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Abstract 
 

To develop and evaluate housing strategies and interventions for improving indoor air quality (IAQ) at 

a city or national scale, housing stock IAQ models are required. Without such models, reliable 

prediction of residential indoor pollution concentrations and exposures at various spatial-temporal 

scales cannot be achieved. To address the areas not covered by past review articles in housing stock 

performance modelling, this paper presents the first comprehensive review of the housing stock IAQ 

models published during 2012-2020. Our review was carried out to achieve three outcomes: (1) to 

identify and summarise the fundamental IAQ modelling approaches including model assumptions, (2) 

to review the housing stock IAQ modelling methods (engineering and/or statistical), sampling methods, 

data sources in use and the underlying computation assumptions, and (3) to propose a descriptive 

framework and a performative matrix. The review resulted in a set of 11 key model attributes with 

which housing stock IAQ models can be evaluated in terms of data requirements and model 

performance. To improve robustness and accuracy in concentration and exposure predictions, future 

housing stock IAQ models should be developed to account for the dynamic interaction between heat 

transfer, inter-zone airflow and indoor contaminant transport through IAQ-Energy co-simulation. 

 

Keywords: indoor air quality (IAQ), housing stock IAQ models, CONTAM, EnergyPlus, IAQ-Energy 

co-simulation, data requirements, model performance 

Nomenclature  

Symbol  Description  Unit  
t Time  hour (h) 𝐶𝐶𝑖𝑖 Concentration of particles in indoor air at time t µg/m3 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Sum of concentration gain from all sources  µg/m3 𝐶𝐶𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠  Sum of concentration loss from all sinks  µg/m3 𝐶𝐶𝑠𝑠 Concentration of particles in outdoor air at time t µg/m3 𝑄𝑄𝑆𝑆 Mechanical supply flow rate  m3/h 𝑄𝑄𝑁𝑁 Natural Ventilation flow rate  m3/h 𝑄𝑄𝐿𝐿 Leakage (Infiltration) flow rate  m3/h 𝑄𝑄𝐹𝐹 Indoor air particle control flow rate  m3/h 𝜂𝜂𝑆𝑆 Filter with single pass removal efficiency  dimensionless 𝜂𝜂𝐹𝐹 Filter with single pass removal efficiency  dimensionless 𝑃𝑃 Penetration fraction of particles dimensionless 𝛽𝛽 Deposition Coefficient  h-1 𝐸𝐸 Emission Rate of Particles  µg /h 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Fluid mass of room/building air  kg  



𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  Heat energy of room/building air  Joules 𝐹𝐹𝑗𝑗𝑖𝑖  Mass airflow rate from zone 𝑗𝑗 to zone 𝑖𝑖  kg/s 𝑚𝑚𝑖𝑖  Mass flow through an airflow path connecting zone 𝑖𝑖 to zone 𝑗𝑗 kg 𝑇𝑇𝑖𝑖  Temperature in zone 𝑖𝑖 K 𝑅𝑅 Gas constant of air = 287.055  J/kg.K 𝑃𝑃𝑖𝑖  Pressure in zone 𝑖𝑖 Pa 
ρ Air density  kg/m3 

   
 

1. Introduction 

Due to the rising levels of air pollution in cities around the world, poor urban outdoor and indoor air 

quality has received much attention in recent years because of its detrimental impact on the environment 

and population health. In the UK, outdoor air pollution is estimated to contribute to about 40,000 

premature deaths a year [1]. Globally, the number of premature deaths from outdoor air pollution is 

expected to increase from 3 million in 2010 to a total of 6~9 million in 2060, with the highest increase 

in countries not affiliated with the Organisation for Economic Co-operation and Development [2]. The 

fact that urban populations stay long periods of time indoors, the full extent of the health burden of air 

pollution is yet to take into account indoor air quality (IAQ). As a gross estimate, 99,000 deaths a year 

have been attributed to exposures to indoor air pollutions across Europe [3]. 

The world is currently undergoing the most accelerated urbanisation in history. More than half of the 

global population is now concentrated in urban areas, and by 2060, new floor areas totalling 230 billion 

m2
 are expected to add to the global building stock [4]. Notwithstanding this unprecedented global 

growth in both urban population and the building sector, approximately two-thirds of the current 

building stock will continue to exist in 2050 [5]. Previous studies have shown that building stocks in 

some developed countries are responsible for a significant portion of the energy demand and greenhouse 

gas emissions [6], meanwhile, the research into building stock energy modelling at different scales have 

increased in the past decades [7]. More recently, the extent and effects of increased airtightness due to 

policy-guided measures to improve building energy efficiency have been investigated [8–10]. The 

attention to airtightness is of a particular interest and concern since people, on average, spend 85-90% 

of their time indoors [11–13]. Living in houses with enhanced airtightness, dwellers’ exposures to air 

pollutants may increase where adequate ventilation systems (natural or mechanical) are not installed or 

poorly maintained [14,15]. To be able to assess indoor air environment with accuracy, the complex 

interactions of multiple factors such as envelope leakage, occupant’s behaviour, pollutant emissions, 

ventilation rates, building materials, and others remain to be better understood [16]. 

IAQ modelling has long been an essential topic in the field of indoor air science. Compared to field 

measurements of indoor air pollution, well-developed IAQ models can be cost-effective tools for 

estimating levels of indoor pollutant concentration and occupant exposure. Past attempts at developing 

physical and chemical IAQ models have identified a number of underlying processes and factors in 

quantifying IAQ outcome: emissions [17–20], infiltration and ventilation [21–23], chemical reactions 



[24,25], and surface interactions (sorption and deposition) [26,27]. Moreover, the physical-chemical 

processes affecting IAQ have been modelled in the dynamic contexts of indoor environmental 

conditions (temperature and humidity), building energy balance, and ambient atmospheric conditions 

(e.g., outdoor temperature, humidity, wind, and ambient pollutant concentrations) [16].  

Over the last decade, there has been a growing demand of predictive housing stock IAQ models for 

several reasons: (1) to predict spatiotemporal variations in indoor concentrations of outdoor-infiltrated 

and indoor generated pollutants for policies and guidelines developments, (2) to quantify resultant 

indoor personal exposures from policy-driven interventions (e.g. improvements in buildings energy 

efficiency and changes in ambient pollution levels, and (3) to unravel the interactions between IAQ and 

other building performance indicators (e.g. domestic energy use and overheating risk) at the building 

stock level.  

As obtaining field measurements of IAQ at a large scale can be time-consuming and prohibitively 

expensive, housing stock IAQ modelling has turned to computational methods that work with multiple 

types of data representative of a building stock at different locations and scales (i.e., neighbourhood, 

city, regional or national). In general, strategies of analysing a building stock are essential to perform 

building stock modelling. Such strategies have been developed to account for changes in both energy 

demand and indoor environment quality following in one or more policy changes in renovating 

domestic building stocks [28,29]. 

In a recent review of the UK’s housing stock energy models, Sousa et al. [28] showed that the models 

developed could be generally categorised as ‘top-down’ or ‘bottom-up’ to work in an aggregated or 

disaggregated manner. Top-down models primarily predict the macroeconomic performance of a 

building stock based on the statistical relationships between historical aggregated data and 

socioeconomic determinants such as the gross domestic product, population, climate conditions and 

fuel prices [30]. Since the top-down models rely on historical data, they are less capable of testing the 

performance and impact of new policies and technologies. 

Bottom-up models use empirical data sourced from a hierarchical level less than the sector/stock as a 

whole. The bottom-up approaches account for the performance of individual end-uses, individual 

buildings, or groups of buildings and extrapolate the sector/stock performance with weightings of each 

modelled dwelling or groups of dwellings based on their representations of the sector/stock [30]. The 

bottom-up methods can be statistical, or engineering (physical) based, or a combination of two. As an 

example, the majority of UK’s housing stock energy models are bottom-up models developed from 

simplified steady-state representations of physical phenomena [28]. To overcome simplification and 

achieve satisfactory prediction accuracy and consistency, high-resolution housing stock data was used 

to characterise the stock constitution in terms of building geometry and construction, environmental 

systems (ventilation, sources and flow paths), and occupancy (patterns of presence and behaviour). 



Furthermore, advanced statistical methods such as probabilistic sampling, Gaussian processes and 

sensitivity analysis are increasingly applied to quantify uncertainties encountered in stock modelling. 

Existing housing stock IAQ models have varied significantly in model development and data used. As 

such, we are motivated to present an up-to-date understanding of the existing housing stock IAQ models 

and how they may be improved. In the sections followed, an evaluative study of eight housing stock 

IAQ models published during 2012-2020 is presented. Although these models were developed in 

specific national contexts (namely, US, UK, and Chile), the underlying methods, tools, sources of data 

and issues of model performance can be of interest to housing stock IAQ models to be developed 

elsewhere. In Section 2, the fundamental principles and equations commonly used in IAQ modelling 

and the scope of our literature search is summarised. Section 3 elaborates on the key questions and tasks 

in developing housing stock IAQ models identified from the literature including data sources, sampling 

methods, computational techniques and tools. A descriptive framework and a performative matrix are 

presented in Section 4, with which the eight housing stock IAQ models were evaluated. Finally, the 

paper concludes with the gaps in housing stock IAQ modelling required of further research and 

development. 

2. Materials and methods  

2.1. Modelling indoor air quality of a building 

At the most basic level, there are two approaches to measuring or quantifying air quality inside a 

building: direct or indirect. Direct, or in-situ, approaches involve the deployment of either stationary or 

mobile sensors combined with data processing facilities. If resourced properly, direct methods can 

report personal exposures and indoor contaminant concentrations with accuracy given known 

instrument and measurement limitations. Although time consuming and potentially costly, direct 

methods can obtain specific IAQ measurements of real species and magnitudes (extremes) as well as 

the sources of pollutants and emission rates. Indirect approaches, on the other hand, utilise 

computational modelling and statistical methods to predict indoor contaminant concentrations and 

personal exposures. 

