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Abstract

The value of in silico methods in drug development and evaluation has been dem-

onstrated repeatedly and convincingly. While their benefits are now unanimously 

recognized, international standards for their evaluation, accepted by all stakeholders 

involved, are still to be established. In this white paper, we propose a risk- informed 

evaluation framework for mechanistic model credibility evaluation. To properly 
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INTRODUCTION

In healthcare- related academic and industrial research and 

development, modelling and simulation (M&S) (in silico) 

approaches are combined with other advanced scientific tools 

to support innovation for better understanding physiology, 

pathophysiology, complex diseases and effects of medical 

interventions. The value of in silico methods in drug devel-

opment and evaluation has been demonstrated repeatedly and 

convincingly.1,2 Computational models have evolved from 

being a possible alternative to other data sources (e.g. clin-

ical trials), to being an unmissable must for development of 

new medicines, drug maintenance on the market and exten-

sion of indications for existing drugs (i.e. their repurposing in 

completely new indications). From additional or descriptive 

evidence used in some sparse cases, digital evidence (as gen-

erated by in silico models) is now included in almost all regu-

latory submissions. In many cases in silico models constitute 

the key source of evidence in drug development programs 

and related regulatory submissions (e.g. in case of extension 

of indications to children based on extrapolation). The term 

model- informed drug development (MIDD) is often used to 

describe the approach of using models to inform drug devel-

opment (see e.g. 3- 7 ).

Modelling and simulation is a rapidly evolving area in 

terms of both technologies and application field. The latter are 

expanding beyond the description of drug exposure, towards 

the dynamic description of complex drug effects and disease 

subtypes and progressions. With the combination of increased 

uptake and expanding technologies, it is essential to have 

clarity and consensus in the in silico community on the most 

appropriate tools for in silico model evaluation. Therefore, the 

aim of this white paper is to present a high- level framework 

that can guide the process of the evaluation of models and 

simulations in a holistic and comprehensive manner. The sug-

gested framework can be seen as a generic umbrella that can 

be used irrespective of model and simulation technology, by 

guiding the process of their evaluation rather than providing 

the technical content and requirements. In making the process 

of their assessment explicit, it facilitates better informed di-

alogue between stakeholders, which currently is a challenge 

as modelers often may overwhelm other domain experts with 

technical details.8,9

Ideally, in silico tools should be endorsed by all the rele-

vant stakeholders, including academia and industry research-

ers, regulators, payers (HTA), healthcare professionals and 

patients.10 An important aspect of this approach is that, prin-

cipally, the quality standards for establishing model credibil-

ity should be driven by the scientific question to be addressed 

by the modelling and simulation exercise, the context of use 

and the risk involved rather than by the type of sponsor (aca-

demia, industry, health care etc.), or whether the use is early 

experimental development versus regulatory use. Of note, 

The EU HMA/EMA strongly encourages academic consortia 

to engage actively in the process of drug development and 

regulatory science and several schemes are put in place at 

EMA level to facilitate this process.

A common language and approach can give us an environ-

ment that could permit establishing the credibility of in silico 

models and their adequate use in an objective and consistent 

manner across the various modelling and simulation technol-

ogies and applications. In the context of drug development, 
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frame the proposed verification and validation activities, concepts such as context 

of use, regulatory impact and risk- based analysis are discussed. To ensure common 

understanding between all stakeholders, an overview is provided of relevant in silico 

terminology used throughout this paper. To illustrate the feasibility of the proposed 

approach, we have applied it to three real case examples in the context of drug devel-

opment, using a credibility matrix currently being tested as a quick- start tool by regu-

lators. Altogether, this white paper provides a practical approach to model evaluation, 

applicable in both scientific and regulatory evaluation contexts.
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the credibility framework can be seen as complementing the 

stepwise model building and validation that today is standard 

for drug development. One could say that MIDD is this step 

wise building and consolidation of the in silico backbone of 

knowledge on the medicinal product coupled with an open 

dialogue between developers and regulators on finding po-

tential applications for modelling and simulation to inform 

the development and approval.3- 7

State- of- the- art papers, tutorials and regulatory guide-

line documents exist for methodological validation and 

reporting of Quantitative Structure- Activity Relationship 

(QSAR) methods 11,12 as well as some pharmacometric ap-

proaches, such as population- pharmacokinetics (popPK), 

pharmacokinetics/pharmacodynamics (PK/PD), and dose/

exposure- response (DER) models.13- 15 In contrast, regula-

tory guidance on mechanistic models (models developed 

starting from mechanisms, see Table in Section 2 for a full 

definition) is scarce. The EMA and FDA physiology- based 

guidelines on pharmacokinetics (PBPK) models can be 

cited as pioneers in this domain.16,17 With the aforemen-

tioned increase in model technologies used in drug develop-

ment, there is an unmet need to provide an environment that 

would permit establishing the credibility of mechanistic in 

silico models and their adequate (regulatory) evaluation in 

a consistent manner.

