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Abstract

Evidence accumulation models provide a dominant account of human decision-making, and

have been particularly successful at explaining behavioral and neural data in laboratory par-

adigms using abstract, stationary stimuli. It has been proposed, but with limited in-depth

investigation so far, that similar decision-making mechanisms are involved in tasks of a

more embodied nature, such as movement and locomotion, by directly accumulating exter-

nally measurable sensory quantities of which the precise, typically continuously time-vary-

ing, magnitudes are important for successful behavior. Here, we leverage collision threat

detection as a task which is ecologically relevant in this sense, but which can also be rigor-

ously observed and modelled in a laboratory setting. Conventionally, it is assumed that

humans are limited in this task by a perceptual threshold on the optical expansion rate–the

visual looming–of the obstacle. Using concurrent recordings of EEG and behavioral

responses, we disprove this conventional assumption, and instead provide strong evidence

that humans detect collision threats by accumulating the continuously time-varying visual

looming signal. Generalizing existing accumulator model assumptions from stationary to

time-varying sensory evidence, we show that our model accounts for previously unex-

plained empirical observations and full distributions of detection response. We replicate a

pre-response centroparietal positivity (CPP) in scalp potentials, which has previously been

found to correlate with accumulated decision evidence. In contrast with these existing find-

ings, we show that our model is capable of predicting the onset of the CPP signature rather

than its buildup, suggesting that neural evidence accumulation is implemented differently,

possibly in distinct brain regions, in collision detection compared to previously studied

paradigms.
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Author summary

Evidence accumulation models of decision-making propose that humans accumulate

noisy sensory evidence over time up to a decision threshold. We demonstrate that this

type of model can describe human behavior well not only in abstract, semi-static labora-

tory tasks, but also in a task that is relevant to human movement in the real world. Specifi-

cally, we show that a model directly accumulating the continuously time-varying visual

looming (optical expansion) of an approaching obstacle explains full probability distribu-

tions of when humans can detect this collision threat. Using electroencephalography, we

find indications that this type of evidence is accumulated differently in the brain com-

pared to evidence accumulation in previously studied, more abstract tasks. Our experi-

mental paradigm, model, and findings open for wider application of this type of decision-

making model to laboratory and real-world tasks with ecologically relevant, time-varying

sensory evidence, and further studies into how such decisions are implemented neurally.

There are also societal implications: In applied safety research and traffic accident liti-

gation it is conventionally assumed that human collision detection is limited by a fixed

perceptual threshold, an assumption that our results show to be highly inaccurate.

Introduction

Human decision-making is a long-standing research topic, spanning disciplines such as psy-

chology, neuroscience, economics, and human factors [1–5]. In recent decades, evidence accu-

mulation models (also known as drift diffusion or sequential sampling models) have emerged

as one dominant account, positing that decisions are made once noisy evidence has been inte-

grated over time up to a decision threshold [6–11]. These models have been successful at

explaining distributions of behavioral choices and response times across numerous laboratory

paradigms, e.g., where participants make categorization decisions about ambiguous stimuli, or

choose between options with different subjective or objective value [6–11]. There is also strong

neurophysiological support for the idea that the brain indeed implements something akin to

evidence accumulation in these types of tasks [5, 10–12]. Notably, there is mounting support

for the idea that signatures of neural evidence accumulation can be observed using human

electroencephalography (EEG), in the form of a centroparietal positivity (CPP) that builds up

during deliberation and peaks when the overt response is made [13–19]. However, computa-

tional modelling of evidence accumulation decision-making has so far focused on laboratory

paradigms using stimuli that (i) have stationary or only intermittently and/or noisily changing

saliency over time [7, 18, 20–24], and (ii) are abstract in nature, typically not mapping directly

to any real-world task.

It is currently an open question whether decision-making is well-described by evidence

accumulation models in less cognitive and more embodied task contexts, relating to human

sensorimotor control, movement, and locomotion in the real world. The nervous system per-

forms myriad choices of motor actions to perform tasks such as keeping the body upright [25],

balancing a stick [26], intercepting a ball [27] or avoiding collisions with other cars while driv-

ing [28]. Do evidence accumulation mechanisms play a role also in these contexts? [29] One

challenge in answering this question lies in the nature of the sensory evidence being used: A

hallmark feature of real-world sensorimotor behaviors is that they depend on continuously

time-varying sensory stimuli, such as joint angles, sight point rotations or optical expansion

rates, of which the exact, externally measurable values are important for successfully shaping

the behaviour [25–29]. This is in stark contrast with most existing evidence accumulation
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modeling work, which has emphasized stationary evidence (in part because this enables com-

putationally efficient model-fitting [30]), with the rate of evidence in the model typically fitted

as a free parameter per experimental condition, without a mechanistic link to the properties of

the external stimulus. We and others have begun exploring accumulation models of which the

input evidence instead scales directly with external sensory data, in tasks such as stick-balanc-

ing [31], visual and vestibular judgment of self-motion [32–34], longitudinal and lateral con-

trol in car driving [29, 35–38], and road-crossing decisions [39, 40], but these studies have so

far not performed model testing and selection at the same level of detail as is typical in the

broader evidence accumulation model literature.

Here, we aim to close this gap by developing and studying a paradigm where participants

detect onset of visually looming (optically expanding) collision threats. We chose this task

because it is an ecologically relevant task with time-varying sensory evidence, and accumula-

tion of visual looming has also been suggested–but not conclusively proven–in several of the

mentioned previous studies [36–38], yet this task nevertheless permits collection of large num-

bers of repetitions in a controlled laboratory environment, enabling detailed model fits of full

per-participant probability distributions of response. There are also some specific predictions

to test: Conventionally, it is assumed that humans can detect collision threats once the rate of

optical expansion of the obstacle’s projection onto the observer’s retina exceeds a looming

detection threshold (LDT) [41–43]. This LDT assumption has been adopted in basic percep-

tual psychology research into collision avoidance and target interception [44, 45], time-to-con-

tact estimation research [46–48], sports science [49, 50] and applied research in the road traffic

safety domain [51–56]. Notably, the LDT assumption is also used in traffic accident litigation,

to answer questions about whether an appropriately attentive driver should have been able to

avoid a crash [57, 58]. However, some of the early literature on the LDT reported that the kine-

matics of the collision course (i.e., the movement trajectories of the observer and collision

object) could seemingly affect the value of the threshold itself [41, 42, 52]. We have previously

proposed that such kinematics-dependencies in human collision detection ability could be

understood if, instead of an LDT, collision threat detection were determined by evidence accu-

mulation of the visual looming signal [35], a hypothesis which we test here. We also comple-

ment our behavioral observations with concurrent EEG recordings, to investigate whether the

previously reported CPP signature could be observed in our paradigm, and if so whether the

nature of this neural signature aligned with the predictions of our time-varying evidence accu-

mulation model.