The direct approaches seldom capture the complex dynamic interactions of air particles and transient 

behaviours within a building or a group of buildings. This is due to the limitations imposed by either 

the instrumental factors (e.g., device selection, calibration, and reliability) or the sampling methods 

(e.g., measurement location, sampling frequency and time-averaging period) [31,32]. Moreover, there 

can be uncertainties associated with individual or a network of IAQ sensors, resulting in measurements 

that may be potentially misleading [33]. Sharing similar purposes of quantifying indoor air 

environments, indirect approaches attempt to model such complexity computationally, which can be 

guided by iterative data-based calibration and hypotheses testing.  



Accuracy and robustness of computational IAQ models can be evaluated and improved through field 

measurements. However, depending on the methods employed, computational modelling may 

oversimplify the spatial-temporal dynamics in which the physical-chemical processes of air particles or 

gases (e.g., particulate matters PM2.5, PM10, O3, NOx, CO, SO2) take place. Nevertheless, one of the key 

benefits of the indirect approaches is the applicability of computational IAQ models to evaluate the 

likely effects of interventions proposed for improving IAQ at scale. Below, the fundamental principles 

and equations commonly used in quantifying the physical processes of indoor air environment are 

summarised. 

2.1.1. Mass balance models   

Derived from understanding the underlying physical factors and processes that govern the transfers and 

transformations of pollutants in indoor environments, mass balance models provide a relatively simple 

means of estimating changes in average concentrations of indoor pollutants both spatially (e.g., in a 

room or group of rooms) and temporally. They are often applied with the assumption that a room or a 

building can be characterised by well-mixed air volumes. In its basic form, a mass balance model that 

describes the indoor concentration of air pollutants under specified emissions or removal processes can 

be expressed by an ordinary differential equation (see Nomenclature for the unit of each symbol in 

equations):   

 𝑑𝑑𝐶𝐶𝑖𝑖𝑑𝑑𝑑𝑑 =  𝐶𝐶𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −  𝐶𝐶𝑆𝑆𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠  
(1) 

 

Because the air in a controlled indoor environment is intrinsically complex, no single mass balance 

model is well suited for addressing all pollutants or issues under investigation, even though all mass 

balance models are based on the same fundamental principle of mass conservation. Following [34], 

with the assumption that the indoor particles attributes are uniform throughout the interior space, 

Equation (1) can be expanded to represent a range of factors that determine the indoor concentrations 

of the particle attribute in a single well-mixed zone: 

𝑑𝑑(𝐶𝐶𝑖𝑖𝑉𝑉)𝑑𝑑𝑑𝑑 = 𝐸𝐸 + 𝐶𝐶𝑠𝑠[𝑄𝑄𝑠𝑠(1 − 𝜂𝜂𝑠𝑠) + 𝑄𝑄𝑁𝑁 + 𝑄𝑄𝐿𝐿𝑃𝑃] − 𝐶𝐶𝑖𝑖 [𝑄𝑄𝐹𝐹𝜂𝜂𝐹𝐹 + 𝛽𝛽𝛽𝛽 + (𝑄𝑄𝑠𝑠 + 𝑄𝑄𝑁𝑁 + 𝑄𝑄𝐿𝐿)]    (2) 

 

Nazaroff [34] provided an illustration of the mass balance approach which systematically depicts the 

processes represented in Equation (2) (Figure 1). It is worth noting that Equation (2) may be extended 

to include further processes when the indoor environment under study is represented as multiple well-

mixed zones. This includes terms that account for the supply and loss of particle attributes by interzone 

and infiltration airflows [35].   



 
Figure 1. Schematic representation of the physical processes affecting indoor particle concentration levels. (A building 

section view based on Nazaroff [34]). 

In addition to the differences in air pollutants properties, there are myriad variations in how different 

indoor environments are operated, which renders it difficult nor practical for a single mass balance 

model to cover all circumstances [36]. Previous studies have tried to illustrate the processes involved 

in different formulas of the mass balance models [37–40]. However, these studies have primarily been 

small in scale, and applied only for short periods of time over a small number of locations [41]. The 

factors and terms in these models are subject to variability and uncertainty in the relationships between 

the physical environmental phenomena, building characteristics, and dynamic composition of pollutants 

(see Figure 2 for a summary). To achieve reliable predictions of IAQ at multiple spatial and temporal 

resolutions, simulation tools need to be built with mathematical models of indoor particle dynamics that 

capture the complex physical and environmental phenomena as accurately as possible. 

 

Figure 2. Summary of the main factors and processes affecting indoor concentrations of pollutants (red lines indicate the 
boundary of the building envelope), based on IEHIAS [42]. 



2.1.2. Single zone, multi-zone and computational fluid dynamics IAQ models 

As summarised in Figure 3, single-zone models and multi-zone models adopt different principles, 

strategies and solvers that generate different outputs. It is difficult to determine which model is the best 

because of the different requirements of modelling and simulation such as the complexity of the building 

case, the parameters investigated, the results expected, and the degree of accuracy required [43]. In fact, 

a wide range of input parameters are required to perform IAQ simulations, including climate data, 

building fabric and geometry, building systems, and occupancy schedules [44]. As buildings have 

become more complex, conceptual understanding of the fundamental principles of ventilation and 

building systems including HVAC must now be coupled with computational modelling to predict 

contaminant behaviour and the impact on human health accurately. 

 

Figure 3. Approaches to modelling IAQ in a building. Left: Single zone models; Middle: Multi-zone models; Right: CFD 
Models. Each node represents a well-mixed volume. (Based on Axley [45]). 

Assuming homogeneous physical properties of air (i.e., uniform temperature, air pressure, and 

contaminant concentrations), well-mixed single-zone models normally take a macroscopic view of air 

within one volume represented by a node. Meanwhile, multi-zone models define multiple nodes (or 

zones), with each node representing a room, or a group of rooms connected by several airflow paths. In 

both models, the airflows between each zone and the outdoor air are calculated iteratively using mass 

balance equations until the pressure relationships are solved at each time step. Hence, in face of multiple 

challenges such as the stochastic nature of weather, occupant’s behaviours, building components, and 

uncertainties in simulation input parameters, model choice could have significant implications for 

estimating indoor contaminant concentrations.  

Computational fluid dynamics (CFD) modelling takes a microscopic view of airflow in a zone or a 

group of zones within a building [42]. CFD models are particularly relevant where uniform mixing 

within a zone or zones cannot be assumed reasonably to represent the airflow conditions under 

investigation [46]. CFD-based models can compute fine-grained indoor contaminants concentrations 



and personal exposures, and they have been widely used to simulate contaminants infiltration from 

outdoor generated sources and contaminants transport between zones within a building [47,48]. 

2.2. Scope of the housing stock IAQ models review  

Previously, there have been a number of reviews covering the field of indoor air science from various 

angles: (1) the mathematical models used for modelling air infiltration and IAQ [49], (2) IAQ multi-

zone models verification methods [50], (3) interaction between IAQ parameters [22], (4) applications 

of machine learning and statistical IAQ models [51], (5) indoor air pollution exposures across different 

socio-economic status [52], and (6) the impacts of portable air purification systems on IAQ and health 

[53]. These past reviews mainly focused on how various statistical methods have been implemented in 

IAQ modelling concerning single buildings. In this review, a systematic survey of IAQ models 

developed for housing stocks is presented. The review aims to achieve the following objectives: 

1. To identify and summarize the theoretical IAQ models, methods and simulation tools that have 

been taken as the basis for housing stock IAQ modelling; 

2. To survey the sources and types of data used in developing housing stock IAQ models; 

3. To identify the scope and components of existing housing stock IAQ models; 

4. To propose a performative framework for evaluating housing stock IAQ models; and 

5. To identify the gaps in housing stock IAQ modelling for further research. 

Our literature search was limited to the IAQ field. Peer-reviewed journal articles and conference papers 

were searched using the Google Scholar, Science Direct and Scopus search engines. The keywords used 

for the search in either title, abstract, or keywords were “IAQ” AND “prediction” AND “stock 

modelling” AND (“building stock” OR “housing” OR “domestic” OR “deterministic” OR 

“probabilistic” OR “metamodelling” OR “sensitivity analysis” OR “building simulation” OR “multi-

zone model” OR “machine learning” OR “neural network”). Following the searches, all articles 

identified were analytically reviewed by: (1) looking into the compositions and dynamics of housing 

stocks, including sources of data and housing stock modelling and sampling methods, (2) analysing the 

computation processes and model assumptions, and (3) applying a set of evaluation criteria on each of 

the selected housing stock IAQ models to identify the gaps for further research. 

3.  Housing stock dynamics and computational methods 

Policymakers in many countries have actively engaged in establishing regulations and guidelines for 

improving and maintaining urban air quality [54–56]. In order to improve the IAQ for both new and 

existing neighbourhoods, policymakers and other stakeholders need to understand which factors 

contribute to IAQ deterioration and likely effects of proposed retrofitting strategies. To meet such needs, 

housing stock IAQ models have been developed as one of the primary resources for reviewing and 

formulating IAQ and associated public health policies. Below, the key questions and tasks in developing 

housing stock IAQ models are discussed under two subsections: (3.1) Housing stock composition and 

dynamics, and (3.2) Computational methods. 



3.1. Housing stock composition and dynamics 

Housing stock IAQ modelling can be defined as an attempt at quantifying and predicting the IAQ of 

dwelling types that are statistically representative of housing stock at a city, regional or national scale. 

A housing stock located in a geographical domain is the total account of dwellings that are subject to 

planned or organic changes over time. Changes in the composition and characteristics of a housing 

stock can be attributed to multiple factors such as climate and environmental changes, socioeconomic 

and demographic changes in households, or retrofitting measures applied to improve energy efficiency. 

3.1.1. Sources of data for developing housing stock IAQ models 

Previous studies in housing stock energy modelling have shown that the obligatory data requirements 

are of two types: data demand and data robustness. Data demand specifies the scope, amount and type 

of input data required to achieve a satisfactory level of prediction accuracy and consistency [28]. 

