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Equation Chapter 1 Section 1 

Abstract: Driving behaviours, induced by psychological activities and environment stimulation, impose the 

dominant impact on vehicle driving performance. To exhaustively improve the performance of electric 

vehicles (EVs), information unscrambled from various driving behaviours is recommended to be incorporated 

into the controlling process. In this context, a novel method is presented to regulate the torque demand of EVs 

with single pedal driving (SPD) that efficiently interprets intention from different driving behaviours for eco 

driving. Specifically, a brand-new driving behaviour identifier (DBI) is constructed by integrally employing 

the binary dragonfly algorithm (BDA) and adaptive neuro-fuzzy inference system with particle swarm 

optimization (ANFIS-PSO). Simultaneously, the whale optimization algorithm (WOA) generates the torque 

demand look-up tables (TDLTs) offline under different driving behaviours for SPD by referring to the 

constraints from drivability and energy efficiency. In the instant implementation, the driving behaviours are 

identified instantaneously by the DBI, and the homologous TDLTs are assigned to vehicle controller, thereby 

attaining efficient control of vehicle powertrain. A case study about the vehicle traction control is performed 

to validate the prospective optimal performance of the proposed method and further evaluate the impact on 

vehicle performance from driving behaviours. 

Key words: Driving behaviours, binary dragonfly algorithm (BDA), adaptive neuro-fuzzy inference system 

with particle swarm optimization (ANFIS-PSO), whale optimization algorithm (WOA), single pedal driving 

(SPD). 
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Abbreviations 

EV electric vehicle TPD two-pedal driving 

SDP stochastic dynamic programming VCU vehicle control unit 

DBI driving behavior identifier MCU motor control unit 

BDA binary dragonfly algorithm PMSM permanent magnet synchronous motor 

ANFIS adaptive neuro-fuzzy inference system  ECM efficient equivalent circuit model 

PSO particle swarm optimization SOC state of charge 

WOA whale optimization algorithm FLC fuzzy logic control 

TDLT torque demand look-up tables ANN artificial neural network 

HEV hybrid electric vehicle RMSE root mean square error 

FCEV fuel cell electric vehicle DA dragonfly algorithm 

RBS regenerative braking system GA genetic algorithm 

SPD single pedal driving DP dynamic programming 

Symbols 

motT
 

torque provided by motor ( )f x
 fitness function of ANFIS-PSO 

m  vehicle mass S  feasible space 

frg
 

final gear efficiency iy
 

estimation value 

 frN
 

final gear ratio ˆ
iy
 

real value from the training data 

wr  wheel radius X  current position of single dragonfly 


 air density jX

 
position of j th neighboring individual 

 dC
 aerodynamic drag factor N  neighbour scale 

 dA
 

frontal area jV
 

velocity of j th neighboring individual 

v  vehicle speed fX
 

position of food source 

g
 gravity acceleration EX

 
position of food source 

f
 rolling resistant factor s  weight for separation 

  road gradient a  weight for alignment 

em
 

angular speed of electric motor c  weight for cohesion 

PMSMP
 

power of PMSM f
 weight for attraction 

PMSMT
 

torque of PMSM e  weight for distraction 

mot
 motor efficiency in tractive mode   inertia weight 

gen
 

motor efficiency in generator mode 1tX 
 

step of next movement 

tracT
 

vehicle tractive torque tX
 

step of current movement 

battI
 battery current r  random value  

battV
 battery open circuit voltage ( )ERR D

 classification error rate 
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battr
 battery inner resistant R

 
number of filtered features 

battP
 

battery power N
 

total number of the candidate features 

SOC  battery SOC   
complement parameters to weigh the 

selection error rate  

battQ
 battery capacity 

 

complement parameters to weigh the 

selection error ratio 

ja
 

premise parameters of fuzzification t  iteration number 

jb
 

premise parameters of fuzzification A  coefficient vector 

jc
 

premise parameters of fuzzification C  
coefficient vector 

1I
 

mentioned inputs X


 
best solution position 

2I
 

mentioned inputs X  position vector 

jA
 

membership function a  

vector that linearly decreases from 2 to 0 

with the iteration going 

1

jO
 

output of fuzzification layer r  random vector in [0, 1] 

jp
 

consequent parameter of 

defuzzification 
D  

distance of certain to the current best 

solution 

jq
 

consequent parameter of 

defuzzification 
b  

constant value to formulate profile of the 

spiral path 

jr
 

consequent parameter of 

defuzzification 
l  a random number in [-1, 1] 

,i nX
 

position of the i  th particle at n  th 

iteration 

p
 random value in [0, 1] 

,i nV
 

velocity of the i  th particle at n  th 

iteration 
randX  

random chosen position vector from 

current population 

j
 dimension space X  

search agent that represents solutions of 

the optimization problem 

1c
 

acceleration coefficient ressm
 

velocity resulted from solutions in current 

step 

2c
 

acceleration coefficient v  
reference velocity from the given driving 

cycle 


 uniformly distributed random variable refV

 

penalty matrixes in MPC based optimal 

tracking 


 uniformly distributed random variable 1  

weight ratio 

,i nP
 

personal best position 2  
weight ratio 

nG
 

global best position   
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I. INTRODUCTION 

Electrified transportation has made significant contribution to environment protection, global warming 

mitigation and energy consumption structure adjustment [1, 2]. A large amount of validated solutions have 

emerged in the evolution of electrification, including electric vehicles (EVs) [3], hybrid electric vehicles 

(HEVs) [4] and fuel cell electric vehicles (FCEVs) [5]. To fully advance the potential of these outstanding 

solutions in energy saving, key control techniques [6, 7] in these solutions deserve to be carefully investigated. 

