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Abstract 

As part of efforts to promote sustainable mobility, many cities are currently experiencing the rapid expansion of their 

metro network. The consequent growth in ridership motivates a broad range of travel demand management (TDM) 

policies, both in terms of passenger flow control and dynamic pricing strategies. This work aims to reveal the impact 

of TDM on metro commuters’ behavioural loyalty using stated preference data collected in Guangzhou, China. 

Commuters’ behavioural response to TDM strategies is investigated in terms of the possible shift in departure time and 

travel mode. A hybrid choice model framework is used to incorporate four latent variables of interest, i.e., service 

quality, overall impression, external attractiveness and switching cost, into the discrete choice model and thereby 

capture the relationships between the attitudinal factors and observed variables. The model estimation results indicate 

that the four latent variables all prove useful in interpreting commuters’ behavioural loyalty. Commuters’ perceived 

service quality and overall impression both show a positive effect on their willingness to continue travelling by metro 

and are thus instructive for ridership retention. External attractiveness is found to be significant only in the case of the 

tendency to shift to a private car. Switching costs reveal commuters’ emotional attachment to their already developed 

commuting habit. These insights into commuters’ behavioural change intention enable metro operators to enhance 

commuters’ loyalty to their service and develop more effective TDM strategies in future practice. 

Keywords behavioural change · nested logit model · attitude · factor analysis · SP-off-RP survey · urban rail 

transit 

 

Introduction 

Travel demand management (TDM) refers to a variety of strategies that aim to alleviate the impacts of recurrent 

congestion by redistributing travel demand spatially and temporally (Roby 2014). In recent decades, TDM has made 

excellent contributions to a broad range of areas, delivering beneficial environmental outcomes, improved public safety 

and health, and prosperous communities and cities (Bao et al. 2020; Holguín-Veras et al. 2020; Nesset and Helgesen 

2014; Saleh 2007). In the context of growing interest in the application of TDM strategies to mass transit systems, 

transport operators face the challenge of declining service and the accompanying task of ridership retention. In 

Guangzhou, China, metro network has experienced unprecedented expansion in the past decade. There were 14 metro 

lines and 271 stations in operation in December 2019. The evolution of mileage and ridership is presented in Fig. 1. 

 
Fig. 1 Evolution of mileage and ridership of the Guangzhou Metro network 
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The expansion of the metro network has radically increased ridership, with the highest daily ridership reaching 

over 11 million in 2019. Nearly 4 million commuters use the network during the morning rush hour, and this number 

tends to rise over time. As a consequence, the severe mismatch between supply and demand leads to unexpected 

operational risks and impedes the sustainable development of the metro system. In this context, TDM provides 

solutions for reshaping demand patterns to adapt to the current supply capacity in both mandatory and incentivised 

ways. The two most commonly used strategies, i.e., passenger flow control and dynamic pricing, are discussed in the 

present paper. 

The passenger flow control strategy is a typical mandatory measure implemented during commuting peaks (Jiang 

et al. 2017; Yang et al. 2017). To avoid overcrowding inside the station, batch release plays a vital role in slowing the 

movement of crowds, helping relieve the pressure on platforms and carriages, as shown in Fig. 2. In the Guangzhou 

Metro network, passenger flow control is currently used at 41 stations during the morning peak and 16 stations during 

the evening peak. In recent years, the passenger flow control strategy has also been widely adopted in many other cities 

in China, such as Beijing, Shanghai and Shenzhen. Although this mandatory measure immediately mitigates crowding 

and reduces operational risks, large numbers of commuters who arrive during the control periods are severely delayed. 

A decline in travel experience and extended commuting time is thus inevitable for many metro commuters. 

 

         (a) Station entrance                 (b) Security checkpoint              (c) Automated fare gate                 (d) Transfer channel 

Fig. 2 Common control points for batch release 

In contrast to the flow control strategy, dynamic pricing has a long history and a wide range of applications. The 

use of dynamic pricing is well established across industries, such as hospitality, entertainment and retailing, allowing 

flexible pricing rules for products or services tied to current market demands (Abrate et al. 2019; Chen et al. 2020; 

Jørgensen and Zaccour 2019). The literature also details extensive applications of dynamic pricing to public transport 

systems (Kamandanipour et al. 2020; Saharan et al. 2020; Zhang et al. 2019). In regard to metro systems, off-peak 

discounts and extra peak charges are the two most common approaches in operation management (Zhao and Yang 

2013). For instance, the London Underground provides off-peak fares for commuters travelling outside the peak hours 

of 6:30 am-9:30 am and 4:00 pm-7:00 pm. The discount is up to 2 pounds on a single trip and depends on the distance 

travelled. In Beijing, the first dynamic pricing scheme took effect in December 2015, awarding those tapping in before 

7:00 am 30% off of the whole trip. Shortly afterwards, the off-peak discount was raised to 50% for a larger effect. 

However, even in this case, the daily ridership continued to grow sharply, and disputes over the implementation details 

of future dynamic pricing are ongoing. 

TDM has direct impacts on metro commuters’ daily travel experience, likely leading to changes in current 

ridership patterns and thus, in turn, having irreplaceable importance in the development of appropriate strategies. To 

better understand metro commuters’ responses, this paper focuses on understanding the effects of TDM on metro 

commuters’ behavioural loyalty. More specifically, metro commuters’ behavioural change intention in the context of 

passenger flow control and dynamic pricing strategies is modelled in terms of departure time and mode choice. By 

combining the revealed-preference (RP) survey’s advantage in collecting actual choice information with the stated-

preference (SP) survey’s superiority in understanding trade-offs in hypothetical (future) scenarios, an SP-off-RP-like 

survey is conducted in Guangzhou, China, to capture metro commuters’ SP choices and attitudinal responses in terms 

of service quality (SQ), overall impression (OI), external attractiveness (EA), and switching cost (SC). As much 

previous research has suggested (Ashok et al. 2002; Hoyos et al. 2015; Kim et al. 2014), directly incorporating 

attitudinal responses into discrete choice models as explanatory variables results in measurement error and endogeneity 

bias. As a way to address this issue, the integrated choice and latent variable (ICLV) model, also commonly called the 

hybrid choice model (HCM), has received growing attention since it was proposed by (Ben-Akiva et al. 2002a; Ben-

Akiva et al. 2002b). Following the hybrid choice modelling approach (Abou-Zeid and Ben-Akiva 2014; Ashok et al. 

2002; Bolduc et al. 2005), the unobservable factors of SQ, OI, EA and SC are used to account for metro commuters’ 

behavioural loyalty in the form of latent variables in the discrete choice model.  

The remainder of this paper is organised as follows. Section 2 reviews related studies on modelling commuting 

behaviour. Section 3 describes the survey work carried out for this study. Section 4 presents the model specification. 
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Section 5 reports the model estimation results and discusses the policy implications. In the last section, the conclusions 

drawn from the above content are summarised, and directions for future work are discussed. 