Modellers have used different sources of data to calculate or simulate the energy consumptions 

attributable to the constituents of a housing stock. As datasets at higher resolutions are increasingly 

available, the level of detail in energy or IAQ modelling will also increase dramatically. This may help 

better accounting for heterogeneity in the physical and socioeconomic characteristics of a housing stock, 

if increased complexity and cost in data processing is not a concern. To achieve an appropriate level of 

disaggregation in cases where only limited data demand can be met, selecting appropriate modelling 

and sampling techniques to make best use of such data and information is essential [30].  

However, applying specific sampling techniques may require assumptions to be made and result in 

oversimplifying the data analyses, consequently affecting data robustness that conveys the sensitivity 

to data anomalies [57]. Such anomalies are attributed to sampling methods used in the formation of 

representative datasets of the entire housing stock. Therefore, utmost attention must be paid to 

appropriate sampling criteria and procedures to reduce bias and errors [28]. Moreover, the average 

quality of the IAQ modelling process can be affected by instrumental, translational and data entry errors 

or gaps [58]. Therefore, it is important to track error propagation through each layer and reduce data 

gaps either by retaining missing values, modifying incorrect measures, or applying imputations 

(assumptions). 

For housing stock research, national population and housing censuses can provide essential statistical 

information on household details ranging from the demographic and socioeconomic characteristics 

(e.g., income, education, employment status, age, gender, etc.), and building characteristics (e.g., built-

up area, number of rooms, number of storeys, fuel sources, heating/cooling systems, etc.). As an 

example, the English Housing Survey (EHS) [59] is a periodical national survey of the English housing 

stock. The EHS is a particularly valuable source of statistical information representing more than 14K 

English dwelling variants (83.3% of the national housing stock) with weights associated to each variant 

depending on its occurrence in the stock. It includes a wide range of physical dwelling characteristics, 

region and local terrain, and household socioeconomics. Similarly, the U.S. Census Bureau’s American 



Housing Survey (AHS) [60] provides detailed information on a representative sample of approximately 

56K dwellings selected using a classification sampling method.  

In cases where building data is not available from census surveys, records of building permits may 

contain information about building floor areas and building ages. In fact, building floor area and floor 

height are two key parameters most relevant to both heat and mass transfer models [61].  Moreover, 

building age can infer likely levels of insulation, construction practices, envelope air permeability, 

energy demand, and indoor air pollution sources. As demonstrated in the Irish dwelling archetypes 

study [62], and urban energy modelling of the housing archetypes in Kuwait City [63], characterisation 

of archetypes, an important step in housing stock modelling, can be based on such information. 

Previously, Vardoulakis showed that household behaviour within a dwelling can be more significant in 

determining the energy and IAQ than either the dwelling or household size [15]. The studies by Gunn 

et al. [64] and Huebner et al. [65] showed that socioeconomic factors can have substantial implications 

on the household behaviours and energy uses. This is attributed to occupants’ varying needs according 

to age and health, domestic habits and consumption patterns, as well as indoor thermal sensations and 

preferences. Hence, the domain of household behaviour is a known source of uncertainty which can 

significantly affect a model’s prediction accuracy [64]. To address this uncertainty, household 

behaviours have been represented by average time-activity profiles which can be collected from 

specially designed diaries and questionnaires [15], and then combined with population census data to 

determine the level of population exposure to indoor air pollution. Adopting a time-activity (or micro-

environmental) modelling approach, Dimitroulopoulou et al. showed how individual and group 

exposures to indoor air pollution could be reconstructed by summing time-weighted contaminant 

concentrations in various dwelling microenvironments where people spent most of their time [39]. 

Furthermore, internal thermostat set points and infiltration rates can have significant effects on the 

predicted energy use and mass concentrations. The Energy Follow Up Survey (EFUS) [65] conducted 

by the British Research Establishment provides data on the internal heating set-points (HSP’s) 

temperatures to reduce modelling assumptions on how energy is used in the UK dwellings. On the other 

hand, infiltration rates are harder to collect due to the complexity of in-situ methods [66]. In this case, 

reference data may be used as typical values based on built form and construction period [67,68]. In 

most cases, historical energy use data or energy benchmark data (e.g., energy performance certificates 

EPC) are available at an individual building level and can be used to calibrate building stock energy 

models with actual energy data [30]. For instance, the US Department of Energy (DOE) Residential 

Energy Consumption Survey (RECS) is conducted every three to four years and provides statistical 

information on housing units, households and energy consumption.   

According to Molina et al. [61], the data required for modelling the IAQ of a housing stock can be 

classified into three categories: (1) Demographic Characteristics, (2) Housing Stock Morphology, and 

(3) Environmental Data. Where data does not exist or exists only on an aggregated level, the 



assumptions made may be more robust, if choices of methods used in the development of housing stock 

IAQ models are informed by reliable sources of data [61]. More generally, Amasyali et al. [69] 

suggested three types of data sources: (1) Real Data: data collected by meters, censuses, surveys or 

monitoring stations (e.g. energy meter readings, population censuses, and socioeconomic household 

information), (2) Simulated Data: data generated by simulation software tools (e.g. air change rates and 

HVAC runtimes) where real data is limited or not available, and (3) Public Benchmark Data: reference 

datasets taken as assumed values for some input parameters (e.g. ASHRAE 62.1 [70] and 62.2 [71], 

CIBSE Guide A [72]). Table 1 presents a summary of the data source, type and attribution in housing 

stock IAQ modelling.   

Table 1 

Housing stock IAQ modelling: a summary of data source, type and attribution. 
Data Category Data Source Details  Type of Data  Data Collection 

Method 

Attribution Level 

Demographic 
Characteristics  

Household 
Population 

Number of 
Dwelling Units, 
Households, and 
Total Number of 
People including 
Omission (%) 

Real Data Censuses / 
Surveys 

Stock Characterisation and 
Predication of Indoor Personal 
Exposure to Pollutants  

Socioeconomic 
& Demographic 
Data 

Age, Gender, 
Level of 
Education, 
Employment 
Status, Profession, 
Marital Status.  

Real Data Censuses / 
Surveys 

Stock Characterisation and 
Predication of Indoor Personal 
Exposure to Pollutants 

Housing Stock 
Morphology   

Housing 
Characteristics  

Housing Type, 
Age, Geometry, 
Location, 
Construction 
Materials, Energy 
Sources, Time of 
Use (Activity)  

Real Data Surveys / Building 
Registers 

Stock Characterisation, 
Pollutants Sources and Sinks, 
Prediction of Indoor Personal 
Exposure and Pollutants 
Concentration  

Building 
Systems   

Thermostat 
(Heating and 
Cooling) Set 
Points, Filter 
Efficiency  

Real Data Censuses / 
Surveys 

Prediction of Energy 
Consumption Associated with 
Pollutants Removal  

HVAC Runtimes 
& Air Change 
Rates  

Simulated Data Computational 
Modelling 

Energy Consumption and Indoor 
Pollutants Concentration  

Building 
Physics  

Envelope Thermal 
Properties, 
Windows 
Opening Areas 
and Schedules, 
Occupancy 
Schedules   

Real Data Surveys / Building 
Permits 

Modelling of Indoor 
Temperatures and Indoor 
Humidity for Pressure 
Differences  

Envelope 
Airtightness 

Real Data / 
*Benchmark 
Data 

Field Studies / 
Reference Data 

Stock Characterisation, 
Modelling Infiltration and 
Ventilation Rate for Indoor 
Temperatures and Pollutant 
Indoor/Outdoor Ratio 

Wind Pressure 
Coefficients  

Simulated Data 
/ *Benchmark 
Data  

Computational 
Modelling / 
Reference Data  

Infiltration Rates, Indoor 
Temperatures, and Pollutants 
Concentrations  

Environmental 
Data  

Climate and 
Micro-
environment   

Spatial and 
Temporal 
Weather and 
Ambient Pollutant 
Data  

Real Data  Monitoring 
Stations / Field 
Studies  

Stock Characterisation in terms 
of Climate, and Hourly Weather 
Data and Pollutant 
Concentrations for Running 
Simulations  

* Public Benchmark Data: Utilising publicly available datasets when required data cannot be obtained through real datasets or simulated 
datasets [69]     

 



3.1.2. Modelling techniques and sampling methods  

According to Ugursal & Swan [30] and Sousa et al. [28], bottom-up building stock modelling follows 

an inductive path of consolidating microscopic measures such as building properties, internal 

conditions, usage schedules, and building services systems. Bottom-up models thus require extensive 

empirical data from surveys, field measurements, and assumptions (in the absence of data) to describe 

each component required of an engineering (physical) approach [71]. Based on building physics, several 

researchers have applied bottom-up modelling techniques to develop representative buildings 

(archetypes) and used them to calibrate and predict building stock energy performance (e.g. Persily et 

al. [73], Sokol et al. [74] and Ghiassi et al. [75]). Data entries sharing similar or equal categories were 

grouped or clustered to classify the dwelling types. After the classification, each archetype was 

characterised with a set of attributes to represent a proportion of the housing stock. So the larger the 

number of archetypes developed, the more representative of the stock they become and the more 

widespread are the conclusions derived from the modelling results [61]. 

To improve quality of predictions in housing stock IAQ modelling, the issue of uncertainty needs to be 

addressed. Some uncertainties are related to the mathematical models used to represent the physical 

phenomena, some to the heterogeneity of the housing stock under investigation, and some to unknown 

or random variations of the input’s values (epistemic or aleatoric, see section 3.2.2 for more detailed 

discussion). The methods used to quantify these uncertainties include the use of clustering techniques, 

which reflect the variability between groups, and Monte-Carlo sampling methods that account for 

variability in the descriptive parameters within groups [76]. More recent methods include Gaussian 

process emulators for uncertainty quantification and sensitivity analyses to perform complex stochastic 

building performance modelling [77,78]. 

