suggested by the fact that macroscopic alterations were
less common than microscopic ones in neuropathological case
descriptions. The detection of microstructural damage can be

improved by the use of techniques such as diffusion MRI and by
the use of 7T MRI scanners that enable greater image resolution.
As of December 2020, however, brain imaging in COVID-19
cases has mainly served a clinical purpose and at present there
are no studies that have explored microstructural brain features
using a research-led approach.

Consistently, neuropathological examinations have also
highlighted macroscopic brain injuries of predominantly
vascular origin across all brain regions, with a heterogeneous
pattern unable to clarify aetiology and tease apart new
phenomena from pre-existent comorbidities. Indeed, in
almost half of the cases reviewed no macroscopic abnormalities
were reported (Bradley et al., 2020; Buja et al., 2020; Matschke
et al., 2020; Remmelink et al., 2020; Youd and Moore, 2020).
Microscopic examinations, instead, revealed a wide multiplicity
of pathological processes found in the majority of cases. In
particular, widespread WM damage has been observed as
axonal loss, demyelination, and lesions (Jaunmuktane et al.,
2020; Kantonen et al., 2020; Reichard et al., 2020) along with
WM inflammation (Al-Dalahmah et al., 2020). Consistently,
multiple scattered cerebrovascular injuries have been found
especially in WM (Bradley et al., 2020; Hernández-Fernández
et al., 2020; Reichard et al., 2020; Remmelink et al., 2020).
Moreover, neuronal damage and microglial activation have been
detected across several brain areas, but especially in the medial
temporal lobe (Al-Dalahmah et al., 2020; Reichard et al., 2020),
the brainstem, the olfactory bulb and the orbitofrontal cortex
(Al-Dalahmah et al., 2020; Bulfamante et al., 2020; Matschke
et al., 2020). Such neuropathological findings appear particularly
interesting, since they seem to suggest that COVID-19 can induce
neural damage particularly in a series of brain structures directly
connected or proximal to the olfactory areas, also observed in
some cases with neuroimaging assessment (Le Guennec et al.,
2020; Lin et al., 2020). This scenario is in line with the hypothesis
that infection may spread to the central nervous system through
the olfactory epithelium, as for instance demonstrated in a
mouse model exposed to Middle-East respiratory syndrome
coronavirus (Li et al., 2016). In this respect, the olfactory bulb
has already been proposed as the neural point of entry for toxic
proteins at the basis of certain neurodegenerative conditions
(Rey et al., 2018). Moreover, the structures specialised in the
processing of olfactory stimuli are tightly coupled with the
mediotemporal lobe. In fact, the piriform cortex projects to the
hippocampus via the entorhinal and perirhinal cortices (Vismer
et al., 2015). These connexions play a central role in the early
stages of AD, because TAU pathology is known to spread from
cell to cell (Vogels et al., 2020) and the olfactory bulb harbours
neurofibrillary pathology already during the transentorhinal
Braak stages of AD (Tsuboi et al., 2003). On similar grounds, the
mediotemporal lobe would be a prime candidate as target of a
COVID-19 axonal propagation originating from the olfactory
bulb. Although as a speculation, this mechanism might be at the
basis of the mediotemporal involvement described in the MRI
and PET case series illustrated above (Delorme et al., 2020; Guedj
et al., 2020; Helms et al., 2020a,b; Hosseini et al., 2020; Novi
et al., 2020). Additionally, although not all the neuropathological
studies detected the presence of COVID-19 in samples of neural
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tissue, it appears that COVID-19 may be able to penetrate the
brain. In fact, viral genetic material has been found mainly
in the olfactory bulb (Al-Dalahmah et al., 2020; Bulfamante
et al., 2020; Matschke et al., 2020; Menter et al., 2020) and, to
a more limited extent, in the frontal lobe (Bulfamante et al.,
2020; Matschke et al., 2020) and brainstem (Bulfamante et al.,
2020; Matschke et al., 2020; Menter et al., 2020). Since both
COVID-19 genetic material (Matschke et al., 2020) and signs
of neuronophagia (Lee et al., 2021) were detected in nuclei of
the cranial nerves, especially of the vagus nerve, this has been
suggested as an alternative route enabling retrograde invasion
of the CNS (Bulfamante et al., 2020). In fact, the vagus nerve
innervates most abdominal organs, including the lungs. Through
the vagal sensory innervation of the alveolar epithelium, the
virus could reach the dorsal vagal complex in the brainstem
and generate multiple autonomic dysfunctions (Rangon et al.,
2020). However, it has also been hypothesised that viral detection
in CNS tissue can be due to contamination with blood rich in
viral material, especially in cases of cerebrovascular damage
(Al-Dalahmah et al., 2020). In support of this hypothesis, the
presence of COVID-19 in the CNS was not associated with
severity of neuropathology in the study byMatschke et al. (2020),
suggesting that the neural alterations observed in patients may
be the result of a combination of both direct (i.e., damage to CNS
tissue caused by the virus itself) and indirect processes triggered
by COVID-19, e.g., neuroimmune stimulation, systemic
infection and haematogenous dissemination (Riederer and Ter
Meulen, 2020). Therefore, definite conclusions on the spatial
distribution and the type of impact, either direct or indirect,
of COVID-19 throughout the brain (especially in structures
other than those reported by the few neuropathological studies
available to date) cannot be yet drawn due to methodological
limitations of the available studies.

