
This is a repository copy of Co-simulation methods for holistic vehicle design : a
comparison.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/175324/

Version: Accepted Version

Proceedings Paper:
Kalantzis, N., Fletcher, T., Ahmedov, A. et al. (5 more authors) (2020) Co-simulation
methods for holistic vehicle design : a comparison. In: SAE Technical Paper. WCX SAE
World Congress Experience, 21-23 Apr 2020, Virtual conference. Society of Automotive
Engineers (SAE International) .

https://doi.org/10.4271/2020-01-1017

© 2020 SAE International. This is an author-produced version of a paper subsequently
published in SAE Technical Papers. This manuscript version is made available under the
CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

2020-01-1017

Co-Simulation Methods for Holistic Vehicle Design: A Comparison

Nikolaos Kalantzis1, Tom Fletcher1, Ahmed Ahmedov1, Ruoyang Yuan1
Antonios Pezouvanis1, Kambiz Ebrahimi1, Sina Shojeai2, Richard Osborne3

1Loughborough University, UK
2Jaguar Land Rover, UK

3AVL, UK

Abstract

Vehicle development involves the design and integration of
subsystems of different domains to meet performance, efficiency, and
emissions targets set during the initial developmental stages. Before a
physical prototype of a vehicle or vehicle powertrain is tested,
engineers build and test virtual prototypes of the design(s) on
multiple stages throughout the development cycle. In addition,
controllers and physical prototypes of subsystems are tested under
simulated signals before a physical prototype of the vehicle is
available. Different departments within an automotive company tend
to use different modelling and simulation tools specific to the needs
of their specific engineering discipline. While this makes sense
considering the development of the said system, subsystem, or
component, modern holistic vehicle engineering requires the
constituent parts to operate in synergy with one-another in order to
ensure vehicle-level optimal performance. Due to the above,
integrated simulation of the models developed in different
environments is necessary. While a large volume of existing co-
simulation related publications aimed towards engineering software
developers, user-oriented publications on the characteristics of
integration methods are very limited. This paper reviews the current
trends in model integration methods applied within the automotive
industry. The reviewed model integration methods are evaluated and
compared with respect to an array of criteria such as required
workflow, software requirements, numerical results, and simulation
speed by means of setting up and carrying out simulations on a set of
different model integration case studies. The results of this evaluation
constitute a comparative analysis of the suitability of each integration
method for different automotive design applications. This comparison
is aimed towards the end-users of simulation tools, who in the
process of setting up a holistic high-level vehicle model, may have to
select the most suitable among an array of available model
integration techniques, given the application and the set of selection
criteria.

Introduction

Modern vehicles comprise of mechanical, electrical, and hydraulic
systems, as well as hardware and software [1]. As a result of the
gradual addition of functionality in automotive subsystems, the
electrification of powertrains, and the introduction of autonomous
driving the complexity of vehicles increases with time [2]. In turn,
the above has increased the complexity of the vehicle development

Page 1 of 12

24/01/2020

process [3], while at the same time, the number of offerings of a
given vehicle model tends to increase [4] All the above lead to an
increased design space and required volume of calibration data, and
in combination with the tendency of vehicle development cycles
tending to become shorter, and development budgets to be reduced
[5] make Computer Aided Engineering an indispensable tool of
automotive research and development.

CAE substitutes physical prototypes of an engineering system with
its mathematical representation with the intent to produce data that
are valid and applicable in the physical world [4]. Computer aided
engineering (CAE) has revolutionized the way complicated
engineering systems are developed. Instead of relying on expensive
and time-consuming physical prototypes, engineers can now test a
virtual prototype that predicts the behavior of the design before a
physical prototype or the 3D geometry of the components is
available, thus CAE is implemented from the early stages of
automotive development [6]. As a result, a multitude of designs can
be evaluated at a fraction of the time and cost required for a single
prototype to be built and evaluated, and this leads to an increased
design maturity and fitness for purpose at a lower cost as the number
of required physical prototypes is considerably reduced. In addition,
subsystems and components can be developed and tested before
physical prototypes of neighboring components are available
(frontloading) thus further shortening the development cycle [7]–[9].
Due to the above, CAE has a wide spectrum of applications [6] and is
well-established and used throughout the development cycle of a road
vehicle [10], with each automotive component or subsystem being
developed by a specialized team of engineers [1] using application-
specific CAE tools [4], [7], [10].Traditionally, each automotive
subsystem and component has been developed and tested by a
specialized team of engineers [1] using a separate development
approach [9], [11]. Subsystem development has taken place in
isolation from the rest of the system, and subsystem performances as
parts of the whole system/vehicle have been tested once physical
prototypes of all components/subsystems were assembled to a
complete physical vehicle prototype [9]. A subsystem or component
connected to and interacting with other subsystems or components
may behave in a manner that is not observed during standalone
simulation or physical testing and which leads to a reduced or even
unsafe system level performance. While the traditional design
approach also known as sequential system design [12] can yield
highly successful product designs, it does not consider the effects
component and subsystem interaction may have on their performance
and the performance of the whole system [8] and therefore it does not
facilitate the early-stage design defect detection, which in turn may
lead to a design defect being carried undetected to later or even the
final design stages [9]. Design defects detected at later developmental

stages tend to be difficult and expensive to correct [12] as a redesign
from an earlier stage may be necessary [10]. In addition, a globally
optimal system-level design necessitates that all subsystems are
designed to operate in perfect synergy with one another [6], [9], [11]–
[13]. From the above, one may realize the great importance of
addressing the dependence of component/subsystem performance on
their interaction with the whole system [9] which is reflected in the
modern holistic/multi-disciplinary design approach.

In the modern holistic approach, a complete virtual prototype of the
whole system is built and tested well before a physical prototype of
the whole system is available [12] and each subsystem and its
respective control algorithm are developed as parts of the whole
system rather than in isolation [9]. This allows for the early detection
of subsystem incompatibilities, and the design of components and
subsystems that work in synergy, thus allowing for the generation of
globally optimal system-level designs [6], [12]. In addition, this
facilitates the early development of subsystems and/or controllers that
would normally be developed at later stages (frontloading), and thus,
the parallelization of the development process, and this leads to
shorter, more efficient development cycles [1], [5], [6], [9], [14]. The
holistic model must be capable of describing certain system dynamics
in the detail required by the particular task/area of study [12].
Through the incorporation of the communication models within a
holistic system model, the failure modes caused due to
communication errors can be studied [7], thus making controller
debugging and testing possible in early design stage, leading to faster
and cheaper controller development [6], [13]. Through the coupling
of a physical subsystem (or a group of) such as a powertrain
component to real-time capable virtual prototypes of subsystems
whose physical prototypes are not yet available (XiL), the physical
subsystems can be verified early on in the vehicle development cycle
[1]. Using a holistic virtual prototype can reduce risks of damage to
expensive physical prototypes by reducing the required volume of
physical prototype testing and in some cases by identifying hazardous
test combinations on a virtual test bed and avoiding them on the
physical testing [7]. Due to the above, the holistic design philosophy
is used throughout the vehicle development cycle, from the early
verification and validation of system requirements, to subsystem and
component development, to XiL applications for embedded controller
development and vehicle validation.

