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Abstract 17 

Human food production is dominated globally by a small number of crops. Why certain crops 18 

have attained high agricultural relevance while others have remained minor might partially 19 

stem from their different origins. Here, we analyse a dataset of 866 crops to show that seed 20 

crops and species originating from seasonally dry environments tend to have the greatest 21 

agricultural relevance, while phylogenetic affinities play a minor role. These patterns are 22 

nuanced by root and leaf crops and herbaceous fruit crops having older origins in the 23 

aseasonal tropics. Interestingly, after accounting for these effects, we find that older crops are 24 

more likely to be globally important and are cultivated over larger geographical areas than 25 

crops of recent origin. Historical processes have therefore left a pervasive global legacy on the 26 

food we eat today. 27 

 28 

 29 

  30 
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Introduction 31 

The diversity of crops supplying our global food system is remarkably narrow. Of the calories 32 

we consume at the global scale, ca. 60% come from either rice, wheat, soya or maize, or from 33 

livestock fed on those staple grains 1,2. Diets are less restricted at the national scale, yet 90% of 34 

the food supply for every country on Earth can still be accounted for by just 103 species from a 35 

pool of several thousand food plants 3. Our restricted diets at the global scale contrast with the 36 

nutrition of pre-agricultural, hunter-gatherer cultures, who collected a diverse range of locally 37 

available wild plant and animal foods 4. Historical developments in agriculture and the 38 

connections between societies have thus moved our current interactions with food plants 39 

towards specialization 5.  40 

A specialized nutritional niche is evolutionarily advantageous under ecological stability, but 41 

entails high risks in a changing world 6. For example, the capacity of major crops to meet 42 

growing food demands is uncertain 7, and is becoming less secure as the climate changes 8. 43 

Moreover, the widespread use of monocultures of elite varieties hinders resilience against 44 

pathogen outbreaks or extreme climatic events, which are increasingly common 9,10. Other 45 

consequences of specialization extend beyond agronomic resilience, and include health 46 

problems like increased rates of adult diabetes or over-nourishment 11,12. Agricultural 47 

homogenization is thus recognized as a major contemporary problem, with significant 48 

consequences for food security and sustainability. Homogenization is typically blamed on a 49 

number of recent changes, including imperialism and colonisation, intensified inter-continental 50 

trade, increased global access to commodity markets, the expansion of western dietary habits, 51 

and the growth of multinational food industries 8,13. However, the roots of convergence in food 52 

production might lie deeper in time, arising from additional temporal, spatial and biological 53 

drivers. In this work, we address this topic by investigating the historic, geographic and 54 

phylogenetic causes of variation among crop species in their agricultural relevance. 55 
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Variation in the relevance of crops arises first from their profiles as food sources. Crops differ 56 

widely in their nutritional values. Some sustain the caloric and protein needs of people or 57 

livestock, while others supply essential nutrients required in smaller quantities, preserve other 58 

foods against microbial spoilage, provide flavouring or have a mixture of roles 14. These 59 

functions are required in differing amounts, which explains why the food system is dominated 60 

by crops meeting bulk caloric needs, predominantly starchy grains and vegetables. However, 61 

crops with similar food profiles differ widely in global production (Figure 1). For example, of 62 

the several species of Triticeae cultivated for their seeds, bread wheat is one of the big four 63 

contributors to global agriculture, while rye and oats play a minor role. Similarly, crop species 64 

in the Theobroma or Prunus genera, or in the family Cucurbitaceae, differ widely in extent of 65 

cultivation 1. Therefore, factors other than food profiles clearly account for variation among 66 

crops in agricultural relevance. 67 

Crop origins, defined in terms of time, space and phylogenetic background, might underpin the 68 

predominance of particular species. Ancient crops may have benefited from priority effects, by 69 

filling agricultural niches, providing the foundations for agricultural cultures and thus 70 

narrowing options for later crops. Older crops have also had longer to diversify under 71 

cultivation, and thus to adapt to local environments as their geographic ranges widened. The 72 

identities of the four globally dominant grain crops are consistent with this expectation, since 73 

they are each crops domesticated during the earliest transitions from hunter-gatherer 74 

subsistence to agricultural economies in three major geographical centres: western Asia 75 

