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ABSTRACT

Aims. In this paper, we aim to study the time dependence of sunspot group areas in a large sample composed of various databases
spanning over 130 years, used state-of-the-art statistical methods.
Methods. For a carefully selected but unbiased sample, we use Bayesian modelling to fit the temporal evolution of the combined
umbral and penumbral area of spot groups with a skew-normal function to determine the existence of any asymmetry in spot growth
or decay. Our primary selection criteria guaranteed that only spot groups with a well-defined maximum area were taken into account.
We also analysed the covariance of the resulting model parameters and their correlations with the physical parameters of the sunspots
and the ongoing solar cycle.
Results. Our results show that the temporal evolution of well-observed sunspot groups that reach at least 50 millionths of a solar
hemisphere at their maximum can be fitted surprisingly well with our model. Furthermore, we show significant asymmetry – described
by a skew parameter of fitted curves – between the growing and decaying phases of analysed sunspot groups. In addition, we found a
weak correlation between the values of skew parameters and the maximum area of sunspot groups and their hemispherical latitude.

Key words. methods: data analysis – methods: statistical – sunspots

1. Introduction

Sunspots and the variation of these magnificent magnetic fea-
tures on the solar surface are one of the key indicators of strength
for solar activity, as sunspots are locations of large-scale mag-
netic field emergence. Many key characteristics of sunspots
can be listed as important for analysis, such as their number,
their location, and their spatial evolution. Sunspots and sunspot
groups show very little stability, they evolve continuously and
their evolution is a good indication of the changes in the mag-
netic field, the key physical quantity describing and driving the
dynamical and thermodynamical state of the solar atmosphere
and solar wind.

A popular and useful way to characterise the changes of
sunspots and sunspot groups is their temporal profile (the varia-
tion of their daily area), as this is tightly connected to the varia-
tion of the magnetic flux, hence the time-dependent changes in
the area reflect the development of the magnetic field of the Sun.
For a comprehensive review of earlier work related to the analy-
sis of spot development and decay, and the characteristics of spot
groups, see, for example van Driel-Gesztelyi & Green (2015).

Nowadays, it is widely recognised and accepted that the large-
scale magnetic structure of sunspots is formed at the base of the
convection zone (Spiegel & Weiss 1980). At the same time, alter-
native theories have been suggested to explain the appearance
of large-scale magnetic structures due to the coalescence of the

small-scale turbulent magnetic field in the near-surface shear
layer (Brandenburg 2005). In general, the accepted idea is that
the emergence of magnetic flux is driven by buoyancy, while the
decay results from the impact of turbulent erosion with the envi-
ronment (Petrovay & Moreno-Insertis 1997).

Since the large-scale flux is generated by the solar dynamo,
the observed characteristics of flux emergence and that of the
subsequent decay provide vital clues as well as boundary con-
ditions for dynamo models. Throughout their evolution, active
regions (AR) are centres of magnetic activity, with the level and
type of activity phenomena being dependent on the evolution-
ary stage of the AR. The area and position data of sunspots are
widely used to analyse various aspects of solar activity, such as
emergence of the magnetic field, growth, and decay of sunspots
as well as the connection between the structural development
of a sunspot group and its flaring capability. In this study we
focus on the evolution of dominantly bipolar ARs, that is sunspot
groups. The aim of our investigation is to develop a novel, reli-
able, and statistically sound technique to model the temporal
variations of low resolution sunspot groups, which will be a
foundation of future analysis dedicated to the understanding of
the evolution of flux emergence and sunspot decay.

The analysis of the generation, evolution, and decay of ARs
is one of the oldest and most studied areas of solar physics.
While initially research on this topic focused mainly on the
visible detection of the number of active regions and their
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large-scale evolution, the science of active regions received a dif-
ferent connotation once the role of ARs in the evolution of solar
activity, atmospheric heating, and even space weather were
established. It became clear that in order to understand the multi-
faceted solar activity at various scales, one needs to under-
stand the evolution of sunspots, their generation, evolution,
and decay. In this respect, several studies addressed the prob-
lem of the formation and decay of active regions. Using digi-
tised Mount Wilson data, covering the period from 1917−1985
Howard (1992) analysed the daily growth and decay rates of
sunspot group umbral areas. These rates were obtained to be dis-
tributed roughly symmetrically about a median rate of decay of a
few µhemisphere day−1 (µHem day−1 or MSH day−1). Percent-
age area change rates are reported to average 502% day−1 for
growing groups and −45% day−1 for decaying groups. These val-
ues are significantly higher than the comparable rates for plage
magnetic fields because spot groups have shorter lifetimes than
the plage regions. The distribution of percentage decay rates also
differed from that of plage magnetic fields.

Using daily resolution data collected over 130 years by the
Royal Greenwich Observatory (RGO) and the United State Air
Force (USAF), Hathaway & Choudhary (2008) found that the
decay rate increases linearly for groups with areas increasing
from 35 µHem to 1000 µHem. The decay rate they determined
tends to level off for groups with areas larger than 1000 µHem.
This behaviour is very similar to the increase in the number of
sunspots per group as the area of the group increases. Calculat-
ing the decay rate per individual sunspot gives a value of about
3.65 µHem day−1, with little dependence upon the area of the
group. These authors determined that the above values support
the theory that predicts that sunspot decay is driven by diffusion,
with a diffusion coefficient of approximately 10 km2 s−1. The
same authors also found that high latitude spots tend to decay
faster than low latitude spots.

