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Abstract

Edge caching is a prevailing media delivery technology where data is hosted at the edge nodes with computing
and storage capability in close proximity to users, in order to expand the backhaul network capacity and
enhance users’ quality of experience (QoE). The existing work in this area often neglects the fact that large-
scale distributed cache networks are not particularly reliable and many edge nodes are prone to failure. In
this paper we investigate and develop a novel, cooperative caching mechanism for content placement and
request routing. We aim to minimize the content access delay and achieve the optimisation in polynomial
time, taking into account failures in an unreliable network environment with limited edge storage and
bandwidth. We introduce two optimisation algorithms: 1) a primal-dual algorithm that is based on the
Lagrangian dual decomposition and subgradient method, and 2) a greedy-based approximation algorithm
with a proven approximation ratio. Numerical results show that the proposed algorithms outperform other
comparative approaches in synthetic and real network environments, and the approximation algorithm is
particularly suitable for networking scenarios with sparse node connectivity and resources in short supply.

1. Introduction

Due to the proliferation of social-media service
providers (Facebook, YouTube, or Twitter), con-
tent delivery is experiencing unprecedented growth
worldwide. According to a study by Cisco in
2017 [1], the global mobile traffic will reach 77
exabytes per month by 2022. Undoubtedly, the
data tsunami will fill up the holistic network capac-
ity and devastate the users’ quality of experience
(QoE). Edge caching has been becoming the main-
streaming technology to store content closer to end
users via the use of caching servers. A downward
trend in the storage space price [2] also substan-
tially advances the edge caching and expands the
holistic network capacity. Technically it is achieved
by placing contents in edge nodes, e.g., small base
stations (SBSs) with computing and storage capa-
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bility in close proximity to users [3, 4, 5]. Numer-
ous content requests can be directed to these in-
termediate SBSs instead of remote servers [6, 7],
thereby significantly reducing the backhaul traffic
and transmission delays.

While promising, the insufficient cache capacity
within edge nodes impedes the further enhancement
of caching performance and reduction of service la-
tency [8, 9]. In reality, when a large number of
different data flows are generated, massive contents
tend to be missing in cache nodes with a low hit
probability. The effective bandwidth for content
delivery is the data rate over the backhaul net-
work. To make the best use of existing cached con-
tents, the missed requests at a given edge node are
routed to other edge nodes, by leveraging multi-
hops delivery path [10]. Meanwhile, cooperative
caching mechanisms are proposed to manage the
increasing number of SBSs [11] as a cache pool,
thereby increasing the chances of obtaining contents
from the edge [12]. Hence, at the core of the co-
operative caching management is the joint mecha-
nism for content cache placement and request rout-
ing ; content placement decides how to locate the
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contents over the caching nodes, either servers or
edge nodes, while request routing determines how
to efficiently route the content request to the most
suitable nodes. Although a plethora of algorithms
[13, 14, 15] aim to improve the caching performance,
they fail to take into account the unreliable net-
works, making it difficult to apply them into real-
world intricate network conditions.
Essentially, network failures become the norm

rather than the exception within large-scale net-
working systems [16, 17, 18, 19] particularly in geo-
distributed multiple joint cloud environments [20,
21]. Providers thus face pressure to provision un-
interrupted reliable services while reducing opera-
tional costs due to significant software and hard-
ware failures [22, 23, 24]. The distributed cache net-
works where many small servers deployed at edge
nodes are more prone to failure caused by power
supply shutdowns, hardware failures [25, 26]. Due
to further indexing and transmission distance, net-
work failure events may lead to the failure of coop-
erative caching to effectively support delay-sensitive
services [27, 28]. Besides, a high backhaul fetch-
ing cost might still be incurred even some storage
spaces have been allocated to the contents. Hence,
it is imperative to devise an effective caching mech-
anism for data placement and request routing, par-
ticularly considering the manifestation of network
unreliability, so as to avoid repeated content re-
trieval and reduce the delivery cost.
To minimize the delay of content access, this pa-

per presents a novel mechanism for jointly address-
ing the data placement and request routing problem
in unreliable edge computing network environments
with limited storage and bandwidth capacity. We
formulate the problem as an integer linear program-
ming (ILP) under constraints and prove it generally
NP-hard (§3). We provide two distinct algorithmic
schemes, adaptive to different scenarios with dif-
ferent resource constraints: (i) we firstly develop
a primal-dual algorithm by using the Lagrangian
relaxation and hierarchical primal-dual decomposi-
tion method so that the problem can be decom-
posed into multiple smaller sub-problems. Due
to the objective function is not differentiable over
the whole feasible region, the subgradient method
is adopted (§4). (ii) Since the objective func-
tion is proved to be monotone submodular subject
to uniform matroid constraints, we then advocate
a greedy algorithm to achieve a provably better
approximation ratio. The primal-dual algorithm
achieves higher caching benefits but higher comput-

ing complexity while the greedy algorithm moder-
ates the computing complexity through compromis-
ing caching efficiency (§5). The work is evaluated
under both real network and synthetic network en-
vironment; the result show that our proposed algo-
rithms can yield better caching performance. The
content retrieval latency is reduced by up to 22%.
The greedy algorithm is more suitable for network
scenarios with strict resource constraints compared
to the primal-dual algorithm. Particularly, this pa-
per makes the following contributions:

• It identifies and investigates the data caching
and request routing problem for unreliable and
dense caching networks with limited band-
width and storage capacity.