Similar to energy modelling, bottom-up housing stock IAQ modelling typically involves (a) 

classification and characterisation of the dwelling types (archetypes) representative of the housing stock 

under modelling, and (b) utilisation of modelling tools to evaluate the IAQ performance of the 

archetypes [29]. The outputs for all archetypes are then extrapolated to a whole stock of dwellings using 

weighting factors. However, deterministic bottom-up models produce only one output for one building 

with given inputs. Hence, the deterministic bottom-up engineering methods can be less applicable to 

many buildings with different sizes, types, ages, functions, and operating conditions. 

As housing stocks are complex dynamic entities that undergo constant evolution, the scope of targeted 

performance indicators and potential interventions (e.g., likely parameters of dwelling retrofitting) 

should be considered before stock model implementation [61]. Finally, update and calibration processes 

should be carried out regularly to minimise the errors between the predicted and observed values. Table 

2 summarises the existent housing stock IAQ modelling approaches including their sampling methods 

and parameter types.  

 



Table 2 

Bottom-up housing stock IAQ models: stock modelling approach, stock formulation, and sampling methods. 

Modelling 

Approach  

Housing Stock Model 

Formulation Approach   

Sampling Method  Parameter Types  Variability 

Deterministic  Archetype Approach A Classification  Deterministic     

  Characterisation  Deterministic Parameters from 
Literature or Building Data 

No  

Hybrid  Archetype Approach B Classification  Deterministic     
  Clustering  Key Descriptive Factors 

Aggregated into clusters, or cells 

Utilising Factorial Design 

Reflects Variability 
Between Groups  

Probabilistic  *Metamodel (Utilising 
Machine Learning)  

Latin Hypercube 
Sampling / Monte-
Carlo Sampling  

Variable Probability Distribution 
Functions to represent Uncertainty 
/ Variability 

Reflects Variability in the 
Descriptive Parameters 
within Groups 

* Simplified algebraic or statistical model as a surrogate of the more detailed engineering model which allows for lower computational 
requirements [74] 
 

3.2. Computational simulation assumptions 

As mentioned previously, the ideal method for IAQ assessment of existing dwellings is through large-

scale data collection campaigns. However, due to both cost and time constraints, computational IAQ 

modelling has become preferable, especially when evaluating intervention proposals. State-of-the-art 

IAQ models include multi-zone or, airflow network and CFD models. These models can calculate the 

indoor air properties such as indoor air temperatures, airflow rates, and indoor contaminant 

concentrations. In predicting a building’s IAQ, airflow network and CFD models perform differently 

in complexity, reliability and accuracy. CFD-based models are computationally expensive as they often 

resolve airflow dynamics at high spatial and temporal resolutions. Hensen and Lamberts pointed out 

that there appeared a widespread misconception that uses of CFD will reduce uncertainties and increase 

accuracy of IAQ predictions [79]. In fact, deviation from the ideal case to either higher or lower 

complexity can induce risks of simulation errors. Therefore, the selection of appropriate computation 

methods should be guided by the purpose of the simulation (e.g., airflow network methods for bulk 

airflow analysis, or CFD to study trends (sensitivity of flow patterns to small changes).  

Robinson [80] stated that all simulation models are simplifications of reality, and they are based on 

abstract representations of real-world phenomena. In this regard, it is necessary to make the assumptions 

explicit about the computational methods employed in housing stock IAQ modelling. The assumptions 

made in IAQ simulation tools are summarised below including: computational unit, abstraction of 

building components and systems, and input variables and parameters. 

3.2.1. Computational unit (single-zone and multi-zone models) 

As previously mentioned, (section 2.1.2), both single-zone models and multi-zone models are based on 

the assumption of perfectly homogeneous or, well-mixed conditions (i.e., each zone has an average air 

pollutant concentration value). In single-zone models, a building is simplified to be represented by a 

single zone or, node, without considering its interior partitions [81]. Consequently, the physical details 

of heat and mass transfer between rooms within a building caused by temperature and pressure 

variations are ignored [43]. Figure 4 illustrates the assumptions, showing the air temperature in a single-

zone model represented by an average value of Tin (°C) [81]. Basically, a steady state model (see Eq. 4 



& Eq. 5.) stipulates that the mass flow rate �̇�𝑚𝑖𝑖𝑠𝑠 (kg/s) should be equal to the outlet mass flow rate �̇�𝑚𝑠𝑠𝑠𝑠𝑑𝑑 (kg/s) when infiltration is neglected, and the energy is conserved between �̇�𝑞𝑖𝑖𝑠𝑠 (rate of heat energy 

supplied into room/building (Watts)), �̇�𝑞𝑠𝑠𝑠𝑠𝑑𝑑 (rate of heat energy removed from room/building (Watts)) , 

and �̇�𝑞𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠/𝑔𝑔𝑠𝑠𝑖𝑖𝑠𝑠  (rate of heat energy transferred through room/building structures (Watts)).  

 𝑑𝑑𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑 =  �̇�𝑚𝑖𝑖𝑠𝑠 −  �̇�𝑚𝑠𝑠𝑠𝑠𝑑𝑑 = 0 (4) 

 𝑑𝑑𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑 =  �̇�𝑞𝑖𝑖𝑠𝑠 +  �̇�𝑞𝑠𝑠𝑠𝑠𝑑𝑑 + �̇�𝑞𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠/𝑔𝑔𝑠𝑠𝑖𝑖𝑠𝑠 = 0 (5) 

Additionally, a single node represents the outdoor climate, and the physical parameters of this node are 

assigned from weather conditions. Notwithstanding, single-zone well-mixed models are relatively easy 

to implement and fast to compute, and they are suitable for estimating bulk airflow properties when the 

domain of interest can be treated as a single zone or node. 

 

Figure 4. A summary of IAQ simulation assumptions of single-zone steady state models and multi-zone models. (Red lines 
delineate the inner volume of a zone, based on Yu et al. [43]). 

Multi-zone models use rooms as the minimum computational unit. They calculate the airflow and 

contaminant transport inside a building within minutes or seconds. However, shorter computing times 

can be achieved by assuming homogeneity in each zone, that is, the distributions of air pressure, air 

temperature and contaminant concentration in each room are assumed uniform and leaving out the air 

momentum effect from an inflow opening [45]. Clearly, this is not always the case because vertical 

temperature gradient exists in rooms filled with stratified flows driven by displacement ventilation or 

water heating systems [82]. The well-mixing assumptions could be problematic for simulations of 

poorly mixed air and contaminants. In an earlier review of airflow and infiltration models, Haghighat 

[49] stated that a multi-zone airflow model should be able to fully account for the driving forces that 

cause air to flow from outdoor to indoor and between indoor zones, including the stack effect, the wind 

pressure effect on building envelope, and the effect of HVAC systems on airflow.  

In general, multi-zone airflow models are based on constructing a matrix of equations that represent all 

airflow paths connecting zones (nodes) within a building. A mathematical equation describing each 

airflow path (i.e. door, window, crack, etc.) is used to numerically solve the resulting matrix, typically 



by the Newton-Raphson method [83]. All equations are solved simultaneously to ensure reaching the 

convergence state when the sum of all mass flow rates through all flow paths approaches zero as 

illustrated in Eq. 6.    

 �𝐹𝐹𝑗𝑗𝑖𝑖 =  0 (6) 

 

In a multi-zone model, the mass airflow rate at each airflow path is some function of the flow pressure 

drop along the flow path, 𝑃𝑃𝑗𝑗-𝑃𝑃𝑖𝑖 [84], and is expressed as:  

 𝐹𝐹𝑗𝑗𝑖𝑖 = 𝑓𝑓(𝑃𝑃𝑗𝑗-𝑃𝑃𝑖𝑖) (7) 

The mass of air, 𝑚𝑚𝑖𝑖 (kg), in zone i is given by the ideal gas law: 

 𝑚𝑚𝑖𝑖 = 𝜌𝜌𝛽𝛽𝑖𝑖 = 
𝑃𝑃𝑖𝑖𝑉𝑉𝑖𝑖 𝑅𝑅𝑇𝑇𝑖𝑖  (8) 

Although multi-zone models of individual buildings can provide spatial average estimates of pollutant 

concentrations with a reasonable simplification of indoor physical phenomena, it is possible to describe 

the building’s attributes (e.g., contaminant sources, airflow paths, occupancy schedules, and building 

service systems) with a high level of resolution. However, to achieve prediction accuracy in housing 

stock IAQ modelling at a reasonable computation cost, consideration of variability and uncertainty in 

input parameters is required in selecting appropriate computational modelling methods and tools 

without risking oversimplification. 

3.2.2. Deterministic and stochastic input parameters 

As conventional methods of building engineering calculation tend to be deterministic, predetermined 

values (defaults) are often used without tackling uncertainty [47]. In general, uncertainties in housing 

stock modelling are of three sources: (1) the heterogeneity within a building stock (e.g., a large range 

of building characteristics), (2) the first-order or aleatoric uncertainties where different simulation 

outputs are probable given the same building, and (3) the second-order or epistemic uncertainties where 

input parameters can take different values in light of new data or knowledge [52]. Increasingly, 

uncertainty quantification has been introduced to housing stock energy and IAQ modelling. Based on 

generating distributions of predictions followed by sensitivity analyses, Das, Shrubsole, Jones et al. 

developed a probabilistic framework for quantifying uncertain parameters in housing stock IAQ 

modelling [85]. More recently, Molina et al. applied a similar framework to the Chilean housing stock 

to quantify the uncertainties in indoor pollutant concentration levels, ventilation, and infiltration [86]. 

A deterministic model does not consider probable fluctuations of some input parameters of any initial 

conditions and the solution is one and only [87]. In contrast, stochastic models attempt to quantify some 

or all the parameters by probabilistic distributions rather than single assumed definitive values. 