The minimum and the maximum values of the annual mean
growth rates of spot groups were studied by Javaraiah (2011) and
their results show that these are ∼52% day−1 and ∼183% day−1,
respectively, whereas the corresponding values of the annual
mean decay rates are ∼21% day−1 and ∼44% day−1, respectively.
The average value (over the period 1874−2009) of the daily
growth rate is about 70% more than that of the decay rate. The
growth and the decay rates vary by about 35% and 13%, respec-
tively, on a 60 year time scale.

The relationship between the maximum area and the growth
and decay times was also investigated by Gómez et al. (2014)
through the analysis of the time variation of the area of a group.
These authors found that, when looking at the variations of max-
imum area as a function of the solar cycle phase, the growth was
obtained to be more chaotic than the decay. The decay process
showed a typical initial behaviour of rapid decline of the area
with time, before finally experiencing a smoother decay until
disappearance.

Finally, we should mention that all the previous studies listed
here (except Howard 1992; Gómez et al. 2014) investigated
the evolution of individual sunspots only, not sunspot groups.
However, since sunspots appear in groups, here address this
shortcoming.

The paper is organised as follows: in Sect. 2.1 we introduce
the datasets used for our statistical investigation, the selection
criteria, together with the model employed for analysing the fit-
ting curves. Sections 2.2–2.4 is devoted to the analysis of the
temporal changes of areas by means of Bayesian models. Our
results are discussed in detail in Sect. 3. Finally, in Sect. 4 we
summarise our key findings.

2. Datasets and model

2.1. Datasets and sample selection

Our analysis is based on two well-established datasets. First, the
Greenwich Photoheliographic Results (GPR) include daily mea-
surements of sunspot positions and the areas of sunspots and fac-
ulae observed from 1874 to 1976 on a daily basis, covering 9
solar cycles. The Debrecen Photoheliographic Data (DPD) is a
formal continuation of GPR, with 3 overlapping years containing
daily measurements of sunspot positions and areas from 1974 to
2018 (Baranyi et al. 2016; Győri et al. 2017). The measurements
were made by white-light full-disk photographic observations
and the archive consists of more than 150 000 digitised plates.
The DPD dataset contains the area and position of each spot,
the total area and the mean position of sunspot groups and the
daily total area of all groups. In addition, the DPD dataset con-
tains information about the penumbra region of each sunspot,
where projection effects have been corrected. For both GPR and
DPD, we use the revised datasets by Baranyi et al. (2016) avail-
able online1.

Several selection criteria were applied in connection to the
chosen databases. First of all, we neglected all small spot groups
where the total umbral and penumbral area at maximum did not
reach 50 MSH (millionths of the solar hemisphere). Further-
more, for a better statistical relevance, we only included those
groups that were observed at least 10 times, but not necessarily
on 10 consecutive days. Next, we discarded those groups that
had less than three records before and after the epoch of max-
imum area. Next, we excluded those sunspot groups for which
the observations before and after the maximum area showed a
small number of spots with nearly identical area as the maximum
value because in this case the fitted curve to the growth or decay
phase becomes flat, meaning that its intersection with the hori-
zontal axis is unrealistically distant. Finally, we considered only
those spot groups that had a single, well-defined maximal area,
and filtered out groups with multiple strong local extrema, which
might mean unusually turbulent evolution. We also note that due
to the solar rotation (or other observational difficulties) there are
groups whose emergence or disappearance is not visible, how-
ever, these groups were included in our database provided they
satisfy our selection criteria. After applying all the above selec-
tion criteria, our sample database comprises 2215 GPR and 1645
DPD sunspot groups, where projection effects for sunspots area
were corrected.

Throughout this study, if not otherwise noted, we use the
term spot area for the combined umbral and penumbral area. Fit-
ting the combined area is significantly easier as it shows much
smoother variations than that of umbrae (Muraközy et al. 2014).

As a simple consistency check with the study by Howard
(1992), we plot the histogram of daily umbral, as well as
umbral+ penumbral area and percentage changes in Fig. 1.
Unsurprisingly, the distribution of daily umbral+ penumbral
area is significantly broader that those of the umbrae alone. On
the other hand, percentage area changes tend to be smaller for
the combined area, that is, it changes more smoothly over time.