This white paper aims to provide input on rigorous sci-

entific and regulatory evaluation strategy for the expanding 

range of in silico technologies currently used in drug devel-

opment. We will present a high- level framework, inspired by 

the ASME V&V40 for medical devices,18 that could guide 

the evaluation process of models and associated simulations 

in a holistic and comprehensive manner without necessary 

focusing on very technical and specific aspects related to 

different applications or types of models (these topics will 

be covered in future communications). To properly frame 

the required credibility building activities, concepts such 

as context of use, regulatory impact and risk- based analysis 

will also be discussed. An overview of the relevant in silico 

terminology used throughout this paper will be provided. 

The steps of the risk informed credibility assessment will 

be presented, framing the required verification and valida-

tion activities, and concepts such as context of use, regula-

tory impact and risk- based analysis will be introduced and 

discussed in the paper. During model building and valida-

tion activities, data from different sources are often used. 

Therefore, considerations of model predictions relative to 

data from other sources, and adequate uncertainty quantifi-

cation and mitigation are some of the key and challenging 

steps. To illustrate the feasibility of the proposed approach, 

we have applied it to three real use cases use cases in the 

context of drug development, showing the variety of tech-

nologies and applications that are covered by the framework 

proposed in this white paper.

TERMINOLOGY

One main challenge in the communication between relevant 

stakeholders is the terminology associated with the in silico 

methodology. A uniform and widely adopted consensus 

terminology is lacking amongst all in silico developers, as-

sessors and users. Scientists reporting their results to their 

community or sponsors presenting their submissions to the 

regulators often use terms with a different understanding than 

the one expected by their audience (be it reviewers, readers, 

regulatory assessors or others). The need for at least a mutual 

understanding of the in silico terminology used by each party 

is thus of utmost importance as it directly affects the com-

munication efficiency between stakeholders.

For example, the term qualification is more commonly 

used in the EU drug regulatory space (EMA) 19 to design 

requirements for a model to be considered fit- for- purpose 

whereas terms verification and validation will rather be en-

countered in the medical device developers’ space to discuss 

model adequacy requirements.18 This can be explained in 

part by the fact that drug regulators are used to risk- based 

decision making in a multifactorial context and will aim to 

qualify models for a particular context of use given the es-

tablished regulatory impact (with as bottom line: the perfect 

model does not exist). In contrast, for medical device, the 

mechanisms (i.e. physical laws) are better defined: develop-

ers can define tools to assess the adequacy of their model 

predictions. Another example pertains to the terminology 

used to indicate a specific type of model. Clinical pharma-

cologists will mostly use the term pharmacometric modelling 

and simulation while engineers will use the term in silico 

models to indicate almost exactly the same concept: a set of 

mathematical equations and/or computer algorithms that can 

be used to predict drug effects and/or health outcomes in dif-

ferent scenarios.

In our opinion, even if very convenient, the use of the same 

terminology becomes less critical when there is a common 

understanding of what is meant by specific terms used by 

each party. Given the continuous expansion of the modelling 

application domain, harmonization of language should not be 

the first target. The first target should rather be the under-

standing of nuances, similarities and differences in the terms 

used for different applications and by different stakeholders. 

It is important to understand which terms are interchange-

able or overlapping, and which ones have different meanings 

when used in different settings. When different stakeholders 

communicate (e.g. scientists publishing a paper, sponsors 

meeting regulators), it is paramount that the most important 

terms are clearly defined at the onset, so misunderstandings 

are avoided. This effort may be supported by leveraging exist-

ing organized ontologies relative to modelling of biological 

processes (e.g., Mathematical Modelling Ontology, Systems 

Biology Ontology).20,21 Consistency across requirements for 
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model acceptability by assessors/reviewers will strongly de-

pend on the appropriate use of terms by developers/reporters 

and their adequate understanding by users/ readers/reviewers/

assessors. This is particularly important for in silico models 

requiring multidisciplinary expertise at the intercept of sev-

eral scientific fields. To set the example, we start this white 

paper with a glossary (Table 1), clarifying our understanding 

of the most commonly used in silico- related terminology in 

the field of drug development and evaluation. Ideally, this 

list should be expanding and regularly updated based on new 

application domains of modelling and simulation.

CURRENT REGULATORY 
APPROACH FOR IN SILICO  MODEL 
EVALUATION IN THE CONTEXT 
OF DRUG DEVELOPMENT AND 
EVALUATION

Modelling and simulation takes its roots in academia and 

has been embraced by sponsors (including drugs’ commer-

cial sponsors) who have rapidly understood the economic 

potential of this approach. When developing and assessing 

the models, academic researchers have emphasized the in-

novation and the scientific (technical) value of the models, 

focusing on different requirements to define their acceptabil-

ity (e.g. mathematical, statistical, computational, pathophysi-

ological, pharmacological). This has led to a multiplication 

of tools for model evaluation, covering a wide range of meth-

odologies for mathematical and statistical model evaluation, 

independent/external validation, scientific ((patho)physio-

logical/pharmacological) plausibility of parameter estimates, 

etc.42 Some model evaluation tools were developed specifi-

cally for the purpose of transfer to clinical applications.43

However, these tools still have a long way to go in terms 

of implementation and general uptake and in terms of rigor in 

their implementation which currently can be variable and un-

balanced (i.e. very strong claims are often made by develop-

ers with poor reporting and/or a weak verification/validation 

process). In this white paper, we will discuss the different 

available evaluation tools that we believe could be of interest 

for model evaluation (see section 9).

