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Abstract: Smart card data has emerged in recent years and provide a comprehensive, 

and cheap source of information for planning and managing public transport systems. This 

paper presents a multi-stage machine learning framework to predict passengers’ boarding stops 

using smart card data. The framework addresses the challenges arising from the imbalanced  

nature of the data (e.g. many non-travelling data) and the ‘many-class’ issues (e.g. many 

possible boarding stops) by decomposing the prediction of hourly ridership into three stages: 

whether to travel or not in that one-hour time slot, which bus line to use, and at which stop to 

board. A simple neural network architecture, fully connected networks (FCN), and two deep 

learning architectures, recurrent neural networks (RNN) and long short-term memory networks 

(LSTM) are implemented.  The proposed approach is applied to a real-life bus network. We 

show that the data imbalance has a profound impact on the accuracy of prediction at individual 

level. At aggregated level, FCN is able to accurately predict the rideship at individual stops, it 
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is poor at capturing the temporal distribution of ridership. RNN and LSTM are able to measure 

the temporal distribution but lack the ability to capture the spatial distribution through bus lines. 

 

Keywords: Deep learning; Smart public transport; Travel pattern; Smart card data; 

Neural network. 

   

1 Introduction 

The rapid development of urbanisation at one hand, brings convenience to people's lives 

but, on the other hand, causes problems such as traffic congestion and leads to an increase in 

energy demand and environmental pollution (Kwan and Hashim, 2016, AlRukaibi and 

AlKheder, 2019). As a sustainable transport mode, well-planned public transport can play a 

key role in reducing transport externalities (Yao et al., 2020). With a high degree of 

accessibility and low implementation costs, bus transport is the most significant mode in urban 

public transport, accounting for 50% of trips made by all public transport modes in England 

(DfT, 2019) and 45% in Beijing (BIT, 2019). However, the bus system suffers from a poor 

image of unreliable services, crowding, bus bunching, and low level-of-services (Berrebi et al., 

2015, Bordagaray et al., 2013). Coupled with the rise of demand-response travel options such 

as Uber, bus ridership has been in decline in recent years (DfT, 2019). To move towards a 

smart and sustainable city, an important goal in transport planning is to encourage and attract 

more people to travel by public transport (Ma et al., 2019, Tong, 2019). One way to sustain or 

to increase bus patronage is to provide a more reliable bus system based on sound service 

planning and management. The first and most important factor in bus planning is the bus 

ridership, which affects reliability and level of crowding (Liu and Sinha, 2007, Sorratini et al., 

2008, Fonzone et al., 2015) as well as pricing (Sakai et al., 2017, Xu et al., 2018). 

Understanding travel patterns of bus passengers and accurately predicting ridership are 
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therefore essential foundations for planning and operating a sound bus system (Hollander and 

Liu, 2008, Wu et al., 2017, 2019).  

It is well-known that the decision-making in car-drivers’ driving behaviour is related to 

their past travelling behaviour and habit formation (Goldenbeld et al., 2000) and that daily 

human mobility can be reproduced by tracking previous trips (Schneider et al., 2013). These 

theories can also be extended to public transport users who rely on their experience when 

making decisions and who are more inclined to take their regular travel pattern.  

Viewing over a long period of time, it is possible to observe certain regularity in travel 

behaviour. For example, commuters also travel from home to the office in the morning and 

from office to home in the evening. However, there is inter and intra passenger variability in 

behaviour given the level-of-service is not static. Travel behaviour is under the influence of 

many factors of the public transport system itself, such as travel time, headways, reliability and 

cost, and external factors such as weather conditions (Sierpiński, 2016). Level-of-service and 

reliability are the most critical factors. Passenger likes to take high-quality and reliable bus 

service. However, some other things, such as adverse weather conditions, may lead to irregular 

headway and longer travel time, which reduces the reliability and level-of-service. So, when 

the travelling scenario changes, passengers are likely to change their travel choice. For example, 

adverse weather conditions may lead to irregular headway and longer travel time, or may even 

disrupt the public transport services (Ma et al., 2015, Koetse and Rietveld, 2009), which in turn 

indirectly affects passengers’ travel choice. An increasing number of studies have highlighted 

the varying impacts of weather conditions on public transport (Böcker et al., 2013), alongside 

level-of-service attributes such as travel time, cost, waiting time, the number of transfers and 

other network characteristics. Wei et al. (2019) report that rain and snow both have a clear 

negative impact on bus ridership in Brisbane. There is, however, different findings on the 

impact of temperature on bus ridership. Stover and McCormack (2012) show that temperature 
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has a positive impact on bus ridership in Washington, USA, while Zhou et al. (2017) find a 

negative impact of high temperature on bus ridership in Shenzhen, China. What is certain, 

nonetheless, is that weather conditions play a non-negligible role in bus users travel decision, 

which in turn influences the overall travel patterns and demand levels.  

This study aims to predict the boarding behaviour of bus passengers at the individual 

level from smart card data. The boarding behaviour in this paper refers to whether to take a bus 

trip and which bus line and bus stop to use. As stated above, regular boarding behaviour can 

be tracked by their travel history, while changes in boarding behaviour can be affected by other 

factors such as weather conditions. Therefore, the prediction in this study is to identify the 

boarding stops for each smart card user and the predictions are made for each of the operation 

hours of a day. We propose a three-stage framework to predict: (i) whether a smart card user 

is expected to travel or not in each one-hour time slot; (ii) which line they will use; and (iii) at 

which stop they will get on board. The predictions at each stage deploy three different 

architectures: a simple neural network (fully connected network) and two deep learning 

networks (recurrent neural network and long short-term memory network). Finally, the result 

of individual boarding stops will be aggregated to obtain the hour ridership on the stop-, line- 

and network-level. Unlike deriving existing bus ridership directly from the smart card data, the 

machine learning models developed can be used to predict future ridership. Public transport 

planning made based on the future situation and changes of ridership will be more reliable and 

tractable. Not only can appropriate planning meet the passengers’ travel demand, but it also 

provides comfortable and efficient bus services and improves the level-of-service. It is the most 

important way to attract more travellers using buses and to work towards more sustainable 

cities. 
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2 Related works 

The development of an automatic data collection system offers an opportunity to 

understand travel demand and to better plan the public transport system (Zhang et al., 2018). 

For example, smart card data (Bordagaray et al., 2016) and GPS data (Yang et al., 2019a,2020) 

have been used to capture bike-sharing travel behaviour and to replicate the public transport 

system (Liu et al., 2019a). There is extensive literature on observing and capturing the 

passenger flow from varying data resources. Yang et al. (2019b) use a smart card and social 

media data to explore the travel purpose and ridership of the metro in Shenzhen. Oransirikul et 

al. (2014) demonstrate the feasibility to measure the passenger flow by monitoring the Wi-Fi 

transmissions. Zhou et al. (2013) combine GPS data from private mobile phones and buses to 

measure the bus passenger flow. Sun et al. (2016) analyse and visualise the metro passenger 

flow in Shanghai directly from a closed automatic fare collection (AFC) system, which records 

both the boarding and alighting stops. On the other hand, in many cities, the entry-only AFC 

system is used where only the boarding information is recorded , but the alighting information 

is unknown. To address this issue, Barry et al. (2002) propose a trip-chaining method to identify 

the alighting stop for each smart card transaction. This method has been wildly applied in New 

York (Barry et al., 2009), Chicago (Zhao et al., 2007) and London (Gordon et al., 2013). 