• It advocates two-fold algorithmic solutions, in-
cluding a primal-dual algorithm combining La-
grangian dual decomposition method with sub-
gradient method, and a greedy caching algo-
rithm with lower computation complexity but
a provable approximation ratio guaranteed.

• It outperforms other comparative approaches
in terms of the caching performance and con-
tent retrieval latency in practice and synthetic
networks. The greedy algorithm yields almost
the same performance as the primal-dual al-
gorithm in hit rate when cache resources are
strongly limited.

The paper is organized as follows: §2 discusses
the related work. §3 outlines solution overview and
conducts the complexity analysis. The Primal-dual
algorithm and the greedy algorithm are detailed in
§4 and §5, respectively. Experimental results are
presented in §6 before we conclude the paper in §7.

2. Related Work

Edge caching, an efficient way to improve users’
QoE, is broadly exploited and advanced by both
academia and industry. Content placement [29, 30]
and request routing [31, 32] are two critical mech-
anisms for enhancing users’ QoE, particularly in
cache-enabled networks:
Content placement and request routing. [33]
proposes a cache-aware and social-based routing
scheme for Named Data Networking (NDN) with
Quality of Service (QoS) guaranteed. The so-
cial relationship among caching nodes is considered
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in the event of forward. [10] presents a cache-
aware routing optimization mechanism for maxi-
mizing the offloading traffic over software-defined
networking (SDN)-enabled 5G networks. The pro-
posed system can route the content to near-optimal
caching positions and reduce the involved compu-
tational complexity. [34] focuses on a multi-path
routing problem to maximize the total bandwidth
of edge-disjoint paths. To solve the problem, they
designed a heuristic edge delivery algorithm based
on global optimization. [35] introduces edge com-
puting into vehicle networks. Given the intercon-
nection among edge vehicle networks, they propose
a vehicle-adaptive caching scheme that guarantees
cache diversity and improves the packet delivery
rate. [36] presents an information-centric network-
ing architecture where different content caching
and request forwarding schemes are adopted. [37]
proposes a distributed caching method where the
small base stations store contents to assist macro
base stations to serve user demands. Such a dis-
tributed caching problem is proved NP-hard and
solved by an approximation algorithm with a con-
stant factor. [38] proposes an optimized content
placement solution in hierarchical networks. The
requests will reach the content server if none of
the caches on the cache path have stored the con-
tent replicas. The NP-hard problem is solved in
polynomial time when caches are installed only
on a single hierarchy path. [15] introduces a col-
laborative caching scheme, exploiting the traffic
diversity depending upon whether the content is
coded. a fully polynomial-time approximation algo-
rithm can significantly reduce the operational cost,
i.e., delay, compared against non-collaborative ap-
proaches. However, the aforementioned algorithms
only focus on the optimization of content place-
ment, ignoring the negative impact of the transfer
path on the cache performance.

Joint optimization. Apart from the individual
optimization, the procedure of content placement
and request routing should be devised hand-in-hand
[4, 39, 40]. Typically, the outcome of the content
placement policy will be fed into the request rout-
ing policy design; meanwhile, the routing result
also has a direct impact on the popularity and in-
fluence the effectiveness of the original placement.
[41] exploits cooperative content caching and one-
hop delivery policies for the heterogeneous cellular
networks where user devices and SBSs are lever-
aged as cache nodes. The content delivery prob-

lem is formulated as an unbalanced assignment
problem and solved by the Hungarian algorithm.
[42] considers the in-network caching and routing
pathways to remote servers within a reliable het-
erogeneous network environment. The problem is
proved NP-complete and solved by a greedy-based
algorithm with guaranteed performance. How-
ever, the main limitation is such approaches over-
look the bandwidth requirements on the delivery
paths, which hinder a wider applicability within
bandwidth-scarce environments. Additionally, [25]
aims to cache replications of the same data in multi-
ple caches to optimize the LRU caching in an unre-
liable network environment. However, it only con-
siders single-hop routing in its distributed caching
system, and thus cannot be directly applied into
the path routing with multi-hops. [43] employs a
modularity-based information caching approach by
leveraging information reachability to achieve reli-
able communication of information under adverse
network conditions. [44] maximizes the expected
caching gain through a distributed resilient caching
algorithm (DR-Cache) considering network failures.
However, the bandwidth constraints within differ-
ent routing links are not well discussed.
This work, as a departure from them, considers

the uncertainties including node unreliability and
link bandwidth constraints. We devise two distinct
caching solutions to balance the computation com-
plexity and caching effectiveness and satisfy the di-
verse requirements in different scenarios.

3. Our Approach

3.1. Overview

A Motivating Example. Fig. 1 depicts a mo-
tivating example where an unreliable edge network
manifests, and each node simultaneously underpins
both caching and forwarding functionalities, with a
given failure probability. A request routed along a
path will fail if any of the intermediate nodes on the
path crashes. We assume that all contents have the
same size, normalized to 1. Remote servers store
all the contents f1− f4, while each cache node only
stores one content specified by the storage capac-
ity constraints. For example, given a path with
three nodes (c1, c2, c3) and suppose node c3 caches
the content f4. Since both remoter server and edge
cache c3 store the content f3 requested by the user
u1, the dispatching algorithm will prioritize to di-
rect the user u1’s request to cache c3. However, if
the propagation is interrupted due to a failure of
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Figure 1: Illustration of the unreliable network environment
consisting of remote servers and edge nodes

c2, the request will directly fail since c3 is unreach-
able. In this case, a system without node reliability
considered has to perform a further operation of
index to ensure the request be directed to remote
servers, which is extremely cost-ineffective. Obvi-
ously, a better way is to route the demands to the
remote server directly instead of c3. Therefore, it
is imperative for content delivery vendors to con-
sider the node stability information when making a
decision of content caching in the SBSs.