There are other input parameters in IAQ modelling that can vary according to stock variability and/or 

measurement uncertainty, such as wind pressure coefficients on building envelope, discharge 

coefficient of flow paths, temperature stratification, household behaviour, building envelope 



airtightness, and air exchange rates [88–90]. Das et al. [85] showed that uncertain input data can be 

contaminants related, such as ambient concentrations, generation rates, and deposition rates. Booth et 

al. [91] stated that any housing stock model should provide information about the potential risks 

associated with proposed interventions by displaying a distribution of confidence levels due to the 

diverse sources of uncertainty. To do so, there are mathematical and statistical methods available for 

evaluating uncertainties in model inputs and outputs [61]. Table 3 summarises the sources of uncertain 

input parameters found in the literature on housing stock IAQ modelling. 

Table 3 

Sources of uncertain input parameters in housing stock IAQ modelling. 
Sources   Descriptive Parameters Key References 

Environment and Climate  Spatial-Temporal Variations of Ambient Contaminant Concentrations, 
Wind Speed and Direction, Local Outdoor Temperature and Terrain 
Properties 

[66,92,93] 

Physical Characteristics   Dwellings Geometry and Layout (e.g. Block Aspect Ratio), Space/Zone 
Volume, Material Properties, Orientation, Dwelling/Flat Height, and 
Number of Exposed Facades  

[28,85,94]  

Building Physics  Zone Pressure, Local Zone Temperature, Air Temperature Stratification, 
Wind Pressure Coefficients, Building Envelope Airtightness, Ventilation 
and Infiltration Rates, Flow Path Discharge Coefficient, Airflow 
Exponent n, and Flow Path Area 

[66,86,88,89,91,92,95] 

Building Components / Systems  HVAC Runtimes, HVAC Supply and Return Flow Rates, Air Exchange 
Rates (AER), Filter Efficiency and Removal Rate, Combustion Sources 
and Emission Rates 

[39,94,96,97] 

Household and Activity Household Population, Time-Activity-Location Factor, Occupancy 
Schedules (HVAC Runtime, Window Opening Area and Time, and 
Thermostat Set Points), and CO2 Generation Rate. 

[64,90,98,99] 

Contaminant Properties  Contaminant Generation Rates (e.g. cooking emission rate), Source 
Strength, Contaminant Sinks, Contaminant Penetration Factor, and 
Deposition Rates 

[39,85] 

 

3.2.3. Simulation tools used in housing stock IAQ models 

Over the past three decades, a number of IAQ simulation tools have been developed such as CONTAM 

and COMIS [84,100]. These tools have been used primarily in modelling IAQ of individual buildings. 

More recently, CONTAM and EnergyPlus were used to model IAQ of archetypes in housing stock 

studies. CONTAM is a multi-zone airflow and contaminant transport simulation tool developed and 

maintained by NIST [101], which has been validated in many studies in various building types and 

locations [50,102]. CONTAM has been built with an updated version of the AIRNET model [103] and 

provides a graphical user interface for intuitive inputs of building zones and construction, airflow paths 

and other building elements [104].  

More specifically, CONTAM provides users with the ability to model airflow rates including 

infiltration, exfiltration, zone-to-zone airflows driven by mechanical ventilation systems, wind 

pressures on building envelope and buoyancy effects. CONTAM’s contaminant dispersal model is an 

implementation of Axley methods [105,106] and has been widely used in many studies to predict 

contaminant concentrations in buildings under multiple design and retrofitting scenarios [107,108]. 



As a standalone package, CONTAM does not modify zonal air density in response to environmental 

changes due to building interactions and occupant behaviours. Therefore, CONTAM does not have the 

capability of performing thermal dynamic simulations on its own. On the other hand, as one of widely 

used whole building energy simulation engines, EnergyPlus [109] has the ability to simulate airflows 

in buildings using the multi-zone Airflow Network Tool, an airflow model based on the early versions 

of COMIS [100] and AIRNET [103]. The Airflow Network Tool is capable of simulating both 

infiltration and exfiltration rates driven by indoor/outdoor pressure differences, ventilation mechanisms, 

building envelop permeability in addition to zone-to-zone airflows.  

From the perspective of IAQ modelling, CONTAM and EnergyPlus have advantages in respect of each 

other. CONTAM simulates complex airflow networks in a building and enable users to model an 

unlimited amount of airflow paths and multiple contaminant species. On the other hand, EnergyPlus 

performs thermal dynamic simulations and accounts for pressure differences between multiple zones in 

a building. However, interzone airflows and infiltrations in EnergyPlus are user specified and not 

pressure dependent as in CONTAM. Moreover, EnergyPlus does not require interzone airflows to be in 

balance with system airflow rates [110]. Lately, attempts have been made to couple multi-zone airflow 

models with dynamic multi-zone thermal models to perform dynamic IAQ-Energy co-simulation. 

However, to date none of the existing housing stock IAQ models adopted the co-simulation approach 

which will be discussed further in section 5.2.  

Using EnergyPlus to model contaminant transport, Taylor et al. have developed the Generic 

Contaminant Model (GCM) tool, allowing users to model the behaviour of one specific pollutant within 

a building. GCM enables the modelling of both dynamic thermal behaviour and single pollutant 

transport within one simulation package [111]. Additionally, Polluto, another in-house tool developed 

at the University College London (UCL), offers multiple contaminants transport modelling when run 

with EnergyPlus. Table 4 presents a comparison between CONTAM and the UCL in-house IAQ tools. 

Table 4  

Comparison of IAQ simulation tools used in housing stock IAQ modelling. 
 Simulation Tools  

 CONTAM [84] EnergyPlus GCM [111]  EnergyPlus Polluto [111] 

Main Usage   Airflow rates, contaminant 
transport through airflow, and 
building occupant exposure.  

Energy analysis, thermal load 
simulation, airflow, and 
contaminant transport.  

Energy analysis, thermal load 
simulation, airflow, and 
contaminant transport. 

User Interface Simple  Complex  Complex  
Thermal Behaviour  Static [Dynamic if coupled with 

a thermal engine] 
Dynamic  Dynamic  

Contaminant Behaviour  Yes (A rich set of sources and 
sinks including deposition and 
re-suspension)   

No  No  

Changes in Occupant 
Behaviour Consideration  

Yes  Yes  Yes  

Modelling of Pollutants Multiple Pollutants   Single Pollutant Multiple Pollutants   
Air Leakage Points   Multiple Airflow Leakage 

Points  
A one-to-one correspondence 
between heat transfer and air 
leakage 

A one-to-one correspondence 
between heat transfer and air 
leakage 

Mechanical Systems Modelling  Complex & Multiple Systems  One System   One System  
Warm-up Days  No  Yes, to ensure any thermal 

capacitance values are 
representative of the zone.  

Yes, to ensure any thermal 
capacitance values are 
representative of the zone. 



Capability of building control 
operations 

Yes  Yes, indoor concentrations as 
flags for ventilation system 
operation  

No  

Non-trace contaminants  Yes, already included in air 
density calculations.  

Yes, if coupled with the Heat 
and Moisture Transport 
(HAMT) model. 

Yes, if coupled with the Heat 
and Moisture Transport 
(HAMT) model. 

4. Housing stock IAQ models (2012-2020) 

Since early 2010s, a number of housing stock IAQ models have been developed to assess IAQ of 

housing stock at a city or national scale. Based on various datasets and computational IAQ simulation 

tools as described in the previous section, these models were built to perform mainly simulations of 

mass transfer processes in sampled representative dwellings. In this section, a detailed review of eight 

housing stock IAQ models published during 2012-2020 is presented. 

4.1. REIAQM 

The Residential Energy-IAQ Model (REIAQM) was developed to model and predict the annual energy 

use for space conditioning and indoor concentrations of various pollutants across the residential 

building sector in the US [89]. This model takes into account the interactions between energy use and 

IAQ in different building properties and climates. The main modelling framework was coded in Python 

and was based on an integration of EnergyPlus, and the mass balance models (see section 2.1.1). 

REIAQM utilises the geometries and housing characteristics of 209 housing archetypes developed 

previously by Persily [73], representing 80% of the US residential stock.  

Based on the building geometries, foundation types (crawl space, concrete slab, or basement), and 

construction types (attached/detached garage, and attached/ detached home construction), BeOpt.xml 

files were generated for the 209 dwellings. Further detailed characteristics were attributed according to 

the climate zones and years of construction across 19 US cities, including vintage (represented by 

normalized leakage NL), type of heating and cooling system, building envelope insulation, and 

thermostat setting. This gives 3,971 home models (209 base models * 19 cities = 3,971) coded in 

BEopt.xml for producing EnergyPlus outputs including cooling energy use, HVAC runtimes and air 

change rate (ACR) through natural ventilation, infiltration and mechanical ventilation.  

The EnergyPlus simulation results along with data regarding outdoor air pollution concertation levels, 

indoor emission rates and loss mechanisms were used as inputs to a discrete time-varying single zone 

mass balance model. The Python script then outputs the annual mean indoor concentrations for various 

pollutants. Finally, population and dwelling weighting factors were applied to estimate the chronic 

health impact using a disability-adjusted life-years (DALYs) approach following the method developed 

by Logue et al. [112]. REIAQM concluded that modelled population weighted annual mean PM2.5 

concentrations from indoor sources were higher in newer homes in comparison to the modelled 

population weighted annual mean PM2.5 concentrations from outdoor sources because of lower air 

change rates. Additionally, lower air change rates due to tighter building envelopes in newer homes 

resulted in lower population weighted annual mean ultrafine particulates (UFPs) and Ozone (O3). 



Finally, the estimate of the total DALY burden of pollutant exposure in U.S. residences was 

approximately 192 DALYs loss per 100K persons per year.       