Meanwhile, there are extensive research interests in predicting future passenger flow. 

Yang et al. (2009) develop regression equations to forecast the number of boarding and on-

board passengers, based on the number of smart card transactions. Autoregressive integrated 

moving average (ARIMA) model is introduced to model and predict the public transport 

passenger demand as time series data (Washington et al., 2010). Zhou et al. (2013) predict the 

total bus demand using the ARIMA model in conjunction with two other Poisson models. Gong 

et al. (2014) propose a sequential framework for a short-term prediction of the number of 

waiting passengers. In their framework, the seasonal ARIMA model is designed to predict the 
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number of arrival passengers and empty space from the historical boarding, empty space and 

GPS data. With the help of real-time data from GPS and waiting passenger count, a Kalman 

Filter model follows the seasonal ARIMA model and predicts the number of waiting passengers. 

Ma et al. (2014) predict the short-term bus demand using time series and interactive multiple 

models (IMM). They construct the time series of weekly, daily and hourly demand and use 

IMM to combine the time series estimations and predict the final demand prediction. Following 

on from Ma et al. (2014), Xue et al. (2015)  employ the ARIMA for predicting the 15-minute 

and weekly demand prediction, and the seasonal ARIMA for daily demand. Meanwhile, 

working towards the same objective, recent studies use machine learning methods, e.g. support 

vector machine (SVM) regression (Yang and Liu, 2016) and Shepard model (Jin et al., 2019), 

to predict bus passenger demand. A key common feature of these existing studies is that they 

rely on historical passenger flow on bus stops only and do not consider other external factors 

(e.g. weather conditions) in the prediction models. 

Machine learning techniques, such as neural networks and Bayesian networks, have 

been used in predicting the mode choice (Zhou et al., 2019), train arrival times and delays (Yu 

et al., 2011; Corman and Kecman, 2018), and bus passenger flow (Karnberger and Antoniou, 

2020). Jiang et al. (2014) forecast the high-speed rail demand using ensemble empirical mode 

decomposition (EMD) and grey SVM models. Wei and Chen (2012) propose a method 

combining EMD and back-propagation neural networks for the short-term metro passenger 

flow prediction. Li et al. (2017) utilise the multiscale radial basis function networks to predict 

the metro passenger flow. The method can pinpoint the over-crowed stops under special events 

scenarios. Liu et al. (2019b) achieve the same objective through a long short-term memory 

(LSTM) neural network. Since the AFC system in rail and metro records both alighting and 

boarding system, their historical passenger flow can be easily extracted from the smart card 

data. For the entry-only AFC system, Toqué et al. (2016) predict passengers origin-destination 
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matrices at stop level over 15-minute windows using the LSTM networks, and they infer the 

alighting stops by trip-chaining model. Recently, Tang et al. (2020) incorporate weather 

conditions and travel history of travellers in a gradient boosting decision tree model to estimate 

the alighting stop for every smart card trip, and rank the relative importance of the features.  

The existing literature tends to cluster bus passengers to decrease the number of objects 

in the analysis and analyse the group travel behaviour. Faroqi et al. (2017) use histograms, 

Pearson correlation coefficients and hexagonal binning to analyse the smart card data in 

Brisbane. The results show a nonlinear spatial-temporal similarity correlation among bus 

passengers. Later, Faroqi et al. (2019) compare three methods based on the spatial-temporal 

characteristics of bus trips on clustering the bus passengers: the S-T clusters the spatial matrix 

firstly and then temporal matrix for each spatial group; the T-S clusters the temporal matrix 

firstly and then spatial matrix for each temporal group; and the ST combines both spatial and 

temporal similarity matrices into one matrix. The study concludes that the S-T method is better 

used in the cases where spatial similarity is more important, and the T-S method is the opposite. 

ST method is a moderate method that considers the effects of time and space equally. He et al. 

(2017, 2019) propose to combine cross correlation distance and hierarchical clustering to 

segment the time series of passengers’ travel pattern, and incorporate a sampling method to 

classify the temporal pattern of bus passengers. Later, He et al. (2020) use time series distance 

metrics and a hierarchical clustering method to classify the public transport users. Such 

grouping methods generalise the common characteristics of passenger behaviour and ignore 

the differences between individuals.  

Summing up, the existing research focuses mainly on the average passenger demand 

and ignores the individual differences in passenger travel behaviour. The existing studies tend 

to estimate passenger demand over certain time periods of a day (e.g. morning and evening 

peak, and inter-peak periods), thus do not provide a continuous time-dependent load-profile of 
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the bus demand, which alongside max load are important factors to consider in planning a 

holistic bus systems Ceder (2007). This study proposes a bottom-up approach, by directly 

predicting individual passengers’ boarding behaviour and takes account of the individual's 

travel history and the weather factors in the prediction.  From the prediction of individual 

boarding behaviour, this study contributes to predicting the boarding demand as a continuous 

variable throughout the day and at different levels (at bus-stop, by bus line, and at network 

level), which can be used to better plan and manage public transport services and operations.  

3 A machine learning framework for boarding stop prediction 

3.1 Problem statement 

In this study, we take the boarding behaviour of a passenger during a one-hour time slot 

as the prediction instance of our model. The instance in a machine learning model contains a 

feature vector and a label vector. The feature vector consists of a set of elements characterising 

the passengers in the analysed period. The label vector is a set of 0 or 1 for each stop, with 1 

[0] indicating that the passenger has [not] boarded a bus at the concerned stop in the reference 

period. Each stop is a class in the machine learning model, which also includes ‘NONE’ to 

represent the non-travelling instance. The classification process aims to assign each instance to 

the most possible class. 

There are three data challenges in our study that affect the prediction accuracy when 

using machine learning techniques: 

• Multi-label problem: passengers may make more than one trip within an hour, for 

example, starting a journey at stop 1 and transferring to a different bus line at stop 2 

within one hour. In such cases, an instance (the boarding behaviour in one hour) may 

be assigned to more than one label (stop). Our study, therefore, belongs to the multi-

label problem.  

• Imbalanced data: there are about 98% instances where label vector is all 0, which means 

this passenger did not travel in this period and/or did not board at that particular stop. 

Boarding observations at a specific stop in a specific hour is hence a ‘rare occurrence’.  
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• Many-class problem: a public transport system for a city has many bus lines and each 

bus line has multiple bus stops, so there are many classes on the label. Such a many-

class problem makes the classification more difficult, which in turn reduces the 

accuracy of the model and the computational efficiency of the training and prediction 

process. 

These problems are common for most of the urban public transport systems. We 

propose a three-stage framework to address these issues. 

3.2 A three-stage framework for predicting boarding stops 

Figure 1 illustrates our proposed framework with three sequential models to predict: (i) 

whether a smart-card user makes a trip in a given time slot (Stage 1), (ii) the bus lines the 

passengers used (Stage 2), and (iii) the boarding stop on the predicted bus line (Stage 3).  