 

Literature Review 

Loyalty is a common concept that has been extensively studied in relation to marketing in recent decades. Berkowitz 

et al. (1978) defined customer loyalty towards a specific product as repetitive purchase behaviour that reflects the 

choice to buy the same product. Customer loyalty can be categorised as behavioural loyalty or attitudinal loyalty 

(Bandyopadhyay and Martell 2007; Webb 2010). In the purchase decision-making process, behavioural loyalty is 

manifested in a customer's repeated selection of a certain brand over the competition (Odin et al. 2001). In contrast, 

attitudinal loyalty emphasises emotional commitment to a brand, which exists before the actual choice is made(Izogo 

2015). Nevertheless, loyalty is not specific to the purchase of products but also applies to transport services. Many 

studies have used loyalty to explain travellers’ attachment to a transport mode. A widely accepted definition is that 

given by the Transportation Research Board (1999): “A user’s intention to continue using the service”. Additional 

components include the willingness to recommend the service to others, service quality and a user’s image or 

involvement with the transport mode (van Lierop et al. 2018). Other studies (Li et al. 2018; Sun and Duan 2019) 

suggest four determinants of loyalty: service experience, switching cost, the attractiveness of cars and other attitudinal 

factors (e.g., environmental concerns). In addition to applying structural equation modelling (SEM), utilising long-

term panel data is a more realistic way to reveal users’ behavioural loyalty (Tao et al. 2017; Wang et al. 2020). Despite 

intensive research efforts, there is no unique, established methodology to measure users’ loyalty to transport services 

(Losada-Rojas et al. 2019). In this paper, we employ a narrower definition of loyalty, i.e., the intention of continuing 

to use the current commuting plan, in the TDM context. More precisely, metro commuters’ behavioural loyalty is 

measured indirectly by the intention to adjust the current commuting plan by shifting to either other modes or other 

departure times when passenger flow control and dynamic pricing strategies become operative. 

The most relevant research on TDM in metro systems has focused on how to develop appropriate passenger 

flow control strategies (Li et al. 2017; Liu et al. 2020; Shi et al. 2019) and various pricing strategies (Huang et al. 

2016; Liu and Wang 2017; Peng et al. 2016; Rantzien and Rude 2014) in light of current demand. However, the 

existing methodologies develop strategies based on the already known travel demand, namely, on-demand or 

demand-oriented approaches. A common assumption in the above studies is that travel demand remains unchanged 

due to the stability of commuting needs. Precisely under such a premise, some studies use current ridership as a 

reference to evaluate the performance of the proposed strategies. These studies have focused on these methodologies 

for the purpose of policy development instead of on understanding the effects of TDM on commuters. In this regard, 

a better grasp of commuters’ behavioural loyalty in the TDM context is crucial to make these studies more applicable 

than they already are. That is what the present work intends to achieve. 

 Discrete choice models have been applied extensively in the literature to interpret commuters’ behaviour, and 

most were based on RP data. For instance, Zaman and Habib (2011) investigated commuting mode choice behaviour 

using survey data collected over the course of a week to understand how TDM strategies (i.e., flexible office hours and 

compressed workweeks) discourage car use and propel commuters towards sustainable transportation modes. Nurul 

(2012) studied travel mode, work start time and duration choice behaviour as two-stage continuous choices with an 

econometric model. Additionally, the impact of TDM strategies (i.e., congestion pricing, P&R incentives, flexible 

office hours) on behaviour was further discussed. Sasic and Habib (2013) used trip diary data to explain commuters’ 

departure time choice for a home-based commuting trip using a generalised extreme value (GEV) model. Ding et al. 

(2015) modelled commuters’ travel mode and departure time choice with a cross-nested logit (CNL) model based on 

household survey data. Heinen et al. (2017) observed the impacts of a newly built guided busway with both walking 

and cycling paths on commuters’ mode choice behaviour, supported by week-long commuting records. Keyes and 

Crawford-Brown (2018) explored the reasons for the decline in car use in urban areas, developing a multinomial 

logistic regression model using national travel survey data. 

 With TDM strategies becoming increasingly common in public transport systems, the literature also provides 

analyses of mode shift behaviour when the external environment changes. Although both mode choice and mode shift 

behaviour reflect the decision-making process of choosing a travel mode, there are subtle differences in the situations 

that lead commuters to make a choice. Indeed, commuters need to overcome both physical and mental reluctance when 

departing from their regular commuting habit. To better simulate environmental changes, SP surveys have been widely 

used to understand commuters’ behaviour. For instance, Hensher et al. (2011) used SP and developed an error 

components model to explain commuters’ mode choice between currently available travel modes and a forthcoming 
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metro service. Resdiansyah (2018) studied the binary choice between existing bus vehicles and recently upgraded bus 

vehicles using SP data. 

 With an eye towards attitudinal factors, a growing number of researchers have sought to provide in-depth 

explorations of the roles of various attitudes in commuting behaviour. SEM is widely used to explore the linear 

relationships between endogenous and exogenous variables in relevant studies (Gao et al. 2020; Jia et al. 2018; Mijares 

et al. 2016). Alongside numerous applications of SEM, HCM has been employed to account for a variety of attitudes 

in research on key decisions in the public transport context, such as mode choice (Atasoy et al. 2013; Hess et al. 2018; 

Kamargianni et al. 2014; Roberts et al. 2018; Song et al. 2018; Tran et al. 2020) and departure time choice (Thorhauge 

et al. 2016). Additionally, substantial effort has been devoted to further refinement of the HCM framework in studies 

exploring the proper way to accommodate latent variables in choice models (Bahamonde-Birke et al. 2017), testing 

non-linearity and distributional assumptions (Kim et al. 2016), and seeking to improve estimation techniques (Bhat 

and Dubey 2014; Daziano 2015; Raveau et al. 2012). To reveal the roles of SQ, OI, EA and SC in our research context, 

a detailed factor analysis is conducted in the data section to seek rational structures for these four attitudinal variables, 

as well as an HCM-based analytical framework for interpreting commuters’ behavioural responses to metro TDM 

strategies. 

It is also worth noting that most of the previous work analysing commuters’ behavioural responses to TDM 

measures, such as the study presented by Zaman and Habib (2011), sought to reduce commuters’ car dependency by 

making public transport more appealing. The motivation of the present work differentiates it from previous efforts: the 

priority here is retaining existing users rather than attracting potential users, given that the TDM strategies studied in 

this paper make metro service less attractive. Indeed, as TDM strategies become increasingly essential in a growing 

number of oversaturated metro systems worldwide, understanding metro commuters’ behavioural loyalty is becoming 

increasingly important. 

 

Data 

This section presents an overview of the survey work carried out for this study. In reality, commuters’ behavioural 

loyalty largely depends on individual circumstances, e.g., whether the commuter can freely postpone his or her arrival 

time at the workplace and whether the metro is more competitive than the other modes in a specific O-D pair. We thus 

use an SP-off-RP-like survey to obtain respondents’ RP data and then construct SP scenarios for each of them. Each 

respondent was asked to complete four parts, namely, the instructions for filling out the questionnaire (including a brief 

introduction to the goal of the survey and the relevant technical terms), the SP-off-RP-like survey, attitudinal statements 

and a socio-demographics section. 