4.2. LNDN-A 

The Domestic Stock PM2.5 Model for London (LNDN-A) was based on a deterministic physical 

approach carried out to model and predict the indoor exposure to PM2.5 in London’s domestic building 

stock [29]. CONTAM was used to simulate two scenarios: (1) the base case scenario for London’s 

domestic stock in 2010, and (2) a hypothetical scenario of the stock undertaking energy efficient 

refurbishments to meet the greenhouse gas emissions reduction targets set for 2050. The data used for 

CONTAM simulations were divided into two categories: (a) data common to all simulations of current 

stock (2010), and (b) data for future (2050) stock. Candidate interventions such as reduction in 

dwellings envelope permeability and the introduction of mechanical ventilation and heat recovery 

(MHVR) systems were modelled as energy efficient refurbishment strategies for the 2050 stock.  

Input data were divided to common input data for both scenarios and selected input data were allowed 

to vary within known limits or defined scenarios to ensure that these characteristics were broadly 

representative of London’s domestic stock. Three categories of occupancy schedules formed the basis 

for personal exposure models: (1) a ‘household average’ concentration of PM2.5 in the living room, 

bedroom, and kitchen, (2) a ‘cook’ who occupies all zones during periods of cooking, and (3) a ‘non-

cook’ who never enters the kitchen.  The annual mean indoor exposure to PM2.5 was calculated from 

the simulation results for each category of occupants using permeability distributions with the UK 

domestic stock and assuming that 50% of current London’s domestic stock is homes and 50% are 

apartments. Following that, a sensitivity analysis showed that indoor PM2.5 emission and deposition 

rates and window opening behaviour influenced by indoor temperature had the largest influence on the 

overall PM2.5 concentrations with higher uncertainties associated with these parameters.  

The LNDN-A model concluded that cooking-related sources were the main contributor to indoor PM2.5 

in non-smoking dwellings under present-day weather conditions (2010). Conversely, in the 2050 

refurbishment scenario, the annual average indoor PM2.5 reduced from 28.4 µg/m3 to 8.2 µg/m3 because 

of envelope permeability reductions and introduction of correctly installed and perfectly functioned 

MVHR systems. However, separate scenarios of 2050, with the reduction of air permeability to 3 

m3/h/m2 at 50 Pa but without introducing the MVHR system, result in an increase of annual average 

indoor exposure to PM2.5 both indoor and outdoor for all occupancy schedules. 

4.3. LNDN-B 

London Housing Stock PM2.5 Model (LNDN-B) was funded by the UK Natural Environment Research 

Council (NERC) as part of the AWESOME Project [13]. This project aimed to determine the indoor 

PM2.5 concentrations from outdoor sources for different housing typologies across London. The study 

was based on a deterministic physical approach, utilising the Airflow Network Model and the 

EnergyPlus GCM Model (see Table 4) to simulate the infiltration of PM2.5 through the envelope of 15 



dwelling archetypes developed previously by Oikonomou et al. [113]. These archetypes represented 

approximately 76% of the dwelling stock in the Greater London Authority according to the Building 

Class Geodatabase maintained by the Geoinformation Group [114]. Among the data inputs required for 

the dwelling archetypes included the U values derived from the Standard Assessment Procedure (SAP) 

for Energy Ratings of Dwellings [115], and the Permeability values (m3/h/m2 at 50 Pa).  

EnergyPlus GCM simulations were performed with four different orientations and assuming two 

different scenarios representing occupants’ interaction with building components (infiltration only and 

natural ventilation).  Based on the resultant hourly indoor PM2.5 concentrations in the living room and 

bedrooms of each dwelling archetype, the project reported a range of I/O ratios of PM2.5: hourly I/O 

ratio, hourly-monthly I/O ratio, seasonal and yearly average I/O ratios. Besides, annual average ACH 

(h-1) values were calculated for the occupied rooms. Additionally, a differential sensitivity analysis was 

carried out to assess the sensitivity of the model to variations in input parameters. 

The LNDN-B model demonstrated a range of I/O ratios of PM2.5 for different dwelling types, with 

detached and semi-detached dwellings most vulnerable to high levels of PM2.5 ingresses. When the 

results were mapped in GIS to indicate areas where London housing stock is most vulnerable to high 

outdoor pollutant levels, central London showed lower I/O ratios of PM2.5 compared with outer London, 

which was most likely caused by the prevalence of flats rather than detached or semi-detached 

dwellings.   

4.4. ENG-A 

English Housing Stock IAQ Model (ENG-A) was primarily developed for modelling IAQ in the English 

housing stock [85]. This model was based on a single-storey dwelling unit to model the winter indoor 

concentrations of PM2.5 linked to internal and external sources. A simplified two-zonal model of the 

single-storey dwelling was constructed in CONTAM with one zone representing the kitchen and the 

other represents the remainder of the dwelling. To account for stock variability and uncertainty in input 

parameters, distributions in dwelling characteristics (ground floor area, height of dwelling, floor level, 

number of exposed façades, and permeability of building envelope) and the external weather conditions 

were informed by the EHS [59], giving 2,585 variants of the single-storey dwelling stock.  In addition, 

other input data were assumed to follow either uniform distribution (orientation, indoor temperature, 

and kitchen window opening time and area) or normal distribution (ambient PM2.5 concentrations, PM2.5 

generation rate, and the indoor deposition rate of internal and external PM2.5).  

To obtain a metamodel, Latin hypercube sampling was used to apply a range of sensitivity analyses to 

identify and select most relevant IAQ determinants. Results of the sensitivity analysis showed that the 

opening area of the kitchen window, the generation rate of internal PM2.5, and the indoor temperature 

are the most important variables for indoor concentration of PM2.5 from internal sources. Conversely, 

the volumetric weather corrected infiltration rate, the indoor deposition rate of external PM2.5, and the 



ambient concentration of PM2.5 are most important variables for the indoor concentration of PM2.5 

from external sources. 

Two types of artificial neural networks (cascade-forward and feed-forward) were used to predict the 

winter indoor concentrations of PM2.5 from both external and internal sources. The ENG-A model 

showed that winter indoor concentrations of external, internal, and all sources of PM2.5 are 3.4, 12.7, 

and 16.1 mg/m3 respectively, but with lower median values, indicating a positively skewed distribution. 

Additionally, winter I/O ratios were 0.3, 1.0, and 1.3 from external, internal, and all sources 

respectively. Finally, a linear regression test between the two metamodels and CONTAM predictions 

revealed good agreements (R2=0.9 for the internal sources of PM2.5 and R2=0.842 for the external 

sources).  

4.5. ENG-B 

England-wide Indoor Overheating and Air Pollution Model (ENG-B) as primarily developed to model 

and predict the indoor overheating and air pollution risk in England’s domestic stock [96]. This model 

is capable of modelling both current and future domestic stock, along with changes to the climate, 

outdoor air pollution levels, and occupant behaviour. A set of categorical, continuous and discrete 

variants were identified to cover a large range of housing types, envelope details, occupancy behaviour, 

and external environment such that the majority of cases in England and future (2050) were covered. A 

total of 384 metamodels were produced from the combination of each categorical variable (built form, 

wall type, location, epoch, occupancy type, and retrofit strategy). Eight continuous and discrete 

occupancy and building relevant variables were randomly sampled using Latin hypercube sampling for 

formulating each metamodel as an EnergyPlus input data file. A large number of EnergyPlus 

simulations were run to calculate health-relevant and energy use output metrics such as overheating 

metric, PM2.5 I/O ratio, relative humidity, and annual heating energy use. Finally, two metamodeling 

methods (neural networks and radial basis function) were used to reproduce nonlinear non-monotonic 

relations between model inputs and simulation outputs. The ENG-B modelling concluded that the 

performance of a metamodel improves as the number of training runs increases. Additionally, the model 

performance improves with the number of neurons in the range 5–12 and then levels off. 

4.6. GBM 

Housing Stock Indoor Overheating and Air Pollution across Great Britain (GBM) was developed to 

produce baseline estimates of indoor heat and indoor air pollution exposure level that would enable 

comparison with postcode-level mortality data [116]. A database representative of the national housing 

stock was developed from various sources, and the unique building variants were identified. Based on 

the modelling framework previously developed for outdoor air pollution, overheating, and coupled 

overheating and indoor-outdoor air pollution [117,118], these variants were simulated for indoor 

overheating risk and indoor air pollution levels from both outdoor and indoor sources using EnergyPlus. 

The simulation results were compiled and mapped from postcode blocks to Lower Layer Super Output 



Area, a UK statistical boundary area typically containing a population of around 1500. The GBM output 

aggregates show that urban areas had higher numbers of dwellings prone to overheating, reduced levels 

of indoor air pollution of outdoor origins, and higher indoor air pollution from indoor sources relative 

to rural areas, attributed to the variations in building types. 

4.7. ENGW 

English and Walsh Housing Stock IAQ Meta-model (ENGW) [117] is an updated version of the model 

ENG-B as described previously [96]. Developed from the Energy Performance Certificate (EPC) 

dataset which contains information on approximately 11.5 million dwellings, this metamodel was 

applied to the housing stock models of England and Wales. The progress made by this meta-modelling 

includes (1) the ability to vary ceiling height, floor area, and glazing ratio of dwellings; (2) the capacity 

to vary indoor emission rates of pollutants using a power law distribution; (3) the ability to predict 

multiple pollutants one at a time by adding deposition velocity of common indoor pollutants; and (4) 

additional input data on gas connectivity and heating system type to provide insights on potential indoor 

sources of air pollution. EnergyPlus simulations were run assuming the static occupant behaviour and 

window-opening schedules according to CIBSE Guide A [118]. The metamodel was then used to 

estimate the indoor concentrations of PM2.5 and NO2 from outdoor sources in London, and the national 

estimates of indoor CO levels. Finally, the results were then mapped to show the spatial variation in 

indoor concentrations corresponding to variations in outdoor concentrations levels for PM2.5, NO2, and 

CO. Clusters of increased indoor concentration were found in urban areas with higher outdoor 

concentrations and smaller dwellings due to reduced ventilation potential. 