Problem Scope and Assumptions. We assume
a general network architecture with N , a set of
SBSs that can provision internet access for U a
set of users. Each SBS has a finite cache capac-
ity, denoted by C. Users generate requests for a
set of F = {f1, f2, ..., fF } of F files with unit size
independently at random, according to a popular-
ity distribution. We assume each request arrives
independently following Poisson process with the
average rate λu and the popularity of content fol-
lows Zipf distribution with a shape parameter α.
These assumptions are similar to those used in re-
lated work [6, 44]. Then the probability that user
u requests content f is λu,f = λu · pf , where pf
is given by pi = (1/fα)/

∑F
i=1

(1/iα). Throughout
this paper, we will use the terms content and file
interchangeably.

Note that routing path between user and SBS is
referred to as cached path while routing path be-
tween user and remote server is referred to as un-
cached path. User u can obtain content f through
a set of cached paths, which are denoted by Qu,f =
{q1u,f , ..., q

L
u,f}. 1 −

∑

l∈Qu,f
qlu,f is denoted as re-

quest from user u for file f is directed through un-
cached path. We use probability sn to capture the
resilience of each cache node, which is a dependent

Table 1: Key Notations

N Set of N SBSs
U Set of U users
F Set of F contents
C Cache capacity
B Bandwidth capacity
λu,f Probability that user u requests content f

sn Stability score of SBS n

di,j Transmission edge delay between SBS i and j

Qu,f User u obtain content f through a set of L cached
paths

d0 Content access delay without cache
D The total expected delay for all requests
Rx,q Caching gain

ql
u,f

user u obtain content f through cache path l (1)
or not(0)

xi,f content f is placed at cache-node i

variable of every transmission edge delay di,j(sj).
d(·) is continuous and decreasing convex function.
As shown in [18, 26], there are several factors affect-
ing failure probability of a node. However, deriving
an exact model to predict the failure probability
beyond the scope of this work.
We assume there is a Caching Management En-

tity(CME) in the network, which acts as a central-
ized controller. Information, such as the network
topology, the stability of each cache node, the users’
locations et al., is reported to the CME to make
caching and routing decisions. Table 1 summaries
the notations used in the rest of the paper.

3.2. Problem Formulation

Basic Definition. In our model, we first introduce
the content placement variable xi,f where

xi,f =

{

1 if cache node i stores file f ,
0 otherwise.

(1)

The content placement decision matrix is x =
{xi,f |i ∈ N , f ∈ F}. Then considering the storage
capacity constraint on each node, we have

F
∑

f=1

xi,f = Ci, ∀i ∈ N (2)

When a file is placed on a cache node, the caching
decision would not change in the event of a cache
hit or miss. The argument in [45] and [42] shows
that static caching can achieve minimum expected
delay under a fixed routing policy. In the case, given
the caching policy, we denote the request routing
decision by qlu,f where
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qlu,f =

{

1 if path l transmits f to u,
0 otherwise.

(3)

We say that a request is well routed if there is a
set of paths Qu,f , which contain requested content
in the path destination. Beyond that, the band-
width capacity constraint on each path is also an
important factor for fulfilling users’ requests. Each
request only has one communication link to cache
node or remote server. We set the allocated band-
width to each link as one unite. Then we use Bl, the
certain bandwidth capacity of each link, to denote
the largest number of content requests that path l
can fulfill at the same time.
Content Access Delay. We consider the case
where the request by user u for file f is routed
through a set of cached paths Qu,f , the correspond-
ing content access delay is denoted as

Du,f = λu,f (
∑

l∈Qu,f

qlu,f

|l|−1
∑

k=1

dk,k+1), (4)

Then, the total expected delay for all request is
defined as

D =
∑

u∈U

∑

f∈F

λu,f (
∑

l∈Qu,f

qlu,f

|l|−1
∑

k=1

dk,k+1

+ (1−
∑

l∈Qu,f

qlu,f )d0)

(5)

and we consider a case where there is no cache node
assistance. In the case, it takes d0 for each request
to access the content. Then we have the caching
gain denoted by

R(x,p) =
∑

u∈U

∑

f∈F

λu,f (d0 − (
∑

l∈Qu,f

qlu,f

|l|−1
∑

k=1

dk,k+1

+ (1−
∑

l∈Qu,f

qlu,f )d0))

(6)
The objective function can be further expressed as:

R(x,q) =
∑

u∈U

∑

f∈F

λu,f

∑

l∈Qu,f

qlu,f (d0 −

|l|−1
∑

k=1

dk,k+1)

(7)
Optimization Goal. The joint effort to cache con-
tent replicas and route requests aims to minimize

the sum content access delay, or equivalently, max-
imizes the caching gain. It can be formulated as
follows:

max R(x,q) =
∑

u∈U

∑

f∈F

λu,f ·

∑

l∈Qu,f

q
l
u,f (d0 −

|l|−1∑

k=1

dk,k+1) (8a)

s.t. q
l
u,f ≤ xi,f , ∀i ∈ Nl, ∀f ∈ F , ∀l ∈ Qu,f (8b)
∑

l∈Qu,f

q
l
u,f ≤ 1, ∀i ∈ N , ∀f ∈ F (8c)

F∑

f=1

xi,f ≤ Ci, ∀i ∈ N (8d)

F∑

f=1

U∑

u=1

λu,fq
l
u,f ≤ Bl, ∀l ∈ Qu,f (8e)

xi,f = {0, 1}, ∀i ∈ N , ∀f ∈ F (8f)

q
l
u,f = {0, 1}, ∀i ∈ N , ∀f ∈ F , ∀l ∈ Qu,f (8g)

Constraint (8b) ensures that request from user u
is only routed through the path l when the destina-
tion of the path hosts the required content f , since
content f is placed to SBS i only when xi,f = 1.
Constraint (8c) indicates that users access content
over at most one path at each time. Constraint (8d)
guarantees that at any time, allocated resources at
a SBS do not exceed its storage capacity. Con-
straint (8e) guarantees that at any time, allocated
resources at each path do not exceed its bandwidth
capacity.