 

Figure 1 The three-stage prediction framework, and the processes and models involved in each 
stage of the prediction. 

Stage 1 predicts whether a passenger makes a trip at a given one-hour slot. As the label 

of this model is ‘travelling' or ‘not travelling', this estimation is referred to as a binary 

classification problem (BCP) in machine learning.  

Stage 2 considers only the travelling instances predicted from Stage 1 and predicts the 

bus line taken for each travelling instance. There are multiple bus lines for each instance, and 
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a passenger may make transfers in the same one-hour time slot.  Therefore Stage 2 is a multi-

class multi-label classification problem (MLCP) (Tsoumakas and Katakis, 2007). The labels 

are bus lines passenger used and the classes are all the bus lines in the network. 

Stage 3 works on our ultimate target, predicting the boarding stop for each bus trip. 

Here, we build up a prediction model for each bus line (noted as Model 3.1 and Model 3.2 for 

bus line 1 and 2 in Figure 1). As the number of classes in each model varies according to the 

number of stops along the line, Stage 3 also belongs to MLCP. The labels are bus stops 

passenger used on a bus line and the classes are all bus stops along the line. 

3.3 Architectures of neural network 

We employ the fully connected neural network (FCN) as the basic architecture to solve 

the problems because it has the simplest structure. Since human trajectory is highly related to 

the temporal regularity (González et al., 2008),  recurrent neural network (RNN) and long 

short-term memory neural network (LSTM), are also implemented as a comparison. 

3.3.1 Fully connected neural networks (FCN) 

Figure 2 illustrates the classic FCN architecture (Svozil et al., 1997). It consists of three 

layers: input, output, and some hidden layers. Each layer has a number of neural cells (nodes). 

A node in the input layer represents an input feature. The nodes in the hidden layers are the 

results calculated by the activation function according to the information in the input layer. A 

node in the output layer presents the probability of the occurrence of a class. In FCN, the 

information moves from the input nodes, through the hidden nodes (if any) to the output nodes. 

In the context of this study, for Stage 1, there is only one node in the output layer of binary 

FCN architecture, which presents the probability of travelling. For Stage 2 and 3, the number 

of nodes in the output layer depends on the number of bus lines and bus stops on each line. The 

hidden layer is used to discover relationships between features through the activation functions.  
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Figure 2 An example architecture of FCN. 

 

3.3.2 Recurrent neural networks (RNN) 

RNN architecture is good with sequential (e.g. temporal) data (Connor et al., 1994). 

RNN also consists of an input, hidden and output layer, and each layer contains one or more 

nodes (Figure 3). Whilst the hidden layer in FCN is only calculated from one input instance, 

the hidden state in RNN is related to both the current instance and the hidden state of the 

previous instance. The input of RNN requires a sequence of instance: 

  1 2, , , , ,
t T

x x x x   (1) 

where xt denotes the input instance at position t in the sequence and T is the number of the 

sequences. In this study, the sequence is the time series of instances and Section 4.3 will 

introduce how we build up the sequence in this study. 

The current hidden state of an instance xt is measured from the instance itself and the 

previous hidden state: 

 ( )1t t t
h Ux Wh −= +   (2) 

where ht and ht-1 denote the current and previous hidden state at the position t and t-1in the 

sequence; U and W are the weight matrix from the input layer to the hidden layer and the hidden 

layer to the hidden layer; ϕ(·) is the activation function which is usually a tanh function. 

Then, the output unit can be calculated as: 

 ( )t t
z Vh=   (3) 
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where V is the weight matrix from the hidden layer to the output layer and o(·) is the activation 

function which usually uses the sigmoid function for MLCP and BCP. 

 

Figure 3 The example architectures of RNN. 
 

3.3.3 Long short-term memory neural network (LSTM) 

LSTM, proposed by Hochreiter and Schmidhuber (1997), is an improvement on the 

RNN by solving the vanishing gradient problem Hochreiter et al. (2001). The architecture of 

LSTM (shown in Figure 4) is similar to that of RNN  but utilises a new concept, called ‘cell 

state’. The cell state, illustrated as the horizontal line going through the top of Figure 4, is to 

memorise the state at the previous position. LSTM is a gate-controlled architecture, including 

forget gate, input gate and output gate. The forget gate controls how much old information can 

be inherited from the previous position. 

  ( )1,t f t t
f W h x −=    (4) 
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where ft is the forget coefficient between 0 (totally forgetting) and 1 (totally remembering) at 

position t; Wf is the weight matrix for the forget gate; σ(·)is the gate activation function which 

always uses the sigmoid function. 

The input gate controls how much new information can be inherited from the current 

position. 

  ( )1,t i t t
i W h x −=    (5) 

where it is the input coefficient between 0 (barely inputting) and 1 (totally inputting) at position 

t and Wi is the weight matrix for the input gate. 

The output gate controls how much the cell state can be transferred to the next position. 

  ( )1,t o t t
o W h x −=    (6) 

where ot is the output coefficient between 0 (barely outputting) and 1 (totally outputting) at 

position t and Wo is the weight matrix for the output gate. 

The final cell state at position t consists of the previous cell state at position t-1 and the 

new candidate cell state at position t: 

 1t t t t t
C f C i C−=  +    (7) 

  ( )1,t C t t
C W h x −=    (8) 

where Ct and C  denote final and new candidate cell state at position t respectively; Wc is the 

weight matrix; μ(·) is an activation function which always uses the tanh function. 

The hidden state is computed by the output gate and the cell state. 

 ( )t t t
h o C=    (9) 

where μ(·) is an activation function which always uses the tanh function. 
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Figure 4 The example architectures of LSTM. 
 

3.4 Feature selection 

We define model features into three domains: boarding time, weather condition and 

travel history; they are listed in Table 1. Features concerning boarding time are clearly relevant  

to the boarding stop prediction problem. The weather features imply the impacts of different 

weather conditions on passenger behaviour. The travel history describes passengers’ regular 

travel patterns and habits. We take binary encoding for card ID and One-Hot encoding for other 

categorical features; this leads to a high-dimension vector for representing the categorical 

features. All numerical features are normalised.  

Table 1 Investigated domain of features employed in machine learning models. 

Feature 

domains 
Features 

Dimensions 
Feature 

types 
Explanation Stage 

1 & 2 

Stage 

3 

Boarding 

time 

Season 4 Categorical Spring; summer; autumn; winter. 

Days in week 7 Categorical 
Mon., Tues., Wed., Thurs., Fri., 

Sat., Sun. 

Holiday 2 Categorical Holidays and working days. 