For EVs, driving requirement is usually regulated by the torque demand look-up tables (TDLTs), which mainly 

account for translating the driving intention into torque requirement of electric powertrains and are rather 

critical for efficient driving. To attain the full-state eco-driving, it is quite recommended to develop a novel 

method that can generate efficient TDLTs under different driving behaviours, so as to optimally regulate the 

toque demand with the strengthened energy-efficiency for EVs. To fully promote the capacity of electrified 

transportation in energy saving, researches on key technologies have gained promising progress. Aiming to 

properly manage power flow within hybrid powertrain, a variety of control strategies have been spurred, 

including rule based strategies [8, 9], global optimization based strategies [10, 11], instantaneous optimization 

based strategies [12, 13], and machine learning based strategies [14, 15]. All the methods declare to lead to 

massive advantages in improving energy-efficiency under certain conditions. On the other hand, the capability 

of fully recycling braking energy is one notable preponderance in electrified transportation. To maximize the 

recycling of regenerative braking energy without scarifying drivability and safety, some well-designed 

regenerative braking systems (RBSs) have been devised [16], and the fully- and partially-coupled solutions  

are widely adopted [17]. In addition, full consideration of driving behaviours can contribute to promotion of 

energy economy, and similarly eco driving assistant systems were developed in past years to educate driving 

vehicles with eco-friendly manners and partial interpretation of driving behaviours [18, 19].  

Among the promising key techniques for energy saving, single pedal driving (SPD) [20] is one innovative 

solution for EVs. The SPD cannot only bridge driving behaviours with vehicle plants, but also imitate engine 

braking in EVs during the cruise stage and maximize the recycled braking energy in urban roads [21]. Currently, 

studies on SPD have been progressively advanced. The methods to maximize regenerative braking energy in 

EVs with SPD is proposed in [22] for energy economy promotion of EVs. The introduction of SPD might alter 

the driving manners, probably discounting driving safety and driving comfort. Some related studies have been 
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performed to guarantee driving safety and prompt driving comfort. Ref. [23] presents a joint method to 

successfully improve driving safety of SPD in EVs under multiple constraints. Ref. [24] investigates the 

performance of haptic pedal feel compensation for improving driving comfort of SPD. The experimental 

results indicate that the haptic pedal feel compensation can minimize the solid braking instance and smooth 

the driving comfort evidently. Similar with traditional two-pedal driving (TPD), manoeuvres of drivers on 

acceleration pedals in SPD are also transformed into driving torques by TDLTs. Driving intentions resulted 

from different behaviours are conveyed to vehicle via pedals in SPD and TPD, and will affect energy 

consumption after incorporation of the specific torque demand obtained by TDLTs. The close coupling 

between driving behaviours and energy consumption suggests the study on torque demand regulation in EVs 

with SPD for efficient driving after integrating driving behaviours. The torque demand regulation for EVs with 

SPD integrates driving behaviours analysis, to the best of authors’ knowledge, is rarely investigated. Actually, 

most of the existing solutions to regulate the torque demand of EVs with SPD belong to rule based methods 

[25]. By applying the well-designed deterministic rules [26] or fuzzy rules [27], the torque demand is optimized 

for EVs with SPD to maximize energy utilization efficiency without influencing drivability. In [28], specific 

torque demand regulation is conducted by means of an exquisitely devised fuzzy controller which outputs 

appropriate regenerative braking torques generated by acceleration pedal, thereby reducing electricity during 

eco-driving. While, rule based methods are difficult to further improve the performance of torque demand 

regulation, and instead optimization theories, which, up to now, are seldom applied in torque regulation of EVs 

with SPD, may supply an alternate manner to attain the promotion. 

It is known that driving behaviours show massive influence on vehicle performance in different 

perspectives. The driving behaviours express psychological activities of drivers after receiving stimulations 

from environment [29]. In recent years, studies on driving behaviour analysis have continuously emerged, 

mainly including driving behaviour generation and driving style classification. In the fields related to driving 

behaviour generation, qualitative and quantitative analysis methods have been widely employed to uncover 

the factors that may cause and alter driving behaviours [30, 31]. Driving behaviour classification is tightly 

connected with human-machine driving in autonomous vehicles [32, 33]. Machine learning methods [34] and 

deep learning algorithms [35] have been proposed to efficiently identify different driving behaviours. Despite 
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the satisfying achievement, driving behaviour analysis in studies related to torque demand regulation in EV 

with SPD is still located in its preliminary stage.   

According to the literature review, EVs with SPD raise massive potential in eco-driving, of which the 

torque demand regulation can be exquisitely conducted under different driving behaviours. After minutely 

studying the state-of-the-art methods related to identification and application of driving behaviours, a novel 

torque demand regulation method, with the integration of driving behaviour identification, is proposed for EV 

with SPD to attain eco-driving under different driving behaviours. To be specific, an efficient driving 

behaviour identifier (DBI) is firstly constructed, wherein the adaptive neuro-fuzzy inference system with 

particle swarm optimization (ANFIS-PSO) classifies driving behaviours on the basis of inputs that are selected 

by the binary dragonfly algorithm (BDA). Then, a novel torque demand regulation method is raised to achieve 

eco-driving. By referring to the classified driving behaviours, the customized TDLTs for different driving 

behaviours are generated offline by the whale optimization algorithm (WOA). In practical implementations, 

the generated TDLTs for various driving behaviours, together with the novel DBI, are programmed into vehicle 

control unit (VCU). The DBI identifies driving behaviour instantaneously, and VCU calculates the required 

tractive torque accordingly based on the specific TDLT corresponding to the classified driving behaviour. Four 

main contributions highlighting the research importance are added to the existing literature, and can be 

summarized as: 

1) A novel driving behaviour-oriented torque demand regulation method is proposed for EV with SPD. By 

optimally regulating the torque demand under disperse driving behaviours, the eco-driving potential of 

the studied EV with SPD can be further advanced.  

2) An efficient DBI is constructed in the novel torque demand regulation method to effectively categorize 

driving behaviours in real-time implementation. To promote classification accuracy, the ANFIS-PSO and 

BDA are integrally employed in DBI construction. The BDA selects the valuable input features among 

the transferred signals as the inputs of ANFIS-PSO algorithm.  

3) The WOA is exploited in the novel torque demand regulation method to optimally generate TDLTs for 

eco-driving under various driving behaviours.  
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4) A case study in terms of optimal traction control for EV with SPD is performed to validate the superior 

performance of the raised torque demand regulation method, and further address the essential role of 

driving behaviours under efficient driving conditions.  