(wheat), China (rice and soya) and Mesoamerica (maize) 15. Archaeological evidence shows 76 

that people expanded the ranges of these crops across contiguous continental regions during 77 

pre-history 13,16. Pre-emption of agricultural niches might also happen at the phylogenetic 78 

scale. The emergence of a relevant domesticate from an evolutionary lineage might pre-empt 79 

opportunities for other similar crops in that lineage to achieve relevance. If true, agricultural 80 

relevance should be over-dispersed in the phylogenetic tree of flowering plants. Previous work 81 
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has only found modest phylogenetic dependence of the presence and frequency of crops in 82 

the different families of flowering plants 17, but we lack similar analyses for agricultural 83 

relevance. Similarly, environmental conditions at sites of origin might influence the proclivity 84 

of crops to attain widespread use. The suitability of terrestrial lands for agriculture is diverse, 85 

with savannas, grasslands and temperate biomes dominating the global area under cultivation 86 

18, and areas with moderate rainfall and temperature regimes harbouring the bulk of human 87 

populations 19. Some of the most prominent starchy staples originated in savanna and 88 

Mediterranean-type climate regions 20. Therefore, crops from seasonal climates might be 89 

better pre-adapted to a majority of global agricultural lands, and thus might become 90 

widespread with higher likelihoods 21. Food usage also seems to have influenced the order in 91 

which crops were domesticated, with starchy grain crops typically the earliest contributors to 92 

agricultural development for food, followed by legumes, with leafy vegetables, spices, oil crops 93 

and fruits generally arriving later on 22,23. However, preservation biases might influence these 94 

patterns, and more recent work shows that starchy tubers and crops from the humid tropics 95 

could be more ancient than previously thought 24,25. There is some early literature advocating 96 

for this view 23, but comprehensive quantitative analyses are missing. Crucially, the usage, 97 

historical, geographical and phylogenetic origins of crops are highly inter-related 26, which 98 

makes the various effects challenging to disentangle. 99 

Here, we combine a global quantitative database on the origins and usage of 866 food crops 27 100 

with global crop production data 1, to statistically disentangle the functional, historical, 101 

geographical and climatic drivers of variation in crop origins, and their consequences for global 102 

agricultural relevance. In a first step, we analyse how crop antiquity differs among types of 103 

crops, and among diverse phylogenetic and climatic origins. In a second step, we summarize 104 

the global area of each crop species under cultivation during the period 2006-2016, as a 105 

measure of each crop’s current agricultural relevance, and investigate its dependence on crop 106 

origins. We aim to address the following questions: 1) Do ancient and recent crops have 107 
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different phylogenetic and climate origins? and 2) Do historical, phylogenetic and climatic 108 

origins help to explain variation in current agricultural relevance among crops? To our 109 

knowledge, this is the first comprehensive, quantitative assessment of the role of crop origins 110 

in explaining agricultural specialization. 111 

  112 
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Results 113 

The associations between crop antiquity, type and climate may provide insights into crop 114 

origins, but also contribute the information needed to control for confounding effects when 115 

investigating the relationship of crop antiquity to modern agricultural relevance. As expected, 116 

we found complex interactions between crop type, climate of origin and antiquity. 117 

The rate at which plant species were adopted for cultivation increased steadily from ca. 12,000 118 

years ago onwards, but began declining in historically recent times (Fig. 2A). The various types 119 

of crops tended to be taken into cultivation at different paces (Fig. 2A, ANOVA main effect, 120 

type of crop, F4,281 = 5.63, P < 0.001, Supplementary Table 1). Seed crops and a number of root 121 

and herbaceous fruit crops tend to be of earlier origin, while woody fruit and leaf crops tend to 122 

be over-represented among recent crops (Fig. 2A). Climate at the location of crop origins also 123 

explained variation in crop antiquity, but with different directions and strengths for the various 124 

types of crops (ANOVA interaction, type of crop x temperature climate regime, F5,281 = 5.05, p < 125 

0.001, Supplementary Table 1). In particular, root and leaf crops, and herbaceous fruit crops, 126 

tended to originate earlier in hot, aseasonal temperature regimes (i.e. the tropics; Fig. 2B). 127 

Crop antiquity showed a modest, though statistically significant, degree of phylogenetic signal 128 

(Fig. 3), and only 19 out of 301 crops showed over-dispersion in their LIPA scores for antiquity 129 