Results

We conducted an experiment where we simultaneously recorded participants’ overt looming

detection responses and concurrent EEG. Rather than opting for the type of abstract stimuli

conventionally used in neuroscientific research on collision perception [59, 60], to emphasize

the connection to real-world collision threat detection we instead chose to create a laboratory

version of the driving test track experiment by Lamble et al. [52]. In their experiment, partici-

pants followed a lead vehicle at either 20 m or 40 m distance, and pressed their car’s brake

pedal as soon as they saw the lead vehicle come closer, which it did by a 0.7 m/s2 deceleration

(not accompanied by a brake light signal). In our laboratory implementation, illustrated in Fig

1A and described in detail in Materials and methods, participants were instructed to fixate a

location on a screen, where an image of the back of a car appeared at an appropriate optical

size for either 20 m or 40 m viewing distance, with minor horizontal and vertical perturbations

over time. The car image either remained the same size for 7 s before disappearing (catch trials;

16.7% of the total number of trials) or began, after a random delay in the 1.5–3.5 s range, to
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optically expand, recreating the looming trajectory of a decelerating lead vehicle (i.e., accelerat-

ing toward the observer). Participants were instructed to press a key as soon as they saw the

car “coming closer”(i.e., growing on the screen). Lamble et al. included also non-foveal detec-

tion conditions, which we omitted. Instead, we extended the design by including a 0.35 m/s2

lead vehicle deceleration, for a total of four kinematical trajectories, with distinct profiles of

visual looming, as shown in Fig 1A. We denote the projected optical angle of the lead vehicle

stimulus on the participant’s retina θ, and its optical expansion rate _y ¼ dy=dt, increasing

nonlinearly with time both because of the vehicle acceleration and because the visual angle of

an object is (approximately) proportional to the inverse of its distance from the observer. Note

also that in each looming condition there was a direct relationship between response time (the

horizontal axis in Fig 1A and 1B and optical expansion rate at response (the vertical axis in Fig

1A and 1C. To align with the existing literature on looming detection, our basic inferential

testing on the behavioral data focused on _y at response, whereas to align with the literature on

evidence accumulation modeling, our model-fitting was instead focused on distributions of

response time.

Overt responses refute the fixed looming detection threshold assumption

After exclusion of a small minority of trials for early (0.6%) and missing (0.2%) detection

responses, and a larger number of trials for electrooculographic indications of eye blinks

(15.9%; see Materials and methods for details), the final data set included 22 participants,

with an average of 182 trials per participant (an average of 46 trials per looming condition).

Fig 1. Overview of paradigm, model, and behavioral results. (A) In each trial, participants fixated a target, at which an image of the back of a car

appeared, and after a variable time delay began to optically expand following one of four different looming trajectories (solid lines; colors per

corresponding kinematical conditions as indicated in the boxed legend). The dotted line shows the across-experiment average optical expansion rate
_ymean at which participants reported detection of this visual looming. The shaded regions all have the same area, to illustrate why evidence accumulation

predicts detection at lower _y in conditions where this quantity increases more slowly. (B) Histograms show the participants’ detection response times

across the entire experiment for the fastest and slowest of the four looming conditions, overlaid with the corresponding predictions from per-

participant maximum likelihood fits of the variable-gain accumulator model (model AV; thick solid lines). This model posits that the visual looming

evidence shown in panel A is integrated over time together with normally distributed noise, up to a fixed threshold at which detection occurs (example

time histories of noisy integration of the looming input shown as thin solid lines, with circle symbols at the fixed decision threshold). The triangle

symbols indicate the response times that would be predicted by a conventional looming detection threshold model, with _ymean as threshold. (C) Optical

expansion rates at which the participants (histograms) and fitted accumulator model (lines) reported detection, in the four different looming

conditions. The dotted lines again show _ymean, and the black crosses indicate the detection thresholds reported in [52] for the same kinematical

conditions.

https://doi.org/10.1371/journal.pcbi.1009096.g001
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Fig 1C shows that our data replicated the kinematics-dependency reported by Lamble et al.

[52], with detection occurring at lower average optical expansion rates _y for the larger initial

distance (F(1, 3698) = 1255.48;p<.0001). Also in an absolute sense, our _y values at detection

were similar to those observed in the test track experiment (black crosses in Fig 1C), but

slightly lower, potentially due to the reduced noise in the laboratory environment and the use

of a finger key press instead of a foot pedal to report response.

As initially suggested in [35], detection at lower _y values for larger initial distances is pre-

dicted by a looming accumulation account, because looming grows more slowly from larger

distances, and because accumulation (i.e., integration) of a small _y over a long time is equiva-

lent to accumulation of a large _y over a short time; see the shaded areas in Fig 1A. Similarly,

for lower deceleration magnitudes, where looming develops even more slowly, the looming

accumulation account also predicts detection at further decreased _y values. This was the moti-

vation for the inclusion of the 0.35 m/s2 deceleration condition, and the observed _y values at

detection were indeed further reduced for this lower magnitude of deceleration (Fig 1C; F(1,

3698) = 810.26;p<.0001).

These behavioral findings strongly reinforce the idea that looming detection occurs at mag-

nitudes of optical expansion rate that are dependent on the kinematics of the collision course,

in contrast with the conventional LDT assumption of a situation-independent threshold for

detection. The triangle symbols in Fig 1B indicate the response times that would be predicted

by a situation-independent looming threshold fixed at the average _y at detection observed

across this experiment. These LDT predictions are too early in fast looming conditions, and

too late in slow looming conditions, which is precisely the qualitative pattern of errors that one

would expect to see if participants’ responses were instead determined by evidence accumula-

tion of optical expansion rate.

From a methodological point of view it is worth noting that our behavioral analyses also

identified statistically significant effects of experimental block (slightly increased looming sen-

sitivity in later blocks) and the 1.5–3.5 s pre-looming wait time (slightly increased looming

sensitivity with increased pre-looming wait time). These effects were substantially smaller than

the effects of looming condition and between-participant differences (see Table B in S1 Appen-

dix), and were therefore not separated out in the subsequent model fitting described below.

A visual looming accumulator model accounts for full detection

distributions

As illustrated in Fig 1B, the looming accumulation hypothesis can be computationally formal-

ized as a single-boundary accumulator (or drift diffusion) model, with its rate of evidence

accumulation (sometimes referred to as “drift rate”) at each point in time determined by the

momentary optical expansion rate, multiplied by some gain, and where overt detection

response occurs once an evidence threshold is reached. Noise in the evidence accumulation

process (e.g., due to noisy sensory input, interference from other brain activity, or both) gives

rise to variability, i.e., probability distributions of response time. It may be noted that our

model, like previous evidence accumulation models of detection of intermittent, subtle

changes in abstract stimuli [14, 16], effectively implements Page’s cumulative sum (’CUSUM’)

technique for change detection [61].

The conventional LDT assumption is completely deterministic, and as such does not make

predictions about probability distributions. However, one might consider a stochastic threshold
model, positing that looming detection occurs once a noisy optical expansion rate signal first

exceeds a fixed threshold. In fact, such a model would also predict the qualitative findings
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reported above, since in conditions where looming develops slowly, there would be more time

for large noise values to occur by chance, thus eventually exceeding the threshold even if the

sensory signal itself is still sub-threshold. We therefore tested also this type of model, and com-

pared it to the accumulator model.