4.8. CHAARM 

Chilean Housing Archetype AiR quality Model (CHAARM) was developed to predict uncertainties in 

indoor pollutant concentrations, ventilation, infiltration rates and associated energy demand in the 

heating season, including the sensitivity of the model outputs to the inputs [86]. The model was based 

on the previously identified set of archetypes to represent the national Chilean housing stock [61]. 

CHAARM is a hybrid model that follows a physical engineering approach associated with a stochastic 

framework for uncertainty quantification and sensitivity analysis. The framework was developed using 

CONTAM as the simulation tool to model eight archetypes representing 35% of the Chilean Housing 

Stock.  Archetypes and associated inputs were manipulated using bespoke R code [119]. The archetypes 

were simulated for the astronomical winter period between June 21st and September 21st. Two main 

extreme scenarios representing occupants window behaviour opening where considered: (1) windows 

all opened scenario and (2) windows all closed scenario. 

CHAARM follows the sampling method described in the ENG-A model [85], and in [66,120], in which 

deterministic input variables and probabilistic distributions of uncertain input variables were 

systematically varied and multiple simulations were performed to generate distributions of output 

variables. Latin hypercube sampling (LHS) was used to obtain the values of each probabilistic input 

variable to generate multiple sets of input variates. LHS was chosen to improve the stratification of the 



sample and reduce the amount of simulations required to reach convergences. Simulations were 

performed for 240 sets of converged data (8 archetypes x 15 geographical locations x 2 window 

scenarios). Output variables computed from the simulations included: median ventilation rates, total 

PM2.5 exposure levels and total airflow heat losses. A global sensitivity analysis was performed to test 

for linear, monotonic and non-monotonic relationships between inputs and outputs. CHAARM 

predictions concluded that 66 % of the Chilean dwellings have daily mean PM2.5 concentrations below 

25 µg/m3 (the WHO 24h guideline value), even when the windows are closed at all times.  

A list of the eight models is presented in Table 5, which are further evaluated in Section 5. 

Table 5 

The housing stock IAQ models developed and published during 2012-2020. 

Nation Model  Date Stock 

Scale  

Pollutant IAQ Performance 

Measure   

Simulation 

Engine 

Modelling Approach   

US REIAQM 2018 National  PM2.5 Indoor Concentration 
and HVAC Runtimes 

EnergyPlus  Physical Deterministic 
Approach  

[97] 

UK    LNDN-A 2012 City  PM2.5 Indoor Concentration 
and Personal Exposure 

CONTAM  Physical Deterministic 
Approach 

[29] 

 LNDN-B 2014 City  PM2.5 Indoor Concentration 
and Mapped I/O 

EnergyPlus  Physical Deterministic 
Approach  

[13] 

 ENG-A 2014 National  PM2.5 Indoor Concentration  CONTAM  Meta-modelling 
Probabilistic Approach 

[85] 

 ENG-B 2016 National  PM2.5 I/O Ratio, RH, EUI, & 
Overheating Metric 

EnergyPlus Meta-modelling 
Deterministic 
Approach 

[96] 

 GBM 2016 Regional  PM2.5 Mapping I/O and 
Overheating  

EnergyPlus Physical Deterministic 
Approach 

[116] 

 ENGW 2019 Regional PM2.5 and 
NO2 

I/O and Indoor 
Concentrations 

EnergyPlus Meta-modelling 
Deterministic 
Approach 

[117] 

Chile CHAARM  2020 National  PM2.5 Indoor Concentration, 
Ventilation and 
Infiltration Rates 

CONTAM  Probabilistic Approach  
[86] 

 

5. Discussion 

5.1. Evaluation of the housing stock IAQ models (2012-2020) 

Combining the discussions in Section 3 and 4, a descriptive matrix for mapping existent housing stock 

IAQ model developments is presented along with data and computation (Table 6). The table shows that 

all models/studies adopted a bottom-up engineering approach to estimating/forecasting IAQ at certain 

disaggregated levels. However, they varied in certain aspects of stock IAQ modelling including the 

disaggregation level, resolution of output, performance measure, pollutant species, simulation engine, 

and uncertainty quantification. Here a number of empty rows indicate the data or modelling areas not 

addressed by the 8-housing stock IAQ models reviewed. 

Table 6 

Evaluation of housing stock IAQ models: a descriptive matrix. 
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Housing Stock IAQ Models  
(See Section 4 for detailed discussion of 
each model) 
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Composition and Dynamics of Building Stock (Section 3.1) 
Neighbourhood Scale         

Stock Spatial Resolution   

Stock 
Modelling 

Assumptions 

City Scale  ✔ ✔      

National Scale ✔   ✔ ✔   ✔ 
Regional Scale      ✔ ✔  

Top-Down Approach          

Modelling Approach  

Bottom-Up Approach  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
Deterministic ✔ ✔ ✔  ✔ ✔ ✔  

Stochastic / Probabilistic     ✔    ✔ 
White-Box ✔ ✔ ✔   ✔   

Grey-Box      ✔ ✔  ✔ ✔ 
Archetypes  ✔ ✔ ✔   ✔  ✔ 

Sample Representation  
Metamodels     ✔ ✔  ✔  

Single Zone Modelling   ✔        
Airflow Modelling Technique  

Multi-Zone Modelling   ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
(A: Annual, M: Monthly, D: Daily, H: 
Hourly)  

A A A A A A A D 
Temporal Resolution  

Stock Model 
End-Use 

Indoor Pollutants Concentration  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

IAQ 
Indoor Humidity Ratio         

Indoor/Outdoor Ratio ✔  ✔ ✔  ✔ ✔  

Population Exposure  ✔ ✔ ✔     ✔ 
Annual Space Conditioning ✔        

Building Energy 

HVAC Systems Run Time  ✔        

Energy Demand         ✔ 
Air Change Rate  ✔        

Overheating Risks     ✔ ✔   

Ventilation / Infiltration Flow Rates ✔       ✔ 

Computation & Validation (Section 3.2) 
Geometry  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Building Fabric  

Simulation 
Assumptions 

Material Properties  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
Envelope Leakage (Infiltration)  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
Wind Pressure Coefficients    ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
Zone/Unit Height within Building    ✔ ✔ ✔ ✔ ✔ ✔ 

Building Layout 
Zonal Representation* N D D P D D D D 

Indoor Temperatures (S: Static, V: 
Variable) 

V V V V V V V V 

Indoor Environment Quality  Variable Indoor Air Flow Rate   ✔ ✔  ✔ ✔ ✔ ✔ 
Natural Ventilation Air Change Rates ✔ ✔  ✔ ✔ ✔ ✔ ✔ 
Indoor Pollution Sources ✔ ✔  ✔ ✔ ✔ ✔ ✔ 
Season (A: Annual, H: Heating) A A A H A H A H 

Ambient Environment  
Ambient Pollutants (S: Static – averaged, 
V: Variable) 

V V S S S S V  

Weather Data  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
Cooling / Heating Systems (Set-points) ✔    ✔ ✔ ✔ ✔ 

Mechanical Systems  
Presence/Operability of Exhaust Fans ✔ ✔    ✔ ✔ ✔ 
Air Change Rate ✔ ✔   ✔ ✔ ✔ ✔ 
Filter Efficiency ✔        

CO2 Generation Rate     ✔ ✔ ✔  

Occupancy  Ventilation Schedules  ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
Behaviour Schedules (Cooking, Smoking, 
Showering, etc...)  

✔ ✔  ✔  ✔ ✔ ✔ 

Deposition/Decay Rate ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
Pollutants Behaviour 

Emission Rate  ✔ ✔  ✔  ✔ ✔ ✔ 
IAQ Field Measurements (H: Historical, X: 
Not Included)  

H X X X X X X X 
IAQ Measurement Data  

Validation  
Calibrated against Survey or Sensing Data ✔        Calibration  

* (D: Detailed Airflow Network, P: Partial Consideration, N: Neglects Detailed Airflow Network), are all internal zones/rooms included 
in the simulation model/archetype 

 



Following the descriptive matrix above, a performative matrix comprised of 11 criteria for evaluating 

housing stock IAQ models is proposed. Table 7 presents an evaluation of the eight housing stock IAQ 

models in terms of Data Requirements and Model Performance. 

Table 7 

Evaluation of housing stock IAQ models: a performative matrix. 

Location  

U
S

 

    
U

K
 

C
H

IL
E

 

General Information 
Year  

20
18

 

20
12

 

20
14

 

20
14

 

20
16

 

20
16

 

20
19

 

20
20

 

Housing Stock IAQ Models  

R
E

IA
Q

M
  

L
N

D
N

-A
 

L
N

D
N

-B
 

E
N

G
-A

 

E
N

G
-B

 

G
B

M
 

E
N

G
W

 

C
H

A
A

R
M

 

Data Transparency          

Data Requirements 

E
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at
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C
ri

te
ri

a 

Data Representativeness          

Data Granularity         

Regularity of Updates         

Model Transparency         

Model Performance 

Reproducibility          

Replicability          

Sensitivity & Uncertainty Quant.         

Versality (Design Decision Support)           

Results Comprehensibility         

Computationally Efficient         

*No/Low (■), Somewhere in-between (), Yes/High () 

5.1.1. Data requirements 

As previously mentioned in Section 3.1, housing stock IAQ models rely on available empirical data of 

the stock under investigation. The following four questions should be addressed when evaluating how 

the data requirements were met: 

(1) Data Transparency: Was it clear what types of data have been used? How easy was it for the model 

users to access and work with the data? Was the accuracy of the data used in the model assessed 

and explained?   

(2) Data Representativeness: Have the data collected and used in the development of the model been 

subject to rigorous statistical significance tests? 

(3) Data Granularity: Among available data, was the granularity (or level of detail) sufficient to derive 

insights from the model inputs and outputs? 

(4) Regularity of Updates: Could the data used in the development of the model be updated on a regular 

basis in sync with evolution of housing stocks? 

5.1.2. Model performance 

With reference to Sousa’s et al. evaluation of the UK housing stock energy models [28], the following 

questions are asked when evaluating the performance of the housing stock IAQ models: 

(1) Model Transparency: Were the model’s underlying algorithms, scientific techniques and codes 

clearly described so that users and researchers can comprehend the model results? 