(Supplementary Data 1). Certain clades harboured mostly ancient crops, such as Triticeae (i.e. 130 

cereals) and Fabeae (i.e. pulses) tribes (Fig. 3, Supplementary Data 1). Others, like Potentilleae, 131 

Grossulariaceae or Ericaceae only included crops of recent origin (Fig. 3, Supplementary Data 132 

1). However, since the phylogenetic structure of crop antiquity was modest, a number of 133 

phylogenetically sister crops entered into cultivation at widely different historical times, such 134 

as yam species in the Dioscorea genus, or Oxalis, Opuntia and Stenocereus crops (Fig. 3, 135 

Supplementary Data 1). 136 
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The results outlined above showed that crop type, climatic origins and phylogeny are all 137 

related to crop antiquity. It was therefore vital to account for these factors when investigating 138 

the role of antiquity in modern agricultural relevance. Below we describe how, after these 139 

factors had been statistically accounted for, crop antiquity still explained a remarkable part of 140 

the variation among crops in their agricultural relevance. 141 

There was statistical evidence that both the type of crop and the climate regime influenced the 142 

likelihood of becoming a major crop (Supplementary Table 2, Fig 4). Woody fruit species from 143 

cool, seasonal temperature regimes were more likely to become major crops than fruit trees 144 

originating in non-seasonal and hot climates (i.e. the tropics) (Fig 4B). Root and herbaceous 145 

fruit crops from warm regions without pronounced thermal but high rainfall seasonality (i.e. 146 

the seasonally dry tropics and sub-tropics) were also more likely to become major (Fig 4 B,C). 147 

Finally, after accounting for crop type and climate, there was a positive relationship between 148 

crop antiquity and the likelihood of becoming a major crop (Analysis of Deviance main effect, 149 

crop antiquity, Dev1,293 = 37.74, P < 0.001, Supplementary Table 2, Fig 4A), such that crops first 150 

cultivated in antiquity were more likely to become major crops.  151 

The variation in global production among major crops (Fig. 1) partially depended on the crop 152 

type, with seed crops more important than leaf, root and fruit crops (ANOVA main effect, type 153 

of crop, F4,97 = 4.95, p = 0.001, Supplementary Table 3, Fig. 5D). However, variation within crop 154 

types was high (Figs. 1, 5D). Thus, global production also depended on the climate origins of 155 

crops, such that those originating in seasonally dry climates tended to be cultivated more 156 

widely than species of wet, aseasonal climates (Fig. 5C). Crucially, after these effects of crop 157 

type and climate were accounted for, the antiquity of crop origins still had a highly significant 158 

effect on global production (ANOVA main effect, antiquity, F1,97 = 6.56, p = 0.012, 159 

Supplementary Table 3; Fig. 5A). This finding was robust to whether recent or older data on 160 

global production were used as response (Supplementary Fig. 1, Supplementary Table 4), and 161 
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to whether crops that tend to preserve well in the archaeological record, and thus yield more 162 

reliable estimates of crop antiquity, or crops with poorer preservation were used 163 

(Supplementary Figs. 2-3, Supplementary Tables 5-6).  164 

Global agricultural production showed a very modest phylogenetic signal, regardless of 165 

whether modern or older production data were analysed (Fig. 6, Supplementary Fig. 4). 166 

Indeed, many of the widely cultivated crops, such as soybean, sunflower, peanuts, coffee or 167 

cassava showed significant phylogenetic over-dispersion (Supplementary Data 1), and thus 168 

their global production was distinct when compared to their phylogenetic neighbourhoods 169 

(Fig. 6). However, most clades included a large number of minor crops, which contributed to 170 

some degree of phylogenetic clustering (Fig. 6, Supplementary Data 1). A few clades, like the 171 

Prunus genus and the Benincaseae tribe, clustered together species with modest to high global 172 

production (Fig. 6, Supplementary Data 1).  173 
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Discussion  174 