Due to the time-varying drift rate in our accumulator model, there is no closed-form

expression for its response time distribution [62]; we estimated these distributions numerically

instead. All considered models were fitted per participant, both using maximum likelihood

estimation (MLE) and approximate Bayesian computation (ABC), to the per-participant

response time distributions in each looming condition. The emphasis in this paper is on the

MLE results, whereas the ABC results, mostly reported in the Supporting information, provide

additional confirmation of the key conclusions, a more complete view of model parameter esti-

mates, and allowed us to follow up on auxiliary questions which would have been computa-

tionally prohibitive under the MLE approach.

Fig 2A shows detection response time distributions, visualized as cross-participant averages

(using the “Vincentizing”method [63]) of per-participant data and MLE model fits. The

threshold model (model T) does indeed capture the qualitative effect of looming condition,

but is unable to accurately reproduce the location and shape of the response time distributions.

Similarly to the patterns shown in Fig 1A for the deterministic threshold model, model T has a

tendency to predict responses that are substantially too late in slow looming conditions. The

accumulator model (model A) does not have this problem, and achieves a noticeably better fit

despite having the same number of free parameters as model T.

When modelling perceptual decision-making in paradigms with stationary stimulus

saliency, it has often been found that assuming between-trial variability of the stationary rate

of evidence accumulation is needed to closely reproduce human response time distributions

[10]. Analogously, we investigated an extended version of our basic accumulator model, where

the input gain applied to the optical expansion rate was not constant per participant, but

instead drawn at random per trial from a normal distribution, of which the standard deviation

thus becomes an additional free model parameter. This extended model (model AV) produced

distributions that more closely matched those of the human detection responses. Fig 2B shows

the relative goodness of fit of the three models, in terms of differences in Akaike Information

Criterion (AIC). These results indicate a very strong preference for the accumulator model

over the threshold model for all participants but one, with an average ΔAIC of -43.2 (a differ-

ence of more than 14 suggests “very strong support” for the preferred model [64]). This analy-

sis also indicated that for most participants, the additional model complexity introduced by

the input gain variability (model AV) was warranted given the improvements in model fit

(average ΔAIC = -29.1). Per-participant fits for models T, A, and AV are shown in Fig A in

Fig 2. Model comparisons. (A) Averaged (“Vincentized”) per-participant cumulative density functions (CDFs) of looming detection response time, for

human participants and the maximum-likelihood-fitted threshold model (T), accumulator model (A), and variable-gain accumulator model (AV), in

the four looming conditions. (B) Per-participant differences in Akaike Information Criterion (AIC) for the T! A and A! AV model comparisons.

Negative ΔAIC values indicate preference for the latter model in the comparison.

https://doi.org/10.1371/journal.pcbi.1009096.g002
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S1 Appendix. Model AV had four free parameters: the non-decision time TND, the accumula-

tor noise intensity σ, and mean and standard deviation K and σK of the looming input gain;

estimated values for these parameters across participants are shown in Fig B in S1 Appendix.

The ABC analysis also favored the accumulator model over the threshold model. The geo-

metric mean of the per-participant Bayes factor (an estimate of the expected Bayes factor for

hypothetical additional participants [65, 66]) in favor of the accumulator model was 3.0–7.3

(“substantial evidence” [67]), depending on the choice of the ABC distance threshold hyper-

parameter �RT, with the highest Bayes factors for the more stringent �RT (see Fig E in S1

Appendix). The ABC comparison of accumulator models with and without variable gain was

inconclusive (geometrical mean Bayes factor 1.4–1.5 in favor of model A), possibly because of

the relatively broad priors we used, which may have excessively penalized model complexity

[68].

Using both MLE and ABC methods we also investigated other model variants, incorporat-

ing gating of the looming input (requiring it to exceed a minimum threshold before contribut-

ing to the accumulation) or evidence leakage (as a form of short-term memory decay), as well

as more complex models incorporating different combinations of these various model

assumptions. As further described in S1 Appendix, none of these alternative models were

found preferable over the variable-gain accumulator model (model AV).

As an additional test of this best-performing model, we also examined its predictions in

response to variations in pre-looming wait time. As mentioned above, the model-fitting was

blind to this experimental manipulation. However, as shown in Fig C in S1 Appendix, model

AV nonetheless predicted the observed pattern of increased looming sensitivity with increased

pre-looming wait times, with approximately correct magnitudes.

Looming accumulation explains onsets of pre-response scalp potentials

Fig 3 illustrates the main EEG findings. The response-locked scalp maps in Fig 3A show a posi-

tivity at the overt response, in line with the CPP observed by many others [13–19]. Fig 3B and

3C show stimulus-locked and response-locked ERPs, per condition, averaged over five elec-

trodes centered on Pz. The original paper on the CPP centered its analysis on the CPz elec-

trode location [13], but many subsequent reports have shown more parietally located CPPs,

consistent with what we observe here [14–16, 18, 69]. Again in line with previous observations,

Fig 3C shows that this positive wave builds up before the overt response and peaks at the

response itself, including a characteristic separation at this peak, with higher CPP amplitudes

for the more salient looming conditions [13, 14, 16, 18]; see the dots along the bottom of

Fig 3C.

However, the CPP we observe here differs in at least two respects from previous observa-

tions. First, the build-up of the CPP has previously been reported to be of similar duration as

the overt response times, typically only 100–200 ms shorter [13–18]. This is consistent with the

idea that the CPP reflects evidence accumulation that starts shortly after stimulus presentation.

In contrast, average response times per looming condition in our experiment ranged from 1.1

to 2.4 s, yet it is clear from Fig 3C that the average CPP build-up duration was shorter than 0.5

s for all conditions. Second, since in previous studies CPP increase over ERP baseline has been

obvious soon after stimulus onset, conditions with slower responses (typically due to less

salient stimuli) have produced CPP profiles with build-up commencing earlier in time before

the overt response [13–15, 17]. In contrast, in our response-locked ERP data, there is no obvi-

ous separation between conditions in when the CPP build-up commences.

Fig 3D shows that the CPP signal is subtly affected by EEG pre-processing choices (most

notably, the 0.1 Hz low-pass filter we used causes a slight suppression to negative voltage
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before the CPP build-up; see further Fig F in S1 Appendix), but the general aspect of a late,

condition-independent CPP onset remains. Meanwhile, as can be seen in Fig 3E, the onset of

evidence build-up in our behavioral model was both early and condition-dependent, as

expected since the model directly accumulates the looming input.

Previous studies have indicated that purely behavioral fits of evidence accumulation models

can yield model evidence profiles that align qualitatively with the corresponding CPP [14, 15,

17–19], but as described above this was not the case here. One possible reason for this could be

that our models were flexible enough to achieve good behavioral fits for a range of parameteri-

zations, with a range of widely different evidence build-up profiles, and that our purely behav-

ioral fits were therefore not enough to observe an alignment between model evidence and

recorded CPP signatures. Therefore, using ABC, we investigated whether fitting the models

simultaneously to the behavioral and neural data could identify a behaviorally well-fitting

model which did not exhibit early separation of accumulated model evidence, thus aligning

better with our CPP observations, but no such model was identified; see Fig J in S1 Appendix.