A numerical model of an engineering system is as good as the value
(accurate results) it brings to the engineering toolbox for the
respective effort (development and simulation costs). At low
(component and subsystem) design level, it is in common practice for
different departments within the vehicle development cycle, to use
the best suited modelling and simulation environment for the given
area of study [4], [7], [10], thus taking advantage of specialized
component libraries, numerical solvers, workflows, and user
interfaces to make the best numerical model for a given amount of
effort [6]. Such practice leads to a collection of subsystem and
component models built in a plethora of different modelling and
simulation environments that are incompatible with one another. This
diversity in used CAE tools across the vehicle development cycle
facilitates the development of low-level subsystem high-performing
models but constitutes a barrier to the integration of the low-level
subsystem models into high-level systems, and thus is not conductive
to the implementation of a holistic vehicle design approach as the
integration of heterogenous software into a holistic model not only
has to overcome the software incompatibility but also allow for the
integrated models to operate under different time scales and
numerical solvers [12], [13].Thus, model integration may be difficult
and time consuming [10]. CAE software developers are addressing

Page 2 of 12

24/01/2020

this problem by adding model integration capabilities to their
products either in the form of model import or model export, and
there are currently several methods available to choose from. Each
method is characterized by different advantages and disadvantages
and significant gains in workflow efficiency and quality can be made
if the selected method is well suited to the application. The
simulation engineer must select the most suitable model integration
method for solving a given model integration problem, a task which
by itself is not always straightforward, mainly due to the limited
amount of available information on an end-user perspective. The
aims of the current article are to review the current trends in model
integration within the automotive sector, evaluate the interface
performances under different use cases and criteria, and formulate
end-user-oriented guidelines regarding the suitability of each
evaluated interface for a given application.

Model Integration in Literature

A literature review has been carried out with the purpose of
constructing a map of the uses of model integration within the
automotive sector. The reviewed literature is categorized and briefly
described in the following paragraphs.

Automotive Embedded Control Design

P. Le Marrec et al. [1] co-simulated software C Code, VHDL
hardware model, and MATLAB mechanical component models using
VCI integration interface with the purpose of carrying out the
functional validation of the initial ECU specification.

Guoxing Li et al. [15] setup a co-simulation consisting of a CarSim
vehicle dynamics model and a Simulink ABS controller model with
the purpose of comparing a novel ABS control algorithm to a
baseline ABS control algorithm.

F. Xie et al. [16] co-simulated an AMESim torque converter model
with a MATLAB/Simulink transmission control unit and validated
the co-model under a typical passenger car drive cycle

F. Renga et al. [11] developed a co-model between an injection
control software model running in a PC, a controller hardware model
running in FPGA, and Simulink based neural network model of the
electromechanical parts with the purpose of designing the injection
control.

M. Maharun et al. [17] built a high level model of a PHEV by co-
simulating an ADAMS/Car vehicle model with a Simulink model
containing the electrical components, the vehicle dynamics
controller, and the energy management system and used the co-model
to evaluate the performance of the vehicle dynamics controller and
the energy management system in terms of handling characteristics
and energy efficiency respectively.

Taotao Wu et al. [8] co-simulated a GT-Power engine model, an
AMESim model of the torque converter the transmission and the
vehicle dynamics, and a Simulink model of the engine controller and
the shift controller serving as the global model with the purpose of
investigating the potential coordinated engine and gearbox control
has for improvement in vehicle fuel efficiency and shift quality.

Lars Mikelsons et al. [4] setup a co-model in Model.CONNECT
between an FMU model of a yaw rate controller created in ETAS
EVE, an FMU model of a vehicle dynamics created in CarMaker, and

an FMU model of the powertrain model created on GT-Suite, and
used the co-simulation to carry out the functional validation of the
yaw rate controller.

P. Casoli et al. [13] co-simulated a MATLAB S-Function fluid power
model created in AMESim with a Simulink ICE model with the
purpose of producing an optimal fluid circuit design and a fuel-
efficient control strategy for mobile machinery.

S. Li et al. [18] co-simulated an ADAMS/CAR multibody dynamics
vehicle model with a Simulink ESP controller model and tested the
ESP control strategy performance.

Fuel Consumption Optimization

O. Özener et al. [19] used a proprietary integration interface to setup
a co-simulation between an IPG Truck Maker 3D articulated bus and
road model, and an AVL CRUISE drivetrain model in order to
optimize the speed profile of city busses in terms of emissions and
fuel consumption.

J. J. Eckert et al. [20] co-simulated a Simulink longitudinal dynamics
model with an ADAMS multibody dynamics vehicle model and
optimized the gear shifting strategy in terms if vehicle performance
and fuel consumption.

System Design – Combination of Subsystems and System-

Level Performance – NVH Studies

I. M. Khan et al. [6] integrated an FMU multibody dynamics 3D
vehicle model originally built in ADAMS to an LMS AMESim
driveline and powertrain controller model and used the co-simulation
to predict vehicle noise, vibration, and harshness.

A. Karvonen et al. [2] co-simulated an ANSYS Simplorer electric
machine and electric drive model with an ANSYS Maxwell magnetic
component model of the electric machine with the purpose of
studying the current and voltage harmonics induced by switching
events on the DC bus of an electric drive.

Development of Automotive Test Rig and Test Scheduling

Serge Klein et al. [5] integrated a dSpace VSM vehicle dynamics
model, a GT Power Fast Running Engine model, an FMU CS model
of an automatic double-clutch transmission originally built in
Simulation X, an ASM Tool Suite vehicle model, and a Simulink
transmission control model. The Model in Loop (MiL) co-simulation
was setup on dSpace VEOS and used to validate the concept of
Engine in Loop (EiL), and then to commission a physical EiL test
cell.

Tom Fletcher et al. [21] co-simulated a Ricardo WAVE-RT model of
a GTDI engine as a local model of a Simulink based engine test cell
controller and PCM global model by means of the dedicated WAVE-
RT interface block. The co-model was used in the development of an
automated engine calibration validation tool.

B. Zhang et al. [14] setup a co-simulation of a vehicle suspension
durability test rig comprising of a mechanical components model in
ADAMS, and a hydraulic and control elements model in Simulink.
Co-simulation control was achieved via the use of a virtual server by
Remote Parameter Control Pro Software.

Page 3 of 12

24/01/2020

The review of literature shows that model integration methods allow
for the development and testing of software, hardware, and
communication networks, using a high-fidelity model of the
controlled plant, under conditions of normal but also faulty operation
and for these reasons, they are indispensable in the development of
reliable, high performing vehicle controllers. In addition, model
integration allows for constructing highly detailed holistic vehicle
models by connecting well-correlated, high-fidelity subsystem
models developed by the most suitable discipline-specific
environments into a vehicle-level simulation useful in identifying
vehicle driving patterns and subsystem control strategies that give an
optimum combination of fuel consumption and emissions, and
performance. In addition, a detailed simulation of subsystem
interaction is used to verify that the combined systems are compatible
and to avoid combinations with a low performance. Other uses of co-
simulation enable the safe and low-cost offline development of
vehicle test rigs and the physical testing of components, subsystems,
and even the complete vehicle under realistic and repeatable
conditions. The FMI standard and the proprietary platform coupling
interfaces are the most popular means of model integration. Simulink
is the most popular co-simulation target environment hosting control
algorithms for control development. AVL Model.CONNECT is also
a popular environment dedicated to building heterogenous high-level
models and carrying out holistic simulations.