Our results show that 36% of the variation in global agricultural production of major crops is 175 

explained by their antiquity, climatic and phylogenetic diversities. Climatic influences 176 

depended on crop type, such that major root and herbaceous fruit crops were more likely to 177 

originate in the seasonally dry (sub)tropics, while major fruit trees were more likely to be 178 

temperate in origin. Seed crops and crops from seasonally dry climates tended to be cultivated 179 

over a larger area at the global scale. Interestingly, after accounting for these complex 180 

interactions between crop type and climate, antiquity remained a significant predictor of 181 

global production. Thus, crop antiquity stood out as an important correlate of global relevance, 182 

despite the undoubted influence of cultural differences, dissemination histories, and of many 183 

other peculiarities of the history of each individual crop. Explaining when and why certain 184 

plants were brought into cultivation, and what makes human food provision specialized, are 185 

long-standing questions in the crop sciences 20,28. However, this type of research only rarely 186 

investigates large samples or diverse groups of crops 26. Our findings suggest that, when 187 

examined across the majority of crop species, priority effects of early crops and climatic origins 188 

have made important contributions to the specialization of our modern food system. 189 

 190 

Only around a hundred of the ca. thousand cultivated food plants are grown to a significant 191 

extent, with no more than 12 species accounting for most food provision 29. However, 192 

determining what makes a crop a good candidate for widespread adoption is elusive and often 193 

attributed to contingencies or common knowledge (e.g., 30). We have found that crops from 194 

seasonally-dry climates and ancient crops tend to dominate the global area under production. 195 

The fact that ancient crops were more likely to become agriculturally relevant suggests priority 196 

effects on the adoption and expansion of crop species. Crops adopted early on would have 197 

enjoyed a head-start advantage, taking over agricultural niches, such that new opportunities 198 
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became progressively scarcer. Furthermore, since older crops have been under selection for a 199 

longer period, they have had a longer period to adapt to local environments during agricultural 200 

range expansion. Thus, for a new crop to be adopted, it probably had to displace species 201 

already established and with longer histories of adaptation. These mechanisms might 202 

synergize with the fact that plants sharing phylogenetic affinities tend to be functionally alike, 203 

such that they occupy similar ecological niches 31. Early success of a crop might thus limit the 204 

success of other crops in its phylogenetic neighbourhood, supported here by a very modest 205 

phylogenetic signal in agricultural relevance, and the vast majority of major crops being 206 

surrounded by minor crops in their phylogenetic vicinity (Fig. 6 and Supplementary Data 1). 207 

Therefore, priority effects of ancient crops hindered the progressive emergence of 208 

agriculturally relevant crops, but did not preclude the advent of new minor crops in their 209 

phylogenetic lineage. Further, this indicates that agricultural needs (i.e., ecological niches for 210 

crops) have changed little through history 32. Overall, we suggest that low levels of 211 

phylogenetic redundancy in our crop system, together with priority effects in the pace, timing 212 

and geography of domestication events, have played important roles in agricultural 213 

specialization. 214 

 215 

Specialization is not unique to human relations with staple crops, but is widespread in nature 216 

33. Ecological specialization boosts performance in a small subset of the ancestral niche space, 217 

often at the cost of decreased abilities to face environmental change 6,34. Niche narrowing 218 

tends to result in reduced geographic ranges and higher susceptibilities to extinction 35. 219 

Moreover, natural selection tends to favour the evolution of specialism in stable environments 220 

35,36. Some of those commonalities of specialization apply to the relationship of humans with 221 

staple crops. For example, the Holocene has been the most climatically stable period of human 222 

evolution 37, which might have permitted the contraction of our dietary niche. Agricultural 223 
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specialization did not result in a reduction of our overall geographic range, as expected from 224 

specialism. However, hunter-gatherers inhabited most terrestrial ecosystems at sparse 225 

population densities 37, while agricultural societies have specialized, achieving much higher 226 

densities, within regions encompassing a small climate envelope, which the bulk of humans 227 

inhabit 19. Specialization through time is a common theme in other agricultural systems 228 

evolved by natural selection, for example in attine ant fungi-farmers. Basal lineages of attines 229 

exploit a wide range of fungi, which are only partly domesticated, have wide nutritional niches, 230 

and engage in gene flow with their free-living relatives 38,39. But the evolutionary recent attines 231 

specialize on a very small set of clones of leucocoprinaceous fungi, which have a narrow 232 

nutritional niche compared to free-living fungi 40. Evolution of ant farming, spanning ca. 50 My, 233 

thus parallels trends in agricultural homogenization between humans and crops, which took 234 

place in a remarkably shorter time span.  235 

 236 

Global reliance on a small set of ancient crops from specific geographic regions has brought 237 

benefits, ranging from the harnessing of shared cultural and technological expertise 41, to the 238 

sustained availability of grain stocks as back-up for calamities or periods of scarcity 42. 239 