(2) Model Reproducibility: Is it likely that different users aiming to solve the same scientific question 

will make the same input choices, computational steps, and conditions of analysis, achieving 

comparable results? 

(3) Model Replicability: Can the model answer similar scientific questions and obtain consistent results 

when new data are obtained (e.g. different cities and populations)?  

(4) Sensitivity and Uncertainty Quantification: Does the model accounts for uncertainties in model 

inputs and outputs? Are dominant contributors (if any) identified? 

(5) Versatility: Does the modelling methodology allow for applicability to a wide range of building 

retrofit options or new builds under consideration? 

(6) Results Comprehensibility: Can non-expert users easily interpret and comprehend model outcomes 

correctly to reduce the possibility of false inferences and misinformed decisions. 

(7) Computational Efficiency: Were there appropriate simplifications introduced to optimise 

computational time? Was the model execution amenable to High Performance Computing?  

Previous researches have suggested classifying model transparency into White-Box Models (Physics 

Based Models), Black-Box Models (Data-Driven Models), and Grey-Box Models (Hybrid Models) (see 

[121] for example). Although data-driven (Black-Box) IAQ modelling for individual buildings has 

gained increased attention in the last decade [51], current housing stock IAQ models rely on building 

physics models in their simplest form for data collection and validation. In comparison, historical IAQ 

data measured at the stock level are scarce. The past and current housing stock IAQ models as reviewed 

here are either White-Box or Grey Box models.  

Accessibility or transparency is a pre-condition to achieve model reproducibility which represents the 

minimum attainable standard when compared to replicability [122]. It has been suggested previously 

that black-box data-driven models are potentially not reproducible, and as a result, they are constrained 

by limited applicability specific to the range of datasets used in developing the models [123]. For 

example, a model that was trained to predict the IAQ by learning from limited datasets (e.g. data 

collected from a small group of dwellings) may not perform well outside of the training data (e.g. 

different physical properties, occupant behaviour, climate context, future interventions, chaotic events, 

etc.) [70].  Thus, for non-expert users, the purpose of prediction should be made clear and guidance on 

whether the models are applicable in a new context or not should be provided. 

White-Box models offer a higher level of transparency by releasing and maintaining the core calculation 

algorithms as open-source programs (e.g. CONTAM and EnergyPlus). With the high transparency 

offered, white-box models can be highly reproducible and versatile. However, there are foreseen issues 

surrounding the deployment of such models [120]: (1) these models can be oversimplified when the 

spatial resolution is increased i.e., specific level of abstraction or spatial resolution, therefore, outputs 

could be erroneous; (2) expert knowledge is required when model assumptions are made or when 

prediction outputs need interpretation; and (3) assumptions pertaining to the input variables of these 

models are prone to all kinds of uncertainties. 



Open-source IAQ simulation engines allow for user interaction or integration of scripting tools such as 

the EnergyPlus Generator 2 Tool (EPG2) developed in Python [124]. EPG2 was used in the ENG-B 

model [96] for batch processing of building input files configured with user-defined variables. The 

REIAQM project [97] used multiple Python scripts to solve mass balance equations and automate the 

majority of the simulation processes. This can allow for flexibility, input variability, automation, and 

increased computation versatility [121]. However, White-Box housing stock IAQ models tend to be 

static and deterministic in nature and often assume linear relationships exist between multiple variables 

in an ideal system without uncertainty [125]. 

Alternatively, the development of Grey-Box (hybrid) models that integrate physics-based models and 

multiple statistical analyses can account for uncertainty assessment and quantification. This has been 

achieved by deploying sampling methods such as Latin Hypercube for Monte Carlo integration. 

Although the near-random samples generated could be quite large, applying statistical significance test 

can reduce the number of samples (e.g. archetypes) required to represent the entire housing stock with 

reduced model resolution (e.g. the CHAARM [86]). Furthermore, hybrid models can account for both 

linear and nonlinear systems by constructing metamodels (e.g. Artificial Neural Networks) and use them 

in predictions. This is of particular interest as air pollutant concentrations outdoor and indoor are best 

characterised by nonlinear and irregular behaviours due to behavioural, social, and chaotic events [126]. 

In contrast to White-Box models, some hybrid models (for instance, the ENG-A [85] and ENG-B [96] 

models) suffer from reduced transparency and accessibility, particularly in the metamodel construction 

phase whereby multiple hidden layers and neurons generate outputs that are extremely difficult to 

replicate. 

In contrast to black-box models, grey-box models can be scalable and versatile. For instance, the ENG-

A model [85] and ENG-B model [96] are based on multiple metamodels constructed individually for 

each combination of housing stock physical properties, locations, epochs and occupancy profiles. This 

makes the models scalable to include additional information without having to reconstruct the entire 

model from scratch, and versatile to compare the results of different what-if scenarios (e.g. seasonal 

variation, future technological interventions, chaotic events, etc.).  

On the other hand, in spite of the advantages aforementioned, grey-box models may incur higher 

computation costs. In fact, both white- and grey-box models can be computationally expensive when a 

large number of archetypes or metamodels are involved. However, some of these models managed 

computing efficiency by: (1) using only single-zone models to represent the entire dwelling stock such 

as REIAQM [97] (but with reduced prediction accuracy for both airflow and contaminant 

concentrations, see section 4.1); (2) running the simulations on a high performance parallel computing 

platform as in ENG-A [85] and ENG-B [96]; and (3) reducing the number of archetypes to a statistically 

acceptable level while acknowledging the loss in model resolution as in the CHAARM [86]. 



5.2. Gaps in housing stock IAQ modelling for future research 

First, the complex and dynamic nature of modelling IAQ, indoor thermal performance and energy 

efficiency should be evaluated simultaneously. It is important to capture the interdependencies between 

airflow and heat transfer in zones within a building and between indoor and outdoor. The advantages 

and disadvantages of EnergyPlus and CONTAM in terms of performing comprehensive and dynamic 

thermal-airflow simulation are summarised in section 3.1.2. Separately, each engine is limited in its 

ability to account for detailed thermal processes upon which building airflow may depend critically and 

vice versa [110]. Future research should tap into the new capabilities offered by direct co-simulation 

[104,110,127] rather than indirect co-simulation (e.g. EnergyPlus in-house tools GMC).  By utilising 

multi-zone direct CONTAM-EnergyPlus co-simulation, airflow and contaminant modelling can better 

capture the effects from building thermodynamic domains on airflow and consequently contaminant 

transport [128]. The direct co-simulation approach will increase the accuracy of airflow and IAQ 

modelling in housing stock models by taking into account the variations in building configurations, 

occupant activities, interventions (e.g. realistic energy performance technologies as part of energy 

efficiency retrofit strategies), and weather conditions [129,130].  

Secondly, the effect of the dynamic interaction of occupants within dwellings should be extended to 

reflect more realistic representations of activity, location and time. It is essential to capture the full range 

of occupant behaviours and their potential influences on energy uses, indoor temperatures and air 

quality. For instance, the Energy Follow Up Survey (EFUS) [65] dataset provides indoor air temperature 

measurements for dwellings surveyed as part of the 2010-11 English Housing Survey. Another way is 

to deploy dwelling time-activity surveys in a form of personal diaries. Such data can be useful to 

estimate personal exposures in a high spatial-temporal resolution by capturing the average and range of 

occupant behaviours (e.g. window opening) more accurately. 

Thirdly, improvements in current housing stock IAQ models should consider incorporating model 

calibration. For instance, the Bayesian calibration method has been used to address multiple sources of 

uncertainties by characterising some model parameters as probabilistic distributions and examining the 

discrepancies between model predictions and filed measurement data under multiple temporal and 

spatial scales [78,131]. Comparing with deterministic models and non-calibrated probabilistic models, 

the Bayesian calibration has proved to achieve a better simulation fit against measured data with reduced 

errors [131]. However, it remains untested if calibration methods can be applied to housing stock IAQ 

model development where measured IAQ data may not be widely available at a scale as metred energy 

use data.   

6. Conclusion 
A total of eight housing stock IAQ models were identified and reviewed. These models were published 

during 2012-2020 and provide valuable information for summarising of a common set of descriptive 

and performative attributes. Firstly, this review shows that there have been statistical, physical and 



social science frameworks developed for quantifying indoor air pollutant concentrations and exposure 

levels in housing stocks of various scales. Broadly they are of two types: white-box and grey-box 

models. White-box models built on deterministic engineering methods, while grey-box models 

combined engineering and statistical methods to account for stock composition dynamics and 

uncertainty qualification. The existing housing stock IAQ models vary considerably in levels of 

disaggregation, complexity, resolution of output, scenario analysis performed, and computational 

methods.  

Secondly, a descriptive framework for summarising the key constituents of the eight housing stock IAQ 

models surveyed. A performative matrix is proposed for assessing the models in terms of data 

requirements and model performance. There is useful information gathered here suggesting that: (1) 

White-box housing stock IAQ models achieve better transparency to modelling algorithms compared 

to grey-box models; (2) Grey-box models are more versatile and scalable by developing updateable 

metamodels covering different simulation scenarios and ranges; (3) Both grey-box and white-box 

models have not yet captured occupant behaviours accurately in terms of activity and location; (4) All 

models have not accounted for the thermodynamic effects on airflow and contaminant behaviour which 

should be improved through dynamic IAQ-Energy co-simulation; and (5) all models were not calibrated 

due to absence of field IAQ measurement data, and therefore the simulation result fits remain unknown. 

Thirdly, although these housing stock models were geospatial and demographic specific, the underlying 

fundamental principles, modelling methods, statistical techniques and computation assumptions can be 

shared by the research community. By identifying and articulating the data requirements and model 

performance criteria, this review paper presents an up-to-date reference to further research and 

development in housing stock IAQ models which will be essential to inform policy-making and 

implementation of interventions.  
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