Model Generalization and Applicability.

While this paper focuses on addressing a joint
optimization problem to minimize the overall re-
quest latency with the caching capacity and band-
width constraints, the formulated problem and so-
lutions presented in the following sections are read-
ily applicable to other real-world problem-solving
in such areas as wireless networks, SDN, and even
in latency-sensitive job scheduling and streaming
management in cloud and edge computing. With-
out loss of generality, the generic model can be de-
picted as a problem where the objective is to mini-
mize the system cost or maximize the system gain
over two variables. Meanwhile, the constraints, e.g.,
(8a-8e) can be easily extended and customized to
underpin scenario-specific requirements. For exam-
ple, in a SDN network, the placement of network
functions and routing selection are important fac-
tors for network load balancing. The variables in
the objective could be redefined and tweaked to in-
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volve the placement and routing of network func-
tion chains. Constraints such as CPU and band-
width capacity or other co-location affinity/anti-
affinity can be supplemented in the similar form
of (8d-8e).

3.3. Complexity Analysis

In this section, we character the complexity based
on storage and bandwidth capacity constraints.
Storage Constraints Only. Consider a special
case where we only have the storage constraints; in
other words, bandwidth is sufficient to accommo-
date all possible data transfer. Then optimization
problem will be transformed as:

max R(x,q) =
∑

u∈U

∑

f∈F

λu,f

∑

l∈Qu,f

qlu,f (d0−

|l|−1
∑

k=1

dk,k+1) (9a)

s.t. (8b)− (8d), (8f), (8g) (9b)

We deduce the problem 9 into the 2-disjoint set
cover(2DSC ) problem. Given a bipartite graph
G = {A,B, E} with edges E connecting the set of
two disjoint vertex sets A and B. Define subset
Nb ⊆ A the of neighbots of node b. Then we have
⋃

b∈B Nb = A clearly. 2DSC determines whether
there exist two disjoint sets B1,B2 ⊂ B, such that
|B1|+|B2| =|B| and A =

⋃

b∈B1
Nb =

⋃

b∈B2
Nb.

The process of reduction from 2DSC to our prob-
lem is give as follows. The SBSs set and user set
are set to A and B, respectively. The storage ca-
pacity of each node is set to 1. File library is set to
F = {f1, f2}. We set the requests for all users one
unit, i.e., λb,f = 1, ∀b ∈ B, f ∈ {f1, f2}. Since we
set that there is only one delivery path from each
user to each cache node, qlu,f is rewritten as qi,ju,f de-
noting node j can satisfy the request generated by
user u submitted to node i. We set d0 = di,ju,f = 1

if only if ei,j ∈ E, otherwise di,fu,f = 0.
If there exists a solution to 2DSC, then we can

cache file f1 at all SBSs in set B1 and f2 at remain-
ing SBSs since the storage capacity of each cache
node is set as 1. In this case, the solution can serve
all the requests. On the other side, if there exists
a solution to our problem, B1 caching f1 and B2

caching f2 is a feasible solution to cover all requests.
Thus, there exist 2 disjoint set covers.
Bandwidth Constraints Only. Consider a spe-
cial case where we only have the bandwidth con-

straints and each node stored all the requested con-
tents. The optimization problem will be trans-
formed to:

max R(x,q) =
∑

u∈U

∑

f∈F

λu,f

∑

l∈Qu,f

qlu,f (d0−

|l|−1
∑

k=1

dk,k+1) (10a)

s.t. (8c, e, g) (10b)

This special case can be interpreted as the classical
knapsack problem where the bandwidth capacity
equal to the knapsack, and one content represents
the item. The content size is the item weight and
the caching gain is the value of the item.
Hence, proving NP-hardness for these special

cases shows that the problem is NP-hard in the gen-
eral case.

4. Primal-Dual Algorithm

Since the problem is an integer linear program,
it can be solved using standard convex optimiza-
tion techniques. We decide to investigate the use of
Lagrangian relaxation and decomposition method.
Lagrangian relaxation method is generally an ef-
ficient bounding technique and decomposition can
decompose the original large problem into distribu-
tively solvable subproblems[46]. Note that the de-
composition action can not break the optimality of
the solution. Consider the problem architecture,
there are two variables, content placement deci-
sion, and request routing decision, triggering two
possible Lagrangian relaxations: Rη(x,q), result-
ing from the dualization of constraint (8f) by using
dual variable η, and Rγ(x,q), resulting from the
dualization of constraint (8e) by using dual vari-
able γ. We firstly incorporate the restriction (8b)
into objective (8a) by variable η. Then the problem
(8) is rewritten as

min R(x,q)η =
∑

u∈U

∑

f∈F

λu,f

∑

l∈Qu,f

qlu,f (d0−

|l|−1
∑

k=1

dk,k+1) +
∑

u∈U

∑

∈F

λu,f

∑

l∈Qu,f

ηlu,f ·

(xj,f − qlu,f ) (11a)

s.t. ηlu,f ≥ 0, ∀i ∈ N , ∀f ∈ F , ∀l ∈ Qu,f (11b)