2.2. A fitting formula for sunspot group areas

The primary goal of our study is to confirm or refute the hypoth-
esis that the integrated area of sunspot groups is more likely
to grow more rapidly over time during the phase of emergence
than to fall more rapidly during decay and, that the more rapidly

1 http://fenyi.solarobs.csfk.mta.hu/en/databases/DPD/
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rising and more rapidly decaying groups form two distinct pop-
ulations. Instead of looking at the time derivatives of the total
sunspot group area, A(t), we fit the values of the measured area
as a function of time with a model modified from the skew-
normal distribution (Azzalini 1985; O’Hagan & Leonard 2011).
To fit the temporal evolution of sunspot groups other formulae
have been suggested by e.g. Du (2011), Muraközy et al. (2014).
While very similar in shape, our formula has a weaker tail,
cf. Fig. 7 of Muraközy et al. (2014), which could be a better fit
to rapidly growing and slowly decaying temporal profiles mea-
sured at higher temporal resolution with modern instruments. In
addition, we allow for a constant term in the function because
this enables us to fit temporal profiles where the time derivative
of the area is non-zero at the time of appearance and disappear-
ance of the spot group. While this formula yields better fits to
low time resolution data, its validity on higher quality sunspot
measurements is yet to be verified. Moreover, we engineered
our formula to minimise the covariance of parameter estimates,
especially for the scale and shape.

The skew-normal distribution is a generalised version of the
normal distribution in the form of

p(x) = A · exp

(

− (x − m)2

2σ2

) [

1 + erf

(

n(x − m)

σ
√

2

)]

, (1)

where m is a location parameter, which is different from the
mean and the mode, σ is a scale parameter that serves the same
purpose as the σ of the normal distribution, n is a shape param-
eter that determines the skew towards negative (n < 0, rapidly
rising) or positive (0 < n, rapidly decaying) values and erf(x) is
the error function. The first three moments of the skew normal
distribution are

µ1 = m + σδ
√

2/π, (2)

µ2 = σ
2

(

1 − 2δ2

π

)

, (3)

µ3 =
4 − π

2

(δ
√

2/π)3

(1 − 2δ2/π)3/2
, (4)

where the quantity δ is defined as

δ =
n

√
1 + n2

· (5)

The value of the mode (in the case of m = 0) of the skew-normal
distribution cannot be calculated analytically but it is unique and
a fitting formula is given by Azzalini & Capitanio (2014) in the
form of

m̃ = δ

√

2

π
− µ3

2

√

1 − 2δ2

π
− sgn(n)

2
exp

(

−2π

|n|

)

· (6)

From Eqs. (2)–(4) we see that the parameter n not only deter-
mines the skewness of the distribution, but also affects other
moments as well. As a result, when fitting Eq. (1) to some data,
one can expect significant covariance among the free parameters.
To cancel out the covariance as much as possible, we defined our
parametric fitting formula from the canonical skew-normal dis-
tribution to be

q(t) =
A + b

Ã
exp

(

− (t − m + m̃)2

2σ̃2

) [

1 + erf

(

n(t − m + m̃)

σ̃
√

2

)]

− b,

(7)
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Fig. 1. Histogram of daily sunspot group area changes (left column) and
day to day percentage changes (right column) for the umbrae alone (top
row) and umbrae+ penumbrae (bottom row).

where m̃ is the mode of the original skew-normal distribution
and Ã = p(m̃) is the value of the skew-normal distribution at
its mode. The parameter b is a positive constant which can be
used to adjust the baseline of the curve. This parameter turns
out to be necessary to properly fit the low resolution data. The
amplitude of the model is compensated for b, so that the maxi-
mum does not change when the baseline changes. We revisit the
treatment of this constant in Sect. 2.4. Since b > 0, only the pos-
itive part of the model is considered. In Eq. (7) we substituted x
by t to denote time and the modified scale parameter takes the
form of

σ̃2 =
σ2

1 − 2δ2/π
· (8)

The fitting formula defined by Eq. (7) is plotted in Fig. 2 for
a few interesting cases. When b = 0 the curves never intersect
the horizontal axis and they rise and fall smoothly towards the
wings. This case is a good model of spot groups which appear
slowly and start to grow more rapidly afterwards. On the other
hand, curves with b > 0, and particularly with b > A, as is illus-
trated in panel c of Fig. 2, are better fits to spot groups which
appear very quickly and their area grows rapidly during the first
few days, but the growths slow down afterwards. The distinction
between the two types of groups is purely empirical but neces-
sary to properly fit the data. Higher quality and better time reso-
lution data would help confirm or refute the b > 0, and especially
the b > A cases.

2.3. Bayesian model fitting

According to our experience, when attempting to fit Eq. (7) to
the temporal profiles of sunspot group area at low time reso-
lution, commonly used maximum likelihood parameter estima-
tion methods often diverge or fail catastrophically by converg-
ing to completely wrong results. In addition, asymptotic errors
derived from the Hessian are often very misleading due to the
non-quadratic minima of the χ2 surface. For this reason, we
decided to solve the fitting problem by constructing a Bayesian
model and estimate the joint posterior probability distribution of
the parameters A,m, σ and n with Markov chain Monte Carlo
(MCMC) sampling. This approach not only can circumvent the

A50, page 3 of 10
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Fig. 2. Behaviour of the skew-normal-like model for different values of its parameters. a: the scale parameter, σ, has a very similar effect on the
width of the curve as the variance of a Gaussian function. b: for positive (negative) values of the shape parameter, n, the curve is skewed to the
right (left), i.e. the model rises more (less) rapidly than it decays. c: in case of b > A, the model is positive on a final interval only and its skewness
is not as prominently visible as for 0 ≤ b ≪ A. For all three cases presented here we consider a = 1 and m = 0.

iterative fitting problem, but also yields proper error estimates
and covariances for all parameters.