Fig 3. EEG results. (A) Grand average scalp potentials shortly before, at, and after overt detection response. (B) Event-related potentials (ERPs) relative

to the looming stimulus onset, averaged over five electrodes centered at Pz (marked in A), in the four different looming conditions. (C) The same four

ERPs as in (B), but instead response-locked, i.e., relative to the time of overt detection response. The dots along the bottom show where an ANOVA

indicated a statistically significant main effect of looming condition on these ERPs. (D) As panel C, but without high-pass filtering and ocular artefact

removal. (E) Response-locked average accumulated evidence E in each looming condition, for the best-fitting variable-gain accumulator model AV.

Note that the model traces converge at the decision threshold E = 1; the exact location of this point in the plot depends on how much of the non-

decision time in the model is assumed to be due to sensory and motor delays, respectively. (F) Estimated onsets of the pre-response centroparietal

positivity (CPP) relative to the overt detection response, in the four looming conditions. This includes the (17 out of 22) participants for which the CPP

onsets could be reliably estimated. The black markers indicate condition means. The intervals plotted in black and gray at the bottom of the panel show,

respectively, the maximum observed difference between condition means, and the upper edge of a 95% confidence interval for this difference. (G)

Averaged (“Vincentized”) per-participant cumulative density functions (CDFs) of CPP onset time relative to the looming stimulus onset, for the

participants and the maximum-likelihood-fitted variable-gain accumulator model. (H) The top panel shows per-participant AIC differences for the T

! A and A! AV model comparisons, when fitted to the CPP onset data. The bottom panel shows the total cross-participant sums of AIC differences,

with 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009096.g003

PLOS COMPUTATIONAL BIOLOGY Accumulation of evidence in human collision threat detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009096 July 15, 2021 8 / 21

https://doi.org/10.1371/journal.pcbi.1009096.g003
https://doi.org/10.1371/journal.pcbi.1009096


A different possible explanation for our late, rapid, and seemingly condition-independent

CPP could be that (i) the looming accumulation process indicated by the behavioral modeling

results is not directly reflected in the CPP, and (ii) the observed CPP instead reflects a second

stage of the response decision process, which begins only once the looming accumulation pro-

cess reaches threshold. To further investigate this hypothesis, we estimated full distributions of

CPP onset times from the EEG data, by averaging ERPs over trials with similar response times,

to increase signal-to-noise ratio, and identifying the last time where the averaged ERP

exceeded 30% of its value at the overt response. We found that this allowed us to reliably esti-

mate CPP onsets for 17 out of the 22 participants. We then investigated our hypothesis using

this dataset in two ways: Firstly, as illustrated in Fig 3F, we analyzed the distributions of CPP

onset time relative to overt response. In line with our hypothesis that the process reflected in

our CPP has a duration that is independent of looming condition, we found that the largest

difference in the average CPP onset between two conditions was 22 ms (interval marked in

black at bottom of Fig 3F) and that the upper edge of a 95% confidence interval for this differ-

ence was 79 ms (interval marked in gray). In other words, any effect of looming condition on

CPP onset relative to detection response was small in magnitude (and not statistically signifi-

cant in our dataset; F(3, 377) = 1.94;p = .133). Secondly, we refitted, using MLE, the threshold

and accumulator models to the estimated CPP onsets instead of to the overt responses. We

found that the accumulator models could account well for the distributions of CPP onset, and

reliably better than the threshold model; see Fig 3G and 3H (and see Fig I in S1 Appendix for

more detailed results for models T and A). Because the CPP onset dataset being fitted to was

reduced compared to the behavioral dataset, a reduced statistical power of the model compari-

sons should be expected, and the obtained per-participant ΔAIC values (Fig 3H, top) were

indeed smaller than for the corresponding behavioral model comparisons. However, for the

overall test of whether to prefer A over T across our entire experiment, the total difference in

AIC was still very large (-81.4 and -31.0 for the T! A and A! AV comparisons; see Fig 3H,

bottom, also showing 95% confidence intervals for these differences). The results illustrated in

Fig 3F–3H were robust to variations in EEG pre-processing and our CPP onset estimation

method; see further Materials and methods, and Figs F, H, and I in S1 Appendix.

Discussion

The results presented here support four main conclusions. First, that human collision threat

detection occurs at optical expansion rates that are highly dependent on the kinematics of the

collision scenario. We replicate the previously observed effect of initial obstacle distance [41,

42, 52], and additionally demonstrate an effect of obstacle acceleration, predicted by our loom-

ing accumulation hypothesis. Taken together with the mentioned previous literature, our

findings strongly refute the LDT assumption, i.e., the assumption of a single, kinematics-

independent threshold for looming detection. As illustrated in Fig 1A, this conventional

assumption can yield estimated detection times that are incorrect by several seconds. We

therefore caution against further use of the LDT assumption, not least in the applied context of

road traffic safety, where it has influenced research, recommendations, and legal proceedings

[51–58].

Second, we show that not only the qualitative patterns of kinematics-dependency, but also

full probability distributions of collision threat detection can be explained by an evidence accu-

mulation model, assuming that the optical expansion rate information is integrated over time,

with noise, up to a threshold at which detection is reported. We thus provide a computational

account of how humans perform collision threat detection, which explains both average ten-

dency and precise patterns of variability in performance. From an applied perspective, the
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accumulator models proposed here can be considered as an alternative to the LDT assump-

tion. It should be noted, however, that the focus here was on investigating human ability of col-

lision threat detection in a controlled laboratory experiment, rather than to provide and

validate a model for applied use. The alignment with the test track findings by Lamble et al.

[52] is encouraging, but further real-world validation, ideally covering a more diversified set of

kinematical scenarios, would be advisable. For example, while an evidence leakage assumption

was not required to account for the data in our experiment, such an assumption might become

important in even slower looming conditions, where a model without any memory decay

could be overly prone to purely noise-driven detection responses. (See the Supporting infor-

mation for further discussion of the various alternative model variants tested here.) Another

interesting question for future work is whether these improved models of collision threat

detection (which as mentioned above effectively implement a change detection algorithm

which is optimal under certain assumptions [61]) can support improved models of collision

avoidance response. In the road traffic context, some existing models of collision avoidance

response suggest that detection and response are separate and sequential steps [57, 58, 70],

whereas other accounts suggest that defensive responses are instead driven directly by

kinematical urgency, without a clear role for a first, separate step of detection [58, 71, 72].

Third, we provide strong support for the idea that established evidence accumulation mod-

els of decision-making can be extended beyond typical laboratory paradigms with static or

intermittently changing abstract stimuli, to tasks with ecologically relevant, continuously time-

varying sensory evidence, directly using the externally measurable stimulus as an input to the

evidence accumulation. We and others have reported that evidence accumulation models

show promise for modelling decisions in real-world tasks, e.g., when to apply brakes in

response to a developing collision threat [36–38], or on whether and when to cross a road with

oncoming traffic [39, 40]. However, in these contexts it has not been possible to fit full

response time probability distributions per participant, a minimum expectation in evidence

accumulation modeling of more typical, abstract laboratory tasks. Drugowitsch et al. [32, 33]

provided compelling support for evidence accumulation decision-making in their visual-ves-

tibular heading discrimination paradigm, but did not emphasize detailed fits of response dis-

tributions. Ratcliff and Strayer achieved this level of model-fitting stringency in a driving

setting, but did so by using a paradigm of speeded response to discrete stimuli, thus abstracting

away from the continuously time-varying nature of the real-world driving task [73, 74]. Our

looming detection paradigm was instead chosen to enable similarly rigorous model analyses of

an ecologically relevant, continuously time-varying stimulus. It is notable that, among our

alternative models, the accumulator model with between-trial variability in input gain (model

AV) performed best for a majority of participants. For static input evidence, (i.e.,

_y ¼ constant, in our case), this input gain variability reduces to between-trial variability in a

static accumulation rate, a very common assumption in past modeling work, with much

empirical support [10]. Our results thus demonstrate how this model assumption for static evi-

dence paradigms can be usefully generalized to paradigms with time-varying evidence. Our

paradigm and models may provide useful starting points for further research into decision

making with continuously time-varying evidence, both in other sensory detection tasks (cf.,

e.g., [75, 76]) as well as in sensorimotor control tasks of basic or applied nature [29, 31, 36–40].