(8c)− (8g) (11c)
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Apparently R(x,q)η is the upper bound of
R(x,q) when η ≥ 0. According to [46], the prob-
lem (11) is called master problem. After the first
Lagrangian relaxation, we can separate decompose
the original problem into subproblem P1 only in-
volving content placement and subproblem P2 only
involving request routing, and solve them indepen-
dently.

the subproblem P1 can be formulated as:

max
∑

u∈U

∑

f∈F

∑

l∈Qu,f

λu,fη
l
u,fxj,f (12a)

s.t.(8d), (8f) (12b)

The subproblem P1 can be categorized as a knap-
sack problem. We can obtain the solution of caching
decision variables by selecting the storage capac-
ity most popular contents. Specifically, each cache
node i orders the popularity of files in decreasing
order and makes the x′

is corresponding to capacity
largest coefficients to 1, all others are 0. In relation
to routing decision, the problem P2 is not readily
available until we take the second Lagrangian re-
laxation. P2 is expressed as:

max
∑

u∈U

∑

f∈F

∑

l∈Qu,f

λu,fq
l
u,f (d0 −

|l|−1
∑

k=1

dk,k+1

− ηlu,f ) (13a)

s.t.(8c), (8e, (8g) (13b)

Then we incorporate constraint (8e) into the ob-
jective function by associating the Lagrangian mul-
tiplier γ. The problem P2 is rewritten as

min max
∑

u∈U

∑

f∈F

∑

l∈Qu,f

λu,fq
l
u,f (d0−

|l|−1
∑

k=1

dk,k+1 − ηlu,f − γl) +
∑

l∈Qu,f

γlBl (14a)

s.t. (8c), 8(g) (14b)

To obtain the request routing decision, we can sim-
ply set

q
′l
u,f =

{

1 if wl
u,f is max,

0 otherwise.
(15)

where, wl
u,f is the coefficient of each routing deci-

sion variable qlu,f

w
l
u,f =

∑

u∈U

∑

f∈F

∑

l∈Qu,f

λu,f (d0 −

|l|−1∑

k=1

dk,k+1 − η
l
u,f − γl)

(16a)

If we want to obtain content placement decisions
and request routing decisions, the value of two La-
grangian multipliers, η and γ, is required. We em-
ploy the subgradient method to update them. Since
the two Lagrangian multipliers are solved in the
same way, let’s take the γ as an example and ex-
plain it in detail. To simplify the expression, we
replace qlu,f as qiu,f , where i is nodes corresponding

to path qlu,f . In each updating iteration t, λl
u,f is

updated by the rule

γi(t+ 1) = max{0, λi
u,f (t)− θi(t)gi(t)} (17)

where gi(t) = Bi −
∑

u∈U

∑

f∈F λu,fq
l
u,f (t) is the

subgradient direction and θ(t) = β(t)(ub(t) −
lb(t))/(‖g(t)‖2) is step size at γi(t), respectively.
β ∈ [0, 2] is a scalar of step size, ub(t), lb(t) is the
upper bound and lower bound at iteration t, respec-
tively. β always starts with 2. Half the value of β
if the upper bound stays the same after some num-
ber of iterations. The process of iteration continues
until one of the conditions of termination criterion
TCγ happens. TCγ is listed as follows:

1. t > 1000;

2. β ≤ 0.005;

3. (ub− lb)/ub < 0.01;

4. ub unchanged by 20 consecutive iterations.

In this case, we can obtain the request routing de-
cisions when there are infinite gradient iterations.
The problem P2 has been solved. The summary
procedure of the solution is given in Algorithm 1.
After the execution of Algorithm 1, we have ob-

tain the value of R(x,q) given η. For the first mas-
ter problem, we repeat the above progress to update
η until dual variable ηt converge to the dual optimal
value η∗. Then optimal value of x∗ can be obtained
since the problem is convex. The summary of the
primal-dual algorithm for the joint problem is given
in Algorithm 2.
In Algorithm 2, there are t iterations to con-

verge to the dual primal value. Each iteration in-
volves the sum of computation complexity of the
problem P1 and P2. Solving the problem P1 takes
O(N ·F ·U) time since P1 can be decomposed intoN
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ALGORITHM 1: Pseudocode for Algorithm 1

1 Input: λu,f , η
l
u,f , d0, Bi, xi,f∗, dk,k+1.

2 Output: qlu,f∗.
3 Initilization: ub = +∞, lower bound

lb = −∞,t = 0, and γi(0) to some positive value.
4 while not the termination criterion do

5 Compute qlu,f (t) by (14) and obtian the
objective function value vγ(P2) according to
14(a);

6 Obtain a feasible solution qf ;
7 Calculated v(P2) according to (13a);
8 lb← max{lb, v(P2)}, ub← min{ub, vγ(P2)};

9 γi(t+ 1)← max{0, λi
u,f (t)− θi(t)gi(t)

10 qlu,f∗ ← qlu,f (t);
11 Test termination criterion;

ALGORITHM 2: Pseudocode for Algorithm 2

1 Input: λu,f , d0, Bi, dk,k+1, Ci.
2 Output: x∗

i,f .
3 Initilization: ub = +∞, lower bound lb = −∞,

t = 0.
4 while not the termination criterion do

5 Compute qi∗
u,f (t) by using Algorithm 1;

6 Update (8a) denated by R(x,q)η;
7 Obtain a feasible solution qf and xf ;
8 Update (11a) denoted by R(x,q);
9 lb← max{lb, R(x,q)};

ub← min{ub,R(x,q)η};
10 Update ηi(t+ 1) according to (17) with setting

the gradient direction as
λu,f (xi,f (t)− qlu,f (t));

11 x∗
u,f ← xu,f (t)

∗;
12 Test termination criterion TC;

s

one-dimensional knapsack problems. Solving prob-
lem P2 takes O(N ·F ·U ·t) time since there are t it-
erations to update Lagrangian multiplier γ. Hence
the total running time is O((N ·F ·U+N ·F ·U ·t)·t).