Time slot 1 Numerical 
One-hour time slot from 6 am on a 

given to 1 am on the next day 

Weather 

condition 

Temperature 1 Numerical 
The average temperature during the 

time slot 

Precipitation 1 Numerical 
Total precipitation during the time 

slot 
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Humidity 1 Numerical 
Average relative humidity during 

the time slot 

Visibility 1 Numerical 
Minimum visibility during the time 

slot 

Wind speed 1 Numerical 
Maximum instantaneous wind 

speed during the time slot 

Weather events 6 Categorical 
Clear, Cloudy, Fog, Overcast, Rain, 

Unknown 

AQI 1 Numerical Air quality index 

Travel 

history 

Card ID 17 Nominal Unique ID to identify the card users 

Bus lines/stops 

used on day-1 
7 10 Categorical 

Labels of bus lines/stops used by 

the passengers on the previous day, 

i.e. day-1 

Bus lines used on 

day-7 
7 10 Categorical 

Labels of bus lines/stops used by 

the passengers on the same day last 

week, i.e. day-7 

Bus lines/stops 

used from day-7 to 

day-1 

7 10 Categorical 

Labels of bus lines/stops used by 

the passengers on all previous 

seven days, i.e. from day-7 to day-1 

Bus lines/stops 

used in the same 

hour on day-1 

7 10 Categorical 

Labels of bus lines/stops used by 

the passengers in the same hour on 

the previous day 

Bus lines/stops 

used in the same 

hour on day-7 

7 10 Categorical 

Labels of bus lines/stops used by 

the passengers in the same hour on 

the same day last week 

Bus lines/stops 

used in the same 

hour from day-7 to 

day-1 

7 10 Categorical 

Labels of bus lines/stops used by 

the passengers in the same hour on 

all previous seven days 

Most used bus 

line/stop on day-1 
7 10 Categorical 

Label of the most used bus line/stop 

by the passengers on the previous 

day 

Most used bus 

line/stop on day-7 
7 10 Categorical 

Label of the most used bus line/stop 

by the passengers on the same day 

last week 
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Most used bus 

line/stop from day-

7 to day-1 

7 10 Categorical 

Label of the most used bus line/stop 

by the passengers on all previous 

seven days 

Most used bus 

line/stop in the 

same hour on day-1 

7 10 Categorical 

Label of the most used bus line/stop 

by the passengers in the same hour 

on the previous day 

Most used bus 

line/stop in the 

same hour on day-7 

7 10 Categorical 

Label of the most used bus line/stop 

by the passengers in the same hour 

on the same day last week 

Most used bus 

line/stop in the 

same hour from 

day-7 to day-1 

7 10 Categorical 

Label of the most used bus line/stop 

by the passengers in the same hour 

on all previous seven days 

Total number of 

trips on day-1  
1 Numerical 

Number of trips made by the 

passengers on the previous day 

Total number of 

trips on day-7 
1 Numerical 

Number of trips made by the 

passengers on the same day last 

week 

Total number of 

trips from 

day-7 to day-1 

1 Numerical 

Number of trips made by the 

passengers on all previous seven 

days 

Total number of 

trips in the same 

hour on day-1  

1 Numerical 

Number of trips made by the 

passengers in the same hour on the 

previous day 

Total number of 

trips in the same 

hour on day-7 

1 Numerical 

Number of trips made by the 

passengers in the same hour on the 

same day last week 

Total number of 

trips in the same 

hour from day-7 to 

day-1 

1 Numerical 

Number of trips made by the 

passengers in the same hour on all 

previous seven days 
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4 Case study 

4.1 Data description 

The proposed framework is applied to a small bus network in the city of Changsha, 

China. Changsha is in the central south of China. Changsha has a subtropical monsoon climate. 

Temperature changes a lot in spring. The rainy season happens at the beginning of summer. 

From the middle summer to early autumn, the climate is very hot with little rain and there are 

85 days over 30℃ and 30 days over 35℃. In winter, the climate is not very cold, but ice 

sometimes freezes on the roads due to the freezing rain. The climate is distinctive in four 

seasons in Changsha. Thus, people’s trip is always affected by weather conditions. As one of 

the major cities in south-central China, there are 8.4 million people living in Changsha and the 

urban area covers 1938 square kilometres. Three bus companies operate over 200 bus lines 

serving more than two million trips per day. The whole bus network covers all the roads in six 

administrative districts. The accessibility of the bus network touches every corner of the city. 

Besides for three tourism bus lines, the headway of other bus lines is normally 10 minutes and 

sometimes reaches at 5 minutes during the peak hour. The bus is always the main mode of 

public transport service. 

Due to the limitation of data accessibility, data from only seven bus lines are available 

in our case study (in Figure 5). However, these bus lines provide a representative of the bus 

services connecting key central business districts, high-tech zones and residential zones around 

the city. The study network covers the core public transport infrastructures of Changsha, such 

as rail stations and long-distance coach terminals. The three bridges, which are the main routes 

connecting the east and west parts of the city, are included in the network. Finally, the study 

bus lines cover a variety of service characteristics in terms of length, station density and 

frequency of the lines. 
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Figure 5 The map of the study case network in Changsha, China  

The smart card system in Changsha records the boarding of each trip, i.e. bus lines, 

vehicle ID, card ID, card type and boarding time. However, the system does not contain a 

specific boarding stop. For the supervised machine learning model, it requires the boarding 

stops in training the model and evaluating the performance of the prediction. We hence utilise 

the GPS data to implement the geographic information and identify the boarding stops. The 

GPS devices are equipped on all buses in the city, and each device has its unique ID, which 

corresponds to the vehicle ID in the smart card data. The GPS reports the latitude and longitude 

of the vehicle location every 10 seconds. 

4.2 Data pre-processing 

The available smart card data covers 32 days from 1st August to 1st September 2016. 

The bus services operate 19 hours a day from 6 am to 1 am on the following day. The raw 

smart card dataset includes 2,917,272 transactions and 564,803 card users for the selected lines.  

Processes are taken to clean the raw smart card data and to prepare the training and testing 

datasets for machine learning models. Figure 6 illustrates the data processing procedures, and 
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the resulting number of data records after each procedure. To simplify the problem, the 

following assumptions are made. 

 

Figure 6 Processes to prepare smart card data.  

(A1) Each card ID corresponds to a single passenger, and each passenger swipes the 

card only once at a single boarding. In a real-life situation, some passengers may (accidentally) 

swipe their cards more than once for one boarding, which causes two and more transactions 

during a short period. We consider these data as repetitive data and take only one of the readings. 

This first process cleans out 229,267 repetitive logs (8% of the raw data). 

(A2) Smart card logs for which the boarding stop cannot be inferred are considered 

noise. Due to poor data quality, the GPS data for some vehicles is missing. In total, 344,778 

smart card transactions (12% of the raw data) do not have the corresponding GPS data. Then, 

we extract the boarding stop of each smart card transaction with the data fusion of GPS data. 

270,699 smart card transactions (9% of the raw data) are removed because they cannot be 

inferred from the boarding stops.  

 (A3) This study only focuses on the regular smart card users who travel at least once 

a week.  Many card IDs appear only a few times during the 32 days of the study period. For 

example, 36% of users travelled only in August and not appeared on 1st September. 37% of 
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users travelled less than four times. To simplify the data, we exclude the infrequent users who 

made less than four trips during the study period. Such infrequent travellers will generator too 

many non-travelling instances for the model, and they provide limited information to the 

models. This assumption results in a remaining 101,850 IDs for the rest of the study.  