Fourth, in contrast with previous studies on the CPP signature, we show that in our para-

digm the late onset of the CPP, rather than a build-up rate present from early on after stimulus

presentation, can be explained by evidence accumulation. The existing literature features sev-

eral paradigms that are similar to ours in tasking participants with detecting low-saliency

changes in sustained stimuli [13, 14, 16, 18], for example in the form of gradual changes in
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visual contrast [13], following time courses not dissimilar to the looming trajectories studied

here (Fig 1A). These studies and others have provided converging evidence for the notion that

the CPP source (i.e., the neural circuits giving rise to the CPP signature; see [77]) is involved in

(or connected to) an early, sustained, and saliency-dependent accumulation of evidence for

the decision to respond [13–18]. Our behavioral modeling results support this type of evidence

accumulation account of looming detection, yet the CPP in our paradigm is late, rapid, and

without a clear effect of stimulus saliency on its duration. We did not hypothesize in advance

that our CPP results would differ from previous findings in this way. For this reason, and

because the CPP onset analyses we performed here were simple and exploratory in nature, we

are unable to draw any firm conclusions about the underlying reasons for the nature of our

CPP signatures. However, one seemingly plausible hypothesis would be that a key factor is our

use of an ecologically relevant stimulus, specifically visual looming, known to be processed in

phylogenetically old subcortical brain structures [78]. Aligning with findings in non-human

species [79–82], functional magnetic resonance imaging in humans has implicated structures

such as the superior colliculus and the medial pulvinar nucleus of the thalamus in processing

of visual looming [60]. These structures play important roles in attentional orientating [83],

and have cortical projections circumventing early visual areas, for example to the middle tem-

poral (MT) visual area, known to be involved in processing of motion cues [84]. In a general

sense, this difference in connectivity may play a role in why our ERP results stand out. More

specifically, both our behavioral and CPP results can be understood if it is assumed that the

pathways for looming processing include neural circuits implementing evidence accumulation

detection of collision threats, from which only the decision outcome (threat detected or not) is

communicated onward to the CPP source, which then carries out a rapid, second-stage evi-

dence accumulation, implementing the higher-level, modality-general decision of mapping

stimulus to response in the task at hand [13]. This tentative ‘two-accumulator’ hypothesis

would explain why the onset distributions of the late and rapid CPP in our data can be well

accounted for by a looming accumulation model. In the Supporting information we provide a

computational formulation of this hypothesis and illustrate how it might explain also the at-

response CPP separation between looming conditions (Fig 3C and Fig K in S1 Appendix). The

two-accumulator hypothesis is interesting not least in light of findings that the CPP correlates

with subjectively reported experience of the perceptual decision being formed [69]. From this

perspective, the late CPP signatures in our data suggest the empirically testable hypothesis that

visual looming evidence accumulation (before CPP onset) occurs with near-zero subjective

awareness or confidence. This would align well with conventional notions of an early percep-

tual limitation on looming detectability, but recasting the limitation as an evidence accumula-

tion decision process instead of a perceptual threshold.

Materials and methods

Ethics statement and open software/data

All procedures were approved by the School of Psychology Research Ethics Committee, Uni-

versity of Leeds, reference number PSC-484. The primary research data for this study, as well

as the software code implementing the experimental paradigm, data analyses, and computa-

tional models, are available here: https://doi.org/10.17605/OSF.IO/KU3H4.

Experimental design

The objective of the experiment was to observe participants’ detection of a visually looming

object, to what extent this detection was influenced by the kinematical details of the object’s
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approach, and whether traces of the response process could be observed in participant scalp

potentials.

The basic task was a computer-simulated replication and extension of the foveal looming

conditions of the test track experiment in [52]. The paradigm was implemented in MathWorks

MATLAB using PsychToolbox v3.0.14 [85, 86]. The stimulus was a photographic image of the

back of a 1.85 m wide and 1.43 m high passenger car (used with permission from Volvo Car

Corporation), as shown in Fig 1A. This image was displayed over a dark gray color on a 24

inch (0.53 m × 0.30 m) 60 Hz TFT screen at 1920 × 1080 pixels resolution. The original image

was at higher resolution than shown on screen, and was scaled to appropriate size and dis-

played with antialiasing using the OpenGL trilinear filtering provided by PsychToolbox.

A central fixation target (a red dot, diameter 6 pixels, 0.095 degrees visual angle) was dis-

played throughout each experimental block. In each trial, initially only this fixation target was

shown for 3 s, then the stimulus image appeared centrally on the screen, accompanied by an

auditory tone, displayed at a size corresponding to an initial distance of either 20 or 40 m (sub-

tending 5.30 and 2.65 degrees horizontal visual angle, respectively). Some trials were catch tri-

als without any looming, at which the stimulus remained at the same size for 7 s before

disappearing. In non-catch trials, the stimulus remained at the same size during an initial pre-

looming wait time, one of 1.5, 2, 2.5, 3, 3.5 s, whereafter the size of the stimulus was gradually

increased to reproduce the looming visual input from a car decelerating at either 0.35 or 0.7

m/s2; as shown in Fig 1A. The participants were instructed to keep their eyes on the fixation

target, refrain from blinking while the car was being shown and until their response, which

they were instructed to give by pressing the space bar on a computer keyboard with their right

hand “as soon as you see the car coming closer, in other words when it is growing on the

screen”. Trials terminated once participants either (a) made a correct looming detection

response, after which the stimulus continued looming for another 0.5 s before disappearing, to

avoid the impact of this visual transient interfering with the EEG measurements at time of

response, (b) made no response before the looming stimulus had reached a trial expiry thresh-

old of 0.03 rad/s (about ten times the threshold typically stated in the literature), or (c) made

an incorrect, early detection response before the onset of visual looming; in this last case a dis-

tinct auditory tone was played to inform the participant of their incorrect detection response.

The participants viewed the stimulus screen at a distance of 1.00 m, meaning that each

screen pixel subtended a visual angle of 0.95 arcmin (0.016 degrees), lower than the 1.6 arcmin

threshold reported in [87] for maximum Vernier acuity with antialiased stimuli. To further

reduce the risk of pixel effects, and to mimic the conditions of the replicated test track experi-

ment [52], the stimulus was displayed with small horizontal and vertical oscillatory perturba-

tion throughout, generated by moving the simulated viewport as if the participant themselves

were sitting in a car, with perturbation spectra based on measurements from real driving; see

Table A in S1 Appendix for details.