However, risks associated with specialization are multiple and pressing. Food specialization 240 

and trade of economic plants drive the homogenization of the wild biotas of the world and 241 

thus contribute to the current biodiversity crisis 43. Further, in times of intensified global 242 

change, a species-poor food system is more unstable and less resilient 8. The results of this 243 

work suggest that a focus on promoting historically recent or new 44 crops, crops from diverse 244 

climate origins, and crops functionally and phylogenetically redundant with current staples 45, 245 

might help to avert some of the risks posed by agricultural homogenization. Since 246 

specialization and dietary narrowing are labile ecological traits 34,46, implementing shifts in the 247 
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relative abundances of crops species should be compatible with the fast reaction times needed 248 

to tackle global changes.  249 
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Materials and Methods 250 

Data gathering 251 

Data on antiquity of cultivation, type of crop (organ harvested for primary use and growth 252 

form), and the identity, distribution and climatic niche of each crop´s wild progenitor were 253 

retrieved from the live version of the Crop Origins database 27,47, accessed the 1st December 254 

2020. Crop Origins is a comprehensive database containing the identity and descriptors of the 255 

plant species cultivated for food. The antiquity of each crop (Crop Antiquity, y ago) was taken 256 

as its earliest record of cultivation. Crop Origins provided crop antiquity data for 301 crop 257 

species. To estimate the climate associated with each crop’s origins, the procedures used by 258 

Crop Origins can be summarized as follows. First, the identities of the most likely wild 259 

progenitors of all crops were searched and retrieved from the literature, and checked for 260 

taxonomic accuracy and validity. Then, the geographical occurrences of each wild progenitor 261 

were searched in GBIF 48 and cleaned using a number of procedures described in 27. 262 

Afterwards, current climate (yearly averages for the years 1970-2000, at 2.5 minutes spatial 263 

resolution) was taken for the 19 Bioclim variables of WorldClim v 2 49 at each geographic 264 

occurrence. To summarize climate data for each crop, all occurrences of the wild progenitors 265 

for a given crop were used as replicates, and medians of climate data per crop were computed. 266 

Climate data were available for 802 out of the 866 crop species in Crop Origins.  267 

Crop species were subset into five types: (1) Woody Fruit: woody crops cultivated for their fruit 268 

(mostly) or seed (rarely); (2) Herb Seed: herbaceous crops cultivated for their seed, including 269 

grain crops and oil seeds; (3) Root: woody or herbaceous crops cultivated for their 270 

belowground organs; (4) Leaf: crops cultivated for their leaf or shoot organs, including 271 

sugarcane (the term “vegetables” is used to refer to root and/or leaf crops and was thus 272 

discarded); and (5) Herb Fruit: herbaceous crops cultivated for their fruit. If a given crop could 273 

be allocated to more than one type based on its use or growth form, it was assigned to the 274 



15 
 

type that contributed most to its agricultural relevance as food. We avoided splitting crops into 275 

more categories in order to keep a number of crops per category sufficiently balanced for 276 

statistical analyses. A number of supplementary criteria for classifying crops into usage types 277 

were considered, including diversity of uses, calorific vs non calorific, and others. However, 278 

implementing a combination of those criteria to the whole set of 866 crops proved impossible, 279 

thus we retained a simple typology. Finally, a dated phylogenetic tree of the pool of species 280 

used in this study was obtained from the live version of Phylo Food 47, accessed the 1st 281 

December 2020. Phylo Food contained all binomials of the crop species used in this paper. 282 

Depending on the statistical analysis Phylo Food was either used as provided, or pruned to 283 

sub-groups of species using the drop.tip function of the ape package in R 3.6.2. 50. 284 

We further compiled information on the current agricultural relevance of each crop. To do this, 285 

on the 3rd of October 2018 we queried FAOSTAT production data (area harvested, ha) from 286 

2006 to 2016 for all FAO commodity groups 1. Production data at the regional level were 287 

summed up to world totals per year, and averaged for the 2006-2016 period (Global 288 

Production – ha – ). To match crop species binomials to FAO commodity groups we used ref. 51. 289 

That source used FAO commodity group codes, in conjunction with the FAO Commodity List 290 

tool (www.fao.org/economic/ess/ess-standards/commodity), to identify the crop binomials 291 

that FAO associates with each group. Prior to matching, the FAO Commodity List was checked 292 

for taxonomic accuracy and validity against The Plant List 52 using function TPL of the 293 