Finally, we transform the smart card records to the instances used in our models. There 

are 19 time slots (corresponding to the 19 hours of service operation from 6 am to 1 am the 

following day) in a day so that every user ID has 19 instances for each day. If there are two or 

more smart card records for the same person at the same time, including time slot and day, the 

corresponding instance will have two or more labels which makes this an MLCP. If there is no 

smart card record in a time slot, we label such instances as ‘NONE’, i.e. not travelling. 

4.3 Experimental environment and setting  

The training and testing process is conducted via Keras (Chollet and Others, 2015) with 

the R programming language. All the experiments are run on a graphics processing unit (GPU) 

platform with eight NVIDIA® K80 (GK210) and 12 GB GPU memory per unit.  

Table 2 The number of instances in the different datasets of models. 

Models Bus lines 
Number of instances 

Training dataset Validation dataset Testing dataset 

Stage 1 All network 44,508,450 1,935,150 

1,935,150 

Stage 2 All network 593,608 48,885 

Stage 3 

Model 3.1 LINE 006 280,907 10,220 

Model 3.2 LINE 007 290,628 10,544 

Model 3.3 LINE 063 81,906 3,257 

Model 3.4 LINE 123 147,917 5,235 

Model 3.5 LINE 147 112,611 4,164 

Model 3.6 LINE 150 296,020 11,159 

Model 3.7 LINE 168 121,771 4,828 

 

Since we do not know the travel history for the instances for the first seven days (from 

1st to 7th August 2016), the data concerning these seven days are excluded from the training 
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dataset. The instances from 8th to 30th August are included in the training dataset; the instances 

on 31st August are in the verification dataset; while the testing dataset contains the instances 

on 1st September. Table 2 presents the number of instances in the different datasets of models. 

Table 3 The structure of the specific machine learning models. 

Models Architectures 
The number of nodes Activation 

function Input  Hidden 
1 

Hidden 
2 

Hidden 
3 

Output  

Stage 
1 

Model 
1 

FCN 

133 

95 66 - 

1 

ReLU 

sigmoid 

RNN 133 128 64 tanh 

LSTM 64 32 32 
tanh 

sigmoid 

Stage 
2 

Model 
2 

FCN 

133 

100 75 - 

7 

ReLU 

RNN 133 128 128 tanh 

LSTM 64 32 32 
tanh 

sigmoid 

Stage 
3 

Model 
3.1 

FCN 

169 

128 128 64 

33 

ReLU 

RNN 128 64 64 tanh 

LSTM 128 128 64 
tanh 

sigmoid 

Model 
3.2 

FCN 128 128 64 

33 

ReLU 

RNN 128 64 64 tanh 

LSTM 128 128 64 
tanh 

sigmoid 

Model 
3.3 

FCN 128 128 64 

44 

ReLU 

RNN 128 64 64 tanh 

LSTM 128 64 64 
tanh 

sigmoid 

Model 
3.4 

FCN 128 128 64 

46 

ReLU 

RNN 128 64 64 tanh 

LSTM 128 128 64 
tanh 

sigmoid 

Model 
3.5 

FCN 128 128 64 

63 

ReLU 

RNN 128 64 64 tanh 

LSTM 128 128 64 
tanh 

sigmoid 

Model 
3.6 

FCN 128 128 64 

39 

ReLU 

RNN 128 64 64 tanh 

LSTM 128 128 64 
tanh 

sigmoid 

Model 
3.7 

FCN 128 128 64 

48 

ReLU 

RNN 128 64 64 tanh 

LSTM 128 128 64 
tanh 

sigmoid 

In Section 3.3, we introduced three popular architectures of neural network (FCN, RNN 

and LSTM) to solve the binary and multi-label classification problems. The specific 

architectures implemented in this study are presented in Table 3. The number of nodes in the 
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input and output layer is the same for each of the three architectures. The number of hidden 

layers and nodes in each hidden layer varies from architecture to architecture. The activation 

function from the input layer to the hidden layer and between two conterminous hidden layers 

is the rectified linear unit (ReLU) function for FCN and the tanh function for RNN. The 

activation functions used in LSTM are tanh and sigmoid function. The activation function from 

the hidden layer to the output layer is the sigmoid function for all three architectures. 

As mentioned in Section 3.3, the input of FCN is the individual instance, but the input 

of RNN and LSTM is a sequence of instances that consists of a time series. Following Han et 

al. (2019), the input sequence in our study consists of the instances from the previous seven 

days, which is donated by the set of instances, X. However, the instances extracted in the 

previous days are from different time slots. For example, the target time slot, xt, is 9:00 - 10:00 

on 1st September. The sequence firstly contains the instances in all time slots of the previous 

day (expressed as xt-m-s+1 to xt-s), i.e. from 6:00 on 31st August to 1:00 on 1st September. In the 

previous second to sixth days, we only select the same time slot (expressed as xt-dm), i.e. 9:00 - 

10:00 on 26th to 30th August. Finally, we consider that the same day of the previous week may 

have similar behaviour so all time slots (xt-7m-s+1 to xt-6m-s) in that day are included, i.e. from 

6:00 on 25th to 1:00 on 26th August. Therefore, the input sequence is formulated below. 

 7 1 7 2 6 1 2, , , , , , , , , 2,3, ,6p p p p p p p p p

t m s t m s t m s t dm t m s t m s t s t
X x x x x x x x x d− − + − − + − − − − − + − − + −= =  (10) 

where p represents a smart card user; t is the target time slot to be predicted; s is the position 

of the target number in that day; m is the total number of time slot in a day which equals 19 in 

this study; d indicates the day.  
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Figure 7 Example to illustrate the time slot selected for the sequence. 

5 Model results and discussion 

5.1 Performance measurements 

The direct result from machine learning models is the boarding stop for every travelling 

instance. We adopt the confusion matrix (presented in Table 4) and measures on prediction 

precision, recall and F1 score to evaluate the performance of the models (Godbole and 

Sarawagi, 2004). The precision measures the fraction of correctly predicted instances among 

the truly positive instances, which reflects the ability to identify only the relevant instances. 

The recall measures the fraction of correctly predicted instances among the instances predicted 

positive, which expresses the ability to find all relevant instances. The F1 score is the harmonic 

mean of the value of precision and recall, which balances the precision and recall of the model. 

The ground truth for Stage 1 and Stage 2 are the directly recorded trip made (or not made), and 

for Stage 3 the ground truth is inferred by the geographic information from GPS data. 

Table 4 The confusion matrix for a single-label binary classification problem 

 

Observation 

Positive Negative 

Prediction 

Positive 
true positive 

(TP) 
false positive 

(FP) 

Negative 
false negative 

(FN) 
true negative 

(TN) 
 

For a single-label binary problem (Stage 1), the performance is measured as: 
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TP

precision
TP FP

=
+

  (11) 

 
TP

recall
TP FN

=
+

  (12) 

 1 2
precision recall

F
precision recall


=

+
  (13) 

where TP is the number of true-positive instances which are correctly predicted as positive; FP 

is the number of false-positive instances which are incorrectly predicted as negative; FN is the 

number of false-negative instances which are incorrectly predicted as positive.  