5. Greedy Algorithm

In this section, we will show that the problem (8)
belongs to the classical problems of maximizing a
monotone submodular function subject to partition
matroid constraints. Then we provide a solution
with lower computation complexity compared to
the primal-dual algorithm. This algorithm guaran-
tees a 1.5−approximate result for the maximization
problem. Before that, the definition of matroids
and submodular function are provided firstly.

5.1. Preliminaries

Matroids: A matroid is a pair of M = (S, I),
where S is a finite set and I ⊆ 2S is a collection of
subsets of S with following properties:

1). φ ⊆ I,

2). I is download closed, i.e. if B ∈ I and A ⊆ B,
then A ∈ I,

3). if A,B ∈ I, and |A| < |B|, then ∃e ∈ B \A
such that A ∪ {e} ∈ I.

Submodulr functions : Let S be a finite set. A
set function f : 2S → R is submodular if for every
A ⊆ B ⊆ S and every e ∈ S \B we have

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B) (18)

The submodular functions can be an expression
of diminishing returns: as the set becomes larger,
the benefit of adding a new element to the set will
decrease.

Monotone: The function f is monotone increas-
ing if f(A) ≤ f(B),A ⊆ B ⊆ S.

5.2. Greedy Algorithm

For our problem, let the ground set S denote the
set of possible files that could be placed in all cache
nodes N . And let A denote the set of content
placement management. We have |Ai| ≤ Ci, where
Ci is the storage capacity size of node i.

Lemma 1. The storage capacity constraints in
(8d) can form a partition matroid M = (S, I).
Proof. We divide the ground set S into N disjoint
sets S = S1 ∪ S2, ...,SN , which means the possible
contents placed in N cache nodes. Recall that A is
the set of contents stored in cache nodes, ai,f = 1
if and only if si,f ∈ A. Thus, the storage capacity
constraints of cache nodes can be expressed as

I = {A ⊆ S : |A ∩ Si| ≤ Ci, ∀i = 1, 2, .., N} (19)

Note that (S, I) defines a matroid.
Lamma 2. The objective function (8a) is mono-
tone and submodular.
Proof. Let us consider two cache placement sets
A,B, such that A ⊆ B, and a new content place-
ment element ei,f , where ei,f ∈ S \B, meaning
content f being placed in node i. R(A) is denoted
as margin value of delay on content placement set

8



A, which is the change in the content access delay
after adding this element to the set. Since the sum
of monotone submodular functions is also mono-
tone submodular, it suffices to prove that for each
request, the set funtion Ru,f (A) is monotone sub-
modular. Then Ru,f (A) can be simplified as,

Ru,f (A) = maxl∈Qu,f
{0, d0 −

|l|−1
∑

k=1

dk,k+1} (20)

For express conveniently, let diu,f denote delay

request experiencing through routing path qlu,f ,
where node i is the destination corresponding to
the path.

Monotone: Obviously, Ru,f (A ∪ {ei,f}) ≤
Ru,f (A) because adding a new file to the
cache list diverts traffic from remote servers
onto cache nodes. Since Ru,f is monotonic
function, we have Ru,f (A) ≥ Rn,f (B).

Submodular: We discuss the following three cases
to prove Ru,f is submodular:

1). If Ru,f (e) > Ru,f (B), according the defi-
nition of A and B, then the margin value
on two sets is Ru,f (e).

Ru,f (B, ei,f )−Ru,f (B) =

Ru,f (A, ei,f )−Ru,f (A)
(21)

2). If Ru,f (e) < Ru,f (A), adding the cache
placement element ei,f wouldn’t bring
any caching benefit. Then the margin
value of them is zero.

3). If Ru,f (A) < Ru,f (e) < Ru,f (B), accord-
ing the previous discussion, the margin
value on set A and B is Ru,f (e) and 0,
respectively.

In summary, according to the analysis of the
above three cases, the margin value on set A
always greater or equal to the margin value on
set B. The objective function R is submodular
function on set S.

The greedy algorithm is a popular method to
solve the problem of maximizing a submodular
function subject to a partition matroid, which can
yield performance at most 1

2
times worse than opti-

mal. Since our joint problem involves two subprob-
lems, the greedy algorithm can be extended for both
decisions on content placement and request routing.

ALGORITHM 3: Pseudocode for Algorithm 3

1 Input: λu,f , di,j , d0, Ci,.
2 Output: X, q.
3 Initialization: S = s1,1, s2,1, ..., sf,n, ∀f ∈ F ,

Xi = φ, ∀i ∈ N , X = φ,c=1.
4 for c<

∑
i∈N Ci do

5 ei∗,f∗ ← argmaxei,f∈S\XR(X + ei,f )−R(X);

6 Xi∗ ← Xi∗ ∪ ei∗,f∗

7 if |Xi| = Ci then

8 S ← S\si∗,f
else

9 S ← S\si∗,f∗

We have proved that the problem function in (8) is
submodular function of content placement. How-
ever, for given content placement of each node, we
can’t make the optimal request routing decisions
according to complexity analysis. The best we can
get is 1

2
-approximate [47] solution to request rout-

ing problem.