Respondent sampling 

The survey implementation was delegated to a professional online survey agency, Changsha Ranxing Information 

Technology Co., Ltd. Since only regular metro commuters who are familiar with the metro peak service are qualified 

to complete the questionnaire, the questionnaires were disseminated to those who registered as residents of Guangzhou 

and had metro commuting experience. 

In the RP part, respondents were asked to specify their everyday commuting activity, with further details available 

in Fig. 4. Based on the RP data, we used the following logical and consistent tests to remove ineligible respondents, as 

we believe that regular metro commuters are clear about the name of the metro line, the ticker price and the travel time. 

(a) Respondents’ self-reported origin and destination for the commuting trip should be consistent with the 

self-reported metro lines that they usually took, which ruled out 18 respondents. 

(b) The respondents’ self-reported ticket fare should be consistent with the officially released price, which 

ruled out 42 respondents. 

(c) Respondents’ self-reported travel time should not deviate more than 40% from the standard travel time 

derived from the actual train timetable during the survey period (provided by the operator of Guangzhou 

Metro), which ruled out 75 respondents. 

(d) Respondents’ employment should not be freelancer, undergraduate (mostly living in a student dormitory 

near the campus in Guangzhou, China) or retiree, as these respondents do not have a need to commute, 

which ruled out 28 respondents. 

We obtained a final sample of 852 out of 1,015 collected questionnaires. Each respondent answered three SP 

choice tasks, for a total of 2,556 choice observations. Fig. 3 presents several statistical indicators of the RP data. 
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Fig. 3 Statistical results for the commuting characteristics 

It can be observed that 59.16% of commuters spend 15-45 min on the metro trip, suggesting that metro service 

is targeted towards medium or long-distance trips of 14 km on average. More than three-quarters of commuters do not 

need to transfer or only make one transfer on the metro trip. Additionally, there are usually two feeder trips, one on 

either end of the major trip. As seen from the histograms in Fig. 3, walking is the most common way to bridge a metro 

trip, with an overwhelming 62.09% of respondents using this method on the start side and 80.28% on the end side. A 

total of 24.41% of commuters have a bus bridging trip before taking the metro, and the percentage decreases to 12.21% 

on the end-side feeder trip, which means that commuters tend to arrange to take the bus earlier in the trip. It should be 

noted that we allowed for the P&R option on the end-side because CBD workers who often drive for business purposes 

in the daytime may park the car at a nearby metro station and then take the metro back home. Therefore, the next 

morning, there is a possibility of using the end-side P&R to get from the metro station to the workplace. However, 

generally, the start-side P&R and the end-side P&R are not used in the same trip. Additionally, the respondents were 

asked two questions to preliminarily test their willingness to adjust their regular departure time in the context of TDM 

strategies. Ninety-two percent of commuters were willing to depart earlier. However, in regard to departing later, the 

percentage decreased to 61%, which is in line with a desire to not arrive late for work. 

Survey design 

In the SP-off-RP survey, a respondent’s alternatives and choices in a real-world setting are first observed to support 

the SP task design. Based on the RP choice results, the respondents are asked whether they would make the same 

choice or switch to another alternative if the attributes of the chosen alternative become less desirable or the attributes 

of the non-chosen alternatives become more desirable (Guevara and Hess 2019; Train and Wilson 2009). In this way, 

the RP survey’s advantage in collecting actual choice results and the SP survey’s superiority in soliciting choice results 

in hypothetical scenarios can be optimally combined. 

Given that the implementation of TDM strategies can be considered to represent changes in the attributes of a 

chosen alternative, commuters’ behavioural loyalty is equivalent to whether they would make the same choice or 

switch to another mode or departure time. We thus used an SP-off-RP-like survey to obtain commuters’ possible 

response to the upcoming TDM strategies. In the actual survey, the respondents were asked a series of questions to 

collect RP commuting information such as routine details (i.e., origin and destination metro stations, transfer stations, 

ticket price and the mode choices for the feeder trips) and timescale details (i.e., departure time from residence, arrival 

time at workplace, travel time of both the major trip and feeder trips). Based on the above information, three SP 

scenarios were tailored for each respondent, as illustrated in Fig. 4. 
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Fig. 4 Illustration of the construction of the SP scenarios based on the collected RP data 

For each respondent, the hypothetical scenarios are created based on his/her own O-D (Origin-Destination) pair 

and departure time. The level-of-service attributes of the metro (e.g., travel time, ticket price and the number of 

transfers) are extracted from the respondent’s self-reported information. On this basis, the impact of TDM strategies is 

accounted for by introducing five relevant attributes, i.e., extra waiting time at the control point (WT, indicating the 

time that the commuters have to spend waiting for batch release if they continue travelling by metro under enforcement 

of passenger flow control), off-peak discount (OP, part of the dynamic pricing strategy for incentivising peak-

avoidance behaviour), extra peak charge (EP, another part of dynamic pricing strategy for achieving more potent 

incentivising effects), ahead of departure time (AT) and delay of departure time (DT, compared to the respondents’ 

regular departure time), into the obtained RP scenario. The values of the above five TDM strategy-related attributes 

are determined through the D-efficient experimental design. 

In addition to the metro-related alternatives, the respondents were provided with three mode alternatives (i.e., 

bus, private car, taxi or e-hailing) in the SP scenarios. The actual level-of-service attributes of these modes were 

accessed with the aid of the Baidu Map API (Application Programming Interface) in light of their own O-D pair 

because this information was not recorded in the RP data. We assume that if a commuter gives up metro service and 

switches to another mode, he/she maintains his/her regular departure time. Specifically, a shift in departure time occurs 

only if the commuter decides to continue travelling by metro. Thus, there are a total of six alternatives (I1, I2,…, I6) 

in each SP scenario. For those who do not have a car or cannot drive a car, we set the availability of I5 to 0 when 

calibrating the choice model. Beyond that, I1, I2, I3, I4 and I6 apply to each choice observation. More explicitly, Fig. 

5 presents the overall design of the questionnaire. 

Attitudinal statements 

To capture respondents’ attitudes, a set of attitudinal statements are used to measure the respondents’ attitudes in terms 

of service quality (SQ), overall impression (OI), external attractiveness (EA) and switching cost (SC). In the actual 

survey, each respondent is asked to score these statements after completing the SP survey using a five-point Likert 

scale ranging from ‘strongly disagree’ to ‘strongly agree.’ The elaboration of SQ, OI, EA and SC is outlined below. 