Methods for Model Integration

The fitness of a model for a given purpose is directly related to the
extent to which it encapsulates what is required by the application
level of detail [9]. Model integration in general, and co-simulation in
particular, allows for combining highly detailed models of different
domains [4] built in a variety of area-specific modelling and
simulation environments [5], [7], [8]. As a result, the strengths of the
different environments are combined [6], [14], while at the same
time, software heterogeneity associated obstacles are overcome [16],
and therefore, a multidisciplinary/holistic design approach is made
possible [1]. By using co-simulation, engineers incorporate high-level
dynamic behavior into a numerical model, and develop and evaluate
subsystems and control strategies under a multi-disciplinary/holistic
approach [12]. Simulation speed of computationally expensive
models can be accelerated to reach real-time via the export of the
model(s) to FMI or an S-Function [4] and the simulation of the
exported models on a real-time computer. In controller development
applications, it is a common practice to use real-time co-simulation
[3]. Real-time co-simulation is also an integral component of HiL
testing which connects physical components/subsystems to a real-
time simulation of other automotive components/subsystems [5]. Due
to the advantages of the concept of model integration, its popularity is
increasing within the automotive industry [3].

Most of the modern modelling and simulation environments support
the connection to other modelling and simulation environments [8]
via model import, model export, or a coupled simulation. There is an
array of integration methods in use, and each method is characterized
by a different combination of advantages and disadvantages. With
respect to the universality of application, model integration interfaces
can be classified into two main categories:

Proprietary interfaces. This category includes all interfaces that are
proprietary to and connect only to a specific target environment. Such
interfaces usually involve the two connected models running on their
native environments and the two simulations exchanging data via a
virtual network [8], [17], [20]. The majority of CAE software offer

proprietary interfaces to connect to Simulink as an imported or
exported model.

Environment Agnostic Interfaces. Such interfaces do not have a
specific target environment but are rather universal in nature as they
are supported by a large percentage of commercial and open source
CAE software for import and export. The most prolific example of an
environment agnostic interface is the Functional Mockup Interface
(FMI), which depending on version of the FMI standard, and the
location of the numerical solver, is divided into different
subcategories. Another interface that can be considered tool agnostic
due to being used by both MATLAB/Simulink but also by real-time
computers.

The tree diagram of the most popular model integration methods is
shown in figure 1. On the top level, a distinction between Model
Exchange (ME) and co-simulation is made. In model exchange, the
model is exported by its native environment in a format that is readily
importable by a third-party environment (such as FMU ME). The
imported model is simulated within the third-party environment as
part of the whole simulation using a single numerical solver available
in the libraries of the third-party software. In co-simulation, each of
the integrated models runs on its own native numerical solver, and
the execution and communication of the multiple local simulations is
coordinated by a global simulation. Co-simulation is divided into two
solver configurations. In the standalone configuration, the exported
model is packaged with its native numerical solver and when
integrated, the local simulation of the imported model takes place in
the third-party environment using the included native solver. In the
platform coupling configuration, a co-simulation wrapper is exported
to allow for a virtual network to be established between the native
and the third-party environments. Each model is simulated on its
original environment and the execution and communication of all
local simulations are coordinated by the global simulation on the
native or a third-party environment. The advantage of co-simulation
over model exchange is that it is capable of multi-resolution
simulations and allows for multiple domain-specific solvers to be
integrated into one high-level multi-disciplinary simulation [22] that
handles the stiffness of each model [13], as well as controller
sampling rates. In co-simulation, the communication between the
connected models takes place at every macro-step. Each of the local
models is simulated under its own micro-step. In a hard coupling
setup, the micro-step is equal to the macro-step, while in a weak
coupling setup, the micro-step is smaller than the macro-step. A weak
coupling setup relies on the local simulations extrapolating their
inputs on micro-steps between macro-steps, a feature that introduces
errors and inconsistencies in the calculations, and as a result, a weak
coupling co-simulation is potentially less accurate than hard coupling
co-simulation.

Page 4 of 12

24/01/2020

Model

Integration

Methods

FMU

v1.0

ME

FMU

v2.0

ME

FMU

v1.0 CS

Standalone

MATLAB

S-

Function

FMU

v2.0 CS

Standalone

FMU

v1.0

CS

FMU

v2.0C

CS

Proprietary

Harness

Co-simulation

(multiple solvers)

Model Exchange

(Single solver)

Solver in model (Standalone)

Solver in original platform (platform coupling)

Black Box Models White Box Models

ICOS

Figure 1. Tree diagram of model integration methods

Comparison of Model Integration Interfaces

As discussed above, there is an array of model integration interfaces
and it is common for CAE tools to incorporate more than one within
their libraries. The structural differences between the different types
of interfaces translate to different sets of advantages and
disadvantages which define the suitability of each interface for a
given application. Thus, choosing the best interface for the given
application or developmental stage can benefit the development
process, and for this reason, this selection must be the product of a
careful consideration.

The Functional Mockup Interface (FMI) standard describes universal
model interface specifications and has been developed by a
consortium of research groups and CAE tool developers [10].
Initially as a tool for design of embedded vehicular systems, it has
become popular in other engineering sectors [7], [23], and is
currently the most prolific and promising environment-agnostic
model integration standard as it is supported for import and export in
various forms by numerous CAE tools [6], [7], [10], [24]. The FMI-
compliant model file is essentially an archive file and it is called a
Functional Mockup Unit (FMU). Two versions of the FMI standard
exist while FMI the release of version 3.0 has been announced.
Compared to FMI 1.0, FMI 2.0 has some additional functionality. All
FMI versions support Model Exchange (ME), Co-Simulation (CS),
and Co-Simulation Standalone (CS – Standalone) solver
configurations. In all co-simulation applications, data exchange is
discrete point [10]. In the FMI CS configuration, the local and global
models are simulated in their native environments and the
communication between the environments is achieved via a virtual
server, and therefore, it can be classified as a platform coupling
method. The FMI CS – Standalone configuration involves the export
of the model and the native solver to one FMI compliant file which is
imported to a third-party environment and ran as a local simulation
using its original solver. The FMI standard is currently the most
important tool for CAE connectivity with a few shortcomings:

No global simulator is specified by the standard [7]

No high-level software approaches such as object-oriented
development is included in the FMI specifications [10]

There is no support for vectors and structures, and as a result, there is
no way to model the timing of the communication network between

the blocks without modelling a virtual CAN. This complicates ECU
representation [4]

In the case of the FMU for Model Exchange, the model within a CAE
tool is connected to an FMI I/O bus and the model is exported to
FMU ME specifications and in turn, it is imported by a third-party
CAE tool and connected to a third-party model. The imported model
becomes an integral component of the third-party simulation as both
the FMU ME and the third-party model are simulated by the same
third-party numerical solver. Since Model Exchange relies on a single
solver, single resolution simulation, it does not exhibit numerical
errors induced by coupling and interpolation. In addition, there may
be cases under which the simulation runs faster than multi-solver
simulation. Other advantages of Model Exchange include the small
model size and that no installation of the native platform or presence
of the native solver (either in the computer or embedded within the
model) is necessary for the model to run. On the other hand, the
solver and resolution of the integrated simulation must be compatible
with the dynamic characteristics and stiffness of the model, and this
can limit the range of applications of this integration method.

FMI for standalone co-simulation is a multi-solver, multi-resolution
interface where the model and the native solver are exported into one
FMI compliant file. The FMU is imported to a third-party
environment where the FMU is ran as a local simulation using its
contained native solver under the coordination of a third-party global
simulation. The main advantages of this interface over the FMI CS
with platform coupling is the lack of network latency-induced
communication delays between the two simulations which makes it
inherently faster, and the capability of the model to be simulated
without the need of an installation of the original platform or the
original solver on the host computer. Its main drawback is the
considerably large size of the model files which complicates file
sharing and storage.