Bayesian models describe the joint probability distribution
of the model parameter in the light of measured data. This can
be expressed as the conditional probability

P(θ |D) =
P(D | θ)P(θ)

P(D)
, (9)

where θ = {A,m, σ, n} represents the vector of model parame-
ters and D = {At} denotes the measured value of sunspot group
area at each epoch. The term P(θ |D) in Eq. (9) is the joint poste-
rior probability distribution of the model parameters which tells
us how much a certain choice of model parameters is supported

by observations. In general, this probability distribution cannot
be calculated analytically but the Markov chain Monte Carlo
method can be used to generate samples from it. The result-

ing Markov chain will consists of random realizations of the θi
vectors such that the parameter space will be sampled propor-

tionally to P(θ |D). The Markov chain sampled from the multi-

variate posterior distribution can be easily marginalised over all

other parameters to obtain the distribution and the moments of
any individual model parameter. In practice, this is carried out by

analysing the histogram of the components of the θi vectors. In
addition, one can easily determine the covariance of the model
parameters by calculating the covariance matrix of the θi realiza-
tions. As an alternative to MCMC sampling from the posterior
distribution, there are various gradient descent algorithms able to
quickly determine the location of its maximum, that is the best
fit parameters. The latter method is called maximum a posteri-
ori estimation, however, this method does not yield uncertainties
and it is less robust than a full MCMC sampling.

In Eq. (9) the quantity P(D | θ) is the usual likelihood func-
tion, the probability of measuring data D, if we choose a certain
θ parametrisation of the model. Assuming independent measure-
ments of spot group areas with normally distributed errors, the
likelihood takes the well-known form of P(D | θ) ∝ exp(−χ2),
where

χ2 =
∑

t

[

At − q(t, θ)

σA,t

]2

· (10)

In general, the Bayesian model would enable us to very naturally
incorporate varying and/or asymmetric measurement errors of
the total spot group area into the likelihood function.

The quantity P(θ) is the prior probability distribution of the
model parameters which should reflect all our believes about the

model and its parameters. The choice of a prior distribution can
sometimes be challenging as no generic prescriptions are avail-
able. If no a priori information is available, as in our case, so-
called trivial or non-informative priors should be used, usually
in the form of uniform distributions over certain intervals. For
instance, one can define a uniform prior on parameter A between
0 and some reasonably high value to cover the case of extreme
high area groups, as well. Alternatively, one can use a log-normal
prior if the assumption is that extreme high area sunspot groups
are rare. In any case, the choice of prior should not affect the
posterior distribution of the model parameters significantly but
the data itself should dominate the posterior distribution via the
likelihood function.

Finally, P(D) is the prior predictive distribution which tells
us, based solely on the model, what the distribution of the
observed data should be. In theory, this can be calculated by
integrating the probability P(D | θ) over all possible θ but the
analytic calculation is usually not possible. In practice, the value
of P(D) is only the normalisation factor of the posterior distri-
bution which is indifferent when doing MCMC sampling from
P(θ |D) because it cancels out when calculating the transition
probabilities.

2.4. The choice of priors

We choose the trivial uniform prior for all model parameters,
except for b, for which an exponential prior is used. The choice
of a trivial prior does not need much justification, whereas the
choice of the exponential prior for b was made to reflect our
assumption that the group area tends to grow only slowly at the
beginning, i.e. the time derivative of A(t) is close to zero, which
is not true when b > 0. This assumption prefers models with
b ≈ 0 even when observations of a sunspot group are missing
when the group is still or already too small to detect. On the
other hand, in certain cases when the data strongly prefers it,
large values of b are sampled with high posterior probability.
Unfortunately, no upper limits or exact zero values for group
area are available in the datasets to fit the tails more reliably.

As a result, our priors are given by

P(A) = U(0, 10 000), (11)

P(m) = U(−30, 30), (12)

P(σ) = U(0, 30), (13)

P(n) = U(−20, 20), (14)

P(b) = exp(−0.01b). (15)
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Fig. 3. GPR/DPD solar groups for negative/positive n and a symmetric evolution (n ≈ 0), as a representative example. The observed variations
of the area with time are shown by red dots, while the fitting curves are represented by the blue lines for 500 MCMC realisations. The time
on the horizontal axis is relative to the epoch of observed maximum. The error estimates of sunspots group area are calculated using Eq. (16).
The quantities displayed in the legend of the left-hand side of plots show the modes (most probable values) of the marginal posterior probability
distributions of the model parameters and the associated errors. The background light-blue vertical strips mark the full width at half maximum
(FWHM) calculated at the mode of all realisations.

2.5. Uncertainty of sunspot group areas

Neither the GPR nor the DPD datasets provide error estimates
on sunspot group area measurements. When group area is deter-
mined algorithmically from images, the core of the problem is to
reliably identify the boundary of the group, hence the absolute
measurement error should be proportional to the circumference
of the group instead of its area. Based on this consideration, we
assumed normally distributed errors with a variance of

σA,t =
√

0.3 (A(t) + 1), (16)

where the +1 is a softening term for very small values. This
assumption of uncertainty will allow more variance when fitting
the peak of A(t), which is likely to be measured with larger abso-
lute error and, at the same time, will constrain the growing and
decaying tails better.