The SQ reflects customers’ evaluation of the actual service (Zeithaml et al. 1996). A widely accepted 

interpretation was proposed by (Parasuraman et al. 1988), who used five dimensions (i.e., tangibility, reliability, 

responsiveness, assurance and empathy) to measure SC from a general perspective. To make our study realistic and 

helpful to practitioners, we designed the measurement indices with the purpose of fully reflecting the metro service’s 

features. By referring to the passenger satisfaction survey periodically conducted by the operator of Guangzhou Metro, 

we identified the operator’s major concerns, which can be summarised as passengers’ perceived performance with 

respect to a variety of aspects of the service provided. These concerns are reflected in the attitudinal statements (see 

SQ1~SQ5 in Table 1). In this regard, the sequential structure of SQ herein is in line with the opinion of (Kittelson & 

Associates Inc 1999), i.e., that the SQ of public transport reflects the overall perceived performance from the 

perspective of a passenger. 
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Fig. 5 Overall design of the questionnaire 

Note: ‘-’ indicates that the attribute does not apply to the alternative; ‘*’ indicates an RP-based attribute that only 

varies with the respondents’ O-D pairs and therefore remains unchanged in the three scenarios for one respondent; 

and ‘/’ indicates a binary choice between OP and EP. 
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The OI represents commuters’ overall feeling about the current metro service based on their experience, differing 

from SQ, which puts more focus on specific aspects (e.g., cleanliness, punctuality). On the basis of consumers’ overall 

impression of the product (Yancey et al. 2010), we use the OI to represent the metro’s general image from the point of 

view of the commuter (see OI1~OI4 in Table 1), and we speculate that metro commuters’ OI relates positively to their 

behavioural loyalty. From the metro operator standpoint, exploring the role of the OI in commuters’ behaviour is of 

great value in improving user satisfaction, and thereby helps retain as much ridership as possible (Rosell and Allen 

2020).  

The EA indicates the attractiveness of the travel modes (i.e., bus, car, taxi and e-hailing), excluding the current 

choice (i.e., the metro). The inclusion of EA was inspired by the retailing research of Jones et al. (2000), which 

indicated that customers’ repurchase intention increases when the attractiveness of an alternative is weak. Additionally, 

the application of attractiveness to public transport by Li et al. (2018) suggests that car attractiveness is significantly 

related to public transport users’ loyalty. Further, referring to insights from the studies of Ping (1993) and Yan (2004), 

we measure EA in terms of typical service quality indices and willingness to shift to a specific mode (see EA1~EA6 in 

Table 1). 

The SC refers to the cost that a customer might incur as a result of switching products or service providers (Aydin 

et al. 2005; Ibáñez et al. 2006; Mohammadoghli et al. 2013). As Oliver (1999) suggested, SC is recognised as a solution 

to improve customer loyalty. Although the most prevalent SC is monetary in nature, there are also psychological, time-

based or effort-based definitions of SC (Dick and Basu 1994). Following a recent transport study by Li et al. (2018), 

we use SC to capture commuters’ emotional attachment to the current commuting choice, which is believed to be 

instructive for ridership retention in the TDM context. Four statements are designed to measure SC (see SC1~SC4 in 

Table 1). 

The statistical results of the collected responses to the attitudinal statements are reported in Table 1. 

Table 1 Statistical results of responses to the attitudinal statements 

Notion Statements Mean S.D. CITC 

Indicators of SQ (Cronbach α = 0.630) 

SQ1 Metro platforms and carriages are clean and tidy 4.099 .828 .338 

SQ2 The metro is least likely to be affected by weather conditions 4.603 .710 .410 

SQ3 The Passenger Information System (PIS) for the metro is convenient 4.221 .867 .436 

SQ4 The metro responds well to emergencies and passenger complaints 3.926 .941 .405 

SQ5 The punctuality of the metro service is irreplaceable 4.383 .837 .337 

Indicators of OI (Cronbach α = 0.737)    

OI1 I enjoy commuting by metro 4.294 .826 .429 

OI2 I am satisfied with the metro commuting service so far 4.258 .804 .556 

OI3 I would like to keep commuting by metro 4.272 .765 .546 

OI4 I would like to recommend others to choose the metro for commuting 4.232 .854 .591 

Indicators of EA (Original Cronbach α = 0.499, revised Cronbach α = 0.580 after deleting EA4, EA5 and EA6) 

EA1 Driving would give me a better commuting experience than public transport 3.501 1.026 .393 

EA2 Driving would be my ideal choice if there were no traffic jams and parking concerns 3.617 1.141 .417 

EA3 I love the feeling of driving 3.015 1.184 .361 

EA4 Taxi or e-hailing would provide me with comfortable lounge space during commuting 3.523 .990 .224 

EA5 The price advantage of bus travel is an important factor to consider 3.614 1.123 .173 

EA6 Bus stops are widely distributed over the city and have great flexibility 3.175 1.112 .189 

Indicators of SC (Cronbach α = 0.651) 

SC1 I prefer keeping a regular commuting habit rather than trying different ways 3.401 1.115 .311 

SC2 Changing my commuting habit would make me feel uncomfortable 3.015 1.142 .569 

SC3 It may take me some time to get used to a new commuting plan 3.155 1.207 .567 

SC4 A shift in my regular commuting plan may get me in unexpected trouble 3.853 .927 .315 

In addition to the mean value and standard deviation, CITC (corrected item-total correlation) for each indicator 

and Cronbach’s alpha for the four explanatory factors are presented. Generally, the variable should be reserved if the 

value of CITC is greater than 0.3. Additionally, Cronbach’s alpha is commonly used to measure the internal consistency 

among each group of indicators. A higher value of Cronbach’s alpha indicates a more rational structure of the assumed 

factors. As expected, the performance of EA improved when the underperforming indicator in terms of the CITC values 

(i.e., EA4, EA5 and EA6) were dropped.  

To further verify the rationality of the present selection of indicators, a confirmatory factor analysis (CFA) was 

conducted on the expected four explanatory factors. Based on the factor loading results, an indicator with a loading 
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value less than 0.4, i.e., SC1, was removed from the present model due to a weak correlation between SC1 and its 

explanatory factor. As the modification indices suggest, there is a high correlation between OI1 and SQ1. We thus 

removed SQ1 from from the present structure due to a relative low value of factor loading. In addition, an indicator 

that is not sufficiently representative for the explanatory factor, i.e., OI4, was dropped to ensure conceptual consistency. 

The compositions of the explanatory factors were thus determined and were used to measure the latent variables in the 

HCMs. Table 2 presents the final list of the analytic indicators, as well as the factor loadings. 

Table 2 STDYX standardisation results for the analytic indicators 

Service quality  Overall impression  External attractiveness  Switching cost 

Indicator  Est.  Indicator Est.  Indicator Est.  Indicator Est. 

SQ2 0.526  OI1 0.552  EA1 0.572  SC2 0.635 

SQ3 0.613  OI2 0.756  EA2 0.492  SC3 0.896 

SQ4 0.519  OI3 0.567  EA3 0.627  SC4 0.573 

SQ5 0.494  - -  - -  - - 

 

Model Specifications 

A nested logit (NL)-based HCM framework is used to characterise commuters’ behavioural loyalty in terms of the 

shift in departure time and mode choice. As illustrated in Fig. 6, the HCM model structure consists of three components, 

namely, the structural model, the measurement model and the choice model. In particular, we consider two three-level 

nesting structures for the NL model, i.e., nesting by mode shift (Model 1) or departure time shift (Model 2) from the 

top, to explore correlations across different combinations of the alternatives and find a more rational structure for 

interpreting the behaviour of interest. 

 

Fig. 6 Illustration of the HCM-NL model structures 

The structural model represents the relationship between the socio-demographic variables and latent variables, 

and the measurement model further links the latent variables with the attitudinal indicators. In the choice model, two 

NL structures are used to explain commuters’ behavioural loyalty in terms of the shift in departure time and mode 

choice, formed by the combinations among the three departure time-related alternatives (i.e., no shift, depart earlier, 

and depart later) and four mode related alternatives (i.e., no shift, shift to bus, shift to private car, and shift to taxi or e-

hailing). Please note that we use a unique concept for the alternative in the two models, i.e., I1~I6, which is in line with 

the indices used in Fig. 5. 