In the FMI co-simulation with platform coupling method, an FMI
wrapper is exported rather than the model itself. The FMI wrapper is
then imported into a model within a third-party environment and it
allows the two environments to establish communication via a virtual
server. The two models are simulated in their native environments
and the execution of the local simulations and the communication
between the models are coordinated by the global simulation running
in the third-party environment. This is a multi-solver, multi-
resolution method. The advantage of this method over the CS
standalone is the considerably smaller model file size. The
disadvantages are the slower simulation speed – especially in models
with a low computational cost – due to network latency, and the need
for a full installation of the original platform.

Models in MATLAB S-Function form make use of the original
numerical solver. It is readily importable to MATLAB Simulink and
by an array of real-time computers. It is characterized by a high
computational efficiency and a small size of model files.

Proprietary target software interfaces that rely on platform coupling
are in common use by automotive CAE software. Under this multi-
solver, multi-resolution method, each model runs on its native
environment. The simulation environments are connected via a
virtual server and the execution and communication of the local
simulations are coordinated by the global simulation located in one of
the environments. The most commonly encountered target software is
MATLAB/Simulink. Harnesses that connect tools made by the same
company are also popular. CAE tools usually incorporate one
interface harness for global and one for local co-simulation mode

Page 5 of 12

24/01/2020

with a particular platform. The main advantages of this method over
all FMI variants and the S-Function is the fact that it is the simplest
method to setup and integrate two heterogenous models, and the
ability to modify one or more models and rerun the simulation
without the need to recompile and reload the models manually, a very
desirable feature during the model development phase. The
disadvantages of this method are its inherently slower speed due to
the latency of the virtual communication network, the lack of
versatility, and the requirement of full installations of all the
associated software tools.

Independent Co-Simulation Platform or ICOS is developed by
VIRTUAL VEHICLE with the purpose of giving the user co-
simulation capabilities for a wide array of automotive CAE tool
combinations. It is a multi-solver, multi-resolution interface which
couples the two environments via a virtual server, and the global
simulation on one of the involved environments controls the
execution of the local models and the exchange of data. There is one
dedicated ICOS variant for each software combination supported by
ICOS, and like the proprietary target software interface discussed
above, each ICOS variation supports only the specific software
combination and hierarchy. The main advantages of ICOS are that it
is simple to setup and run, that it supports white box model structure
as it allows for the user to make changes to the associated models and
directly run the co-simulation without the need to recompile and
reload the models manually (a highly desirable feature when
developing the model), its capability of connecting to real-time
systems, and being supported by AVL Model.CONNECT which is a
popular model integration and simulation environment within the
automotive industry [25]. Since ICOS relies on platform coupling,
simulation can be slower than model exchange or co-simulation
standalone options in non real-time systems.

Case Studies

To obtain a first-hand experience on the differences in the behavior
between the investigated model integration interfaces, a set of case
studies will be presented in the current section. Each case study has
been designed to compare different aspects of interface performance.
To be consistent with the architecture of the original models used in
each case study, the models must be created by the same CAE tool,
and that CAE tool must support all interfaces under investigation.
Following a research on the offerings of automotive CAE tools, GT-
SUITE from Gamma Technologies was found to satisfy the necessary
criteria for this comparison as it features a proprietary GT-Simulink
platform coupling harness, and model export capability to MATLAB
S-Function, FMU CS v1.0, FMU CS v2.0, FMU CS Standalone v1.0,
and FMU CS Standalone v2.0. While export to FMU ME is not
supported, a single solver, single resolution configuration such as
FMI model exchange is less relevant for multi-disciplinary/holistic
modelling than the multi-solver options due to the comparatively
small range of applications the ME configuration can work under. In
addition, a single-solver integrated model does not exhibit coupling
and extrapolation errors or communication related delays and the
resulting simulation does not differ from other single solver
simulations. For these reasons, the absence of FMI ME from the case
studies does not alter the weight of this study significantly.

On the Simulink side of the proprietary platform coupling interface,
the harness allows for enabling or disabling Direct Feedthrough and
for setting the coupling time step which was also set to 1ms.
Simulation under both options are ran.

In the case of the S-Function and FMI interfaces, no feedthrough
setup option is available. The arrays of the input and the output
signals to the model interfaces were compared in terms of numerical
values and time step alignment.

The computer hardware composed of an Intel i3-4460 CPU at
3.20GHz, 16GB RAM. The operating system was Windows 7
Enterprise. Connected modelling environments were MATLAB
R2018b and GT-ISE v2018.

Case Study 1: Simple Local Model – Open Loop Co-

Model, No States

The purpose of this case study is to observe how each integration
method affects computation speed and quality of data of an open loop
system without states. The simplicity of the model in this case study
allows for the easy observation of the differences in the behaviour of
each integration method. The GT model consists of a “Gain” element
with a unity value. The global model is located in Simulink and
consists of a chirp signal source block with an initial frequency of
0.1Hz and a target frequency of 12Hz at the target time of 100
seconds connected to the GT-SUITE-generated local model. The
global model uses a fixed timestep solver with a time step size of 1ms
and the co-simulation communication time-step is also 1ms.

The wall clock time required for 100 seconds of simulation is shown
in the bar chart of figure 2. The MATLAB S-function, FMU v1.0 CS
Standalone, and FMU 2.0 CS Standalone are observed to have
comparable wall clock times which are considerably shorter than the
other options and several times shorter than the simulation duration
of 100 seconds (faster than real-time). The proprietary GT – Simulink
coupling harness (with DF and without DF), FMU v1.0 CS, and
FMU 2.0 CS simulation wall clock times were almost twice the
simulation end time (slower than real-time). This is attributed to the
latency in the data communication between the coupled platforms.

Figure 2. Wall clock time for 100 seconds of simulation of Case Study 1

The values of the model outputs of all integration methods were
observed to be identical, but not all interface output arrays align with
the one another. In terms of time-step alignment of outputs, for all
interfaces but the proprietary GT-Simulink platform coupling with
Direct Feedthrough, the output arrays were observed to lag one time
step behind the input. The output array of GT-Simulink coupling
harness with Direct Feedthrough is in synchronization with the block
input.

Page 6 of 12

24/01/2020

Case 2: Simple Local Model #2 – Open loop Co-Model

with Two States

The purpose of this case study is to observe the effect different model
integration methods have on the simulation speed and numerical
output of a more complicated model than of case study 1 that has one
or more states, yet simple enough for the values of the states to be
easily inspected at any given time-step. A simple Mass-Spring-
Damper model has been chosen in this role due to it being a well
understood system by the majority of the target readers. The local
model of the Mass-Spring-Damper built in GT is connected to the
global Simulink model consisting of a chirp signal source block with
an initial frequency of 0.1Hz and a target frequency of 12Hz at the
target time of 100 seconds. The chirp input to the Mass-Spring-
Damper model is connected to a force source acting on the mass. The
co-models with the seven integration options are simulated for 100
seconds. As the frequency increases, the system briefly goes in and
out of resonance. The global model uses a fixed timestep solver with
a time step size of 1ms and the co-simulation communication time-
step is also 1ms.