3. Results

The model presented in Sect. 2 was implemented by using the
pymc 2.3 library (Salvatier et al. 2015), which employs an adap-
tive Monte Carlo method to sample the posterior joint probabil-
ity distribution of the model parameters. For each sunspot group,
105 realization were executed with a burn-in period of 5 × 104.
The sample was thinned by 100 to eliminate auto-correlations.

In what follows, we study the evolution of spot groups
through histograms (one and two dimensional) and scatter plots.
Histograms showing the distributions of certain parameters for
the data samples, are computed from all MCMC realizations of

all of the fitted parameters for every spot group, as opposed to
taking the mean or the mode (maximum aposteriori) of the pos-
terior probability density function. On the other hand, for scatter
plots, where individual sunspot groups are represented, we take
the mode of the MCMC realizations on a per spot group basis.

3.1. Representative examples of MCMC model fits

The results of the MC sampling for six typical sunspot groups
are plotted in Fig. 3 corresponding to the cases of negative, pos-
itive, and symmetric skew parameter, n. Instead of just plotting
the best fitting curve (i.e. the maximum a posterior fit), we plot
500 different Monte Carlo realizations to illustrate that the data
constrain the model very well and the model itself provides an
accurate description of the changes of sunspots’ area.

Although we do not plot the covariance of parameters, the
parameters are better constrained in the case of high values of n
– when the fitting curves resulting from the MCMC realisations
are very close to each other – than in the case of symmetric or
almost symmetric groups that correspond to n ≈ 0, where the
fitting curves are more dispersed. This covariance is purely due
to data, as we used a model which was formulated specifically
to eliminate parameter covariances due to their functional form.

As we mentioned before, the databases did not provide an
error estimate on total group are (umbra+ penumbra), nor on the
individual spots. Our empirical estimation of the area error is
based on the manual analysis of spot groups which could be
fitted well and determined from the scatter around the best fit
model. Furthermore, we assume a roughly circular geometry for
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Fig. 4. Most probable value of A from 500 MC realization of the
model plotted against the observed maximum spot group area, for every
sunspot group of both datasets. The scatter plots for the GPR and DPD
are consistent.

the spots and expect the area measurement error to be propor-
tional to the length of its contour. This suggests the square root
in the formula. The error estimates of the fitted model parameters
are determined from the variance of the Monte Carlo realizations
and these errors are shown for each case listed in Fig. 3.

Once the fitting curves are obtained for our sample, we use
the goodness of fit χ2 value defined by Eq. (10) for the mode
values of parameters. As a limiting threshold we consider only
those datasets that have their χ2 value less than 50. This defini-
tion would help us deselect outlier spot groups that would arise
from non-standard datasets due to, e.g. erroneous observations or
other raw data processing circumstances. As a result, the number
of samples for both datasets is reduced by approximately 10%.

3.2. Maximum area of sunspot groups

For a consistency check of model fits, we plot the mode of A
over all MC realizations of each spot group as a function of the
observed maximal group area in Fig. 4. The scatter plot of A
versus Amax suggests that the model fits are highly consistent
with the measurements of maximal area of spot groups.

According to the plot shown in Fig. 5, the maximum total
area of the umbra and penumbra of groups follows a distribution
that resembles a log-normal distribution. In order to better visu-
alise the small changes in the distribution of the area of sunspot
groups, we plot the logarithmic variation of the area, as sug-
gested by earlier studies (e.g. Petrovay & van Driel-Gesztelyi
1997; Muñoz-Jaramillo et al. 2015; Namekata et al. 2019). As
we specified earlier, in our analysis we neglected all small groups
where the total (umbral and penumbral) area at its maximum did
not reach 50 MSH. The histograms for the GPR and DPD are in
general consistent, however small differences are visible for par-
ticular ranges of sunspots’ areas; comparing the two figures it is
clear the maximum is at approximately 300 MSH. Accordingly,
the DPD observations give a larger number for smaller spots
between 50 MSH< A< 200 MSH. For intermediate size groups,
with areas between 300 MSH< A< 1000 MSH, the GPR obser-
vations give a larger number, while for very large group areas the
two databases give similar density, although in certain bins one
can see an area excess in the DPD data.

The peak of the distribution seen in Fig. 5 corresponds to the
second peak of the distribution of the logarithm of sunspots’ area
noted earlier by Dmitrieva et al. (1968) and subsequently con-
firmed by Muñoz-Jaramillo et al. (2015), Nagovitsyn & Pevtsov

0.0 600.0 1250.0 1850.0 2500.0
A [MSH]

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

de
ns

ity

GPR
DPD

1.0 1.4 1.8 2.1 2.5 2.9 3.2 3.6 4.0
log(A) [MSH]

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

GPR
DPD

Fig. 5. Normalised histograms of the parameter A of the fitted model of
all MC realizations for every sunspot groups of each dataset. Left-hand
panel: the histogram is shown in linear scale, while on the right we plot
the distribution of the logarithm of the groups’ area since this allows
better visualisation of small and large values. The histograms for the
GPR and DPD are in general consistent, however small differences are
visible for particular ranges of sunspots’ areas.