Drug developers and regulators have hitherto more fo-

cused on the application itself (drug) and the specific ques-

tion that can be addressed by the models. Model development 

and evaluation are proposed in well- defined contexts of use 

that take into account the regulatory impact (cf. section  7) 

and the consequence of model inadequacies for the relevant 

decision making at the level of the patient and public health, 

making some models acceptable for some contexts but not 

for others. This entails the necessity of pre- defining the re-

quirements for model acceptability in an application- wise 

manner, irrespectively of the specific model technology used 

(e.g. empirical statistics vs. two- stage approach vs. empiri-

cal models vs. PBPK(- PD), SM/QSP models vs. agent- based 

models). This also shows the need for understanding the ac-

tual value (strengths and limitations) of the proposed/avail-

able tools for model evaluation, their applicability to various 

model technologies and their relevance for the scientific 

question(s) of interest.

The regulatory evaluation of models is ideally supposed 

to be in line with the latest scientific knowledge in the field. 

While sponsors have the full liberty (and are encouraged to 

be as innovative as possible) in the choice of the approaches 

for evidence generation to support their claims, the regula-

tory assessors’ role is to ensure that the proposal is scientifi-

cally sound and valid given the context of use, the regulatory 

impact, and given pre- established standards. For the interest 

of patients and public health, the regulators should always 

push the sponsor to provide the highest level of evidence and 

quality of modelling data. Although driven by regulators, 

establishment of standards should be a joint effort between 

all the stakeholders involved in the process (i.e. regulators, 

industry, academia, patients, healthcare professionals, HTA 

and payers). The current gaps and challenges encountered 

in in silico model reporting and evaluation likely affect the 

interactions between sponsors and regulators and, in some 

cases, this can delay drug market access for new drugs that 

patients need.

From a practical perspective, the regulators are expected 

to provide some guidance to sponsors on the presentation of 

their model development and evaluation results for optimal 

communication. At EMA, a range of regulatory procedures 

exists to interact and dialogue with sponsors on case- by- case 

basis, including for M&S related aspects. These procedures 

include Innovation Task Force (ITF) meetings, scientific ad-

vice protocol assistance and qualification advice/opinion.44- 46

The ongoing Model- Informed Drug Development 

(MIDD) Pilot Program at the FDA is a very good example of 

how modelling related questions and context are fine- tuned 

to ensure clarity and set expectations, thanks to regular inter-

actions between sponsors and regulators.47 Additionally, ref-

erence documentation is available such as Q&A documents, 

concept and reflection papers and specific guidelines.9,16,48,49

It should however be noted that, apart from the PBPK 

guideline, none of these guidance documents refers specifi-

cally to the in silico models beyond the pharmacometric fam-

ily. Hence, there is an unmet need for regulatory guidance for 

in silico model evaluation also including models built with 

other technologies (e.g., agent- based models) in the context 

of drug development and evaluation, a need shared by regula-

tory agencies worldwide. One possible reason explaining this 

absence of specific guidance could be the lack of focus within 

the scientific community on creating evaluation tools able to 

meet regulatory scrutiny. Another reason could be that histor-

ically, the number of regulatory submissions including these 
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T A B L E  1  Definition of key terms related to computer modelling and simulation in drug development

Biological system Complex ensemble of entities of a population or an individual that are interdependent and function as a whole. 

The entities and the limits of the defined system itself may be of various scale of organization (population, 

individual, physiological system, organ, cellular, molecular, etc.).

In silico models Abstract and simplified representation of a biological system, composed of a set of rules or algorithms describing 

the system’s behaviour, implemented and studied computationally. According to the mathematical nature of 

the rules, the behaviour of the system can be studied over time and/or space and quantitatively or qualitatively. 

The term in silico refers to the computational nature of the model and discerns it from its in vitro and in vivo 

counterparts.22 In the context of drug development, the set of mathematical rules and algorithms are typically 

used to predict drug effects and/or disease outcome in different scenarios. Thus, it is a generic term referring 

to a broad scope of computational models such as Quantitative Systems Pharmacology, system medicine and 

physiology- based multi- scale multi- physics models.23- 25 From a methodological point of view, in silico models 

may be found at any level of the spectrum ranging from fully data- driven to fully mechanistic models (cfr 

definitions below)

In silico clinical trials Class of trials for pharmacological therapies 26- 29 or medical devices based on modelling and simulation 

technologies. Such trials produce digital evidence that can serve in complement to or replacement of in vivo 

clinical trials for the development and regulatory evaluation of medical therapies.30,31

Data driven models ( 

black- box models, 

phenomenological 

models

Models developed from observations or data with the aim of reconstituting a set of rules explaining those data. 

These models can be developed using statistical, mathematical and/or computational methods including 

bioinformatics, machine learning and artificial intelligence. This type of models is built to match the 

observation content of the data but the resulting rules do not necessarily correspond to real, physical or tangible 

mechanisms, which makes it more difficult to interpret, hence the term of black- box model.22

Mechanistic models 

(white box models, 

hypothesis- driven 

models)

Set of theoretical rules and algorithms based on known mechanisms expected to reconstitute observed behaviours. 