The remainder of this paper is organized as follows. The studied EV and related model construction are 

described in Section II. The designed torque demand regulation method, incorporating DBI design and TDLTs 

generation is elaborated in Section III, and Section IV introduces the identification results and details the case 

study. The main conclusions are drawn in Section VI. 

II. EV MODEL CONSTRUCTION  

2.1 The Studied EV and SPD Function  

In EVs, VCU receives driving commands from driver and calculates the required tractive torque through 

interpolating TDLTs. The calculated tractive torque is converted into the load rate and then transmitted to 

motor control unit (MCU). In this paper, the detailed parameters of studied EV is listed in Table 1.  

Table 1 Main parameters of EV 

Item Variable Values 

Vehicle 

Vehicle Mass 1552 kg 

Wheel Radius 0.307 cm 

aerodynamic drag coefficient 0.28 

Battery 

Type Lithium-ion battery 

Capacity 60 Ah 

Nominal Voltage 330 V 

Motor 
Maximum Power 90 kW 

Maximum Torque 300 Nm 

Performance 
Max Speed 160km/h 

Max Travel Mileage 170 km 

 

In the studied EV, SPD enables driver to manipulate the powertrain by a single pedal, avoiding frequently 

operating brake pedal in city urban driving and consequently maximizing the regenerated braking energy. The 

brief illustration of the SPD function is shown in Fig. 1.  
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Fig. 1. Illustration on SPD. 

As shown in Fig. 1, the driver can manipulate the acceleration pedal to realize braking in SPD when 

releasing the acceleration pedal lower than a pre-set threshold. Between acceleration phase and braking phase, 

a free rolling mode is designed in SPD, trying to exhausting the available kinetic energy. In the braking phase 

in SPD, only motor provides the braking force. When the braking process is taken over by the braking pedal, 

the braking force will be distributed between the hydraulic resistance and electric regenerative braking. In next 

step, EV model, accounting for vehicle dynamic and powertrain performance, is addressed to facilitate the 

design of the proposed torque demand regulation method.  

2.2 Vehicle Dynamic Model  

Vehicle models, including backward and forward manners, play an essential role in control strategy 

development. The backward models are more convenient for energy estimation [36]. In these approaches, the 

calculation is initiated from wheels, and then the required driving torques are decomposed into different energy 

paths through the transmission system [37]. By contrast, the forward modelling approach starts simulation 

from the driver module [38]. The control units process driving intention, and the corresponding control 

commands are generated and transmitted to power units. The intuitive forward calculation manner makes it 

widely accepted in development of modern vehicle control systems [39]. However, considering the specific 

features of TDLT optimization, the backward modelling manner is preferred in this study. The adopted EV is 

driven by a single permanent magnet synchronous motor (PMSM) installed in front axle. The torque generated 

by PMSM is transmitted to wheels via the final gear. The following function can be formulated to characterize 

the vehicle dynamics, as: 
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where 1 /fr fr wP g N r , 
2

1

2
d dP C A , and 3 ( ) ( )kP mgfcos mgsi kn   . In (1), motT  means the torque 

provided by the motor; m , frg , frN  and wr  express the vehicle mass, final gear efficiency, final gear ratio, 

and wheel radius;  ,  dC ,  dA  and v  represent the air density, aerodynamic drag factor, frontal area, and 

vehicle speed; g , f  and   indicate the gravity acceleration, rolling resistant factor, and road gradient; 

and brkT  is the mechanical braking torque.  

2.3 Vehicle Powertrain Model   

2.3.1 Motor Model  

In EV, PMSM is the only tractive source, of which the performance significantly determines the whole 

vehicle dynamics. In torque demand regulation studies, it is imperative to carefully construct the PMSM model 

that can describe its key features and bridge vehicle behaviours with energy consumption. Accordingly, the 

relationships between PMSM torque and power as well as between PMSM torque and vehicle tractive torque 

should be clarified in the model. As such, the equations should be built to describe torque and power connection 

of PMSM, and also characterize the PMSM torque and vehicle tractive torque performance. Considering the 

main target and operation complexity in this paper, the dynamic behaviours and temperature features of PMSM 

are neglected. The PMSM can operate in both tractive or generator mode, and the relationship to describe 

motor performance can be formulated, as: 

 
             0

     0

PMSM

PMSM

t

PM

M

SM

em

moP SM

em PMSMgen

T
T

P

T T




 

  
 

  (2) 

where em  is the angular speed of electric motor; PMSMP  and PMSMT  denote the power and torque of PMSM; 

and mot  and gen  are the efficiency of PMSM in tractive mode and generator mode, respectively. The 

efficiency of PMSM can be located from the look-up table obtained through benchmark test. In the nonlinear 

optimization, interpolating the efficiency look-up table step by step may increase the computation intensity, 
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and improper interpolation may lead to undesired optimization results. To guarantee the application effect, it 

is suggested to utilize a multi-order polynomial function to approximate the efficiency look-up table. To 

simplify the process of optimal design, the look-up table for PMSM operation efficiency is approximated by a 

multi-order polynomial function, whose performance is depicted in Fig. 2. By considering the fitting accuracy 

and processing complexity, a five-order polynomial function is exploited to achieve the approximation. 

Accordingly, the three-dimension (3D) efficiency map of PMSM can be reformulated, as: 
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  (3) 

where x  means the motor speed em , and y  expresses the motor torque motT . The parameters in (3) are 

estimated by the particle filter method detailed in [40]. During identification, the parameters are updated in 

each iteration by importance sampling according to the Bayes' theorem, until the root means square error 

(RMSE) between the five-order polynomial function and look-up table is less than the pre-set value. Fig. 2 

depicts the approximation effect by the five-order polynomial function. 

 
Fig. 2. Motor map with the simplified approximation by polynomial function. 

Moreover, the relationship between PMSM torque and tractive torque can be formulated, as: 

 
             0

   0

mot frPMSM

trac fr ge

trac

trac

tran c

T

T
T

N

T N T





  
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  (4) 

where tracT  is the vehicle tractive torque.  