At content placement subproblem, we iteratively
choose the element with margin value being at most
1

2
times worse than that of the optimal choice. Once

the content placement is given, we decide to re-
quest a routing policy in the same way. Accord-
ing to [47], the locally greedy algorithm guaran-
tees a tight factor-(α+1) result for the submodular
function maximization problem over partition ma-
troids. Since greedy algorithm yields a 1

2
solution

in content placement subproblem, for request rout-
ing subproblem, α is 1

2
. Hence we can obtain an

approximation ratio of 1.5 for the joint problem.

The algorithm procedure details can be found in
Algorithm 3. Algorithm 3 starts with empty cache.
At each iteration, it selects the content placement
element which can add the margin value with 0.5-
approximate rate to optimal. When the capacity
of the cache node is full, the cache placement of
this node is excluded from set S. The iteration
procedure continues until the storage capacity of
all cache node is full.

In Algorithm 3, there are
∑N

n=0
Cn iterations

to fulfill the cache capacity and
∑N

n=0
Bn itera-

tions to fulfill the bandwidth capacity of all nodes.
Hence the total running time of greedy algorithm
is O(UFN

∑N
n=0

Bn

∑N
n=0

Cn) which is lower than
the total running time of primal-dual algorithm.
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Table 2: Experiment parameter settings

Parameter Settings

The area of network 100×100
Number of user 150
Number of file 500
Number of SBSs 11
SBS coverage radius 30
Capacity of SBSs 80
Bandwidth capacity of SBSs 300
Shape parameter of Zipf 0.8
Uncache delay 12
Stability score 0.5∼1

6. Evaluation

6.1. Experiment Setup

Configurations. We consider a real net-
work abilen [48] and a synthetic network
watts-strogatz (ws) [49], respectively. The ws
graph is generated according to the ws model of a
small-world network. We consider the network with
users uniformly distributed in a 2-D square, simi-
lar to [44] and the size of these networks is set to
be 11. To prove the efficiency of our algorithm, we
make the synthetic network sparsely. Each node of
these networks has a stability parameter, ranging
from 0.5 to 1. We assume there are 150 users who
access 500 files. The location of users and cache
nodes are spatially placed in a random and uni-
form manner, and users can only get service from
cache nodes when their distance less than coverage
radius. Since web accesses can be modeled using
Zipf-like probability distributions, we assume the
user u generates a collection of requests following
the Poisson process with the arrival rate λu and we
assume the file popularity follows a Zipf distribu-
tion with skewness parameter 0.8 [44]. The request
directed to the remote servers experiences d0 = 12
time units. Assumably, there is a negative corre-
lation between node reliability and the delay. If
there are more unreliable nodes in request path, an
uncached path would become the user’s preference.
The remaining configurations in the experiment are
depicted in Table 2.
Baselines. We implement the following schemes
as our comparative approaches:

1. Non-Cooperative (NC): Each cache server in-
dependently stores the most popular files based
on local popularity at the corresponding cache
server. If users fail to find contents in its per-
taining SBS, the requests will be routed to

remote servers directly. This mechanism has
been extensively used as a benchmark by prior
work [29, 41, 7].

2. Popularity-based Cooperative Approach: Each
cache server stores the most popular contents
based on local popularity which is similar to
NC. The scheme, however, allows edge servers
to fetch contents from other edge nodes collab-
oratively. The missed requests are randomly
routed to any node that caches the required
contents.

3. Primal dual algorithm: the proposed algorithm
in § 4.

4. Greedy algorithm considering node stabil-
ity(GreedyS ): the proposed algorithm in § 5.

5. Greedy without considering node stabil-
ity(GreedyW ): the proposed algorithm in § 5
without considering the node stability.

Methodology. We mainly use the average access
delay and the cache hit ratio as the main perfor-
mance indicators. We vary the storage (caching)
capacity and the bandwidth capacity of the caching
node and observe their impact on the performance
indicators, under the synthetic and real network
topology, respectively (§6.2 and §6.3). In addition,
we evaluate how the content popularity and distri-
bution impact on the caching effectiveness (§6.4).

6.2. Impact of storage capacity

Fig. 2 and Fig. 3 demonstrates the performance
comparison between our algorithms and other base-
lines when we vary the total cache capacity under
the abilene network and ws network, respectively.
Observably, the increment of the cache size can sig-
nificantly improve the performance of all algorithms
simply because of the increased probability of re-
trieving required contents. It is obvious to find out
the cache hit ratio is not improved by the increase
of the cache size in the NC algorithm, resulting in a
negligible delay reduction. This is because caching
more local popular contents has little impact on
the increase of global caching benefit particularly
when the popularity distribution gets deeper. By
contrast, the primal dual scheme outperforms all
baselines in terms of hit rate and the average ac-
cess delay. Furthermore, when the cache size is no
more than 40, the difference between the primal
dual algorithm and GreedyS is marginal, indicat-
ing they have similar caching effectiveness, but ob-
viously GreedyS has far lower compute complex-
ity compared against the primal dual algorithm.
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Figure 2: The impact of storage capacity of SBSs on the cache hit rate and average content delivery delay under abilen network
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Figure 3: The impact of storage capacity of SBSs on the cache hit rate and average content delivery delay under ws network

Hence, the greedy-based algorithm would intrinsi-
cally become the preferable option to the content
delivery vendors if the network is with limited stor-
age space.