Consequently, the rules describe known or hypothesized mechanisms in a lower scale of organization and 

the model read- out often regards an emerging behaviour at a higher scale of organization. This type of model 

is essentially hypothesis- driven and allows to test the validity of the underlying mechanisms, and to explain 

an observation, hence the term of white box model.22 Most mechanistic models contain phenomenological 

elements because of abstractions that are made, e.g. a mechanistic model at the tissue level does not capture 

the mechanisms at the cellular or subcellular level. Nevertheless, when the model is built around the known 

mechanisms we use the term mechanistic despite the presence of some phenomenological elements,

Agent- based models Agent- based models (ABM) are an effective approach for modelling discrete, autonomous agents such as cells or 

bacteria.32

Artificial Intelligence (AI) In the field of in silico modelling, AI is a set of technologies that have an adaptive and anticipatory capacity to deal 

with a defined problem while showing a certain degree of autonomous learning and improvement in solving 

the problem in question. The scope of technologies belonging to AI is very broad and includes, for example, 

machine learning, deep learning, etc. The capacity to learn for an algorithm may arise from different processes 

such as supervised or non- supervised learning and reinforcement learning.33

Model- Informed Drug 

Discovery and 

Development

Quantitative framework for prediction and extrapolation, centred on knowledge and inference generated from 

integrated models of compound, mechanism and disease level data and aimed at improving the quality, 

efficiency and cost effectiveness of decision making.4

Pharmacometrics Pharmacometrics is the branch of science concerned with mathematical models of biology, pharmacology, 

disease, and physiology used to describe and quantify interactions between xeno biotics and patients, including 

beneficial effects and side- effects resultant from such interfaces.29 Related activities encompass developing 

and applying mathematical and statistical models to characterize, understand, and predict a drug’s PK/PD and 

biomarker- outcome behaviour.34

Population PK (PopPK) 

and Pharmacokinetic 

/ Pharmacodynamic 

(PK/PD) models

PopPK is the study of pharmacokinetics (i.e., time course of concentration at a certain dosing regimen) at the 

population level, in which data from all individuals in a population are evaluated simultaneously using 

a nonlinear mixed- effects model.35 PK/PD- modelling links dose- concentration relationships (PK) and 

concentration- effect relationships (PD), thereby facilitating the description and prediction of the time course of 

drug effects resulting from a certain dosing regimen.36

Physiologically Based 

Pharmacokinetic 

(PBPK) models

PBPK models estimate the PK profile or exposure in “a target tissue or organ after a drug dose by taking into 

account the rate of absorption into the body, distribution among target organs and tissues, metabolism, and 

excretion”.37

(Continues)
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types of models is rather low compared to pharmacometric 

models, which is a vicious cycle as without proper guidance 

sponsors are reluctant to include digital evidence into their 

dossier. Importantly, the framework presented in the white 

paper, including regulatory impact aspects, can contribute 

to the consistency of regulatory assessment across world re-

gions. The authors therefore strongly support the idea that this 

subject constitutes a good candidate for a consensus approach 

(e.g. through a new ICH guideline).

POINTS TO CONSIDER FOR 
EVALUATION OF MECHANISTIC IN 
SILICO  MODELS

While this paper is not intended to provide a definite recom-

mendation for evaluation, it is the authors’ conviction that a 

framework to support the in silico model evaluation rationale 

is needed, similarly to what is proposed in the ASME V&V40 

for medical devices.18 The steps listed below and elaborated in 

the following sections are considered essential in the process 

of model evaluation, being it for communication between in 

silico scientists (e.g. publications in scientific journals, com-

munications in meetings) or for regulatory submissions. A 

flowchart of the different steps is provided in Figure 1.

1. Description of question(s) to be addressed and Context 

of Use (COU) (section  5)

2. Definition of model acceptability criteria for proposed 

question(s) and COU (section 6)

3. Description of model influence and/or regulatory impact 

(only for regulatory submissions) (section 7)

4. Risk- based analysis of decision consequence (section 8)

5. Description of model credibility activities (model verifi-

cation & validation activities) (section 9)

6. Applicability and Uncertainty (section 9)

7. Model- informed decision making

Ideally, these points should be defined at planning stage 

and included in a modelling and simulation plan, i.e., a doc-

ument in which relevant assumptions, input data, imple-

mentation steps and output are clearly presented along with 

mitigation measures. This can constitute the basis for contin-

ued dialogue and interaction with regulators. To illustrate the 

points made below, we will work with three use cases, exam-

ples of in silico models in the context of drug development. 

A full description can be found in section 11.