Procedure

Participants provided written informed consent before taking part in the experiment, which

was carried out in a dark room with the participant sitting in front of the stimulus display, sup-

ported by a chin rest. In a first demonstration block of four trials, the experimenter demon-

strated the task, including the auditory tone given upon incorrect, early responses, as well as a

feedback screen that was shown after each block. This feedback screen listed average response

times and frequency of correct responses for all blocks so far, and encouraged participants to

rest if their response times were increasing. The participants then decided themselves when to

start the next block. The participants first completed a practice block of 12 trials, two of each of
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the four looming conditions (2 initial distances × 2 acceleration levels), and four catch trials.

Then followed the five experimental blocks, each with a total of 48 trials, eight catch trials and

ten repetitions of each of the four looming conditions (two repetitions for each of the five pre-

looming wait times), making for a total of 5 × 40 = 200 looming trials per participant, 50 for

each looming condition. Trial order was fully randomized per block and participant.

Participants

The target initial sample size was twenty-five participants, to provide a comfortable margin

over the total number of trials collected in previous studies reporting on the CPP [13, 14].

Twenty-six right-handed participants were recruited from a local pool of participants, all with

normal or corrected-to-normal vision, and with no history of psychiatric diagnosis, severe

brain injury, motor diseases or any skin conditions. EEG recording was incomplete for one

participant, and data from the remaining twenty-five participants, of ages between 20 and 46

years (mean 26.5), 12 male and 13 female, were retained for further analysis.

Data acquisition and preprocessing

Behavioral responses were recorded at the 60 Hz refresh rate of the display screen. Out of the

25 × 40 = 1000 catch trials, there were 61 (6.1%) with false detection responses. The catch trials

were not further considered in the analyses or modeling. Out of the 25 × 200 = 5000 trials with

looming stimuli, participants responded before looming onset in 32 trials (0.6%), and non-

responses were observed in 8 trials (0.2%); these early and non-responses were included in the

behavioral model fits, but were excluded from all EEG analyses.

EEG data were recorded at 1024 Hz, using a 64 electrode 10–20 international cap Biosemi

system. Electro-oculogram (EOG) electrodes were placed above and below the left eye and at

the outer canthus of each eye. EEG preprocessing was done using EEGLAB v14.1.1 [88], first

resampling to 512 Hz, then using the PREP pipeline EEGLAB plugin v0.55.3 [89] for robust

re-referencing to average channel and interpolation of noisy channels. PREP interpolated one

of the five channels analyzed as part of the pre-response positivity analyses here (Pz and sur-

rounding channels CPz, POz, P1, P2) for only three participants (one of which was later

excluded due to ocular artefacts; see below), in each case only one of the five channels was

interpolated. Then, bandpass filtering was done using EEGLAB’s sinc FIR filter with a Kaiser

window, with pass/stopband ripple of 0.001, lowpass filter of with 45 Hz cut-off and 5 Hz tran-

sition bandwidth, and high-pass filtering at 0.1 Hz cut-off with 1 Hz bandwidth. Following

[13], trials with pronounced ocular artefacts were rejected by the vertical EOG difference

exceeding 100 μV, excluding 796 trials (15.9%). 395 of these trials were from three specific par-

ticipants, who therefore failed to reach a minimum of at least 30 trials in each looming condi-

tion. These three participants were excluded from further analysis. Further ocular artefacts

were identified and removed from the EEG data per participant, using EEGLAB’s independent

component analysis (ICA) functionality. The final dataset included 22 participants with a total

of 4013 looming trials, i.e., an average of 46 trials per participant and looming condition. For

event-related potential (ERP) analysis, the EEG data of looming trials were divided into epochs

from 1 s before to 8 s after the looming onset in each trial (sufficient to include all responses in

all conditions given the 0.03 rad/s trial expiry threshold mentioned above), and the EEG data

for each epoch were baseline-corrected, using the average of the last 200 ms before the looming

onset as baseline. Then, the five channels centered on Pz mentioned above were averaged to

yield the final signal used in the CPP analyses (per-condition averages across participants

shown in Fig 3B and 3C; per-condition averages per participants shown in Fig G of S1 Appen-

dix). The analysis illustrated in Fig 3C was also rerun after disabling the 0.1 Hz EEG high-pass
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filter and the ICA ocular artefact removal, confirming that neither of these two preprocessing

steps substantially altered the obtained CPP signatures; see Fig 3D and Fig F in S1 Appendix.

For the analyses which focused specifically on the onset of the CPP, we increased the signal

to noise ratio by sorting trials on response time per participant and looming condition, sepa-

rating the sorted trials into groups of five trials, and taking the average response-locked ERP

within each such group. We then identified the CPP onset for each averaged trial as the last

sample where the averaged response-locked ERP was less than 30% of its value at the overt

response. We excluded averaged trials where this did not occur within 1 s before the response,

or where the ERP at response was less than +2 μV, resulting in a total exclusion of 284 (37.4%)

out of the 760 averaged trials. 134 of these exclusions were due to five participants, who distin-

guished themselves from the rest either by having no clear ERP peak at response (Cohen’s

d< 0.3 when comparing ERP between 0.5 s before response and at response) or by the at-

response peak occurring at close to zero voltage; see Fig G in S1 Appendix. These five partici-

pants were excluded from the CPP onset analyses, leaving a data set of 17 participants and 445

averaged trials (an average of 26 per participant). Since our CPP onset estimation method was

novel, and not originally planned for, we also conducted sensitivity analyses. As illustrated in

Figs F and H of S1 Appendix, these analyses showed that the obtained CPP onset estimates

were robust to variations in the parameters of our method, but also that our method was not

suitable for use on non high-pass filtered ERP data, which would have been desirable since the

high-pass filtering we used subtly altered the CPP signal (cf. Fig 3C and 3D). Future work

should improve on these onset estimation methods, for example along the lines of the

approach in [90].

Statistical analysis

To test for effects of the kinematical looming conditions on the optical expansion rate at

behavioral detection response, we carried out a repeated-measures ANOVA, implemented

using MATLAB’s anovan function with participant as a random factor, independent variables

initial car distance (2 levels) × acceleration magnitude (2 levels) × experimental block (5 levels)

× pre-looming wait time (5 levels), limited to first-order interactions only, and log ð _yÞ as the

dependent variable; see Table B in S1 Appendix for full results. To study separation between

response-locked ERPs for different looming conditions (Fig 3C and 3D), we performed ANO-

VAs at 20 ms intervals, with the response-locked ERP as the dependent variable, participant as

a random factor, and looming condition (4 levels) as independent variable. We also performed

this type of ANOVA to test for an effect of looming condition on CPP onset relative response

(Fig 3F). The 95% confidence intervals in Fig 3F and 3H were obtained by 100,000 sample

bootstraps from the empirical data in question.