2.3.2 Battery Model 
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For ease of modelling the battery, the temperature influence and aging effect are neglected, and a simple 

but efficient equivalent circuit model (ECM) is employed to characterize the battery’s electrical performance. 

The model consists of an internal resistance and an open circuit voltage source connected in series, whereupon 

the battery current can be calculated, as: 

 
2 4

2

batt batt batt batt

batt

batt

V V r P
I

r

 
   (5) 

where battI  and battV  denote the battery current and open circuit voltage; battr  and battP  are the battery 

inner resistance and power, respectively. The battery state of charge (SOC) can be calculated by:  

 

2 4

2

batt battbatt batt

ba tt att b

V V r P
SOC

r Q

 
   (6) 

where SOC  is the battery SOC, and battQ  is the battery capacity.  

III. DEVELOPMENT OF THE NOVEL TORQUE DEMAND REGULATION METHOD 

The novel torque demand regulation method aims to realize eco-driving under all conditions without 

discounting drivability by generating and implementing TDLTs that are corresponding to different driving 

behaviors. The novel torque demand regulation method is fulfilled via the cooperation between offline 

optimization and online adaptive control. In instant adaptive implementation, VCU selects a certain refined 

TDLT according to the driving behavior identified by the novel DBI. Then, based on the acceleration pedal 

degree, VCU calculates the required traction torque, which will be transmitted to MCU to order the operation 

of PMSM accordingly. The novel DBI is developed based on the ANFIS-PSO algorithm, which possesses 

high-quality performance in driving behavior categorization after proper training. The classified driving 

behaviors include three types: Expert Pro, Normal and Eco Pro. To strengthen the performance of the novel 

DBI, the inputs of ANFIS-PSO based DBI are rationally filtered by BDA among a number of vehicle signals, 

that are highly connected with driving behaviors. The offline implementing process of the novel torque demand 

regulation method is mainly related to the optimal generation of TDLTs. WOA, as one of the latest multi-

objective optimization algorithms, is exploited to create TDLTs for time-varying driving behaviors. Here, the 

construction of TDLTs fully considers the characteristics of three driving behaviors, the target of eco-driving, 

and constraints of drivability. Additionally, the input selection for ANFIS-PSO based DBI and the training of 

DBI are also achieved in offline implementation.  
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The general implementation of the novel torque demand regulation method is sketched in Fig. 3. As can 

be found, there exists three driving modes, namely Expert Pro, Normal and ECO Pro. In terms of Expert Pro 

mode, drivers tend to drive vehicles aggressively with higher energy consumption. For Eco Pro mode, drivers 

manipulate vehicles moderately to save energy utilization while keeping safety. Divers with Normal behaviors 

attempt to achieve the trade-off balance between energy-efficiency and drivability. In following sections, the 

methods to classify driving behaviors and generate TDLTs will be detailed.   

 
Fig. 3. Novel driving-behaviours-oriented torque demand regulation method. 

3.1 Novel Driving Behaviors Identifier  

3.1.1 Enhanced Adaptive Neuro-Fuzzy Inference System Based Driving Behavior Identification 

The adaptive neuro-fuzzy inference system (ANFIS) is an intelligent fusion method by comprehensively 

exploiting the merits of fuzzy logic control (FLC) and artificial neural network (ANN), thus intelligently 

prompting the modelling process of complex problem [41]. Fig. 4 illustrates the general framework of ANFIS, 

which includes two inputs and one output. Normally, there are five layers in ANFIS to accomplish the input-

output mapping. The detailed transformation and calculation can be described as follows.  

Layer 1 (Fuzzification): The fuzzification is performed in this layer by using the membership function, as: 
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where ja , jb  and jc  are the premise parameters. Accordingly, the output of Layer 1 can be formulated, as: 

 

1

1

1

1

 

(

1

 

(

)

,2

1,

)

2

j

j

j A

j B

O I j

O I j





  


 
 (8) 

where 1I  and 2I  are the two mentioned inputs, 
jA  is the membership function, and 

1

jO  is the output of 

this layer. 

Layer 2 (Product): The firing strength of Sugeno-fuzzy rules is calculated by a multiple operator, as: 

 1 2

2  1) ,( ) 2(
j jj j A BO jI Iw        (9) 

Layer 3 (Normalized): The firing strength of a give rule is normalized in this layer by: 

 3

1 2

 1,2
j

j J

w
O W j

w w
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
 (10) 

Layer 4 (Defuzzification): The weighted consequent value of each rule is calculated based on the normalized 

firing strength in upper layer, as: 

 1 2

4 ( )i jI j jj IZ pO I IW rW q     (11) 

where jp , jq  and jr  are the consequent parameter.  

Layer 5 (Output): The overall output, corresponding to all inputs, can be calculated as: 

 5

j Ij iO ZW   (12) 

 
Fig. 4. General framework of ANFIS. 

In this study, an enhanced ANFIS, ANFIS-PSO, is preferred to improve the accuracy of ANFIS in DBI. 

As the name implies, the particle swarm optimization (PSO) is integrated into the ANFIS to optimize the 

number of membership functions and the parameters in them. To be specific, ANFIS is firstly normally trained 

via the supervised learning. During this training, a fusion learning algorithm, combining the gradient decent 
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method [42] and least square method [43], identifies the premise parameters and the remaining parameters. 

Then, the mentioned target is optimized by the PSO, in which RMSE is considered as the fitness value. By 

referring to the first step, the premise parameters are estimated by the gradient method, while the least square 

method determines the consequent parameters. In the forward training process, the least square method 

captures the consequent parameters while keeping the premised parameters fixed. Then, the error between 

predicted values and raw data is propagated backward. The least square method identifies the premise 

parameters by minimizing the quadratic cost function. During backward propagation, the consequent 

parameters remain unchanged. The PSO is one of swarm intelligence methods that globally searches the 

optimal solutions [44]. In PSO based optimization, the particles that represent the problem solutions try to 

approximate the optimal ones by updating the position and flying velocity in each iteration. The position and 

flying velocity of each particle can be formulated as: 
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where ,i nX  and ,i nV  denote the position and velocity of the ith particle (1 )i M   at nth (1 )n N   

iteration. The manners to update position and velocity can be defined, as: 
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where 1,2, ,j N  denotes the dimension space, 1c  and 2c  are the acceleration coefficients,   and 

are the uniformly distributed random variables, ,i nP  is the personal best position, and nG  is the global best 

position. The general optimization problem by PSO can be described, as: 

 ( ), . . N
Minf x s t X S R   (15) 

where ( )f x  is the fitness function to evaluate the effect of each iteration, and S  denotes the feasible space. 