QUESTION OF INTEREST AND 
CONTEXT OF USE

The scientific question(s) to be addressed by the model-

ling exercise need(s) to be clear and well described. Each 

question should be stated separately in case several ques-

tions would be addressed by the proposed model. Once all 

Systems medicine models This type of in silico model aims at studying a pathophysiological system by focusing on various possible 

biological scales. The scale may vary from the genetic and signalling pathways to cell- cell communication, 

processes at tissue level and clinical outcomes. Such models often focus on a specific disease and attempt to 

predict the effect of a specific type of treatment, sometimes on a defined branch of the population. This defines 

the model's context of use.38

Quantitative Systems 

Pharmacology (QSP)

QSP is broadly defined as an approach to translational medicine that combines computational and experimental 

methods to elucidate, validate and apply new pharmacological concepts to the development and use of 

small molecule and biologic drugs. QSP will provide an integrated “systems level” approach to determining 

mechanisms of action of new and existing drugs in preclinical and animal models and in patients.39

Model uncertainty A certain amount of contingencies and inaccuracies may arise from the model predictions/simulations and 

resulting decisions. These uncertainties may be due to the model structure (assumptions), parameters and/or the 

inputs.40

Model uncertainty 

quantification

Characterization of the model uncertainty with quantitative metrics. It assesses how much the outcome of the 

model is impacted when some part of the system or some inputs are changed or not precisely known. By 

systematically identifying the sources of uncertainty, characterizing their probability distribution and analysing 

their impact on the model's outputs of interest, the evaluation process ensures that the uncertainty's impacts on 

the model predictions are understood and controlled.32,41

Historical data / Legacy 

data

Data previously collected in a relevant context but for a different purpose. Historical data, when appropriate for the 

context of use and of sufficient quality, can be used for validation of new models.42

Good simulation practice In analogy to the ICH Good Clinical Practice or the OECD Good Laboratory Practice, GSP could be a quality 

standard for the designing, implementing and reporting of in silico trials in the context of the development and 

regulation of medical treatments. When established in concertation with the proper authorities, compliance 

with the GSP standard could ultimately provide public assurance that the digital evidence generated by in silico 

technologies is credible.40,41

T A B L E  1  (Continued)
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the questions are well identified, the next step is to describe 

the proposed modelling approach to answer each question, 

including the data sources for model development and evalu-

ation. It is critical to ensure that the modelling and simu-

lation final output really addresses the scientific question. 

According to the EMA current policy, the Context of Use 

(COU) is considered to be the full, clear and concise descrip-

tion of the way the methodology is to be used and the related 

purpose of the use.9 The COU is a critical reference point for 

the regulatory evaluation of any qualification application as 

will become clear by the frequent referral to the COU in the 

following sections.

Examples of questions of interest are given below. These 

examples show that questions of interest are not limited only 

to interactions between drugs or their pharmacodynamics ef-

fects or even the interaction between a drug and organs/dis-

eases. They can extend to the demonstration of clinical utility 

in the wider population after market uptake.

• What is the effect of enzyme Z inhibition and/or in-

duction on drug X as a victim drug?

• What is the effect of drug X as perpetrator on other drugs 

via enzyme Z inhibition +induction?

• What is the relationship between drug X systemic concen-

trations and pharmacodynamic effect A at cellular/organ 

level?

• What is the relationship between drug X systemic concen-

trations and clinical efficacy response A?

• What is the relationship between state of cell A/organ B at 

time of treatment and the effect of drug X systemic con-

centration on the clinical efficacy?

• How will the drug X perform in patient populations that 

were excluded from clinical trials?

• How long does the drug X have to be administered to 

achieve the desired effects?

• What is the lowest dose at which the drug X can be given 

without negatively impacting treatment outcomes?

• How do the efficacy, effectiveness and safety of the drug 

X evolve over a longer period of time?

• How does the drug X perform in terms of patient- relevant 

outcome measures?

Some examples of COU are provided below:

• Optimization of the treatment regimen for first- in- human 

studies using a QSP model (developed based on in 

vitro, ex vivo and/or in vivo animal data)

• Use of agent- based models and related simulations for 

dose optimization for new therapies for infectious disease 

in a reference population using preclinical animal dose- 

response data and exploratory clinical trial evaluating short- 

term efficacy.

• Use of an agent- based model handling sparse clinical data 

to predict unobserved responses/in an in silico- augmented 

exploratory Phase 2 clinical trial

• Use of a multi- scale multi- physics model of a rare pathol-

ogy on a virtual population to establish the effect of a spe-

cific treatment in the absence of clinical trial data in the 

target population

• Use of a PBPK model to establish the clinical effect of 

enzyme Z moderate inhibition and induction by drug X in 

the absence of clinical data generation.

F I G U R E  1  In silico Model Process flowchart



8 |   MUSUAMBA ET AL.

• Application of a multi- scale multi- physics model on a vir-

tual population to define inclusion criteria for a clinical 

trial design

Of course, the question of interest and the COU are 

strongly linked to one another. This can be observed clearly 

in the credibility matrix of the three core examples of this 

white paper (section 11).

MODEL ACCEPTABILITY CRITERIA 
FOR A PROPOSED QUESTIONS AND 
CONTEXT OF USE

Model acceptability criteria need to be well established. This 

should be done upfront during the planning phase before the 

start of any data collection (see flowchart Figure 1). This in-

cludes the level of credibility and validity of models intended to 

support scientific claims in communications (e.g. publications) 

and/or regulatory decision making. For regulatory submissions, 

it is recommended to consider the regulatory endorsement of 

the set of criteria selected and the approach planned to be used 

for model evaluation. Different regulatory procedures and guid-

ance documents in place should be consulted to facilitate these 

interactions.