(2016, 2021). The reason for having only one peak in our data is
due to the cut-off values in sunspot group area (50 MSH).

3.3. Lifetime of sunspot groups

There are several studies in the literature that discuss the pos-
sible relationship between the area of sunspots and their life-
time, one of the best known being the Gnevyshev-Waldmeier
rule that states that the relationship between these two quanti-
ties is of the form Amax = a · LT , where Amax is the maximum
sunspot group area during its lifetime in millionths of the solar
hemisphere (MSH), LT is the sunspot group lifetime in days,
and a is a constant parameter equal to 10 MSH day−1 from the
determined from the Greenwich data for the period 1912−1934.
However, in their investigation, these authors used groups whose
growth and decay occurred during a single rotation in the field
of view (half of the solar rotation), and the so-called recurrent
groups observed during more than one solar rotation, i.e. groups
with very small and very large lifetime. In these studies the exact
observation of the appearance and disappearance of a sunspot
group was a necessity. In contrast, here we determine the lifetime
of groups by means of fitting curves and exact observation of the
time of appearance/disappearance was not necessary. In this way
we can study not only sunspot groups with very short and/or very
long lifetime, but also those of intermediate lifetime. The exact
methodology for determining the lifetime will be described later.

The Gnevyshev-Waldmeier rule has been investigated by
many authors (see e.g. Petrovay & van Driel-Gesztelyi 1997;
Nagovitsyn et al. 2019). On the other hand Martinez Pillet et al.
(1993) found that the decay rate of the sunspot area varies
according to a parabolic law leading to a dependence of the form

T ∝
√

A. Observationally, the lifetimes of sunspot groups are
roughly consistent with the Gnevyshev-Waldmeier rule, though
a large scattering around the Gnevyshev-Waldmeier rule can be
seen in Fig. 5 of Henwood et al. (2010).

As we mentioned in Sect. 3.2, in literature there are
two distinct sunspot group populations based on their area.
This characteristic can also be recovered in their lifetime
(Nagovitsyn & Pevtsov 2016). Accordingly, the sunspot groups
form two populations: small short-living groups (SSG) and large
long-living groups (LLG). The populations are separated by life-
time strictly (greater and less than 5 days; Nagovitsyn & Pevtsov
2016), the magnetic field of the largest sunspot (greater or
less than 2000 G; Nagovitsyn & Pevtsov 2016), and rotation
(single- and two-component fast and slow). The existence of two

A50, page 6 of 10



E. Forgács-Dajka et al.: Time-dependent properties of sunspot groups. I. Lifetime and asymmetric evolution

0 10 20 30 40 50 60
lifetime (10 MSH) [day]

0

5

10

15

20

25

30

fw
hm

 [d
ay

]

GPR

0 10 20 30 40 50 60
lifetime (10 MSH) [day]

0

5

10

15

20

25

30

fw
hm

 [d
ay

]

DPD

0

10

20

30

40

50

b 
[M

SH
]

Fig. 6. Correlation diagram of the FWHM and the threshold-based life-
time of sunspot groups.

different populations of sunspot groups was also mentioned by
Muñoz-Jaramillo et al. (2015).

To investigate the lifetime of sunspot groups we start from
our fitted curves. We compare two possible methods to deter-
mine the lifetime of groups. In the first method we use the param-
eters of the fitted skew-normal Gauss profile. If b = 0, the scale
parameter of the model curve, σ, would be a good measure of
characteristic lifetime of a spot group. In the general case of
b ≥ 0, however, one can use the full-width at half-maximum
(FWHM) of the curve as characteristic lifetime. Instead of
attempting to derive an analytic formula for the FWHM as a
function of model parameters, it is much easier to determine this
parameter numerically. As a second possibility, we define a ref-
erence area of 10 MSH and measure the time interval between
the two zero crossings of the fitted curve. To avoid non-realistic
values due to the lack of information for the starting phase of
groups’ evolution we choose to start our estimation from a 10
MSH reference level because for cases corresponding to b = 0,
the tail of the Gaussian distribution crosses the horizontal axis at
infinity, resulting in a spurious value of the lifetime. In this case
the lifetime can be defined as the temporal length between the
intersection of the distribution curve with the horizontal thresh-
old level.

In Fig. 6 we plot the correlations of the FWHM and
threshold-based lifetime for the two databases. In the ideal case
the results of the two methods would be displayed along the
straight line with the FWHM corresponding to approx. a half
lifetime. However, in reality this correlation is far from being
ideal. The difference could arise because groups do not evolve
symmetrically, but it could also be because of the parameters b
or n. For illustration, in Fig. 6 the colour bar shows the values
of the parameter b, with b > 50 shown uniformly in green. The
‘bi-modality’ of data can also be observed in Fig. 6, that is due
to the parameter b, this being more pronounced for larger values
of b.