The fitness function in PSO for ANFIS is designed to achieve the lower error in prediction, as: 
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where iy  is the estimation value, and ˆ
iy  is the real value from the training data. As described in (7) to (12), 

the complexity of ANFIS can increase remarkably with more input features. To guarantee the effectiveness in 
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instant application, the input features of ANFIS-PSO based DBI need to be selected properly. An efficient 

method, BDA, is preferred to accomplish the feature selection for ANFIS-PSO based DBI. In addition, the 

method that clusters driving behaviors into Expert Pro, Normal and Eco Pro is the same with that in our former 

work [45].  

3.1.2 Binary Dragonfly Algorithm Based Feature Selection 

Dragonfly algorithm (DA) is one of bio-inspired algorithm for optimization problem, and can approximate 

the static and dynamic swarm behaviors of dragonflies in nature [46]. Among dragonflies, hunting and 

migration are two main swarm behaviors that are similar to exploitation and exploration in metaheuristic search. 

On this account, DA is considered to be an efficient tool to search the optimal solutions by the swarming 

intelligent manner.  

A. The Basis for Feature Selection: DA  

In nature, dragonflies generally employ five actions to accomplish hunting and migration, inducing the 

development of corresponding operator in DA [47]. The mentioned five actions consist of separation, 

alignment, cohesion, attraction and distraction. Accordingly, the inspiringly designed operators in DA can be 

characterized, as: 

 Separation means that the individual dragonfly moves in the swarm without colliding surrounding 

individuals, and can be formulated as:  
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where X  denotes current position of single dragonfly, jX  means the position of the j th neighbouring 

individual, and N  is neighbour scale.  

 Alignment refers to the single dragonfly that adjusts the flying velocity based on the movement behaviors 

of neighbor. The adapting behavior can be expressed, as: 
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where jV  represents the velocity of j th neighbouring individual.  

 Cohesion means that the preference of individual dragonfly towards neighbouring the center of mass. The 

mathematical equation in terms of model cohesion behaviour can be presented, as: 
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 Attraction indicates the attractive degree between food source and individual dragonfly, as: 

 i fF X X    (20) 

where fX  is the position of food source.  

 Distraction presents the repulsive degree between enemy and individual dragonfly, as: 

 i EE X X    (21) 

where EX  is the position of food source.  

Similar with the position updating mechanism in PSO, DA also employs two vectors, i.e., step and 

position, to update the status of single dragonfly. The step vector of next movement is defined, as: 

  1t i i i i i tX sS aA cC fF eE X          (22) 

where s , a , c , f  and e  denote the weights for separation, alignment, cohesion, attraction and distraction; 𝜔 means the inertia weight; 1tX   and tX  express the step of next movement and current movement. The 

position of one dragonfly can be described, as:  

 1 1t t tX X X     (23) 

B. Binary Dragonfly Algorithm for Feature Selection  

The feature selection, briefly, is a binary optimization problem, in which the individual location is 

determined by the discrete position vector. However, DA originally focuses on continuous optimization 

problems, demanding some improvement for feature selection in discrete domain. Consequently, BDA is 

developed to promote feature selection [48]. In BDA, the position updating manners are reconstructed, as: 
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where r  is the random value between 0 and 1. 1( )tT x   can be calculated, as: 
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Table 2 presents the pseudocode of BDA algorithm. During the feature selection process, the solutions are 

represented by [0, 1], where “0” indicates that the certain feature shows less connection with the predefined 

performance, while “1” expresses that a specific feature is selected with positive relationship with the given 

index. In this paper, the feature selection is attained by BDA with the wrapper selection manner. The particular 

fitness function, considering classification error and selection error, can be formulated as: 

 ( )
R

Fitness ERR D
N

     (26) 

where ( )ERR D  is the classification error rate by using the k-Nearest Neighbor (KNN) classifier, R  is the 

number of filtered features, N  is the total number of the candidate features,   and   are the complement 

parameters to weigh the selection error rate and ratio.  

Table 2. The pseudocode of BDA.  

1 Initialization: randomly define population and step vector 
2 Do { 

3       Evaluate each dragonfly by fitness function 

4       Update s, a, c, f, e and w 

5       Calculate S, A, C, and F by (17) to(21) 
6       Update step vector by (22) 
7       Calculate 1( )

t
T x   by (25) 

8      Update position of each dragonfly by (24) 
 1q q   

9 } Until i
q N ( i

N  denotes the iteration times) 
 

The valuable features for ANFIS-PSO based DBI is selected by the BDA among 80 signals from EV 

powertrain and plant, including acceleration pedal degree, steer wheel angle, etc. The data for feature selection 

are the same with that for DBI training. By applying the BDA, the selected features as the inputs of ANFIS-

PSO based DBI can be: acceleration pedal degree, variation rate of acceleration pedal degree, braking pedal 

degree, variation rate of braking pedal degree, steer wheel angle and angle variation rate of steer wheel. The 

output of ANFIS-PSO based DBI is one specific driving behavior type that is selected from Expert Pro, Normal 

and Eco Pro. The training data for ANFIS-PSO based DBI is prepared in advance by the same method 

described in [45]. According to the selected inputs by BDA, the specific ANFIS-PSO based DBI can be 

constructed, and the detailed parameters of the built ANFIS-PSO based DBI are listed in Table 3. 

Table 3. The parameters of the ANFIS-PSO based DBI.  