Structural model 

Our model uses four latent variables, SQ, OI, EA and SC. Each has a structural equation to link the value to the observed 
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socio-demographic variables. We use  to denote the latent variable  of commuter , which we specify in a linear 

formulation as 

   (1) 

where  and  are the coefficient vector and intercept of latent variable  to be estimated and  is the socio-

demographics vector of commuter .  is the assumed stochastic error term of latent variable . It follows a standard 

normal distribution across commuters, with a mean value of zero and standard deviation of . 

Measurement model 

A total of 13 attitudinal statements are selected to help calibrate the choice model. The response to each statement is 

defined as an attitudinal indicator and requires a measurement equation representing its relationship with the 

corresponding latent variable. Many previous studies have thoroughly discussed the specification of measurement 

models under the HCM framework. Based on the five-level response scale for the attitudinal statements, an ordered 

specification was used to represent the ordinal characteristics of the indicators (cf. Daly et al. 2012 and Hess and 

Stathopoulos 2013). We thus used an ordered probit model to explain the value of indicator , linked with the s-th 

attitudinal statement of commuter  and using latent variable  as an explanator such that: 

  (2) 

 (3) 

where  and  are the coefficient and intercept of  to be estimated for the s-th attitudinal statement;  is the 

assumed stochastic error term of , which is normally distributed and has a mean value of zero and standard deviation 

of ;  is the response to the s-th attitudinal statement from commuter ;  is the x-th ordinal scale of the s-th 

attitudinal statement; and  and  are the lower and upper thresholds of . 

We set the first threshold  as 0; therefore, in our case of a five-level response scale, four threshold values are 

required in the measurement model. Namely, we estimate three difference values of the threshold as follows. 

 (4) 

The probability of commuter  responding  to the s-th attitudinal statement can be written as 

 (5) 

 (6) 

where  is the cumulative distribution function of the standard normal distribution. 

Choice model 

In the NL model, we use  to denote the probability of commuter  choosing alternative , where , with  

being one of the nests . This can be expressed as 

  (7) 

where  is the conditional probability of commuter  choosing alternative  in nest , and  is the marginal 

probability of commuter  choosing nest . 

The general derivative formulae for calculating  and  are given by 
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(8) 

 
 

(9) 

  (10) 

where  is the logsum term reflecting the lower-level effects on the upper level;  is the upper-level scale parameter; 

 is the lower-level scale parameter of nest . As the normalisation of the NL model is done from the top, we 

estimate for each nest containing at least two alternatives, where  and ;  is the lower-level utility 

perceived by commuter  when choosing alternative  in nest ;  is the upper-level utility perceived by commuter 

 when choosing nest ; and  is the set of alternatives in nest . 

There are five specific parts of the utility function, i.e., situational attributes, latent variables, socio-demographic 

variables, constants and model parameters. A detailed specification is outlined below (an explicit illustration of the 

indices for the alternatives used below is available in Fig. 6). 

The situational attributes can be categorised into the level-of-service attributes and the TDM strategy-relevant 

attributes, as illustrated in Fig. 4. Specifically, the considered level-of-service attributes include travel time (TT, applied 

to I1~I6, with coefficients varying with travel mode), travel cost (TC, applied to I1~I6, reflecting the total monetary 

cost of, for example, the ticket, fuel and parking fees, with the same expected coefficient across alternatives), no 

transfer required on the bus trip (BT, indicating that the commuter does not need to transfer if he/she switches to the 

bus; in other words, there is a direct bus connecting the O-D of this respondent, which is expected to increase the 

probability that I4 will be chosen), taking the bus on either side of the major trip (FB, applied to I4, as we expect that 

commuters who initially take the bus to bridge their metro trip are more likely to shift to bus), and pick-up time (PT, 

applied to I6, indicating the extra time cost of waiting for the taxi or e-hailing service compared to the cost of I5, which 

is automatically collected through Baidu Map API). Additionally, five dedicated situational attributes are used to 

capture the impact of TDM strategies on commuters’ metro trips: WT (applied to metro-related alternatives I1, I2 and 

I3), OP (applied to I1~I3), EP (applied to I1~I3), AT (applied to I1) and DT (applied to I3), as concretely specified in 

the survey design subsection. In particular, OP and EP are included in the utility function independently rather than 

being incorporated into TC. The reason for this is to isolate the impact of the dynamic pricing strategy, thereby 

capturing commuters’ price sensitivity in the TDM context separately. 

The first and second latent variables, SQ and OI, measure commuters’ perceived metro service quality and their 

overall feeling about the current metro service, respectively, which are both expected to be positively related to 

commuters’ behavioural loyalty, i.e., to have a positive impact on retaining metro ridership. Based on this speculation, 

SQ and OI are included in the utility functions of I1~I3. The third latent variable, EA, reflects the attractiveness of all 

the travel modes except the metro, especially for the private car, according to the results of CFA. We thus expect that 

a higher EA results in lower behavioural loyalty to the metro service and positively contributes to the perceived utility 

of I5. The fourth latent variable, SC, focuses on capturing the psychological cost of overcoming the aversion to 

adjusting one’s commuting habits, which is expected to have a positive effect on maintaining loyalty in the TDM 

context. SC is thus applied to the reference alternative with neither a mode shift nor a departure time shift, i.e., I2. 

The socio-demographics are used in both the measurement model and choice model and include gender, age, 

income, education and employment, as clearly presented in the following estimation results. Additionally, there are 

four alternative-specific constants (ASCs) in each model to help capture the impact of unobserved factors. For a nest 

containing n alternatives, we chose one alternative as the reference and added ASCs to the utility functions of the other 

 alternatives. For instance, in M1 of Model 1, ASCs are used in the utility functions of I1 and I3 since I2 is chosen 

as the reference alternative. 

Regarding the panel effect in the sample set, special care is required in relation to identification and normalisation, 

which is discussed in detail by Walker et al. (2007). To capture potential individual-specific effects, an error component 

(EC) is included in each alternative, with the same variance but different draws for each alternative. 
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Results and implications 

This section presents the model estimation results based on the model specification described above, as well as the 

implications of the results.  

Model estimation results 

With the model specification described above, two HCM-NL models are calibrated with Monte Carlo integration (500 

MHLS draws) using Python Biogeme, an open-source software developed for estimating discrete choice models 

(Bierlaire 2015; 2016a; 2016b). The results of the choice model component are displayed in Table 3, together with the 

interpretation of the variables used. 

Table 3 Results for the choice model component 

Variable Interpretation 
Apply 

to1 
Model 1  Model 2 

Est. t-rat.  Est. t-rat. 