 For the multi-label problem (Stage 2 and 3), the machine learning models treat them as 

several single-label binary problems. Each class (bus line or stop) is a single binary 

classification problem. So, there will a group of TP, FP, FN and TN for each class. We measure 

the precision and recall for multi-label problem as follows. 

 

( )
1

1

K

k

k

K

k k

k

TP

precision

TP FP

=

=

=
+




  (14) 

 

( )
1

1

K

k

k

K

k k

k

TP

recall

TP FN

=

=

=
+




  (15) 

where TPk, FPk and FNk represent the number of TP, FP and FN instances when predicting 

class k. 

For the multi-label classification problem (MLCP) of Stage 2 and Stage 3,  a more 

appropriate performance measure is the Hamming Loss (HL) introduced by (Schapire and 

Singer, 2000). HL measures the fraction of the wrong labels to the total number of labels. A 

lower HL score indicates the higher performance of models. 

 ( ) ( ) ( )
1

1

ˆ,1ˆ,

K

k kM
m m k

m m

m

FP FN
xor y y

HL y y
M K MK

=

=

+
= =


   (16) 
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where M is the total number of instances to be predicted where m is the index of instances; K 

denotes the total number of labels; ym and ŷm respectively denote the ground truth and predicting 

results of instance m; xor(·) stands the XOR operation in Boolean logic. 

5.2 Predictions of individual boarding trips 

In this section, we examine the performances on the prediction of individual boarding 

stops, from the three machine learning architectures. Table 5 lists the running time (in seconds) 

of the three models. It can be seen that RNN is the fastest, in all stages. Since LSTM optimises 

RNN by adding the gate structure, it is expected to take longer than RNN to run. However, 

while FCN has the simplest architecture, its running time is consistently longer than RNN, and 

even longer than LSTM in some cases, suggesting the low computing efficiency of FCN 

architecture compared to RNN and LSTM architectures. 

Table 5 Running time (in seconds) of the machine learning models. 

Measurements 
Stage 

1 

Stage 
2 

Stage 3 

Model 
3.1 

Model 
3.2 

Model 
3.3 

Model 
3.4 

Model 
3.5 

Model 
3.6 

Model 
3.7 

FCN 37,944 6,900 4,788 2,961 2,405 2,548 1,498 6,757 451 

RNN 13,185 9,315 4,488 2,052 1,054 2,592 864 4,851 868 

LSTM 38,927 6,240 8,086 2,376 2,002 2,296 1,152 4,068 3,510 

 

Table 6 lists the number of instances for the four measures of the confusion matrix, for 

the machine learning architectures and one using the random classification method. Only 

measures for Stage 1 and Stage 2 are presented, as Stage 3 is a multi-class problem, and there 

would be a confusion matrix for each class. We note firstly from Table 6 that there are very 

high proportions (up to 97% for Stage 1 models and 80% for Stage 2) of the instances that are 

true-negative (TN). This is a direct result of the imbalanced issue, as discussed in Section 3, 

where many instances are simply not travelling (Stage 1) or not travelling on that bus line 

(Stage 2).  
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Table 6 The number of TP, FP, FN and TN instances of confusion matrix in Stage 1 and 2.  

Stages 

(Number 
of 

instances 
M) 

Architectures Classes TP FP FN TN 

Stage 1 

(1,935,150) 

FCN 
Travelling 

or not 28,482 20,039 16,674 1,869,955 

RNN 
Travelling 

or not 27,948 20,573 17,208 1,869,421 

LSTM 
Travelling 

or not 33,625 14,896 11,531 1,875,098 

Stage 2 

 

FCN 

(48,521) 

Line 006 7,199 2,358 2,113 36,851 

Line 007 7,391 2,315 2,069 36,746 

Line 063 1,624 1,333 1,230 44,334 

Line 123 3,055 2,162 1,991 41,313 

Line 147 2,225 1,839 1,697 42,760 

Line 150 7,628 2,877 2,598 35,418 

Line 168 2,580 1,909 1,759 42,273 

Average 31,702 14,793 13,457 279,695 

RNN 

(49,609) 

Line 006 6,609 3,221 2,703 37,076 

Line 007 6,792 3,217 2,668 36,932 

Line 063 1,443 1,340 1,411 45,415 

Line 123 2,735 2,275 2,311 42,288 

Line 147 1,977 1,845 1,945 43,842 

Line 150 6,980 3,727 3,246 35,656 

Line 168 2,305 1,981 2,034 43,289 

Average 28,841 17,606 16,318 284,498 

LSTM 

(49,093) 

Line 006 6,844 3,091 2,468 33,264 

Line 007 7,025 3,074 2,435 33,133 

Line 063 1,562 1,424 1,292 41,389 

Line 123 2,930 2,373 2,116 38,248 

Line 147 2,140 1,963 1,782 39,782 

Line 150 7,261 3,628 2,965 31,813 

Line 168 2,476 2,078 1,863 39,250 

Average 30,238 17,631 14,921 256,879 

 

From the confusion matrix values, the performance measures of the machine learning 

models at each stage of the prediction are derived and presented in Figure 8. Looking at all the 

architectures, precision, recall and F1scores of the models in Stage 1 and 2 are all above 0.5, 

and the HL score of Stage 2 is only 0.002. The models in Stage 1 and 2 perform well. Whereas 

the models of Stage 3 show some limitations. Although the HL score in Model 3.1 to 3.7 shows 

the high ability in the prediction, their precision, recall and F1 score are at a low level. 

Comparing Figure 8 with Table 2, one can observe that the performance of the models in Stage 
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3 is related to the size of the training dataset, with bigger datasets corresponding to relatively 

better performances. The number of classes, precisely the stops of the bus services in Stage 3, 

may have influenced the performance of the models. Larger numbers of stops increase the 

difficulty of the prediction, a typical issue of over-many classes. Therefore, in Stage 2 and 3, 

even though we reduce the number of classes in the label to the tens, the prediction cannot 

reach high performance. Also, the predictor works well when there are a few classes in the 

label, e.g. Stage 2. Another possible reason is that our prediction models are consecutive. The 

error from an earlier stage will be transmitted to the next stages. For example, if a travelling 

instance is wrongly predicted as a non-travelling instance in Stage 1, the result will be wrong 

in Stage 2 and 3, no matter which stops it is predicted to get on.  

Comparing the performance measurements among the architectures, LSTM is good at 

recall, while FCN is the best architecture for precision, F1 and HL scores. In models of Stage 

1, LSTM is the best architecture in all aspects. The precision of FCN and RNN is similar. 

However, the recall of FCN is greater than RNN. In Stage 2, the bar charts show FCN is the 

best and RNN is the worst but the difference between these three architectures are small. 

Additionally, the HL score of FCN is much higher than others even though the value of HL 

score of FCN is still less than 0.25. In Stage 3, LSTM always has a significantly high value of 

recall with the worst value of HL score which is higher than 0.25 for all the models. In Model 

3.4, 3.5 and 3.7, RNN also has a bad HL score.  
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Figure 8 The performance measurements, in terms of  Precision, Recall, F1 score and Hamming 

Loss, of the three different machine learning architectures and for the different prediction 
stages (models). 