The wall clock time for each integration method to complete 100
seconds of simulation of Case Study 2 co-model is shown in the bar
chart of figure 3. It is observed that under this case study, the
MATLAB S-function, FMU v1.0 CS Standalone, and FMU 2.0 CS
Standalone have comparable wall clock simulation times which are
considerably shorter than the proprietary GT – Simulink platform
coupling (with and without DF), FMU v1.0 CS, and FMU 2.0 CS
options, whose wall clock times are approximately two and three
times longer than the simulation length in the cases of the proprietary
platform coupling interface and the FMU CS respectively. The
slower simulation of the FMU CS and the proprietary GT-Simulink
harness is attributed to the latency in the data communication
between the coupled platforms. While the simulation wall clock time
for the MATLAB S-function, and FMU CS Standalone for Case 2
has tripled compared to Case Study 1, thus reflecting the considerable
increase in computational load, for the proprietary GT – Simulink
platform coupling and FMU CS options, the simulation duration has
only increased by approximately 50%, an observation that indicates
that communication latency comprises the bulk of the simulation time
for Case Studies 1 and 2.

Figure 3. Wall clock time for 100 seconds of simulation of Case Study 2

In terms of the numerical results of Case Study 2, all tested
integration methods were observed to produce identical results, and
in all tested options, acceleration was observed to not align with force
as for the first non-zero value of force, acceleration at the same time
step is 0. The output arrays lag two time steps behind the input force

198

209

3

7

190

8

197

0 50 100 150 200

Simulink Harness No DF

Simulink Harness With DF

S-Function

v1.0 CS - Standalone

v1.0 CS

v2.0 CS - Standalone

v2.0 CS

Time [sec]

198

227

8

24

269

24

281

0 50 100 150 200 250 300

Simulink Harness No DF

Simulink Harness With DF

S-Function

v1.0 CS - Standalone

v1.0 CS

v2.0 CS - Standalone

v2.0 CS

Time [sec]

array for all but the proprietary GT-Simulink coupling with Direct
Feedthrough interface which lags one time step behind the input force
array. Normally, force and acceleration should precede velocity by
one time step and velocity should precede displacement by one time
step but for all tested interfaces, acceleration, velocity, and
displacement appear on the same time step (macro-step).

Case Study 3: Sophisticated Local Model #1 – Open Loop

Co-Model with Multiple States

Case Study 3 compares the simulation speed and numerical results of
the investigated model integration interfaces with a complicated,
computationally intensive multi-state local model. A 1D GT model of
a cooling system of an automotive engine serves in the role of the
local model with cooling fan speed as the input, and coolant
temperature at the engine block inlet temperature as the output. On
the global model (Simulink) side, a step function fan speed signal is
supplied to the local model with a final value of 1000rpm. The
simulation duration is 100 seconds. A fixed step auto numerical
solver setting with 1ms time step is set on the Simulink side. In all
tests, coupling time step is 1ms.

From the bar chart of wall clock time to complete 100 simulation
seconds shown in the of figure 4, it is observed that all tested
interfaces exhibit very similar simulation speeds, with wall clock
time being approximately 50 times the simulation duration.
Considering all other test cases, the computational load of this model
outclasses the effect of communication latency as the driving force of
simulation speed, and as a result, the relative difference in simulation
speed between integration methods is diminished.

Figure 4. Wall clock time for 100 seconds of simulation of Case Study 3

In terms of the alignment of numerical results of the co-simulation of
case study 3, all integration methods produce identical numerical
results for most of the simulation interval of 100 seconds. The output
arrays are in alignment with the input under all interfaces (measured
state equals initial value at t=0 sec) but the proprietary GT-Simulink
coupling interface with Direct Feedthrough, appears to start one
macro time step before the global model (at macro-step t=0, the
measured state is less than the initial state of 300oK), thus, under such
setting, the first cell of the output array of the Simulink integration
does not have the initial, but rather the value encountered in the
second iteration of the other integration methods. The output values
of the FMU interfaces for t=0 is 0oK instead of 300oK. For all other
macro-steps, the output values of the FMU are identical and in
synchronization to those of the S-Function and the GT-Simulink
coupling interface without Direct Feedthrough.

Page 7 of 12

24/01/2020

Case Study 4: Sophisticated Local Model #1 – Closed Loop

Co-Model with Multiple States

Case study 4 investigates the effects of closed loop control on the
alignment and consistency of the numerical results. For this purpose,
the 1D GT model of a cooling system of an automotive engine from
Case Study 3 is used in the role of the local model connected to the
global Simulink model of a simple on/off Stateflow controller. Based
on the engine block coolant temperature, the controller turns the
cooling fan on and off to keep the coolant temperature within the
temperature band of 367oK to 380oK. The simulation starts with the
controller with the state “off” active. A ‘fixed step auto’ numerical
solver setting with 1ms time step was set on the Simulink side. In all
tests, coupling time step was 1ms. Simulation duration is 600
seconds. Since simulation speed for this local model is discussed in
Case Study 3, it is not discussed under this case study.

In terms of the output of the local model, prior to first state transition
to “on”, calculated results are identical to those observed in Case
Study 3. Once a state transition is triggered in the on/off type
Stateflow controller, the calculated temperatures begin to deviate
from one another. Results of FMU v1.0 CS and v2.0 CS are identical.
Results of FMU v1.0 CS Standalone and v2.0 CS Standalone are
identical. Results of FMU v1.0 CS Standalone and differ from the
results of FMU v1.0 CS. Version of FMU does not affect the
numerical values.

Since a discrete state controller is used, the easiest way to compare
the temporal alignment of the numerical results is to compare the
macro-step at which each controller state transition takes place
tabulated for all tested integration methods in table 1. State
transitions for GT-Simulink coupling interface with Direct
Feedthrough enabled, GT-Simulink coupling interface with Direct
Feedthrough disabled, MATLAB S-Function, FMU CS, and FMU
CS Standalone are observed to occur at different macro-steps. The
maximum deviation from all calculated average transition times was -
1.441 seconds. Such a deviation may be insignificant for the cooling
system application but can potentially be significant in sensitive
control applications. Version of FMU does not affect transition times.

Table 1. State transition times of the closed loop controller

Time in Seconds The Stateflow Controller Changes State

Platform Coupling
S-
function

FMI

No DF DF -
v1.0 CS
Standalone

v1.0 CS
v2.0 CS
Standalone

v2.0 CS Average

on 152.518 152.517 152.616 154.465 152.568 154.465 152.568 153.102
off 205.895 205.892 205.999 207.995 205.948 207.995 205.948 206.525
on 255.371 255.337 255.512 257.393 255.421 257.393 255.421 255.978
off 312.35 312.311 312.5 314.408 312.397 314.408 312.397 312.967
on 360.5 360.406 360.635 362.514 360.574 362.514 360.574 361.102
off 418.755 418.651 418.883 420.771 418.824 420.771 418.824 419.354
on 466.446 466.36 466.535 468.454 466.513 468.454 466.513 467.039
off 525.263 525.18 525.352 527.277 525.331 527.277 525.331 525.859
on 572.739 572.661 572.789 574.654 572.797 574.654 572.797 573.299

The final temperature values of the closed loop co-simulation are
tabulated in table 2, and it is observed that GT-Simulink coupling
interface with Direct Feedthrough enabled, GT-Simulink coupling
interface with Direct Feedthrough disabled, MATLAB S-Function,
FMU CS, and FMU CS Standalone all exhibit different final
temperature values. Maximum deviation from the average final
temperature is 0.137oK which is not of importance for the engine
cooling system modelling but can be of higher significance for some
sensitive applications.