Model acceptability criteria will depend heavily on the 

COU and on the available tools for model evaluation. For reg-

ulatory submissions, the regulatory impact also needs to be 

taken into account as discussed below. It is very possible that 

the COU needs to be refined after acceptability evaluation, es-

pecially in case an adaptive pathway approach is adopted 50 

and HTA bodies, patients and healthcare professionals enter in 

an early dialogue with the regulators and industry before the 

beginning of Phase 2 clinical studies. In turn, it is also possi-

ble that the acceptability criteria might be expanded after new 

model evaluation tools become available for the proposed type 

of model.

In case a mechanistic in silico model (e.g. PBPK, agent- 

based or QSP) would be used to waive a clinical study (i.e. 

for high regulatory impact applications) the following could 

be included in the acceptability criteria:

• The software platform should be qualified (as per the 

EMA PBPK guideline) for all the concerned metabolism 

pathways (section  9.1, verification)

• The mathematical adequacy of code used for the drug 

model should be established (section 9.1, verification)

• Parameter sources and values should be disclosed and jus-

tified for the drug model (section 9.2 validation)

• For both efficacy and safety, the impact of uncertainties in 

the model and their impact on the simulation results has to 

be discussed (section 9.2 validation).

Three examples of how model acceptability criteria can 

be made explicit and linked to context of use and scientific 

questions are provided in section 11.

REGULATORY IMPACT

Regulatory impact is a terminology proposed for the first 

time by Terry Shepard 51,52 to describe the role played by 

modelling data in the regulatory decision- making. This ter-

minology is now largely understood and widely used in the 

EU regulatory network. According to the regulatory impact 

terminology, when modelling and simulation data are only 

considered to play a descriptive role, because the key data 

for the question addressed is coming from other sources, the 

regulatory impact is considered to be low. However, when 

modelling results constitute the key source of evidence to an-

swer the question of interest, i.e. replacing data traditionally 

generated in a clinical trial, the regulatory impact is consid-

ered to be high. The medium regulatory impact lies some-

where in between: modelling results are additional evidence 

to be complemented by other data from other sources, such 

as for dosing selection in a given patient (sub)population.51,52

The concept of regulatory impact should be perceived as 

broader than the model influence as per the risk informed 

credibility assessment (ASME V&V40). Benchmarking 

against the current evidentiary standard is implicitly included 

in the regulatory impact concept. The ‘regulatory impact’ ter-

minology is therefore interesting because it puts the in silico 

modelling data in perspective as compared to the other poten-

tial data sources (nonclinical in vitro, ex vivo and in vivo or 

clinical trials) to address the questions of interest. In addition, 

it implicitly compares the role of in silico modelling data in 

model- informed drug development programs to what would 

have been done traditionally to address the same question 

without in silico modelling.

The stringency and the demandingness of the acceptabil-

ity criteria in regulatory submissions defined in the previous 

section will also depend on the regulatory impact, with in-

creasing levels of requisites/demandingness from low to high 

regulatory impact applications.

As illustrated in the examples in section  11, regulatory 

impact should in principle be explicit in each submission.

RISK BASED ANALYSIS OF 
DECISION CONSEQUENCE AND 
MODEL RISK

After establishing the regulatory impact, the next step is a 

risk- based analysis of the decision consequence. This means 

assessing the consequence of an adverse outcome resulting 
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from an incorrect decision that was made based on the model. 

The concept of model risk has been thoroughly discussed in 

the ASME V&V40 standard for medical devices and can be 

summarised as the combination of the influence of the com-

putational model on the decision- making (model influence) 

and the consequence of an adverse outcome resulting from 

an incorrect decision based on the model (decision conse-

quence). The same concept can also apply to the drug de-

velopment related models as shown here. The higher the 

model influence and the decision consequence, the higher is 

the model risk. An example of such high model risk is when 

extrapolating efficacy and safety information from limited 

clinical data collected during Phase 1 and exploratory Phase 

2 clinical trials.

An additional source of uncertainty in disease and drug 

mechanistic in silico models is the trial and human errors 

that are not easy to anticipate when creating virtual popu-

lations (e.g. dosing errors, compliance). The level of uncer-

tainty can directly influence decisions taken based on the 

modelling results. It therefore becomes critical to quantify 

an in silico model's estimated uncertainties and to evaluate 

the implications of these uncertainties on the targeted patient 

populations to demonstrate the specified clinical utility. As 

long as the uncertainty decreases and the confidence in the 

new drug increases thanks to newly generated data across 

the clinical trials phases, the model risk lowers. An example 

of this is a model- based dose selection for a confirmatory 

phase 3 study, based on preclinical observations and PK data 

in healthy volunteers and patients.14 Confirmatory datasets 

(retrospective, real- world data and prospective), when avail-

able, can mitigate the model risk.

MODEL CREDIBILITY ACTIVITIES

After completion of all previous steps, model credibility ac-

tivities can be designed and executed. These activities start 

with identification of credibility goals, including desired 

qualitative or quantitative outcomes (e.g. pre- specified ac-

ceptance criteria) based on scientific rationale.18 Credibility 

activities include verification of the software, the code and 

the calculations, validation of the model using comparator 

studies, and evaluation of the applicability of validation as-

sessments to the COU. Credibility factors are the individual 

elements of these credibility activities, for instance the cred-

ibility activity of code verification encompasses credibility 

factors such as software quality assurance and numerical 

code verification.