A large number of publications has described the co-
occurrence of COVID-19 and cerebrovascular events,
documented by neuroimaging. Slightly less than 2/3 (about 64%)
of the patients belonging to this category presented with evidence
of ischaemic infarctions. This percentage is not dissimilar from
the epidemiological proportion of ischaemic strokes, i.e., equal
to ∼58% (Shiber et al., 2010), indicating that COVID-19 does
not seem to alter this overall proportion. However, COVID-19
infection appears to pose a greater risk of ischaemic stroke to
patients than infection by Influenza (1.6 vs. 0.2%) (Merkler
et al., 2020). Although these studies appear to consolidate
an association between viral infection and stroke, patients
presenting with cerebrovascular damage were a small part of the
hospitalised patients and an even smaller part of all symptomatic
patients. The description of these 84 cases details an extremely
heterogeneous picture, with all regions of the brain that appear
to be susceptible to adverse acute events. Aetiological variability
was also observed, with a number of cases presenting with mixed
ischaemic-haemorrhagic or haemorrhagic-encephalopathic
profiles. Although, to date, no definite framework has been
formulated to account for a definite and established link
between COVID-19 and cerebrovascular events, the evidence
so far collected indicates that multiple mechanistic avenues
are at play. Processes ascribable to a hypercoagulability state,

encephalopathy, vasculitis, and cardiomyopathy seem to play
a central role (Spence et al., 2020), including increased risk
of thromboembolic complications (Lodigiani et al., 2020). It
is important to remark that the evidence so far documented
has been obtained in a period of acute crisis during which
clinical work has taken priority over medical research. Under
these circumstances the cause-effect and temporal relationships
between viral infection and neurological dysfunction has been
challenging to verify or investigate (Radmanesh et al., 2020a).
As a consequence, it is not possible to draw a separating line
between neuroimaging- and pathology-based consequences
of the virus and other relevant variables that are premorbid
or contingent.