We examine the influence of poor prediction of Stage 1 on Stage 2. The TP and FP 

instances of Stage 1 are used in the original testing dataset of Stage 2. However, the FP 

instances are always negative, no matter which bus line is predicted in Stage 2. These FP 

instances decrease the performance. Here, we only use TP instances of Stage 1 as the testing 

dataset of Stage 2 and measure the precision of the new Stage 2. So do models in Stage 3.Figure 

9 presents precisions on these scenarios. The results show that the precision with new testing 

datasets in Stage 2 is about 0.8 and in Stage 3 are around 0.5, which is significantly greater 

than what we calculate before. This situation proves that the poor performance of Stage 1 
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decreases the precision of Stage 2 and 3. The error will be transformed and accumulated stage 

by stage. If we can improve the performance of Stage 1 or if we have already known the 

travelling instances, the rest of the stages (Stage 2 and 3) are able to find out which bus lines 

and stops passengers use. 

 

Figure 9 The precision of the model with original testing dataset (with TP+FP) and new testing 
dataset (TP only). 

 

5.3 Accuracy of ridership - aggregated results 

For public transport planning, aggregated behaviour is more important than the 

individual ones, as the main input of interest to the planners and operators are the predicted 

ridership in each line during each time slot. Here, we measure the predicted aggregated demand 

from different architectures and compare them with the true ridership and the predicted 

ridership by the ARIMA model (Hillmer and Tiao, 1982). Since we cannot measure the number 
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of passengers paying by cash, the ground truth of ridership is the statistical results based on the 

smart card data. 

First of all, the total real ridership at the network level is 45,156. The predicted ridership 

(from Stage 1) is respectively 48,521 from FCN, 49,609 from RNN, 45,667 from LSTM and 

49093 from ARIMA. The absolute errors are less than 4,500 and the percentage errors are 

within 10%. Thus, results from four architectures are all considered close enough to the true 

ridership, with the result from LSTM falling within 1% of the true value. The ridership 

distribution over the day is presented in Figure 10. The true ridership has two clear peaks 

around 8:00 and 18:00, respectively. LSTM, RNN and ARIMA have all accurately predicted 

when the peaks occurred. FCN also accurately predicted the evening peak at 18:00. However, 

it predicted the morning peak is later than the true one by two hours.  

Looking at the value of the ridership, LSTM matches the true ridership best where two 

distributions almost overlay on each other perfectly. The ridership predicted by RNN and 

ARIMA is similar, and both are higher than the truth before the evening peak. The ridership 

predicted by FCN is much lower than the truth during the morning peak and significantly higher 

during the evening peak. During the off-peak time, i.e. from 11:00 to 17:00, the ridership from 

FCN is close to the actual ridership and not worse than other architectures. Therefore, as LSTM, 

RNN and ARIMA consider the time series in their model, they have the ability to capture the 

temporal characteristics of the data. In contrast, FCN takes a poor performance in the time-

dimension because it only uses independent features. 
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Figure 10 Ridership at the network level: the ground truth and those predicted by different 
architectures in Stage 1. 

Figure 11 presents the true and predicted ridership for bus lines from the results of Stage 

2. The overall picture is similar to those in Figure 10 that: for each bus line, RNN, ARIMA and 

LSTM all accurately predicted the timing and the level of the morning and evening peaks, 

whereas FCN did not produce so accurate predictions. Errors concerning Line 006, 007 and 

150 that have large numbers of instances are greater than errors for other lines with fewer 

instances. 
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Figure 11 Ridership delivered to bus lines in truth and prediction by Stage 2. 

To investigate the demand distribution in detail, we compute the ridership for each bus 

stop from the results of the models in Stage 3. Figure 12 shows the true and predicted ridership 

at stop-level from different machine learning architectures. The interpretation of the results in 

Figure 12 is complex. For all the seven bus lines, FCN is able to capture busy stops, which 

have more boarding passengers, even for the bus lines whose machine learning model does not 

perform well. The results concerning Line 006, 007, 150 and 168 fits the observed ridership 

almost perfectly in terms of the position of busy stops.  
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Figure 12 True and predicted ridership at stop-level from different architectures. 

However, there is still an error between the real and predicted ridership from FCN. As 

for the other three lines, FCN captures the busy stops in reality but incorrectly predicts more 

other busy stops. For example, on Line 123, observed busy stops are the stop No. 27, 43 and 

46; besides, the model predicts the other six busy stops. Due to the poor performance of the 

models in Stage 3 (see Model 3.1 to 3.7 in Figure 8), we speculate that some instances are 

incorrectly labelled to other bus stops in addition to the actual stops. Hence, there are more 

predicted busy stops, and the total demand for bus lines is higher than the reality. For RNN and 

LSTM, their prediction differs from real observation. The indication from Figure 12 is opposite 
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to that from Figure 10 and 11. On most bus lines, RNN points out some busy stops but they are 

not correct. For example, RNN suggests that the busy stops on Line 147 are No. 7, 26, 43 and 

56 but observed busy stops are No. 38 and 42. Looking at the results in LSTM, the distributions 

of the ridership along bus lines are predicted to a balanced result, where LSTM results are 

basically horizontal lines. It is hard to distinguish the busy and free stops according to the 

results from LSTM. Although the number of non-travelling instances is already reduced in 

Stage 1, the instances of travelling at each stop in the models of Stage 3 are still imbalanced. 

The three architectures we tested have different ability to deal with the issue of imbalanced  

data: FCN can replicate a part of the peak of data’s real distribution; the predictions of RNN 

are not reliable for many busy stops; the number of instances in each class is balanced from the 

results of LSTM.  

It may be noted that Figure 12 presents a whole-day ridership in different bus stops and 

Figure 11 present the hourly ridership on every bus line. As presented in Figure 12, FCN is the 

best model to predict the busy stops. However, in Figure 11, FCN has the worst performance 

in predicting the hourly ridership. Since Figure 11 and 12 present the ridership in terms of 

different (temporal versus spatial) ways, the opposite conclusions do not conflict. There are 

many spatial features describing the most used bus stops but limited temporal features related 

to time. The input of FCN is separate instances. Therefore, the FCN model may ignore the 

temporal relationship among instances and takes a poor performance in the time-dimension. 

And many features in travel history are related to the most used bus lines/stops. According to 

these input information, FCN is easy to find the peak bus stops (corresponding to Figure 12). 

This difference proves again that FCN is able to capture the daily spatial distribution (along  

with bus stops) of ridership but lacks the ability on temporal characteristics (over time). 