Number of Inputs 6 

Number of Membership Functions for Each Inputs 2 

Number of Particle for Each Population  24 
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Epoch of Each Population 100 

 

3.2 Torque Demand Look-up Table Generation  

3.2.1 Whale Optimization Algorithm Based Optimization  

WOA is one of the novel meta-heuristics optimization methods inspired from hunting behaviors of 

humpback whales [49]. During hunting, humpback whales adopt specific manners, which include random scan, 

encircling and bubble-net attacking, thus inspiring the imitation in the convergence process during 

optimization [50]. Due to this, WOA is introduced to be applied in complex optimization. Compared with 

existing optimization methods, e.g. genetic algorithm (GA) [51], WOA can show better balance between 

exploration and exploitation, thereby avoiding from being trapped into local optimum and achieving faster 

convergence. 

A. Exploitation (Encircling and Bubble-Net Attacking) 

Humpback whales encircle prey after observing its location. Accordingly, WOA assumes that the current 

best candidate solution is the prey, and lets searching agents update positions towards the assumed best solution. 

This encircling behavior can be modelled, as: 

 ( ) ( )D C X t X t
     (27) 

 ( 1) ( )X t X t A D
     (28) 

where t  is the iteration number, A  and C  are the coefficient vectors, X


 is the best solution position that 

is updated in each iteration, and X  is the position vector. The coefficients vectors in (27) and (28) can be 

calculated, as: 
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where a  represents a vector that linearly decreases from 2 to 0 with the iteration, r  is the random vector in 

[0, 1]. Eqn. (28) permits to search any position in the allowed space around the current best position, simulating 

the process of encircling prey. Bubble-net attacking by humpback whales spirits a novel exploitation method 

for meta-heuristics optimization. During bubble-net attacking, two actions are executed including shrinking 
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encircling and spiral moving. The mathematic models to demonstrate the two behaviors in bubble-net attacking 

can be described as follows.  

1. Shrinking encircling. The shrinking encircling can be realized by linearly reducing a  from 2 to 0 in 

different iterations. By assigning random values for A  in [-1, 1], the shrinking encircling can define the new 

position of a search agent between the original one and current best value.  

2. Spiral moving. When hunting the prey, the path of humpback whales to the identified prey is a helix shape. 

The spiral movement can be expressed, as: 

 ( 1) cos(2 ) ( )bl
X t D e l x t        (30) 

where D  expresses the distance of certain to the current best solution (prey), b  denotes the constant value 

to formulate profile of the spiral path, l  means a random number in [-1, 1]. In (30), D  can be calculated, as: 

 ( ) ( )D x t X t
    (31) 

During the prey, the humpback whales encircle the prey and swim towards the prey along the spiral path 

simultaneously. We can assume that each behaviour is chosen with 50% probability. Hence, the overall 

mathematic model to describe the exploitation phase can be expressed, as: 
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 (32) 

where p  is the random value in [0, 1]. 

B. Exploration (Prey Search) 

Except encircling and attacking prey, the humpback whales also search prey randomly in the allowed 

space based on the position of each other. A  is utilized to direct the prey searching in exploration phase, and 

its value is supposed to be larger than 1 or smaller than -1. Here, it is assumed that exploration is activated if 

1A  , enforcing the global searching to avoid local optimum. The equations to model the exploration can be 

formulated, as: 

 ( ) ( )randD C X t X t     (33) 

 ( 1) ( )randX t X t A D     (34) 
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where randX  is the random chosen position vector from current population. The pseudocode of WOA is 

shown in Table 4. 

Table 4. The pseudocode of WOA. 
1 Initialization: Randomly define whale population Xi (i=1,2,…,n)  

2             Calculate the fitness value of each search agent  

3             Obtain best search agent X*   

4 Do { 

5       for i=1:n 

6        Update a, A, C, l and p  

7          if p<0.5  

8             if |A|<1 

9                Update the position of current search agent by (27) 
10             else if |A|≥1 

11                Select a random search agent Xrand  

12                Update the position of current search agent by (34) 
13             end  

14          else if p≥0.5 

15               Update the position of current search agent by (30) 
16          end  

17       end 

18       Calculate the fitness value of each search agent 
19       Update X* if there is a better solution 

20 } Until i
t N  ( i

N : maximum number of iteration) 
21 Return *

X  

 

3.2.2 Torque Demand Look-up Table Generation by Whale Optimization Algorithm 

In WOA based TDLT generation, the fitness function evaluating the solution in each iteration can be 

formulated by considering constraints from energy-efficiency and drivability, as: 

  2

1 2( ) ( ) ( ) ( )refressf x X v Xm V X      (35) 

where X  is the search agent that represents solutions of the optimization problem, ressm  is the equivalent 

fuel consumption converted from the electric energy utilization, v  denotes the velocity resulted from 

solutions in current step, refV  is the reference velocity from the given driving cycle that is specifically for 

certain driving behaviour, and 1  and 2  denote the weight ratios. During TDLT generation, the optimized 

parameters include torques corresponding to different acceleration pedal degrees and velocities. To generate 

TDLTs for various driving behaviours, 1  and 2  are tuned accordingly during the optimization. The 

equivalent fuel consumption can be calculated, as: 

 ress batt

lhv

s
m P

Q
  (36) 
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where s is the equivalent factor, and lhvQ  is the low heating value of fuel. The driving cycles to optimize the 

mentioned parameters are derived from the collected driving data including different driving behaviours 

presented in [45]. During optimization, the subjected constraints can be summarized, as: 
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  (37) 

where the maximum and minimum velocities and accelerations for different driving behaviours are defined 

based on the calculated average maximum and minimum values of the collected driving data for DBI training.  