Taxonstand package in R 3.6.2. 53. Commodity groups composed of a single crop species were 294 

automatically matched, but the vast majority of groups included several taxa. However, all 295 

groups but wheat were composed of a major contributor to agricultural production, together 296 

with congeneric minor crops. Therefore, production data were assigned to the major crop of 297 

each multi-specific group. For wheat we assigned 93% of production to bread wheat and 7% to 298 

durum 54. The 112 crop species with a tracked record in FAOSTAT were operationally coded as 299 
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major crops, and the remaining 754 crop species that were included in the Crop Origins 300 

database, but which lacked a FAOSTAT record, were considered as minor crops. 301 

 302 

Statistical analyses 303 

To address our two questions, we measured phylogenetic signals, and indicators of 304 

phylogenetic clustering and overdispersion for the antiquity and global production values of 305 

each crop species. Further, we used phylogenetic comparative methods 55 to test hypotheses 306 

about the causes of variation in crop antiquity and of global production, while accounting for 307 

phylogenetic relationships. 308 

The phylogenetic signal of crop antiquity was calculated using Pagel’s λ 56. Pagel’s λ compares 309 

the similarity of the covariances among species trait scores with the covariances expected 310 

under Brownian motion evolution (hereafter BM). λ = 0 indicates an absence of phylogenetic 311 

signal, whereas λ = 1 indicates that close relatives are as similar to each other as would be 312 

expected under BM. Lambdas between 0 < λ < 1 indicates phylogenetic signals ranging from 313 

very low to near BM expectations. Lambda was computed using the function phylosig of the 314 

phytools package in R 3.6.2. 57. Global production showed a zero-inflated log-normal 315 

distribution (zero for all crops lacking FAOSTAT data), which precludes the use of Pagel’s λ. 316 

Thus, phylogenetic signal was computed as in 17. In brief, the phylogenetic heritability 317 

parameter (λ) of an intercept-only phylogenetic mixed model, which allows family distributions 318 

deviating from Gaussian, was taken as the metric of phylogenetic signal 58. That procedure is 319 

analogous to a custom calculation of Lambda, but accounting for zero-inflated binomial 320 

distribution of data. Finally, we computed Local Indicators of Phylogenetic Association (LIPA), 321 

based on Local Moran’s I 
59 to detect individual crops surrounded by phylogenetic 322 

neighbourhoods with similar or distinctive (i.e. positive or negative autocorrelation, 323 

respectively) global production and crop antiquity values. For each LIPA score, statistical 324 
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significance was assigned by performing a non-parametric two-sided randomizations test, 325 

performed by reshuffling the scores of the tips 999 times. Local Moran’s I were computed 326 

using the lipaMoran function of the phylosignal package in R 3.6.2. 59. 327 

Before testing hypotheses about the causes of variation in the antiquity of cultivation and 328 

agricultural relevance, we conducted two analyses to test and account for collinearity among 329 

predictors. First, since WorldClim´s descriptors are correlated 60, a Principal Components 330 

Analysis (PCA) of the 19 bioclimatic variables was performed. The PCA was run using crops´ 331 

median scores for each variate and the function prcomp of the stats package in R 3.6.2. 61. The 332 

19 bioclim variates were scaled and centred prior to analysis. The first two axes of the PCA 333 

accounted for 72% of variation in the bioclimatic variables (PCA axis 1 51%, PCA axis 2 21%, 334 

Figure S5). The loadings of the 12 bioclimatic variables on PCA axis 1 (Supplementary Data 2) 335 

indicated that this axis represents a gradient of increasing seasonality in temperature and 336 

decreasing temperature. To facilitate interpretation of results and comparability among both 337 

axes, axis 1 was transformed to its inverse (  ̶  axis 1) prior to statistical analyses, such that low 338 

values were associated with cool, seasonal climates, while high values were associated with 339 

hot, aseasonal climates. This axis was therefore named “High T seas <-> High T”. The loadings 340 

of the 12 bioclimatic variables on PCA axis 2 represented a gradient of increasing precipitation 341 

and decreasing seasonality in precipitation, such that low values were associated with 342 

seasonally dry climates, while high values were associated with wet, aseasonal climates. This 343 

axis was thus named “High Ppt seas <-> High Ppt”. The “High T seas <-> High T” and “High Ppt 344 

seas <-> High Ppt” axes were thus orthogonal and used as descriptors of climatic niche at 345 

origin. Second, the set of predictors in the several models was checked for collinearity in the 346 

full dataset, and separately for each of the subsets (e.g. only the 301 crops with data on crop 347 

antiquity). Collinear terms were removed from models until all remaining predictors showed 348 