5044

4921

4644

4756

4913

4821

4820

0 1000 2000 3000 4000 5000

Simulink Harness No DF

Simulink Harness With DF

S-Function

v1.0 CS - Standalone

v1.0 CS

v2.0 CS - Standalone

v2.0 CS

Time [sec]

Table 2. Final temperature values of the closed-loop co-simulation

Time in Seconds When the Stateflow Controller Changes State
Platform Coupling S-function FMI

No DF DF -
v1.0 CS
Standalone

v1.0 CS
v2.0 CS
Standalone

v2.0 CS Average

Temp. oK 371.7559 371.7392 371.766 372.167 371.7689 372.167 371.7689 371.8761

Since the open-loop co-simulation numerical results of case study 3
under all integration options were observed to be identical, the
differences between state transition times as well as between
calculated values of the tested integration methods in the closed loop
co-simulation of case study 4 are attributed to the method each
interface uses to extrapolate the input values to the local models for
the micro-steps located between two communication instances.

Case Study 5: Sophisticated Local Model #2 – Open Loop

Co-Model with Multiple States

Case Study 5 investigates how each integration method affects
computation speed with a numerical model purpose-built to be
simulated at a close to real-time rate. For this purpose, a GT-Power
crank angle resolved Fast Running Model of a 3.14L Turbo-Diesel
internal combustion engine with VGT EGR serves in the role of the
local model with pedal position as input, and brake torque, turbo
speed, and exhaust temperature as outputs. A fixed step auto
numerical solver setting with 1ms time step is set on the Simulink
side. In all tests, coupling time step is 1ms. Simulation duration is
100 seconds. The co-simulations are carried out under an engine
speed of 2000rpm and a constant pedal position input of 20%. Initial
turbo speed is 215000 rpm and initial exhaust temperature value is
700oK.

The wall clock time of 100 seconds of co-simulation for the tested
interfaces is shown in the bar chart of figure 5. The S-function, FMU
1.0 CS Standalone and FMU 2.0 CS Standalone are the fastest
interfaces as they are more than capable for the given engine speed to
allow for the local model to operate as intended as a real-time capable
model (and even being faster than real-time). Co-simulations using
FMU 1.0 CS, FMU 2.0 CS, and the proprietary GT-Simulink
coupling interfaces are 2 to 3 times slower than real-time which
defies the purpose of the real-time capable local model.

Figure 5. Wall clock time for 100 seconds of simulation of Case Study 5

In terms of the alignment and consistency of numerical results, it is
observed that the GT-Simulink coupling interface with Direct
Feedthrough disabled, the S-function, and all FMI variants
produce

Page 8 of 12

24/01/2020

almost identical results (the only difference being, that at 0 ms, all
FMU outputs are 0) and in complete synchronization from one
another. Brake torque for t=0 is 0 Nm, and calculated values become
available to the global model at the first macro-step at t=1ms. The
initial turbo speed value of 215000 rpm is displayed for t=0 ms, and
the first updated value is available at the first macro-step t=1ms. The
initial exhaust temperature value of 700oK is carried for two macro-
steps unchanged before an updated value is displayed at the third
time-step (t=3ms), and the above are observed for all tested interfaces
with the exception of the GT-Simulink coupling interface with Direct
Feedthrough enabled, under which, all output arrays are offset minus
one time step with respect to the results of all other methods, hence
the initial turbo speed value is not visible in the results of this
method, brake torque update is available at t=0ms, and the first
updated value of exhaust temperature is available at the second
macro-step (t=2ms).

Engine speed and its influence on simulation speed

For some numerical models, a numerical iteration takes place for
every integer multiple of a minimum displacement increment (e.g. for
every degree of a rotating shaft). As a result, the time step of such
simulation is inversely proportional to the derivative of displacement
(angular velocity in this case) and proportional the number of
computations per unit of time. This means that for the example crank-
angle resolved engine model, the higher the crank angular velocity is,
the longer the wall clock time will be required for a given simulation
duration. The plot in Figure 6 shows how engine speed affects the
simulation real-time ratio of the GT-Power crank angle resolved Fast
Running Model of a 3.14L Turbo-Diesel internal combustion engine
model simulated in the same i3 3.2GHz 16GB RAM computer. The
model is exported to S-function and imported to Simulink where the
co-simulation takes place. It is observed that the engine speed
influences the simulation speed considerably. At 700 rpm, real-time
ratio is less than 0.7. At around 1000 rpm, real-time ratio increases
rapidly to 0.9, after which, the rate of increase with speed is less
pronounced. After approximately 2130 rpm, the co-simulation
becomes slower than real-time. The above highlights the need for a
verification of the real-time capability of the co-simulation across the
intended speed range for given computer hardware specifications,
and the importance of using computers that are capable of handling
the real-time co-simulation across the operating envelope of the
model.

Figure 6. Real-time ratio of Crank-Angle resolved engine model vs. engine
speed

344

370

86

94

289

90

267

0 50 100 150 200 250 300 350 400

Simulink Harness No DF

Simulink Harness With DF

S-Function

v1.0 CS - Standalone

v1.0 CS

v2.0 CS - Standalone

v2.0 CS

Time [sec]

Engine speed and signal definition

Since the co-simulation communication time step between each
model is constant, the shape of output signals from the local models
can be distorted considerably. The distortion is more pronounced for
high-frequency undulating signals. The above, combined with the
discrete-time signal type of local model outputs can reduce signal
quality considerable. As shown in the brake torque vs time plots of
figure 7, the instantaneous brake torque curve for the lowest speed of
700 rpm is well defined despite featuring a stepped contour due to the
large number of communication steps per cycle. As engine speed
increases to 2000 rpm, the frequency of the undulating signal
increases and its period decreases, leaving a smaller number of steps
to define the curve. At 3000 rpm, the definition of the torque curve is
the worst of the three.

Figure 7. Instantaneous brake torque traces as observed by the global model

Communication time step and signal definition

The instantaneous brake torque output of the same crank angle
resolved engine model at 2000 rpm into Simulink using a GT-
Simulink coupling interface are shown for Direct Feedthrough
enabled and disabled under a 1ms and a 10μs communication time
steps/macro-steps in figure 8. It is observed that for the 10μs
communication step, the torque curves are very well defined and
while they are still stepped, the steps are fine enough for the curve to
accurately resemble the real torque curve. In addition, the temporal
and shape differences between the Direct Feedthrough enabled and
disabled are considerably smaller in the 10μs than in the 1ms co-
simulations as the enabled and disabled Direct Feedthrough have a
temporal difference of the size of one communication time step and
the shapes of the curves approaches continuous time with smaller
communication time steps.

Page 9 of 12

24/01/2020

Figure 8. Instantaneous brake torque traces as observed by the global model
small and large communication time-steps

To observe the effects of communication step/macro-step size on the
integral of the instantaneous torque signals, the curves of torque
integral (angular impulse) for a simulation duration of 2 seconds vs.
engine speed for the GT-Simulink coupling interface with Direct
Feedthrough enabled and disabled for 1ms and 10μs communication
time-steps/macro-steps are plotted in figure 9. It is observed that for
a given macro-step, the curves for the enabled and disabled Direct
Feedthrough are located very close from one another while all 1ms
curves are located above the 10μs curves throughout the simulated
engine speed range.

Figure 9. 2” Angular Impulse vs. Engine Speed

While figure 9 shows how a larger communication time-step leads to
an overestimation of angular impulse (and therefore mechanical
work) by the Simulink global model, if it is assumed that the angular
impulse curve under the 10μs macro-step has a negligible error, then
the relative error of the 1ms angular impulse curves is calculated with
respect to the 10μs curves. The curves of relative error introduced by
the 1ms communication time-step co-simulation with and without
direct feedthrough enabled are plotted in figure 10. The relative
difference between direct feedthrough and non-direct feedthrough
curves of the same co-simulation time step is very small (less than
1% under all tested conditions). Calculated angular impulse error
exceeds 12% for speeds greater than 3500 rpm. As a result, engine
mechanical output into the Simulink model is grossly overestimated
and this has the potential for grossly underestimated emissions if
instantaneous torque combined with a coarse time step are used.