We show the temporal distribution of the demand at the stops with the largest ridership 

in Figure 13. For operational and planning reasons, it is important not just to identify the busiest 
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stops but also to understand the peak demand. Furthermore, we want to check whether errors 

are less common when we have more instances. For lines 007, 063 and 123, the predictions of 

LSTM and RNN have the same temporal trend, although the predicted demand is significantly 

low. The approach fails to reproduce the temporal distribution of the demand on Line 006, 147 

and 168. The number of instances assigned to peak stops is smaller than the real one due to the 

error discussed in the previous paragraph. The demand pattern on Line 150 predicted by LSTM 

and RNN differs from the observed one. As FCN assigns more instances to stops, it is much 

clearer to analyse their temporal distribution. FCN captures the pattern of the distribution of 

ridership of most bus lines, i.e. Line 006, 007, 123, 147 and 168. However, FCN fails to 

replicate the morning peak pattern, for example, there is a significant gap from 6 to 9 am. For 

Line 150, the result of FCN is similar to LSTM and RNN, with no peak hours at all. 
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Figure 13 True and predicted ridership at the largest-ridership stop from different 

architectures. 

Overall, the aggregated results predicted from LSTM and RNN match well with the 

true ridership at the network- and line-levels and the results are better than those predicted from 

the classic ARIMA model. However, all models lack the ability to make the prediction at the 

stop level. The fact that LSTM and RNN are able to accurately capture the temporal distribution 

of ridership is because the methods explicitly consider the temporal relationships inherent in 

the data. FCN can predict the distribution of ridership at stops better than the other architectures, 

but the results are not satisfactory in absolute terms. We believe that two key causes contribute 

to reducing the accuracy of the predictions: 
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• A large number of classes (stops) in the system makes it difficult to predict at the stop 

level, even though we adopt the multi-stage framework to reduce the number of classes 

in each model. 

• LSTM and RNN do not work well with imbalanced data, which affects the quality of 

the stop-level predictions. 

 

6 Summary and Conclusion 

Understanding the travel pattern is important for improving the level-of-service of 

public transport systems and capturing passengers’ choice of boarding stops is the first step to 

predict the travel pattern. Predicting boarding behaviour tells the planner the situation and 

changes of ridership in the public transport network, and is the basis for long-term planning 

and short-term operation. Thus, working on predicting the boarding behaviour and making the 

prediction more accurate will help improve the attraction and patronage of public transport 

systems, which in turn contributes to the sustainability of cities.  

This paper presents a multi-stage framework to predict the boarding stops for each 

smart card user over an one-hour time slot. First, we predict the states, travelling or not, for 

each instance. At the second stage, we only look at the travelling instances and predict the bus 

lines they travel on. This is to reduce the number of classes in machine learning models. Finally, 

we predict the boarding stops on every bus line. FCN, RNN and LSTM are separately used as 

the architectures in the framework, and weather conditions and travel histories are incorporated 

in the features of models. 

The direct output of the machine learning framework is the boarding stops of individual 

passengers. Given that the aggregated ridership is more important in public transport planning, 

we calculate the hourly ridership at stop-, line- and network-level. Different from the direct 

predictions of ridership at the stop level (which has been the focus of most existing literature), 

this paper deals with the prediction at the individual smart card user level. Using results 

concerning individual users, it is easy to obtain the aggregated  ridership at stop-, line- and 
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network-level. Thus, it reduces the number of models required. When predicting the ridership 

at stop-level, the classic model, such as ARIMA, needs to build up a single model for each bus 

stop. LSTM and RNN are shown to produce accurately the time-dependent distribution of the 

line-level ridership. 

We discuss the reasons why the prediction accuracy is not high as one would like. The 

reasons are: i) for Stage 1, the valid travelling instances are only 2% of the whole training 

dataset, which is an extremely imbalanced data for machine learning models; and ii) for Stage 

2 and 3, the error is transferred from Stage 1, i.e. the non-travelling instances that were wrongly 

predicted to travelling instances by Stage 1 are always wrong in Stage 2 and 3, no matter what 

bus stops or lines are predicted. Nevertheless, in some cases, our machine learning approach is 

able to predict correctly 2/3 instances. Comparing the different architectures, FCN is better on 

precision, F1 score and HL score, while LSTM is better on recall. Conclusively, FCN is better 

than the other two architectures in the comprehensive ability (F1 score) and the ability to deal 

with MLCP (HL score), and LSTM has a more powerful ability to find all the possible instances 

in each class. All the architectures accurately predict the total number of travelling instances in 

the network and on each bus line but lack the ability to make the prediction at the stop-level. 

To see the temporal distribution of the ridership, LSTM and RNN can predict the accurate 

ridership in each hour, which is more accurate than the classic time series ARIMA model, but 

FCN has a poor performance to predict the peak hours. It is because RNN and LSTM consider 

the temporal relationship in their learning process while FCN only uses the features 

independently. On the side of the distribution along with bus stops, FCN is able to capture the 

pattern of boarding at the stop level and find out busy stops, but LSTM and RNN do not 

perform well. Examining in details of ridership at busy bus stops, FCN has a good prediction 

on the absolute value and trend of ridership, especially after the morning peak of a day. 

Although LSTM and RNN have a poor prediction on the absolute value of ridership, they can 
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still reflect the changes of the ridership. The reason, we think, causing the poor prediction is 

because the training and testing datasets for the models in Stage 3 are still full of imbalanced 

data and these three architectures have different ability to deal with the imbalanced data. 

The prediction framework can be easily transferred to other bus systems trained with 

local smart card datasets, which are generally available to operators. We note that the data 

issues described in Section 3.1 are common to other networks. We expect our method can also 

deal with these data issue in other networks, clearly, the quality of results in other bus networks 

should be tested. 

This study incorporates weather conditions and travel history in the prediction models. 

However, we have not examined how these features impact prediction models. In the future, 

we will address the efforts of these features in different domains and attempt to rank the 

importance of these features. Secondly, we only use one-month data as the training dataset and 

one-day data as the testing dataset. This limited study time period limits the variability of 

weather conditions and subsequently limits the prediction of weather impacts on boarding 

behaviour. For example, the boarding pattern in winter has not been learned because the data 

do not contain such information. It needs to be brought into the model when more data is 

available. Since the data size far exceeded our computation capacity, we have to delete the 

infrequent passenger in the case study since these passengers can only provide limited 

information on their boarding patterns. However, ignoring infrequent passengers leads to a lack 

of their boarding pattern in the models and also results in a bias of model. It is worth to 

investigate how to predict the boarding behaviour of infrequent passengers and what the long-

term impact of weather is. Thirdly, the number of bus stops and lines can be very big in a large 

network. Even if the framework proposes three continuous stages to avoid the many-class 

issues, too many stops in a bus line still challenges machine learning models. Next, the machine 

learning models, especially in Stage 3, have poor performances. Reflecting the aggregated 
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ridership, FCN lacks the ability to capture the temporal characteristics, while LSTM and RNN 

have a bad ability to assign the total ridership to stops. As we discussed in Section 5.3, we 

speculate that the imbalanced data and many-class issue still decreases the accuracy of the 

model. Although we adopted a multi-stage framework to avoid such problems, further 

investigation needs to work on dealing with these data issues in machine learning models. Last, 

this study only focuses on predicting the boarding behaviour. However, to guide the public 

transport planning, it is important to have the full picture of passenger flow origin-destination 

matrix that contains both the boarding and alighting information. Therefore, combining the 

alighting stop prediction (Tang et al., 2020) with this study will be a way to clearly understand 

the travel pattern. 
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