The identification, design, execution and regulatory as-

sessment of the credibility activities are general for the model 

assessment process. However, the specific tools and techni-

cal approaches/aspects relevant for the verification and the 

validation activities often differ between model types, as 

illustrated in.32 Such specific requirements are beyond the 

scope of this paper.

Model verification

Verification is often termed as “solving the equations right” 

as opposed to validation which is “solving the right equa-

tions”. Verification is to be performed on the level of the 

software platform (software quality assurance), the numeri-

cal code and the calculations. The term software platform 

refers to a computational modelling and simulation (CM&S) 

software executable running on a specified offline or online 

computational environment characterized by its underlying 

operative system and hardware components. All together, 

these verification activities ensure that a CM&S software ex-

ecutable and a model are correctly implemented on the com-

putational platform of choice, that the model is accurately 

solved for its intended COU, and that adequate documented 

evidence of the verification activities is established to enable 

appropriate regulatory/scientific revision.

Software quality assurance (SQA)

SQA ensures that the CM&S software executable is correctly 

functioning, and that it produces repeatable results. A rel-

evant aspect of this testing activity is a full understanding of 

the CM&S requirements and specifications, the test cases, 

their limits, and their execution in the regression testing to 

ensure all the bugs, errors, and faults are addressed accord-

ingly to their potential effect(s) on the COU and the model 

risk.

CM&S software can generally be classified as user- 

developed software, off- the- shelf software (commercial or 

open source license), modified off- the- shelf software, or 

most frequently combinations thereof. A software developer 

should tailor SQA activities upon the characteristics of the 

software components present in the model.

For user- developed and/or modified off- the- shelf software, 

SQA activities should comprise:

• Software testing, i.e. implement a manual or automated 

(unit test) process for specific parts of the software, 

where a static analysis is carried out to identify defects 

in the source code and in the software development 

environment, such as compilers and libraries called by 

the model.

• SQA documentation generation regarding all imple-

mented tests, where (specific parts) and on what (specific 

functionalities).

• Code review on software source code, software tests and 

documentation review
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For off- the- shelf software (components), SQA activities 

should comprise:

• Running the available benchmark verification test cases 

provided by the software provider.

• Documentation generation including references to the 

SQA procedures carried out by the software provider.

A guidance document as developed for the R statistical 

programming package53 is an example of supporting docu-

mentation to R users.

Numerical code verification (NCV)

The NCV process is generally carried out by the software 

developer and/or user. It is a process that ensures the cor-

rect implementation and functioning of the CM&S software 

executable and model by means of estimating the correct-

ness and numerical error in the calculated results (including, 

but not limited to, the spatial and temporal convergence rates 

& order) as well as by performing graphical and numerical 

checks. When the model equations allow, this verification 

step can be executed with the full model (blurring the distinc-

tion between code verification and calculation verification). 

However, when the model becomes more complex (due to 

more complex geometries, equations etc.), relevant bench-

mark problems should be identified and used to perform code 

verification. See e.g.54 for an example of the development of 

simplified flow problems that can be used as standard bench-

mark tests for code verification for blood damage predictive 

models. Of note here is that, as a less stringent NCV, simu-

lated data obtained from benchmark tests implemented with a 

verified code can be used for the verification of other codes.18

To achieve a robust NCV, the model developer should (de-

pending on the COU):

• Compare numerical solutions returned by the CM&S soft-

ware executable with exact analytical or semi- analytical 

solutions provided by a verified source (e.g. provider);

• Compare numerical solutions returned by the model running 

on any specific computational environment other than the 

original settings (model numerical solutions of reference).

• Generate adequate documented evidence of the performed 

comparison activities and include references to the docu-

mented results from SQA verification tests conducted by 

the CM&S software developer

Calculation verification

Calculation verification encompasses estimation of discretisation 

errors, numerical solver errors and (human) use errors and the 

effect these errors have on the model results. The discretisation 

error arises from solving the computational problem at a finite 

number of spatial and/or temporal grid points. Numerical solver 

errors refer to errors induced by the selection of specific solver 

parameters. Human errors are errors introduced into the calcula-

tion by the model user in key inputs and output (e.g. typos).18

To achieve a robust calculation verification, the model de-

veloper could (depending on the COU).

• Analyse spatial and temporal convergence and adapt 

discretisation parameters or solver tolerances where 

necessary.

• Run a problem- specific sensitivity analysis on the solver 

parameters to demonstrate that their impact on the simu-

lation results is negligible in the scope of the envisaged 

model accuracy.

• Verify key inputs and outputs by either user, internal or 

external peer review, depending on the credibility goals 

for this particular credibility factor.