Situational variables       

TT 

Travel time for metro (hours) I1~I3 -0.479 -2.84  -0.682 -3.12 

Travel time for bus (hours) I4 -0.604 -3.97  -0.729 -4.03 

Travel time for private car, taxi or e-hailing (hours) I5, I6 -0.855 -2.10  -1.22 -2.23 

TC Travel cost (CNY) I1~I6 -0.00945 -2.93  -0.0137 -2.49 

WT Extra waiting time at control point (hours) I1~I3 -2.81 -11.25  -3.89 -10.75 

AT Ahead of departure time (hours) I1 -0.187 -8.19  -0.234 -8.14 

DT Delay of departure time (hours) I3 -0.151 -5.32  -0.158 -4.24 

OP Off-peak discount (%) I1~I3 0.746 4.46  0.994 5.21 

EP Extra peak charge (%) I1~I3 -0.635 -2.71  -1.07 -2.33 

BT No transfer required on the bus trip (1 yes; 0 no) I4 0.0634 2.07  0.0279 1.80 

FB Taking bus on either side of the major trip (1 yes; 0 no) I4 0.305 3.01  0.367 3.21 

PT Pick-up time for taxi or e-hailing (hours) I6 -2.03 -2.20  -2.59 -1.87 

ASC Alternative-specific constants 

I1 1.47 5.21  0.595 3.84 

I2 -2 -  -1.07 -2.22 

I3 0.373 2.78  - - 

I4 0.497 2.17  1.13 2.29 

I5 -1.67 -3.28  -1.90 -3.07 

 Scale parameter 

M1 1.29 7.98  2.88 4.96 

M2 1.86 4.81  1.66 9.34 

M3 1.10 5.82  1.19 7.29 

EC S.d. for error component I1~I6 0.0292 0.251  0.0458 0.124 

Latent variables       

SQ Service quality I1~I3 0.0731 2.35  0.0844 2.16 

OI Overall impression I1~I3 0.163 5.25  0.152 4.95 

EA External attractiveness I5 0.513 3.55  0.447 3.64 

SC Switching cost I2 1.18 2.93  1.24 3.07 

Socio-demographics       

GEN Male I2 0.184 3.04  0.327 2.88 

EDU1 Master degree or above 
I5 0.913 2.33  0.917 2.08 

I6 1.41 5.49  1.52 5.35 
INC1 Monthly income < 6k  I4 0.122 2.01  0.134 1.92 

INC2 Monthly income >10k  
I5 0.521 2.86  0.504 2.60 

I6 0.946 4.59  1.05 4.54 

EMP Work for government departments or institutions I5 1.04 3.63  1.30 3.98 

Model summary       

Number of parameters  31  31 

Sample size  2556  2556 

Log-likelihood  -3046.752  -3037.427 

Rho-squared value  0.266  0.268 

Adjusted rho-squared value  0.258  0.261 
Non-nested Hyp. Test to reject Model 1  NA  <0.001 

1 The column ‘apply to’ indicates where the variable is used in utility functions. For the indices for the alternative and nests, see Fig. 

6. 2 The hyphen ‘-’ implies the variable not modelled in the model specification. 
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For the situational variables, the two most commonly discussed variables of TT and TC present significant 

negative estimates, as expected. We observe a higher value-of-time for the bus, private car, and taxi or e-hailing than 

for the metro, indicating that mode shift decisions are usually driven by a strong time sensitivity. WT reflects the 

perceived utility of queuing for batch release under passenger flow control. The estimated coefficients of -2.81 and -

3.89 in the two models indicate a negative impact on commuters’ willingness to continue travelling by metro. The 

estimated coefficients of AT and DT are negative in both models, with a high level of confidence; this result suggests 

a positive sensitivity to commuters’ behavioural loyalty, especially in terms of maintaining the current choice of 

departure time. In addition, OP and EP have the opposite effect of incentivising commuters’ peak-avoidance choice, 

implying the important role of the price factor in TDM practices. 

To further compare the effects of OP, EP and TC, we assume that the average metro fare is 5 CNY in light of the 

RP responses collected in this study. The units of OP and EP can be converted from % into CNY by dividing by the 

average metro fare. Taking Model 1 as an example, the coefficients of OP and EP are thus estimated at 0.149 and -

0.127 in CNY, with higher absolute values than that of TC, implying that commuters are more sensitive to the fare rate 

variations than to the base price. We thus speculate that the current ticket price is at a slightly higher level; thus, a small 

fare reduction or extra charge can incentivise a shift in departure time choice. 

TT and TC aside, further explanation is provided by the other level-of-service attributes. The bus is often 

considered the natural second choice for metro commuters. The positive coefficient of BT indicates that commuters 

are more liable to shift to the bus if no transfer is required. We also explore the potential relationship between bridging 

mode choice and commuters’ behavioural loyalty. The positive coefficients of FB demonstrate that commuters who 

originally take the bus to bridge metro trips tend to shift to the bus completely in the TDM context. Additionally, the 

coefficient of PT indicates a negative perception of choosing to switch to a taxi or e-hailing, reflecting commuters’ 

aversion to the extra waiting time. 

In terms of the latent variables, the estimates for SQ are 0.0731 and 0.0844 in the two models, implying that 

commuters’ perceived service quality positively contributes to behavioural loyalty, thus leading to a high dependence 

on the metro service. The signs of OI are also significant and indicate a positive effect on commuters’ willingness to 

continue travelling by metro. The third latent variable, EA, captures the external factors that potentially attract 

commuters to shift to using a private car, with estimated coefficients of 0.513 and 0.447 in the two models, creating a 

negative impact on commuters’ loyalty to the metro. Additionally, we put SC in I2, which eventually leads to a positive 

coefficient. The inclusion of SC further explains commuters’ preference for their original commuting plan. 

Four ASCs are used to capture the impacts of unconsidered factors. In Model 1, the positive ASCs for I1 and I3 

indicate that commuters tend to adjust regular departure time under the condition of continuing to travel by metro (i.e., 

in M1). Regarding M3 (the nest of shifting to another mode), commuters have a preference for shifting to a bus (I4) 

compared to personal transport (M2). Furthermore, there are unobserved factors that make I6 more desirable than I5 

in M2. In Model 2, the positive estimates for I1 in M3 imply that commuters dislike departing later (I3) if they decide 

to shift their departure time. In M2—namely, on the premise of intending to stay with the current departure time—the 

negative estimate for I2 suggests that continuing to travel by metro (I2) is less desirable than shifting to personal 

transport (M1). The positive ASC for I4 has the opposite meaning. With respect to M1, the negative ASC for I5 is in 

line with that of M2 in Model 1. 

Additionally, a series of socio-demographic variables help explain commuter behaviour and improve the model 

fit. Men rely more on the previous choice and express more preference for I2 than women. The influence of income 

level varies by the position in the utility function. The lower-income group is more likely to shift to the bus due to the 

considerable price advantage. On the other hand, those with a monthly income higher than 10,000 CNY are more in 

favour of personal transport. Specifically, we allow different coefficients of INC2 to capture the unobserved factors in 

I5 and I6 separately for a better model fit. Similarly, the signs of EDU indicate that the group with higher education is 

also inclined to shift to personal transport. In addition, commuters who work for government departments or institutions 

prefer shifting to private cars. The most likely cause is that most of these commuters have easy access to a parking 

space at their workplace. 