The normalised histograms of the lifetime of groups and the
FWHM values derived from the fitted curves are shown in Fig. 7.
In general the data obtained from the two databases are consis-
tent (the lifetime of most of groups investigated by us is approx-
imately 12 days), however, there are smaller differences between
the two distributions. In the GPR data the groups with larger
lifetime are more dominant than in the DPD database, while
in the case of shorter lifetime groups is the opposite, that is,
there are more groups with smaller lifetime in the DPD data.
This finding requires more investigation but it is likely due to
observational and data reduction effects. While sunspots in the
groups in the GPR database were derived from solar photographs
taken at various contributing solar observatories, which used dif-
ferent telescopes, experienced different seeing conditions, and
employed different photographic processes, the DPD data is
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Fig. 7. Normalized histograms of the threshold-based lifetime (left-side)
and the FWHM (right-side) of the fitted model of all MC realizations
for every sunspot groups of each dataset. The histograms for the GPR
and DPD datasets are in general consistent, however, small differences
are visible for particular ranges of sunspots lifetime.
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Fig. 8. Lifetime of sunspot groups in terms of their area. Left panel:
logarithmic values of the lifetime and the area, right panel: their linear
values. The dashed green line denotes the variation that corresponds to
the Gnevyshev-Waldmeier rule, the purple solid line shows the best lin-
ear fit based on our data, while the black solid curve represents the lower
envelop. The envelop curve has been obtained by fitting the groups
shown by dark triangles. The errors shown in the equation of curves
were derived from the standard deviation values.

based on scanned photographic plates and CCD images reduced
by software (see e.g. Győri et al. 2017). These difference can
very easily lead to strong positive or negative bias in area mea-
surements that result in differences of the lifetime. Interestingly,
both the FWHM and threshold-based lifetimes show the same
effect which excludes the possibility that the differences arise
solely from biased measurements of the small-area spots. We
should mention that in the distribution of the lifetime (like in
the case of the groups’ area) we do not see the existence of two
different types of sunspot groups.

Finally let us investigate the very interesting connectivity
between the lifetime of sunspot groups and their total area. As
we mentioned earlier, the most accepted relationship between
these two parameters is the Gnevyshev-Waldmeier rule. In order
to establish the relationship between the lifetime of groups and
their area we plot the lifetime of groups in terms of their area in
Fig. 8. In order to evidence even small changes we plot the loga-
rithm of these values (left panel), however the deviation from
a linear relationship is more visible in a linear scale diagram
(right panel). On both panels we show the straight line corre-
sponding to the well-known Gnevyshev-Waldmeier rule (green
dashed line). In addition, we fitted our data with a straight line
in the form of T = const · Amax, where the parameter of the best
fit is const = 0.05 ± 0.006, which is different from the previ-
ously established value of 0.1. Since the scatter of points is far
too large for a linear relationship, we concluded that it is much
more appropriate look for a lower limit on the lifetime of sunspot
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Fig. 9. Normalized histograms of the skew parameter, n, of the fitted
model of all realizations for every sunspot groups of each dataset. The
histograms for the GPR and DPD datasets are, in general, consistent,
with small visible discrepancies.

groups as a function of area. This envelop curve was obtained by
fitting a straight line in the left panel to the data shown by black
triangles, which on the right panel corresponds to a power law
with an exponent less than one.

The equation of the curve determined this way is Tmin =

(1.25±0.054) ·A(0.33±0.021)
max . As a consequence, the minimum val-

ues of group lifetimes is approximately proportional to the cubic
root of maximum area, i.e. Tmin ∝ 3

√
Amax. However, we should

note that a qualitative description of the wide distribution of val-
ues is very volatile. Clearly the two databases show a different
scattering, therefore, we have repeated the same analysis for the
two datasets separately (see Appendix A). The only important
difference is the fitting parameters of the envelope curve, how-
ever the two sets of values are the same within the errors. The
only plausible explanation for this difference is the way how
these data have been recorded. Currently we have no physical
basis for the existence of the envelope curves, our aim was to
highlight this interesting behaviour. Surprisingly, the equation
of the straight line of best linear fit is identical.

3.4. Asymmetry of groups area temporal profiles

As we outlined in the Introduction, we are primarily interested
in the skewed nature of sunspot group area curves, hypothe-
sising that the slowly rising and rapidly decaying groups and
the rapidly rising and slowly decaying groups form two distinct
classes.

To evidence this hypothesis we plot the histogram of the
skew parameter, n, in Fig. 9. The histograms display 500 MCMC
realizations for each of the spot groups for both datasets. The
results clearly show that the distribution of the skew parameter
is strongly bi-modal, and the peaks are centered on n ∼ −2.0
and n ∼ 2.5 are well-defined. The two databases are consistent
with each other, but some important difference can be observed
in the case of sunspot groups with a symmetric behaviour and
the ones corresponding to negative skew-parameter, where the
DPD database shows more examples of such groups than the
GPR database. It is also obvious that the number of groups with
positive skew parameter is larger than the number of groups with
negative parameter, meaning that the sunspot groups correspond-
ing to the rapidly rising and slowly decaying class are dominant.
In addition, is it is also clear that the symmetric sunspot groups
are just a small percentage of the total sample.