Variance Inflation Factors (VIFs) well below 10, and thus problems associated to collinearity 349 
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could be discarded. Diagnoses of collinearity were performed using the function vif of the car 350 

package in R 3.6.2. 62. 351 

To address question 1, we used Phylogenetic Generalized Least Squares models (PGLSs) to 352 

investigate causes of variation in Crop Antiquity among the 301 crops with such data available 353 

63. Crop antiquity was the response variable, while the fixed-effect predictors were type of 354 

crop, and its interactions with “High T seas <-> High T”, and with “High Ppt seas <-> High Ppt”. 355 

The main effects of precipitation and temperature climate regimes, and their bi-variate 356 

interaction, were not tested because of their high collinearity with other predictors in the 357 

model. PGLS models were fitted by restricted log-likelihood using the function gls of the nlme 358 

package in R 3.6.2. 64. CorPagel was specified in the correlation term of gls, which took the 359 

phylogenetic variance-covariance matrix in the model, weighed by the phylogenetic signal in 360 

the residuals of the model. Statistical significance of the predictors was qualified using the 361 

anova.gls function of the nlme package in R 3.6.2. 64. Observed vs predicted, and residual vs 362 

predicted plots were generated to check the validity of models.  363 

To address question 2 we tested whether crop origins and descriptors influence 1) the 364 

probability that a species is a major or a minor crop, and 2) the variation in global production 365 

among major crops. To address probabilities of  becoming a major crop, we first used 366 

Phylogenetic Logistic Regressions 65 which yielded negligible phylogenetic signals in the 367 

residuals. Thus, for the sake of simplicity we shifted to binomial general models. Binomial 368 

models were conducted separately in the full 866 species dataset, and in the 301 species 369 

dataset with data on Crop Antiquity. Major vs minor status was the response variable and type 370 

of crop, crop antiquity (only in the 301 species model), “High T seas <-> High T”, and “High Ppt 371 

seas <-> High Ppt” were the fixed-effect predictors. Main effects, two- and three-way 372 

interactions between predictors were included in the models unless significant collinearity was 373 

detected (VIF > 10), in which case, the specific term was removed. Binomial models were run 374 
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specifying the “binomial” family in the glm function of the stats package in R 3.6.2. 61. 375 

Statistical significances of each predictor were assessed through log-likelihood ratio tests 376 

against a null model using the anova function of the stats package in R 3.6.2. 61. Finally, we 377 

tested whether and how the variation in global production among major crops depended on 378 

crop origins and typology. A model structure analogous to the binomial model was specified, 379 

but model fitting, testing of statistical significance, and model validation were run as described 380 

above for the PGLS test used for antiquity of cultivation. Global production data were log10-381 

transformed prior to analyses. 382 

 383 

Data availability statement 384 

All data used in this paper are publicly available at: 385 

https://github.com/rubenmilla/Crop_Origins_Phylo and http://www.fao.org/faostat/en. 386 
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Figure titles and legends 548 

 549 

Figure 1: Global production of food crops included in FAOSTAT 550 

(http://www.fao.org/faostat/). Size of each square is proportional to the global area annually 551 

harvested per crop, averaged for the period 2006-2016. See Materials and Methods section for 552 

procedures used to assign crop species to FAO commodity groups, and for criteria used to 553 

cluster species into five types of crops. N = 112 crop species. Throughout this paper the 112 554 

crop species with a track record in FAOSTAT were operationally defined as major crops, and 555 

the remaining 754 crop species included in Crop Origins database (see Materials and Methods 556 

section) but lacking a FAOSTAT record were considered as minor. 557 

 558 

Figure 2: Predictors of the antiquity of cultivation. A. Density distribution of crop antiquity 559 