Figure 10. Angular impulse percent error vs. engine speed

Summary

A holistic philosophy of design allows for designing automotive
subsystems as parts of the whole system, and as a result, better and
more robust vehicle designs reach the final physical testing stage
while development time and costs are reduced. Multi-disciplinary
simulation is the driver of holistic philosophy of design. The current
paper reviewed applications of model integration within the
automotive industry and compared the existing model integration
interfaces available for multi-disciplinary simulation with respect to
several different criteria. The comparison involved carrying out
simulations under five different test cases with different combinations
of models in order to investigate the workflow and behavior of each
interface under different model architectures and computational
loads. To avoid inconsistency in practice, the same two modelling
environments were used for building co-models in all test cases. The
selected environment on which the local/exported models are built is
GT-SUITE as it supports a wide variety of interfaces, and although it
does not support the FMU Model Exchange (ME) interface, its
capability of testing four (seven if interface variations are taken into
account) different co-simulation interfaces is of greater importance
than the shortcoming of not testing FMU ME which is an interface
that is of simpler nature and of a limited application compared to
multi-solver methods. A GT-Simulink coupling interface, FMI CS
v1.0 and v2.0 are platform coupling methods and require full
installation of the local environment (GT-SUITE), while Standalone
(solver embedded in model file) interfaces such as MATLAB S-
function, FMI CS v1.0 Standalone and v2.0 Standalone do not
require a full installation of the local environment but rather, they
only require a license of the local environment or solver (GT-
SUITE). MATLAB S-function and FMI models can be shared as
black box models. The proprietary GT-Simulink coupling interface
allows the architecture of the GT model to be accessible and
modifiable while integrated in Simulink. The Simulink harness and
MATLAB S-function require the use of Bus Creator & Selector or
Mux and Demux Simulink objects. Individual signals are not visible
on the interface block and this may lead to confusion and slow down
integration. In the cases of the FMI, all channel ports are visible on
the interface block, thus making the integration more straightforward.
The general characteristics of model integration interfaces discussed
above are presented in Table 3. Interfaces of the standalone category
have been observed to run faster than those of the platform coupling
category for all case studies, with the relative difference for simple
models being very substantial, but as model complexity increases, the
relative difference in speed between standalone and platform
coupling methods is gradually diminished. The co-simulation of real-
Page 10 of 12

24/01/2020

time capable model under the standalone interfaces has been found to
be faster than real-time, while under the platform coupling type
interfaces, co-simulation is 2 to 3 times slower than real-time. Under
open loop simulations, all interfaces generate identical numerical
results, but there is a discrepancy in the timing of the outputs as the
GT-Simulink coupling interface with Direct Feedthrough generates
outputs shifted one time-step earlier relative to the outputs of all other
tested interfaces. The first time-step outputs of both FMU CS and CS
Standalone types is 0. For local models whose simulation time-step is
dependent on the speed of the simulated moving parts, such as the
crank-angle resolved engine models, the definition of the engine
model outputs into the global model deteriorates and the wall clock
simulation time for a given simulation duration increases, as engine
speed increases. After a certain engine speed threshold, the co-
simulation becomes slower than real-time, a behavior that highlights
the need for verifying the model is real-time capable under the
complete operating envelope when simulated on a computer with a
given set of hardware specifications. Co-simulation communication
has been observed to reduce the resolution of local model output
signals, especially of undulating, high-frequency form. The larger the
co-simulation communication time-step (macro-step) is, the greater
the distortion of the signal. The angular impulse calculated from the
instantaneous torque of the tested crank angle-resolved engine model
was found to be overestimated with a relative error of up to 12% for
higher engine speeds under a 1ms macro-step.

Table 3. General characteristics of model integration interfaces

Model Integration Interfaces

Criteria FMU ME
MATLAB

S-function
FMU CS

Standalone

FMU CS
Platform
Coupling

ICOS
Proprietary
Platform

Coupling Harness

Support by
software

Very High Very High Very High Very High
High (Virtual
Vehicle)

High

Simulation
Speed

Very High Very High Very High
Ranges from
Slow to High

Ranges from
Slow to High

Ranges from Slow to
High

Model

Configurability
Poor Poor Poor Poor Excellent Excellent

Simplicity
in

Procedure
Setup

Simple Simple Simple Simple Very Simple Very Simple

Multiple
solvers

No Yes Yes Yes Yes Yes

Weak coupling No

Installation of
original
platform

No No No Yes Yes Yes

Model Access Black Box Black Box Black Box Black Box White Box White Box

Model file size Small Small Very Large Very Large Small Small

Conclusions

From the above, it is concluded that there is no all-around best model
integration method, but rather, each integration solution shares a
different set of advantages and disadvantages which may make it
more suitable for a particular application or developmental stage, and
for this reason, using different interfaces in different applications and
developmental stages can benefit the development process. For the
same reasons, the selection and configuration of a model integration
interface must be the product of careful consideration of the nature of
the interface and the application. The current document presented a
guideline to point engineers towards a certain integration direction
for a given set of requirements.

The model integration interfaces discussed above have different
degrees of support by software companies, with the FMI standard

being the most popular since it is supported by most automotive CAE
tools and a number of real-time computers. FMI ME is best suited in
cases when the model is shared in black box form and the solver of
the third-party simulation can handle the dynamics of the imported
FMU model. FMU CS Standalone is suitable for cases where the
model is shared in black box form, a fast-running multi-solver
simulation is necessary, and the end-user of the model does not have
an installation of the original platform, but a solver license is
available. Export to an S-Function is a good choice when the model
is shared in black box form, the target platform is Simulink, and a
high simulation speed is required, or when the target platform is a
real-time computer. Platform coupling using a proprietary interface is
best suited in cases when frequent changes in the structure of the
connected models must be made followed by simulations to observe
the effects of the changes e.g. during model development.

Co-simulation induced errors can affect calculated fuel consumption,
emissions, NVH, as well as high-frequency sensor models such as
knock sensors etc. For some studies in which pulsating values are not
necessary for the study, and a coarse co-simulation time-step is
preferred due to inherently higher co-simulation speeds, using cycle-
averaged values as local model outputs can improve the accuracy of
the results. Models of this type are often referred to as ‘mean value’
and their suitability for vehicle modelling applications has been
discussed [26]. Under closed loop simulations, differences are
observed in numerical outputs of the test cases. For the closed-loop
controlled engine cooling system, the numerical outputs were
identical up until the first state transition. After the first state
transition, numerical results and state transitions timings started to
diverge between the tested interfaces. The observed differences are
considered acceptable for the nature of the test case example but
could be unacceptable for more sensitive applications.

In closing it is relevant to state that the majority of phenomenon
highlighted here apply in general to the numerical modelling of any
system combination that requires coupling of physical systems with
widely differing magnitudes of temporal derivates or frequencies. In
this context co-simulation presents additional difficulties by forcing
data exchange interfaces with related system coupling errors that may
not be desirable for solution accuracy and/or computational
efficiency.

Contact Information
Dr. Nikolaos Kalantzis
Dept. of Aeronautical and Automotive Engineering
Loughborough University
Loughborough
LE11 3TU
n.kalantzis@lboro.ac.uk

Acknowledgments

The authors would like to acknowledge the funding support from the
Innovate UK and the Advanced Propulsion Centre (APC) for
carrying out this work. We would also like to acknowledge the
support from Jaguar Land Rover Automotive PLC for providing

Page 11 of 12

24/01/2020

resources and the support of Gamma Technologies for providing
GTSUITE software and associated support.