It is interesting to study the distribution of the skew param-
eter, n, as a function of the area of the spot groups. In Fig. 10

we plot the joint probability density, p(n, A), and the condi-
tional probability density, p(n | A), for a few different values of
maximum area for the two datasets (more precisely the loga-
rithm of groups’ maximal area). The distributions are plotted
using all Monte Carlo realizations of all spot groups of our sam-
ples. Based on these two figures it is evident that the bulk of
the distributions are consistent, except some small differences.
The distribution of the conditional probability shows that (i) in
both datasets the small area groups have predominantly posi-
tive skew parameters; (ii) for intermediate size groups one can
find both types (positive and negative skew parameters) and the
distribution of groups is identical with the distribution pattern
of the whole dataset, that is, the number of groups with posi-
tive n is larger, (iii) for groups with large area there is a dis-
crepancy between the two datasets but, in general, we can say
that large sunspot groups have mostly negative skew parameter,
which is most obvious in the DPD dataset. The above proper-
ties are in line with the findings by Howard (1992), who stated
that “. . . larger groups decay at higher rates than they grow and
smaller groups grow at higher rates than they decay”, where slow
growth and fast decay correspond to a negative skew parameter
regime, while the fast growing and slow decaying case corre-
spond to the case of positive skew parameter.

Similar to the above analysis, we can investigate the relation-
ship between the skew parameter of sunspot groups and the posi-
tion of their appearance. To elucidate the connectivity between
these two aspects, we plot the joint probability density, p(n, θ),
and the conditional probability density, p(n | θ), for a few dif-
ferent values of their latitude (taken as absolute value) for both
datasets (Fig. 11). The conditional probability shows that the
distribution of the skew parameter for low and high values of
the latitude is highly symmetrical so that the number of groups
with positive and negative skew are similar. In the middle of the
activity belt, where most of the spots are situated, we can see a
distribution more similar to those of all groups, as in Fig. 9.

4. Conclusions

The generation, evolution and decay of sunspots are some of the
most important aspects of solar magnetism. The complexity of
this problem resides in the multitude of mechanisms that are
involved in these processes, starting from magneto-convection,
flux emergence, magnetic erosion, evolution of active regions,
etc. In our study we aimed to describe statistically the temporal
evolution of the total area of sunspot groups. To substantiate our
investigations, we used two, publicly available, databases (GPR
and DPD) that provide observations on the temporal evolution
of the total group area. Thanks to the large time-span of these
historical observations, we constructed a database consisting of
almost 4000 events. One of the novelties applied in our analysis
was the use of Bayesian technique to fit a model to determine the
temporal evolution of groups area.

With the help of many Monte-Carlo realizations of the fitted
curves that increased the stability of the method, we were able
to reveal several important aspects and properties of sunspots.
A great advantage of the technique developed in the present
study is that it allows the consideration of even those sunspot
groups whose initial growth and/or final decay phases are not
available due to missing data, solar rotation, etc. Although the
used databases do not contain observational errors – meaning
that we cannot compute real errors to the fitting – the fitting
errors were automatically taken into account when constructing
the histograms from all MCMC realisation, rather than the best
fit.
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Fig. 10. Joint probability density, p(n, A), and the conditional probability density, p(n | A), for the GPR (left-hand panel) and DPD (right-hand
panel) datasets. For each dataset the central left panel shows the joint probability (the grayscale corresponds to the value of the probability),
the attached distributions show the marginal distributions of the area and the skew parameter (the grey colour spectrum is proportional to the
magnitude of the probability). Right panels: conditional probability at three different values of A (in the figure showing the joint probability these
three values correspond to horizontal cuts in different colour).
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Fig. 11. Same as in Fig. 10, but here we plot the distribution of the skew parameter in terms of the latitude of the spot groups.

Our results show that sunspot groups fall into two distinct
categories, according to their skew parameter, n. Positive and
negative values of n describe the nature of the flux emergence
and decay of sunspot groups and these appear to correlate with
maximum area, with small/large sunspot groups tending to have
a negative/positive skew parameter. When investigating the rela-
tionship of the groups’ maximal area with their lifetime we could
not find a clear relationship similar to the one found in earlier
studies, instead, we defined a lower limit of the lifetime that
varies proportional to the cubic root of the total area. In a sub-
sequent paper we will discuss the evolution of the growth and
decay rate of sunspot groups, with great implications to the study
of flux emergence and erosive decay of sunspots.
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Appendix A: Lifetime scatter in terms of the area of

sunspot groups for the two databases
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Fig. A.1. Lifetime of sunspot groups in terms of their area for the GPR
data. Left panel: logarithmic values of the lifetime and the area, right
panel: their linear values. The dashed green line denotes the variation
that corresponds to the Gnevyshev-Waldmeier rule, the purple solid line
shows the best linear fit based on our data, while the black solid curve
represents the lower envelop. The envelop curve has been obtained by
fitting the groups shown by dark triangles. The errors shown in the equa-
tion of curves were derived from the standard deviation values.
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Fig. A.2. Same as Fig. A.1, but for the DPD data.
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