6.3. Impact of bandwidth capacity

Fig. 4 and 5 compare the the delivery delay on av-
erage over different bandwidth capacity in different
algorithms. Since the cache size is fixed, increas-
ing the bandwidth capacity of cache nodes can-
not further improve the efficiency of different cache
schemes once the value surpasses a given threshold.
This is because all requests for other contents not
cached in the node have to request and retrieve the
content replica from remote servers even though the
bandwidth capacity is large enough.
It is observable that the primal dual algorithm

achieves significant reductions in average delay by
up to 22% against the NC and popularity based co-
operative approaches under both networks. Mean-
while, GreedyS also yields a competitive effective-
ness of delay reduction in both networks. In ad-
dition, the GreedyS algorithm has a much higher
cache hit ratio in both network environments, indi-
cating the non-trivial importance of node reliability
in the modeling. The cache hit ratio can be linearly
increased by the popularity-based cooperative ap-
proach. This is because the growth of bandwidth
capacity will enable the sufficient data transfer and
make a better use of the holistic caching among dif-
ferent cache nodes. As opposed to the cooperative
mechanism that can share the global cache capac-
ity, the non-cooperative approach fails to increase
the cache hit rate and is less effective in improving

11



50 100 150 200 250 300 350 400 450
Bandwidth capacity of SBSs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
H
it 
ra
te

Primal dual
GreedyS
GreedyW
Popularity
NC

(a)

50 100 150 200 250 300 350 400 450
Bandwidth capacity of SBSs

6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0

A
ve
ra
ge
 d
el
ay

Primal dual
GreedyS
GreedyW
Popularity
NC

(b)

Figure 4: The impact of bandwidth capacity of SBSs on the cache hit rate and average content delivery delay under abilen

network
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Figure 5: The impact of bandwidth capacity of SBSs on the cache hit rate and average content delivery delay under ws network

the end-to-end performance delivery service. As a
result, the bandwidth resources is utilized in an im-
balanced manner among different cache nodes.

6.4. Impact of Zipf parameter α

We also evaluate the sensitivity of different algo-
rithms to the Zipf parameter (α) implicating the
popularity of the cached content. To do so, we fix
the cache size and bandwidth capacity. To achieve
a fair comparison, files are randomly permuted in
each cache node. As shown in Fig. 6 and Fig. 7,
the performance of the hit rate and average delay is
significantly improved when the popularity of some
specific contents take up a large proportion of the
total contents. In other words, there is a skewness
among different contents and higher α indicates a
heavy-tailed distribution of the content popularity.

Obviously, higher hit rate and reduced delivery de-
lay manifest when the level of popularity picks up,
because duplicated requests target the same piece
of content. More specifically, the proposed pri-
mal dual algorithm outperforms other competitors
with the varied α under both networks. Meanwhile,
GreedyS has a less effective performance when com-
pared with primal dual under different network sce-
narios. However, considering the lower computa-
tion complexity, the greedy-based implementation
is more suitable for these network scenarios with
stringent capacity constraints.

6.5. Discussion

Although we normally assume content requests
follows the Poisson process with the arrival rate
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Figure 6: The impact of Zip parameter on cache hit rate and average content delivery delay under abilen network
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Figure 7: The impact of Zip parameter on cache hit rate and average content delivery delay under ws network

λu and the file popularity follows a Zipf distribu-
tion, the surging data flow rate, i.e., the content
throughput or request number, indeed has an im-
pact on the users’ QoS, particularly when the cache
size is in short supply at the edge nodes. The con-
tent delivery delay, the critical and explicit perfor-
mance indicator of a caching network, is susceptible
to the cache hit ratio which is largely subject to the
amount of content throughput and the number of
content requests.

On the one hand, the arrival of surging through-
put will undoubtedly challenge the caching capacity
and diminish the caching hit ratio, thereby tremen-
dously degrading the content delivery service. On
the other hand, the impact of bursting requests can
be considered on a case-by-case basis: 1) the surg-
ing requests associated with the same content (e.g.,

emerging popular video published by social influ-
encers or web celebrity) would not necessarily re-
duce the cache hit ratio despite flooding requests
coming through the system. As long as the con-
tent replicas have already cached at the edge end,
it will have little impact on the end-to-end deliv-
ery delay; 2) a large number of disperse requests
tend to have direct impact on the cache hit ratio
and increase the delivery delay. The cached con-
tents have to be replaced more frequently, lead-
ing to non-negligible costs stemming from request
direction to remote servers with substantial band-
width consumption and potential traffic congestion
over the backhaul network.
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7. Conclusion and Future Work

This paper presents a cooperative caching mech-
anism for content placement and request routing
in unreliable CDNs, supported by two new optimi-
sation algorithms for minimising the access delay.
Importantly, although the greedy algorithm is infe-
rior to the primal-dual algorithm in terms of hit rate
and average delay, it is particularly suitable for net-
working scenarios where node connectivity is sparse
and bandwidth and storage space are scarce. The
proposed model can be easily extended to many
other areas, including path selections in SDN and
constraint-based resource scheduling in cloud data
centers. We plan to incorporate user mobility into
the solution to tackle the impact of local popularity
of requests. The centralized nature of the Caching
Management Entity might potentially threaten the
system scalability, and managing cache state and
network flow is often energy-consuming. Tackling
these issues would complicate the current design of
the optimization models, but it is an area that de-
serves further investigation. Adaptive distributed
caching schemes based on the measurement of com-
puting energy consumption will be therefore an in-
teresting area to explore in the future work.
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