Definitions/Abbreviations

ABS anti-lock braking system
CAE computer aided engineering
CAN controller area network
DC direct current
EiL engine-in-the-loop
ESP electronic stability program
FMI functional mock-up interface
FMU functional mock-up unit
FPGA field-programmable gate array
GTDI gasoline turbocharged direct injection
HiL hardware-in-the-loop
ICE internal combustion engine
MiL model-in-the-loop
NVH noise, vibration, and harshness
PHEV parallel hybrid electric vehicle

References

1. P. Le Marrec et al., “Hardware , Software and Mechanical
Cosimulation for Automotive Applications,” in Ninth

International Workshop on Rapid System Prototyping (Cat.

No.98TB100237), 1998.
2. A. Karvonen and T. Thiringer, “Co-Simulation and Harmonic

Analysis of a Hybrid Vehicle Traction System,” 2015 IEEE Veh.

Power Propuls. Conf. VPPC 2015 - Proc., 2015.
3. W. Chen, M. Klomp, and S. Ran, “Real-time Co-simulation

Method Study for Vehicle Steering and Chassis System,” IFAC-

PapersOnLine, vol. 51, no. 9, pp. 273–278, 2018.
4. L. Mikelsons and R. Samlaus, “Towards Virtual Validation of

ECU Software using FMI,” in Proceedings of the 12th

International Modelica Conference May 15-17, 2017, 2017, pp.
307–311.

5. S. Klein et al., “Engine in the Loop: Closed Loop Test Bench
Control with Real-Time Simulation,” SAE Int. J. Commer. Veh.,
vol. 10, no. 1, pp. 2017-01–0219, 2017.

6. I. M. Khan, M. Datar, W. Sun, G. Festag, T. Bin Juang, and N.
Remisoski, “Multibody Dynamics Cosimulation for Vehicle
NVH Response Predictions,” SAE Int. J. Veh. Dyn. Stability,

NVH, vol. 1, no. 2, pp. 131–136, 2017.
7. N. Pedersen et al., “Co-simulation of distributed engine control

system and network model using FMI & SCNSL,” IFAC-

PapersOnLine, vol. 48, no. 16, pp. 261–266, 2015.
8. T. Wu, K. Han, L. Pei, and C. Zhao, “Co-Simulation Study of

Coordinated Engine Control Focusing on Tracked Vehicle Shift
Quality,” J. Autom. Control Eng., vol. 2, no. 2, pp. 160–165,
2014.

9. J. Fitzgerald et al., “Collaborative Modelling and Co-simulation
in the Development of Dependable Embedded Systems,” in
Integrated Formal Methods - IFM, 2010, pp. 12–26.

10. M. Aslan, H. Oǧuztüzün, U. Durak, and K. Taylan, “MOKA :
An Object-Oriented Framework for FMI,” 47th Summer

Comput. Simul. Conf. 2015, no. SummerSim ’15, pp. 1–8, 2015.
11. F. R. L.M. Reyneri, E. Bellei, E. Bussolino, L. Mari, “Codesign

and Cosimulation of Automotive Systems Based on Matlab /

Page 12 of 12

24/01/2020

Simulink,” in Seminario Anual de Automática, Electrónica

Industrial e Instrumentación, SAAEI, 2002, no. May.
12. L. T. Kyllingstad, M. Rindarøy, and D. Eirik, “Distributed Co-

Simulation of Maritime Systems and Operations,” CoRR, vol.
1701.00997, 2017.

13. P. Casoli, A. Gambarotta, N. Pompini, and L. Riccò,
“Development and application of co- simulation and ‘ control -
oriented ’ modeling in the improvement of performance and
energy saving of mobile machinery,” Energy Procedia, vol. 45,
pp. 849–858, 2014.

14. B. Zhang et al., “Component Tests Based on Vehicle Modeling
and Virtual Testing,” SAE Tech. Pap. 2017-01-0384, 2017.

15. G. Li, T. Wang, R. Zhang, F. Gu, and J. Shen, “An Improved
Optimal Slip Ratio Prediction considering Tyre Inflation
Pressure Changes,” J. Control Sci. Eng., vol. 2015, 2015.

16. F. Xie, J. Wang, and Y. Wanga, “Modelling and Co-simulation
Based on AMESim and Simulink for Light Passenger Car with
Dual State CVT,” in Procedia Engineering (2011) 16 363-368,
2011, vol. 16, no. Apee, pp. 363–368.

17. M. Maharun, M. Bin Baharom, and M. S. Mohd, “Modelling
and control of 4WD parallel split hybrid electric vehicle
converted from a conventional vehicle,” World J. Model. Simul.,
vol. 9, no. 1, pp. 47–58, 2013.

18. S. Li, L. Zhao, and C. Yang, “Co-Simulation Study for Fuzzy
ESP Control Strategy on Vehicle,” Open Mech. Eng. J., pp.
682–688, 2014.

19. O. Özener and L. Allouchery, “ISTANBUL METROBUS LINE
FUEL CONSUMPTION OPTIMIZATION VIA 3D ROAD
MODEL BY USING AVL CRUISE & IPG TRUCK MAKER
CO-SIMULATION,” Int. J. Adv. Automot. Technol., vol. 1, no.
2, pp. 100–104, 2017.

20. J. J. Eckert, F. M. Santiciolli, S. Costa, F. C. Corrêa, H. J.
Dionísio, and F. G. Dedini, “VEHICLE GEAR SHIFTING CO -
SIMULATION TO OPTIMIZE PERFORMANCE AND FUEL
CONSUMPTION IN THE BRAZILIAN STANDARD URBAN
DRIVING CYCLE,” in XXII Simpósio Internacional de

Engenharia Automotiva, 2014, vol. 1.
21. T. Fletcher, N. Kalantzis, M. Cary, B. Lygoe, A. Pezouvanis,

and K. Ebrahimi, “Automated Model Based Engine Calibration
Procedure using Co-Simulation,” in 4th Biennial International

Conference on Powertrain Modelling and Control (PMC 2018),
2018, p. 118.

22. C. Zhang and Z. Sun, “Using variable piston trajectory to reduce
engine-out emissions,” Appl. Energy, vol. 170, pp. 403–414,
2016.

23. R. Hallqvist, R. Braun, and P. Krus, “Early Insights on FMI-
based Co-Simulation of Aircraft Vehicle Systems,” Proc. 15th

Scand. Int. Conf. Fluid Power, 15th Scand. Int. Conf. Fluid

Power, Fluid Power Digit. Age, SICFP’17, June 7-9 2017 -

Linköping, Sweden, vol. 144, pp. 262–270, 2017.
24. C. Bertsch, E. Ahle, and U. Schulmeister, “The Functional

Mockup Interface - seen from an industrial perspective,” Proc.

10th Int. Model. Conf. March 10-12, 2014, Lund, Sweden, vol.
96, pp. 27–33, 2014.

25. J. Z. (Volvo) Pamela Innerwinkler (VIF), Georg Stettinger
(VIF), Ralph Weissnegger (CISC), Cihangir Derse (TF), Eren
Aydemir (FO), “Modular co-simulation architecture plan,”
2018.

26. R. P. Osborne and N. Weaver, “Optimum engine models for
diesel automotive powertrain development processes,” IPDS

2006: Integrated Powertrain and Driveline Systems 2006. pp.
67–76, 2006.