Interpretations of the neuroimaging and neuropathological
findings in older adults with COVID-19 must take into account
a series of additional potential limiting factors. First, some
of the patients included in the papers reviewed had prior
neurological conditions (e.g., epilepsy), while other studies
focussed only on individuals who presented with neurological
signs and symptoms. Second, often neuroimaging examinations
were carried out on themost severe cases only. Third, equivalence
between MRI and CT examinations is unclear, since it appears
highly likely that these techniques provide complementary
information and are more suitable to detect different types of
neural injuries. Fourth, location of neural injuries was not always
fully documented by all studies, some of which were excluded due
to the absence of precise topographical details about neurological
damage. This selection approach might have potentially steered
the results of this review mainly towards studies reporting
topographical information. Fifth, an additional point on regional
differences relates to 11 out of 16 neuropathological studies
examining the whole brain. Some studies focussed their analyses
on olfactory, frontal, and brainstem areas only (Bulfamante et al.,
2020; Matschke et al., 2020; Lee et al., 2021), while Hanley
et al. (2020) limited their analyses to eight non-specified areas,
leading to a potential over-representation of such areas among
the currently available results. In fact, the first neuropathological
studies may have focused on a limited number of regions
to generate knowledge on COVID-19 impact on the central
nervous system more quickly (Glatzel, 2020) and may have
been mainly led by the dominant hypothesis suggesting that
viral spreading into the CNS might be mediated by olfactory
neurons (Riederer and Ter Meulen, 2020). Sixth, the causal
relationship between COVID-19 infection and some of the neural
changes observed has not been addressed, since only some studies
distinguished acute and prior neural findings. Finally, no paper
focussed exclusively on the effects of COVID-19 on patients
with neurological conditions, although some papers included
people with conditions such as AD, Parkinson’s disease and
multiple sclerosis.

In conclusion, the evidence in support of a link between
COVID-19 and acute neurological abnormalities is abundant but
is characterised by wide heterogeneity. It is still undetermined
whether the long-term effects of this infection will be limited to
the sequelae of acute neural dysfunction or whether additional
mechanisms will play a part in the long term. While it is possible
to speculate about the long-term neurofunctional consequences
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derived from the chronic evolution of acute events, it is still
unknown whether other, sub-clinical events may be exacerbated
by COVID-19 infection. It is thus possible that any long-term
effect may be the result of a complex interplay of chronic
alterations and subtle and insidious mechanistic changes that are
clinically negligible per se, but that may contribute to increase
neural vulnerability. It is also unknown whether any effect on
the nervous system will be relevant to patients who have not
undergone a serious disease phase (i.e., non-hospitalised and
asymptomatic patients who may have been only subjected to
silent changes, e.g., microscopic ischaemic events). We expect
that the link between COVID-19 and neurologically-informed
cognitive/psychiatric dysfunction will be better elucidated when
concrete data are available and when these are collected and
analysed based on the formulation of research-based hypotheses.
In the meantime, however, a systematic review of the regions
of the brain that are targeted in the acute phase suggests
that multiple neural systems (e.g., brain networks) may be
exposed to a virus-related vulnerability. These are large-scale
functional patterns that sustain high-order mental abilities
such as memory and attention/executive functioning, cognitive
domains that are also negatively influenced by the ageing process
and by major neurodegenerative conditions, suggesting that due
their high susceptibility to viral-related additional pathological
processes, long-term post-COVID cognitive/neuropsychiatric
sequelae might manifest with potentially more severe/more
rapidly progressing phenotypes in older adults. Indeed the
findings of this review seem to parallel some preliminary findings
indicating that older adults with reduced connectivity pre-
infection (from scans acquired on average 3 years prior to
infection) in regions within the networks supporting attention
and executive functioning are at increased risk of COVID-
19 infection (Abdallah, 2021), but at the same time indicating
a potentially specific pre-existing neural vulnerability of older
individuals that significantly lowers their brain resilience
potential. Finally, it is also important to point out that, other than
reporting preliminary findings, the conclusions of this systematic

review are also exclusively based on single-case descriptions and
case series. Although the large number of clinical cases linking
COVID-19 and brain alterations is, per se, sufficient to discard the
possibility of this association being anecdotal, the description of
this link is still, to some extent, anecdotal, and is still conceptually
distant from the gold standard of “evidence-based” clinical
research. Evidence-based medicine is at the basis of modern
healthcare policies, and for this reason, considerable progress is
warranted in this field of research, in order to strengthen the
nature of the data in support of the above link.
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