Computational models

The optical expansion rate accumulator models investigated here can be described by the fol-

lowing discrete update equation for the accumulated evidence E at time step i:

EðiÞ ¼ maxð0;Eði � 1Þ þ ~K _yðiÞDt þ snðiÞ
ffiffiffiffiffi
Dt
p
Þ; ð1Þ

where ~K is an accumulation gain parameter either drawn at random per trial from a normal

distribution N ðK; s2
KÞ with σK as a free parameter (model AV), or kept constant per partici-

pant (σK = 0; model A), Δt is the discrete simulation time step length, and the final term is a

discrete implementation of a Wiener process with noise intensity σ, with ν(i) drawn at random

per time step from a standard normal distribution N ð0; 1Þ. Note that we included a reflecting
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lower boundary at zero (the max function), as often done for evidence accumulators with a

single decision boundary [7, 20, 91, 92]. The optical expansion rate _yðiÞ is the time derivative

of the optical size of the collision obstacle (here, the lead vehicle):

yðiÞ ¼ 2 arctan
W

2DðiÞ
) _yðiÞ ¼

WVðiÞ
D2ðiÞ þW2=4

ð2Þ

where W and D(i) are the width of and momentary distance to the collision obstacle, and V(i)
is the momentary speed at which it is coming closer [28]. The accumulator model makes a

detection decision once E(i)�1 (E is in arbitrary units, so one of decision threshold, K, or σ
can be fixed without loss of generality) overtly responding a non-decision time TND later. A

fraction αND = 0.3 of TND was assumed to occur before the evidence accumulation, based on

[29, p. 189]; this value did not affect the behavioral model fits or comparisons, only model evi-

dence visualizations like the one in Fig 3E. For a description of the other accumulator model

variants that were also tested, see the Supporting information.

The stochastic threshold model investigated here (model T) can be written on a similar

form:

EðiÞ ¼
_yðiÞ
_yd

þ snðiÞ; ð3Þ

again with overt detection response a time TND after E(i)�1, i.e., the parameter _yd is the loom-

ing detection threshold parameter. Note that the estimated value of σ for this model will

depend on the discrete simulation time step length; we used Δt = 0.02 s across all models. The

models were simulated from the start of each trial, i.e., the pre-looming wait time was also sim-

ulated, and the accumulator models were initialised at E = 0 for each trial.

Model fitting by approximate Bayesian computation

Our main goal of ABC was parameter estimation rather than model selection, so we used rela-

tively broad, non-informative priors. To make the obtained Bayes Factors reasonably mean-

ingful, and for increased computational efficiency, we identified approximate limits for the

model priors by means of a first ABC fit to the information available from the previous test

track experiment [52]; see Supplementary material for details. We then fitted each model vari-

ant (T, A, AV, etc) to each participant separately. To implement ABC rejection sampling [93,

94], for each parameterization sampled at random from the prior distribution, we generated a

simulated data set of the exact same nature and size as the data obtained from one human par-

ticipant, (same number of repetitions, pre-looming wait times, etc.) and calculated and stored

a set of twenty summary statistics; the response time quantiles {0.1, 0.3, 0.5, 0.7, 0.9} for each of

the four looming conditions separately. We then compared the simulated RT quantiles to each

human participant’s data, for each participant retaining only parameter samples where all

twenty absolute differences between simulated and observed RT quantiles were below a rejec-

tion threshold �RT. These retained samples provide an approximation of the posterior parame-

ter distribution for the participant [93, 94]. There are several more advanced versions of ABC

than this basic rejection sampling algorithm, but this method was preferred here because it

allowed us to obtain individual per-participant fits without extra simulations of the model

(which is the computationally costly step), and because it made computationally feasible the

investigations illustrated in Fig E of S1 Appendix, showing that the ABC model comparisons

were robust to the choice of the hyperparameter �RT. In the Supporting information we also

describe how we used ABC to jointly fit both our behavioral and neural data, finding that
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excessive model flexibility was not the reason for the mismatch between our CPP observations

and our behavioral models’ evidence traces.

Model fitting by maximum likelihood estimation

Maximum likelihood estimation of model parameters was carried out using exhaustive grid

search over the model parameter ranges identified by the abovementioned initial ABC fits to

the previous test track experiment, with each parameter’s range uniformly divided into 20

searched grid values. For each parameterization in this grid, as in the ABC fits a replica of the

real experiment was simulated, but upscaled by a factor 20 to 1000 trials per looming condi-

tion, yielding a numerical response time distribution per condition, estimated at a bin size of

0.25 s. For these fits, all models were also extended by assuming a probability PC = 0.01 (our

conclusions were robust to variations in this value) per trial of ‘contaminant’ responses poorly

described by our model, e.g., due to temporary lapses in participant attention [95], modeled as

a uniform distribution across the time range from looming onset to trial expiry. (Whereas our

ABC fitting method is robust to such contaminant responses, they can disrupt the MLE fits if

they fall in low probability response time bins, which may occasionally be numerically esti-

mated to zero probability by the contaminant-free model.) Likelihoods were then estimated

from the resulting numerical probability distributions, per participant and model parameteri-

zation. This model fitting method was computationally feasible for models with up to four free

parameters (T, A, AV, AG, AL); based on the results from the ABC fits we would not expect to

see substantial further improvements with the more complex models.

Supporting information

S1 Appendix. Additional method details, analyses, and results.

(PDF)
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16. Boubenec Y, Lawlor J, Górska U, Shamma S, Englitz B. Detecting changes in dynamic and complex

acoustic environments. eLife. 2017; 6:e24910. https://doi.org/10.7554/eLife.24910 PMID: 28262095

17. Afacan-Seref K, Steinemann NA, Blangero A, Kelly SP. Dynamic Interplay of Value and Sensory Infor-

mation in High-Speed Decision Making. Current Biology. 2018; 28(5):795–802.e6. https://doi.org/10.

1016/j.cub.2018.01.071 PMID: 29456147

18. Kohl C, Spieser L, Forster B, Bestmann S, Yarrow K. Centroparietal activity mirrors the decision vari-

able when tracking biased and time-varying sensory evidence. Cognitive Psychology. 2020;

122:101321. https://doi.org/10.1016/j.cogpsych.2020.101321 PMID: 32592971

19. van Vugt MK, Beulen MA, Taatgen NA. Relation between centro-parietal positivity and diffusion model

parameters in both perceptual and memory-based decision making. Brain research. 2019; 1715:1–12.

https://doi.org/10.1016/j.brainres.2019.03.008 PMID: 30876858

20. Diederich A. Intersensory facilitation of reaction time: Evaluation of counter and diffusion coactivation

models. Journal of Mathematical Psychology. 1995; 39(2):197–215. https://doi.org/10.1006/jmps.1995.

1020

21. Tsetsos K, Usher M, McClelland JL. Testing Multi-Alternative Decision Models with Non-Stationary Evi-

dence. Frontiers in Neuroscience. 2011; 5. https://doi.org/10.3389/fnins.2011.00063 PMID: 21603227

22. Holmes WR, Trueblood JS, Heathcote A. A new framework for modeling decisions about changing

information: The Piecewise Linear Ballistic Accumulator model. Cognitive Psychology. 2016; 85:1–29.

https://doi.org/10.1016/j.cogpsych.2015.11.002 PMID: 26760448

23. Maier SU, Raja Beharelle A, Polanı́a R, Ruff CC, Hare TA. Dissociable mechanisms govern when and

how strongly reward attributes affect decisions. Nature Human Behaviour. 2020; 4(9):949–963. https://

doi.org/10.1038/s41562-020-0893-y PMID: 32483344

24. Shinn M, Ehrlich DB, Lee D, Murray JD, Seo H. Confluence of Timing and Reward Biases in Perceptual

Decision-Making Dynamics. Journal of Neuroscience. 2020; 40(38):7326–7342. https://doi.org/10.