BASED ON THE INNOVATIVE DESIGN, A NOVEL TORQUE DEMAND REGULATION METHOD IS OBTAINED TO 

FACILITATE ECO-DRIVING UNDER DIFFERENT DRIVING BEHAVIOURS. THE NOVEL TORQUE DEMAND 

REGULATION METHOD PRESENTS AN EFFICIENT MANNER FOR THE CONTROL DEVELOPMENT OF EV, AND 

FURTHER EXCAVATES THE POTENTIAL OF EVS WITH SPD IN ECO-DRIVING. IN ADDITION, THE BRAND-NEW DBI 

ACCELERATES THE DESIGN OF NEW VEHICLE-DRIVER COOPERATIVE CONTROL METHODS FOR PROMOTING 

ENERGY CONSUMPTION ECONOMY, AND THE PROPOSED TORQUE DEMAND REGULATION METHOD CAN BE 

EASILY TRANSPLANTED TO DIFFERENT EVS BY ADJUSTING THE PARAMETERS DETAILED IN (1) TO (6) AND 

CONSTRAINTS PRESENTED IN (36) AND (37), THUS MITIGATING THE APPLICATION DIFFICULTY FOR DIFFERENT 

TYPES OF EVS. 

IV. DRIVING BEHAVIOR CLASSIFICATION AND CASE STUDY 

4.1 Assessment on ANFIS-PSO Based Driving Behavior Classification  

As described previously, the novel torque demand regulation method cannot be applied properly without 

precise driving behaviour identification. The ANFIS-PSO based driving behaviour classifier is assessed before 

performing further evaluation, and the detailed introduction can be referred to our former work [45]. The self-

report questionnaire based quantitative analysis is applied firstly to cluster 50 drivers into three groups that are 

corresponding to the defined driving behaviours [6]. Then, 30 drivers belonging to different groups are 

requested to drive the vehicle on a fixed route that combines city and highway driving condition, as shown in 

Fig. 5. The corresponding data selected by the BDA is collected to train the ANFIS-PSO. Afterwards, 20 
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drivers from three groups with various driving behaviours are requested to drive the vehicle on the same route. 

The collected data from 20 drivers, which is instructed by the BDA and labelled with disperse driving 

behaviours, is implemented to test the ANFIS-PSO based identifier. Table 5 lists the numerical identification 

results of the test, during which the ANFIS-PSO based identifier can classify different driving behaviours with 

1 or 2 misrecognitions in each case. The classification on Eco-Pro behaviour shows major malfunctions. This 

is because the close performance between Eco-Pro and Normal typed drivers happens in some driving 

conditions. Despite minor errors, the general performance of ANFIS-PSO based identifier can still support the 

applications of the novel torque demand regulation method.  

 

 
Fig. 5. Route test for data collection.   

Table 5. Results of driving behaviour identification under different driving behaviours. 

Driving Behavior Type Number of Driver in Test Number of Rightly 
Identified Driver  

Expert-Pro 3 2 

Normal 12 11 

Eco-Pro 5 3 

 

4.2 Case Study on Performance of Novel Method in Eco-driving 

The presented torque demand method can generate TDLTs for disperse driving behaviors, thereby 

broadening the scope of eco-driving exhaustively. A case study is performed to validate the performance of 

the proposed method, and define critical roles of driving behaviors in eco-driving. In this special case study, 

the generated TDLTs by the introduced method are integrated into velocity profile optimization for EV 

operation. The optimal velocity profile for efficient driving, on the basis of certain TDLT, is yielded by 

dynamic programming (DP) [46].  
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Fig. 6. 3D TDLTs for different driving behaviours.   

 
Fig. 7. 2D TDLTs for different driving behaviours.   

For the velocity profile optimization problem, the cost function at step k  can be formulated, as: 

     1 _ 1 _( ) ( ) ( ) ( ) (, , , ( ),i i j i j i j i j

k k k k k k k k k k mot k k k k mot kJ x h x u J F x u L v T J F v T      (38) 

where the state variable is velocity, and the required tractive torque by motor motT  is obtained via 

interpolating the implemented TDLT after referring to the given acceleration pedal degree, which is defined 

as the control variable. The particular stage cost can be formulated, as:  
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where s  means the step length, and t  expresses the weight ratio. For ease of comparison, the 

optimization is performed in distance domain. Thus, the functions to describe state dynamics should be 

reformulated. The relationship between speed and location can be formulated, as: 
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where s  means the calculation step in distance, k  and 1k   express the location at current and next steps. 

By combining (40) and (1), the dynamic relationship between motor torque and vehicle speed in distance 

domain can be derived, as:  

 2 2
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( 1) ((1 )) ( brk
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Ts s s s
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Then, Eqn. (41) can be rewritten into:  
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inequality constraints that the DP based velocity profile optimization should be subject to the same constraints 

as those in (37). The installed TDLTs generated by the presented method are shown in Figs. 6 and 7, 

respectively. As can be found, the torque outputs by different driving behaviors are disparate. The TDLT for 

Expert Pro behavior tends to provide larger tractive torque, and the utilization of freewheeling is quite rare. 

Nonetheless, the TDLT for Eco Pro behavior tries to employ both the freewheeling and electric braking in 

SPD cooperatively, contributing to energy saving. Moreover, the TDLT for normal behavior evenly balance 

the energy-saving and drivability, showing promising performance either.  

Fig. 8 exhibits the optimized velocity profiles after applying different TDLTs. Except the optimal velocity 

profile, the velocity profile collected from real driving is shown and named as Raw in Fig. 8. The zoomed-in 

graphs of velocity profiles are also provided to better understand the difference in velocity profile optimization 

by different TDLTs. As can be found, the Expert Pro driving behavior prefers to drive the vehicle more 

aggressively with higher and more frequent acceleration and deceleration. The freewheeling by Expert Pro 

behavior seldom occurs in the optimized velocity profile. The TDLT for normal driving attains the close top 

speeds to those by the Expert-Pro based TDLT. The deceleration, dissimilarly, looks smoother, as marked in 

the velocity profile at around 2150 m and 4150 m. The velocity profile optimized by the TDLT for Eco-Pro 

behavior is most gentle, and with the least top speeds and deceleration. The freewheeling by Eco-Pro TDLT is 

actively encouraged for energy saving. Table 6 lists the numerical results during the velocity optimization by 

DP with different TDLTs, which include the conventional TDLT without any pre-optimization. The DP based 

optimization with conventional TDLT is denoted as DP_Conventional in Table 6. The numerical results 
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highlight that the raised method, together with DP, can prompt energy consumption economy under different 

driving behaviors. Compared with the velocity profile without any optimization, the DP based velocity profile 

optimization with ingeniously generated TDLTs can save the energy consumption by up to 18.3%. Due to the 

uncontrolled search manners, the terminal velocity by DP under three driving behaviors cannot reach to zero. 