(earliest records of cultivation) for each type of crop with raw data on antiquity shown as X-560 

axis ticks. B and C. Relationships between temperature and precipitation climate regimes and 561 

crop antiquity, shown separately for each type of crop. “High T seas <-> High T” indicates a 562 

gradient of decreasing seasonality in temperature and increasing temperature, such that low 563 

values were associated with cool, seasonal climates, while high values were associated with 564 

hot, aseasonal climates. “High Ppt seas <-> High Ppt” represents a gradient of increasing 565 

precipitation and decreasing seasonality in precipitation, such that low values were associated 566 

with seasonally dry climates, while high values were associated with wet, aseasonal climates 567 

(see Materials and Methods section). Insets in panels of panels 2B and 2C are simple Pearson 568 

correlation coefficients plus p-values. See Supplementary Table 1 for effect sizes, statistical 569 

significance of terms, and variance explained, for the full statistical model (phylogenetic 570 

generalised least squares model). N = 301 crop species. N of individual sub-groups shown in 571 
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panel 2A. Coloured tick marks in the x-axes of panel 2A are antiquity sample data of each 572 

individual crop in each of the five types. 573 

 574 

Figure 3: Phylogenetic structure of crop antiquity. Distribution of crop antiquities (earliest 575 

records of cultivation or domestication) across the phylogeny of flowering plants. The 576 

phylogenetic signal, computed as the magnitude of Pagel´s Lambda and its 95% CI, is shown in 577 

the centre of the tree. Trait mapping on the internal branches of the tree is shown only to 578 

facilitate visualization of phylogenetic clusters with similar or diverse antiquities. N = 301 crop 579 

species. Crop icons kindly donated by C. Khoury and C. Navarro-Racines. Several of the icons 580 

were published in  Khoury, et al. Proc. Biol. Sci., 283 (2016), 20160792  under a CC-BY 4.0 581 

licence. The tree can be magnified online to read species identities and to identify their 582 

antiquity score. 583 

 584 

Figure 4: Probability that a crop is major or minor as a function of crop antiquity and climate. 585 

Density distributions of the abundances of major and minor crops (operationally defined here 586 

as crops with or without a track record at FAOSTAT, respectively), shown separately for each 587 

type of crop and as functions of crop antiquities (A, N = 301 crop species), temperature (B, N = 588 

802 crop species) and precipitation (C, N = 802 crop species) regimes. See legend of Figure 2 589 

for meaning of “High T seas <-> High T” and “High Ppt seas <-> High Ppt”. Statistical analysis 590 

fitted two alternative logistic general linear models. See Supplementary Table 2 for details, 591 

effect sizes and statistical significance of terms. 592 

  593 

Figure 5: Global production as a function of crop origins and crop type. A. Global area 594 

harvested as a function of crop antiquity. B and C. global area harvested as functions of 595 
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temperature and precipitation regimes, respectively, at crops´ origins. D. Global area 596 

harvested as a function of crop type. Global area harvested (ha) is a mean for 2006-2016. 597 

Insets and fit lines in A-C are raw OLS bivariate regressions between the variates in the plots. In 598 

D, the central line is the median, box limits are 25-75th percentiles, and whiskers are the 1.5 x 599 

interquartile range. See legend of Figure 2 for meaning of “High T seas <-> High T” and “High 600 

Ppt seas <-> High Ppt”. We also fitted a phylogenetic generalized least squares model to the 601 

data, and the details, effect sizes, statistical significance of terms, and variance explained by 602 

this model are provided in Supplementary Table 3. N = 105 crops. 603 

 604 

Figure 6: Phylogenetic structure of global production. Distribution of agricultural relevance of 605 

all species included in this paper, measured as the  2006-2016 arithmetic mean of the area 606 

harvested in the world for each crop (ha), as reported in FAOSTAT 607 

(http://www.fao.org/faostat/). The phylogenetic signal, estimated as the magnitude of 608 

Lambda and its 95% CI, is shown in the centre of the tree. Trait mapping on the internal 609 

branches of the tree is shown only to facilitate visualization of phylogenetic clusters with 610 

similar area harvested. The areas harvested are log(+1)-scaled to facilitate visualization. N = 611 

866 crop species. Crop icons kindly donated by C. Khoury and C. Navarro-Racines. Several of 612 

the icons were published in  Khoury, et al. Proc. Biol. Sci., 283 (2016), 20160792  under a CC-BY 613 

4.0 licence. The tree can be magnified online to read species identities and to identify their 614 

production score. 615 

 616 
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