1523/JNEUROSCI.0544-20.2020 PMID: 32839233

25. Asai Y, Tasaka Y, Nomura K, Nomura T, Casadio M, Morasso P. A Model of Postural Control in Quiet

Standing: Robust Compensation of Delay-Induced Instability Using Intermittent Activation of Feedback

Control. PLoS ONE. 2009; 4(7):e6169. https://doi.org/10.1371/journal.pone.0006169 PMID: 19584944

PLOS COMPUTATIONAL BIOLOGY Accumulation of evidence in human collision threat detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009096 July 15, 2021 17 / 21

https://doi.org/10.1146/annurev.neuro.29.051605.113038
http://www.ncbi.nlm.nih.gov/pubmed/17600525
https://doi.org/10.1037/0033-295X.100.3.432
https://doi.org/10.1037/0033-295X.100.3.432
http://www.ncbi.nlm.nih.gov/pubmed/8356185
https://doi.org/10.1037/0033-295X.108.3.550
http://www.ncbi.nlm.nih.gov/pubmed/11488378
https://doi.org/10.1037/0033-295X.111.2.333
http://www.ncbi.nlm.nih.gov/pubmed/15065913
https://doi.org/10.1016/j.cogpsych.2007.12.002
http://www.ncbi.nlm.nih.gov/pubmed/18243170
https://doi.org/10.1016/j.tics.2016.01.007
http://www.ncbi.nlm.nih.gov/pubmed/26952739
https://doi.org/10.1016/j.tics.2018.12.003
https://doi.org/10.1016/j.tics.2018.12.003
http://www.ncbi.nlm.nih.gov/pubmed/30630672
https://doi.org/10.1016/j.tins.2018.06.005
https://doi.org/10.1016/j.tins.2018.06.005
http://www.ncbi.nlm.nih.gov/pubmed/30007746
https://doi.org/10.1038/nn.3248
https://doi.org/10.1038/nn.3248
http://www.ncbi.nlm.nih.gov/pubmed/23103963
https://doi.org/10.1523/JNEUROSCI.3355-13.2013
https://doi.org/10.1523/JNEUROSCI.3355-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/24336710
https://doi.org/10.1111/ejn.12936
https://doi.org/10.1111/ejn.12936
http://www.ncbi.nlm.nih.gov/pubmed/25925534
https://doi.org/10.7554/eLife.24910
http://www.ncbi.nlm.nih.gov/pubmed/28262095
https://doi.org/10.1016/j.cub.2018.01.071
https://doi.org/10.1016/j.cub.2018.01.071
http://www.ncbi.nlm.nih.gov/pubmed/29456147
https://doi.org/10.1016/j.cogpsych.2020.101321
http://www.ncbi.nlm.nih.gov/pubmed/32592971
https://doi.org/10.1016/j.brainres.2019.03.008
http://www.ncbi.nlm.nih.gov/pubmed/30876858
https://doi.org/10.1006/jmps.1995.1020
https://doi.org/10.1006/jmps.1995.1020
https://doi.org/10.3389/fnins.2011.00063
http://www.ncbi.nlm.nih.gov/pubmed/21603227
https://doi.org/10.1016/j.cogpsych.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26760448
https://doi.org/10.1038/s41562-020-0893-y
https://doi.org/10.1038/s41562-020-0893-y
http://www.ncbi.nlm.nih.gov/pubmed/32483344
https://doi.org/10.1523/JNEUROSCI.0544-20.2020
https://doi.org/10.1523/JNEUROSCI.0544-20.2020
http://www.ncbi.nlm.nih.gov/pubmed/32839233
https://doi.org/10.1371/journal.pone.0006169
http://www.ncbi.nlm.nih.gov/pubmed/19584944
https://doi.org/10.1371/journal.pcbi.1009096


26. Milton JG. Intermittent Motor Control: The “drift-and-act” Hypothesis. In: Richardson MJ, Riley MA,

Shockley K, editors. Progress in Motor Control. Advances in Experimental Medicine and Biology. New

York, NY: Springer; 2013. p. 169–193.

27. McBeath MK, Shaffer DM, work(s): KR MK. How Baseball Outfielders Determine Where to Run to

Catch Fly Balls. Science, New Series. 1995; 268(5210):569–573. PMID: 7725104

28. Lee DN. A theory of visual control of braking based on information about time-to-collision. Perception.

1976; 5(4):437–459. https://doi.org/10.1068/p050437 PMID: 1005020

29. Markkula G, Boer E, Romano R, Merat N. Sustained sensorimotor control as intermittent decisions

about prediction errors: computational framework and application to ground vehicle steering. Biological

Cybernetics. 2018; 112(3):181–207. https://doi.org/10.1007/s00422-017-0743-9 PMID: 29453689

30. Wiecki TV, Sofer I, Frank MJ. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in

Python. Frontiers in Neuroinformatics. 2013; 7. https://doi.org/10.3389/fninf.2013.00014 PMID:

23935581

31. Zgonnikov A, Markkula G. Evidence Accumulation Account of Human Operators’ Decisions in Intermit-

tent Control During Inverted Pendulum Balancing. In: 2018 IEEE International Conference on Systems,

Man, and Cybernetics (SMC). IEEE; 2018. p. 716–721.

32. Drugowitsch J, DeAngelis GC, Klier EM, Angelaki DE, Pouget A. Optimal Multisensory Decision-Making

in a Reaction-Time Task. eLife. 2014; 3:e03005. https://doi.org/10.7554/eLife.03005

33. Drugowitsch J, DeAngelis GC, Angelaki DE, Pouget A. Tuning the Speed-Accuracy Trade-off to Maxi-

mize Reward Rate in Multisensory Decision-Making. eLife. 2015; 4:e06678. https://doi.org/10.7554/

eLife.06678 PMID: 26090907

34. Nesti A, De Winkel K, Bülthoff HH. Accumulation of inertial sensory information in the perception of

whole body yaw rotation. PloS one. 2017; 12(1):e0170497. https://doi.org/10.1371/journal.pone.

0170497 PMID: 28125681

35. Markkula G. Modeling driver control behavior in both routine and near-accident driving. Proceedings of

the Human Factors and Ergonomics Society Annual Meeting. 2014; 58(1):879–883. https://doi.org/10.

1177/1541931214581185

36. Xue Q, Markkula G, Yan X, Merat N. Using perceptual cues for brake response to a lead vehicle: Com-

paring threshold and accumulator models of visual looming. Accident Analysis & Prevention. 2018;

118:114–124. https://doi.org/10.1016/j.aap.2018.06.006 PMID: 29929099

37. Boda CN, Lehtonen E, Dozza M. A Computational Driver Model to Predict Driver Control at Unsigna-

lised Intersections. IEEE Access. 2020; 8:104619–104631. https://doi.org/10.1109/ACCESS.2020.

2999851
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