However, the unsatisfied terminal velocities will not discredit the capability of the raised method implemented 

in real control. Additionally, the travel time by DP with Expert-Pro TDLT is less than that with normal TDLT 

without any optimization. Shorter travel duration is raised by the specially generated TDLT, in which the 

optimal knowledge of drivability under Expert-Pro driving has been fully taken into consideration. The 

comparisons among DP based optimization with diverse TDLTs validate the preferable performance of the 

novel torque demand regulation method. Under any driving behaviors, the given TDLT can instruct the most 

appropriate torque output with roundly incorporating the knowledge from eco-driving and drivability by WOA. 

In comparison with optimization with conventional TDLT, the proposed method can facilitate the DP based 

optimization to furnish energy saving by up to 13.3%.  

 
Fig. 8. Optimal velocity profiles under different driving behaviours.  

Figs. 9 and 10 illustrate the pedal degrees and motor torques by DP with different TDLTs in the case 

study. In Fig. 9, the acceleration pedal degrees are represented by the values that are larger than 0, and the 

braking pedal degrees means the values that are smaller than 0. As can be found, the motor torques by DP with 

different TDLTs highlight obvious difference. The TDLT for the Expert-Pro behavior requires larger motor 

torques than other two TDLTs. The TDLT for the Eco-Pro behavior regulates the motor to output tractive force 

more mildly than other two TDLTs. The acceleration pedal also joins in the braking process in EV with SPD. 

The optimal TDLTs decelerate the vehicle in various manners. The TDLT for the Expert-Pro behavior is prone 
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to heavy brake without seeking assistance from freewheeling. The TDLT for the Eco-Pro behavior encourages 

united employment of electric braking from SPD, mechanical braking from braking pedal and freewheeling, 

thereby manipulating the vehicle more moderately. Fig. 11 shows the motor operation points under different 

behaviors during the velocity profile optimization. The WOA based pre-optimization endows TDLTs with 

optimal knowledge of eco-driving, and facilitates the motor to operate in efficient fields under different driving 

behaviors.  

Table 6. Numerical results during velocity prediction by DP with different TDLTs. 

Method nx nu s (m) st (m) Ini_v (m/s) Ter_v (m/s) E_con (kWh) T_tol (s) 

DP_Eco Pro 200 200 2 5152 0 1.9712 0.4016 453.221 

DP_Normal 200 200 2 5152 0 1.9731 0.4239 426.105 

DP_Expert Pro 200 200 2 5152 0 1.9723 0.4513 387.368 

DP_Covention

al 
200 200 2 5152 0 1.9716 0.4632 389.477 

Raw  - - - 5152 0 0 0.4913 392.136 

Note that nx and nu are the number of discrete state and control variables in each step, s  is the simulation step, st  it 

the total travel distance, Ini_v and Ter_v are the initial speed and target speed, E_con is the energy consumption on the 

route, and T_tol is the travel time on the route. 

 
Fig. 9. Pedal degrees under different driving behaviours in velocity profile optimization.   
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Fig. 10. Motor torque under different driving behaviours in velocity profile optimization.   

 
Fig. 11. Motor operation points under different driving behaviours in velocity profile optimization. 

According to the results of the case study, it can be summarized that the driving behaviors impose 

distinctive impact on efficient driving. Further, drivers prefer to manipulate vehicles with different manners. 

Some eco maneuver e.g. freewheeling might by adopted by drivers, which is quite valuable for energy saving. 

Some aggressive behaviors, e.g. sudden heavy acceleration, may deteriorate driving economy. As the dominate 

factor in efficient driving, driving behaviors should be involved in vehicle control. The raised method can 

rationally enrich the normal TDLT with driving behavior information, thereby obtaining qualified performance. 

Through the evaluation and case study, the proposed novel torque demand method demonstrates the superior 

capability in prompting eco-driving for EV with SPD under different driving conditions. The gratifying 

performance derives from the ANFIS-PSO and BDA based driving behaviors classification and WOA based 

TDLT optimization. The cooperation of driving behavior classification and TDLT optimization successfully 

integrates the driver and optimization knowledge into vehicle control, strengthening better energy economy 

without discounting the drivability.  

V. CONCLUSION 

This paper develops a novel torque demand regulation method for electric vehicle with single pedal 

driving, and the method promotes efficient driving under different driving behaviors. A specific torque demand 

look-up table, corresponding to the identified driving behavior, is implemented in vehicle control unit to 

generate the optimal tractive torque for next step energy-saving traction control. The instant driving behavior 

classifier is constructed by virtue of the adaptive neuro fuzzy inference system with particle swarm 

optimization. The binary dragonfly algorithm is exploited to select valuable features as the inputs of the built 
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driving behavior classifier, thereby enhancing the accuracy of driving behavior categorization. Given the 

particular constraints under certain driving behavior, the whale optimization algorithm is employed to 

optimally generate the specific torque demand look-up table offline. With the driving behavior oriented 

optimization, the energy economy of the studied electric vehicle is improved dramatically. The case study 

results manifest the promising impact of the proposed torque demand regulation method in optimal control for 

eco-driving. By incorporating the optimized torque demand look-up tables, the energy consumption of the 

studied vehicle in traction optimization has been reduced significantly under all driving behaviors. In particular, 

the electricity consumed under Eco-Pro behaviors occupies only 86.7 % of that with the conventional torque 

demand look-up table, and compared with that by the conventional torque demand look-up table without any 

optimization, the electricity consumption under Normal and Expert-Pro behaviors is respectively saved by 8.5% 

and 2.6%, manifesting the qualified performance of the proposed algorithm. 

 In the future, more effort will be devoted to studies related to intelligent single pedal driving. The 

combined optimization on driving comfort, safety and energy efficiency will be investigated by applying 

advanced control methods. Additionally, deep learning methods to identify driving behaviors incorporating 

facial emotion, maneuver gestured and manipulating signals will be carefully investigated.  
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