The pseudo-panel effect in the two models is examined using the error component terms, and the estimated 

coefficients of the standard deviation for EC are not significant. Both absolute t-values are less than 1.0, indicating no 

significant individual-specific effects in the sample set except for the correlation across choices captured by the latent 

variable. 

Overall, both models have the correct signs and are statistically significant. We then turn our attention to the 

scaled parameters  in the two nesting structures. The decreasing value of the scaled parameters indicates an 

increased correlation across the alternatives contained in nest (Bierlaire 2009; Hess et al. 2012). The base value of 
m

µ µ
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1 indicates an absence of correlation, which is equivalent to the MNL model. According to the estimates of  

presented in Table 3, in Model 1, the scaled parameters for M1 (containing I1, I2 and I3), M2 (containing I5 and I6) 

and M3 (containing I4 and M2) are 0.775, 0.591 and 0.909, respectively. In Model 2, the scaled parameters for M1 

(containing I5 and I6), M2 (containing I2, I4 and M1) and M3 (containing I4 and M2) are 0.576, 0.602 and 0.840, 

respectively.  

A relatively high correlation is observed in M2 of Model 1 and M3 of Model 2, i.e., shifting to personal transport. 

In contrast, the scaled parameter for M3 of Model 1 has a comparatively high value, indicating that only low levels of 

correlation arise in this nest. By comparing it with M2 of Model 2, the inclusion of I2 strengthens the correlation across 

the alternatives in the nest. Furthermore, based on the specification of Model 2, we tested another specification in 

which I2 and I4 were put in an additional nest within M2, given that both of these alternatives are associated with 

public transport. However, the scaled parameter for this additional nest almost collapsed to a value of 1, which indicates 

that this specification was rejected.  

In terms of the adjusted rho-squared value, both Models 1 and 2 have acceptable goodness-of-fit, suggesting that 

it is reasonable to choose to use either specification. Model 2 has a higher adjusted rho-squared value, and performs 

better in light of the scaled parameters. Additionally, considering that Model 1 is not a restricted version of Model 2, 

we used the non-nested hypothesis test to compare the base Model 2 and the alternative specification (Model 1). This 

test is based on the hypothesis that the model with the lower rho-squared value is the true model. Following the 

approach proposed in (Horiwitz et al. 1986) and further illustrated in (Koppelman and Bhat 2006), in this test, the null 

hypothesis that Model 1 is the true model is rejected at the significance level determined by Eq. (11). 

  (11) 

Where  is the significance level that the null hypothesis is rejected;  and  are the adjusted rho-squared values 

for the models with the higher and lower value, respectively;  is the log-likelihood at zero, ; 

 and  are the numbers of parameters in models H and L, respectively; and  is the standard normal 

cumulative distribution function. 

Since the two models have the same number of parameters, the term  drops out, and Eq. (11) for the 

test of Model 1 being true is:   

  (12) 

The above result implies that the null hypothesis is rejected. We thus consider Model 2 to be more conceptually 

appropriate than Model 1, suggesting that nesting by the departure time shift is more suitable for interpreting 

commuters’ behavioural loyalty. 

Results for the structural and measurement model components in Table 4, with a few exceptions, presents very 

similar estimates of parameter in the two models. The structural model specifies linear relationships where SQ, OI, EA 

and SC are represented by different combinations of socio-demographic variables and random disturbance terms. The 

measurement model builds the equations between the latent variables and attitudinal indicators in an ordered probit 

specification. The signs of all the involved parameters are significant and are in line with expectations.  

Implications 

This study provides insights into the factors influencing metro commuters’ behavioural loyalty as these factors directly 

determine the performance of TDM strategies and can thus offer indispensable references for both researchers and 

practitioners.  

For researchers who focus on optimising either passenger flow control strategies  (Li et al. 2017; Liu et al. 2020; 

Shi et al. 2019) or dynamic pricing strategies (Huang et al. 2016; Liu and Wang 2017; Peng et al. 2016; Rantzien and 

Rude 2014), our findings are helpful in correcting the biases in the base demand patterns by including commuters’ 

responses to the target strategy, and thereby lead to more desirable strategy outcomes. Additionally, the inclusion of 

SQ, OI, EA and SC provides a new point of view for interpreting commuters’ behaviour mechanisms, which is 

particularly beneficial in extending the existing conceptual models (Gao et al. 2020; Jia et al. 2018; Mijares et al. 2016) 

from a more practical standpoint. 

Practitioners in the field of public transport, especially metro operators, will also find this study helpful in 

preventing commuters from shifting to other travel modes, given that retaining existing customers is considerably less 

costly than attracting new customers (Hart et al. 1990; Reichheld and Schefter 2000). Specifically, public transport 

operators need to reflect on the service provided, e.g., whether trains arrive at the scheduled time during the morning 

rush hour, whether the PIS displays useful and accurate information, and whether emergency services are broadly 

m
µ

2 2 1/2

H L H L( 2( ) (0) ( ))LL K Kk r ré ù=F - - - ´ + -ë û
k

H
r

L
r

(0)LL (0) 4149.847LL = -

H
K

L
K [ ]F ×

H L( )K K-

[ ]1/24149. 1)( 2(0.260 0. 484258) ( ) .074 0. 07 0k é ù= F - - - ´ - = F - <ë û



 

15 

 

available; all these points prove to be significant for commuters’ perceived service quality and behavioural intention 

to continue travelling by metro. Commuters’ overall impression of the current service is an important reflection of 

loyalty, implying that more effort is needed to understand commuters’ feedback, e.g., by conducting online or face-to-

face satisfaction surveys. Additionally, it is crucial for metro operators to identify the commuters who are most 

dependent on their service using insights into the latent variables of external attractiveness and switching costs. On the 

other hand, for commuters who currently commute by metro but for whom a direct bus service is unavailable (either 

due to an inconvenient location or a long commuting distance), more attention to maintaining their regular metro 

service is sorely needed in the development of TDM strategies. This can easily lead to high returns of commuter loyalty 

compared to those commuters who have more appealing alternatives for their commuting trips.  

The statistical results of two typical level-of-service attributes of a metro and its alternative commuting modes 

are presented in Fig. 7, which include O-Ds departing from the top 5 busiest stations (during the morning peak, from 

7:00 am to 9:00 am) in the Guangzhou Metro network. 

 

Fig. 7 Statistical results for the level-of-service attributes of different modes 

The O-Ds used in the statistics were collected from the smart card data on a working day in December 2019. The 

level-of-service attributes of different modes were then obtained from the Baidu Map API. These five stations are all 

located in residential areas of Guangzhou city. The bus travel times for Da Shi (DS) and Shi Qiao (SQ) are 

comparatively longer than those of the other three stations, indicating that commuters who depart from DS and SQ are 

less likely to shift to the bus; however, they undergo more transfers on the metro trip. In this context, if passenger flow 

control measures are implemented at SQ, a supporting strategy of dynamic pricing may be effective in preventing these 

commuters from shifting to personal transport. In summary, the findings of this study enable metro operators to clearly 

understand the competitiveness of different modes in their circumstances, which is of great importance for staying 

competitive in the TDM context. 

 

Conclusions 

The present work focuses on the increasingly common demand management practices in metro systems. We conducted 

an SP-off-RP-like survey of regular metro commuters to reveal their behavioural loyalty in the TDM context. The 

HCM framework was used to model commuters’ departure time and mode shift behaviour and provides insights into 

how attitudinal factors affect commuters’ behavioural loyalty. In particular, two nesting structures are examined to 

seek a better model specification for the behaviour of interest. Several conclusions can be drawn from this study. 

According to the five dedicated situational variables for characterising the impact of TDM strategies, we found 

that commuters are highly sensitive to any form of delay caused by passenger flow control extends their normal travel 

time on their daily commuting trip. They tend to change their departure time only if the shift helps reduce the extra 

delay considerably. Regarding the perception of the dynamic pricing strategy, commuters show different responses to 

the base fare and the differential fare rates, which indicates commuters’ dissatisfaction with the current pricing rules. 

In regard to the newly adopted off-peak discount or extra peak charge, they tend to make a shift in their regular 

departure time, which is unfavourable for retaining ridership. We also observed a connection between the mode choice 

on the feeder trip and the mode shift preference on the major trip. Those who originally take the bus to bridge the metro 

trip have a higher probability of shifting to the bus completely in the TDM context. 
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Insights into attitudinal factors were provided in the following four areas. First, commuters’ perceived metro 

service quality has a positive effect on retaining commuters, which suggests that the metro operator should take 

additional steps to deal with the declining transport service and prevent the loss of ridership due to TDM strategies. 

Second, the overall impression reveals commuters’ overall opinion of the current service and their satisfaction to some 

extent, showing benefits in reducing commuters’ behavioural changes. Third, the external attractiveness of private cars 

influences commuters’ loyalty to metros the most significantly in contrast to other alternative modes. Thoughtful 

attention should be paid to the policymaking process to avoid creating increased car dependence. Fourth, the switching 

cost reflects the potential psychological cost of breaking already developed commuting habits and has a positive 

correlation with behavioural loyalty, illustrating commuters’ aversion to rescheduling their commuting trips. 

Overall, the present work helps better understand commuters’ response to TDM strategies, which is essential for 

a metro operator to know what commuters think about their work and to find ways to guarantee the commuting service 

in challenging situations. Additionally, the finding regarding commuters’ behavioural loyalty serves as the basis to 

forecast demand patterns in the context of policy intervention, which can in turn guide policymaking. Undoubtedly, 

there is still room for improvement in choice modelling, which can be achieved by investigating different types of 

decision heuristics in commuting behaviour, examining cross-nested model specification, and further exploring 

heterogeneity across respondents. 
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Table 4 Results for structural and measurement model components 

Variable Interpretation 
Service quality  Overall impression  External attractiveness  Switching cost 

SQ2 SQ3 SQ4 SQ5  OI1 OI2 OI3  EA1 EA2 EA3  SC2 SC3 SC4 

Model 1: 

Measurement model component  
    

 
   

 
 

      

 Coefficient for  
the attitudinal indicator 

1.0 
0.466 
(2.78) 

0.107 
(2.42) 

0.722 
(3.11) 

 
1.0 

0.176 
(2.17) 

0.188 
(2.05) 

 
1.0 

1.97 
(2.52) 

10.2 
(2.71) 

 1.0 
2.35 

(3.87) 
2.37 

(3.74) 

 Intercept for 
the attitudinal indicator 

0.0 
0.954 
(3.25) 

1.62 
(6.92) 

0.465 
(2.19) 

 
0.0 

2.61 
(7.55) 

1.84 
(5.87) 

 
0.0 

-1.57 
(-2.10) 

-16.6 
(-2.58) 

 0.0 
-1.46 

(-2.48) 
-0.835 
(-1.85) 

, ,  Interval for the ordinal scales 
0.630(18.94),  

0.756(37.38), 1.03(66.83) 
 0.543(13.47), 

0.869(32.92), 1.11(63.10) 
 0.830(37.91), 

0.965(58.33),0.733(48.70) 
 

0.737(37.50), 
0.808(51.89), 1.05(58.41) 

Structural model component        

 

GEN Male -  -0.0174(2.45)  0.0618(2.40)  -0.0250(-2.75) 

AGE1 Age 25-50 -  -  0.00561 (1.87)  -0.103(-4.00) 
AGE2 Age  > 50 3.41(2.84)  0.559(3.96)  -  - 
INC1 Monthly income < 6k  -  -0.236(-5.51)  -  0.0407(3.11) 
INC2 Monthly income >10k  -  -  0.00947(2.09)  - 

EDU2 Technical school or below -0.0672(-2.68)  -  -  - 
EDU1 Mater degree or above 0.263(3.52)  0.262(3.20)  -0.0202(-2.39)  - 
EMP Government employee -  -  -  -0.0319(-3.07) 

 Intercept for the latent variable 2.90(62.15)  2.58(44.15)  1.73(50.89)  1.26(38.02) 

 S.d. for the latent variable 0.510(15.24)   0.489(18.11)  0.391(15.97)  0.694(14.21) 

Model 2: 

Measurement model component 
 

 
 

 
 

        

 Coefficient  for  
the attitudinal indicator 

1.0 
0.408 
(2.71) 

0.0917 
(2.34) 

0.603 
(2.94) 

 
1.0 

0.171 
(2.35) 

0.223 
(2.66) 

 
1.0 

2.10 
(2.41) 

10.7 
(2.58) 

 1.0 
2.42 

(3.73) 
2.44 

(3.71) 

 Intercept  for  

the attitudinal indicator 
0.0 

1.12 

(3.10) 

1.65 

(8.51) 

0.812 

(1.92) 

 
0.0 

2.42 

(7.41) 

1.70 

(5.72) 

 
0.0 

-1.81 

(-1.89) 

-17.5 

(-2.47) 
 0.0 

-1.55 

(-2.45) 

-0.926 

(-1.89) 

, ,  Interval of the ordinal scales 
0.629(18.94), 

0.757(37.38), 1.03(66.82) 
 0.544(13.48), 

0.868(32.90), 1.11(63.10) 
 0.830(37.93), 

0.965(58.33),0.733(48.70) 
 

0.737(37.50), 
0.807(51.89), 1.05(58.41) 

Structural model component            - 

 

GEN Male -  -0.0122(2.33)  0.0587(2.37)  -0.0243(-2.73) 
AGE1 Age 25-50 -  -  0.00531(1.94)  -0.0997(-3.85) 
AGE2 Age  > 50 3.69(2.76)  0.475(3.26)  -  - 
INC1 Monthly income < 6k  -  -0.214(-5.40)  -  0.0395(3.05) 
INC2 Monthly income >10k  -  -  0.00894(2.05)  - 

EDU2 Technical school or below -0.0709(-2.65)  -  -  - 
EDU1 Mater degree or above 0.227(3.44)  0.242(3.45)  -0.0190(-2.32)  - 
EMP Government employee -  -  -  -0.0312(-3.04) 

 Intercept for the latent variable 2.88(63.62)  2.54(44.68)  1.75(51.56)  1.28(37.82) 

 S.d. for the latent variable 0.507(14.87)   0.495(18.40)  0.380(16.11)  0.686(14.36) 
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