Specificities of in silico models for drug 
development

The aforementioned verification process corresponds to that of 

general engineering models and in silico models of medical de-

vices that are heavily physics- based. These verification actions 

require a well- accepted “source of truth”. For many physics- 

based models used in medical device modelling, this source is 

the fundamental differential equation or law that usually de-

pends on space and time (such as the Navier- Stokes equation 

to describe fluid dynamics). Models of biomedical processes 

rely on mechanistic knowledge, which is not always quantita-

tive and which is not error- free. Additionally, said processes 

often span multiple scales, which are intricately coupled and 

cannot be separated without considerable errors.55 Because of 

this, there is an increase in models that consist of multiple sub-

models capturing different scales (multiscale models) or phe-

nomena (multiphysics models). In case of multiscale models, 

orchestration between the different space/time scales is taken 

care through homogenization approaches and in case of mul-

tiphysics models through transformation of properties across 

physics theories.56 For such models, the general philosophy is 

that credibility should be assessed at the level of an individual 

submodel as well as on the orchestration. In certain cases, where 

the homogenisation functions are also models, they too should 

be explicitly included in the credibility process. Another family 

of models that is increasingly used in the context of drug devel-

opment is that of agent- based models, which are mechanistic 

with at least some of the inputs being discrete. The discrete ele-

ments can range from cell state transitions (with everything else 

described by differential equations in a space- time continuum) 

to the entire system being based on discrete rules. Verification 
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of the continuous part of the model requires extensive verifica-

tion whereas the discrete parts only require code verification as 

they involve algebraic calculations. However, as local instabili-

ties might arise, a parameter exploration is warranted.

For all the aforementioned models, it is also important to 

ensure that model structure and related parameters are identi-

fiable with the data used for model development. Appropriate 

tools should be used for this purpose.57,58

Model validation

As previously mentioned, validation activities are about show-

ing whether the right equations are being solved, i.e. whether 

the in silico model is able to predict/simulate the reality of in-

terest and the sensitivities and uncertainties of the model are 

clear. This starts with a clear description of the model's concep-

tual form along with its assumptions, ontology and input data 

quality. Subsequently, model validation requires the develop-

ment of a validation comparator providing data to perform the 

evaluation. No validation can be performed without such com-

parator data.32 The assessment step then compares the predic-

tion/simulation results with the comparator data to ascertain 

model credibility. Besides this direct comparison, it is equally 

important to estimate the uncertainty in this comparison.

In silico models, related assumptions, 
ontology and input data quality

Credibility factors related to the in silico model evaluate 

model form/structure (governing equations, geometry, com-

putational domain, variables, quantities, boundary/initial 

conditions etc.) and model input (parameter values for model 

form elements). In silico models used in the context of drug 

development are mainly describing biological processes, in 

contrast to models used in medical devices that often depend 

on physics. Their form and input depend largely on non- 

exhaustive and poorly measurable material (knowledge and 

data) even on fundamental behaviour. Consequently, there 

may be multiple assumptions, gaps and hypotheses necessary 

to construct the conceptual form and to derive (or suggest) 

a convenient mathematical form. These need to be clearly 

described in the modelling report and their impact discussed. 

While every model is built on hypotheses, their high quantity 

and potentially large impact on the output of a pathophysiol-

ogy model imposes specific attention to the following points:

• A rigorous and complex knowledge management and 

curation (e.g. Strength of Evidence) which can evolve 

dynamically.

• A tight coupling between the conceptual (e.g. graph- based 

on underlying pathophysiology and pharmacology) and 

mathematical form (equations). For instance, a unique 

source for equations as well as their full documentation 

adds more credibility in the model form.

• An emphasis on a qualitative validation assessing if best 

practices in the conception and documentation of the 

model have been implemented in addition to the quantita-

tive validation with comparator data (thereby guarantee-

ing minimum standards reproducibility and quality and 

therefore credibility).59

Given the aforementioned points, the modellers should en-

sure and report compliance with model annotation and curation 

quality standards applicable for the type of model under scru-

tiny whenever available. Systems biology models can benefit 

from years of community effort into community standard ontol-

ogy building.60,61 To give an example, the use of a “scorecard” 

when reporting a model was recently proposed by a commu-

nity effort to ensure the reproducibility of models in systems 

biology.62 As previously stated, in silico models of biochemical 

cellular and biomedical processes rely heavily on knowledge, 

often in the form of heterogeneous and semantic data. For that 

reason, important efforts must be put to thoroughly reference 

and annotate the model and to make sure entities and variables 

can be identified unambiguously, for which one can rely on the 

use of standard ontologies (e.g. Gene Ontology, ChEBI). That 

endeavor to ensure model transparency and reproducibility 

can be achieved by following guidelines arising from model-

ling community efforts such as the BioModels initiated- effort 

MIRIAM (Minimal Information Required in the Annotation of 

Models) 63 or the standard SBML and CellML formats to en-

code models, in systems biology.64

A set of questions is listed below to qualitatively evaluate 

the credibility of an in silico model.

• Validation of the conceptual form: are the included 

knowledge, formulated assumptions validated by a bi-

ologist or a clinician in the field?

• Is the model granularity adapted to the question of interest 

and the context of use?

• Auditability/transparency: Is it possible to access the 

source justifying the model form and the parameter 

values?

• Uncertainty management: are the uncertainties associated 

with the model form and inputs and their impact on model 

predictions understood and controlled?

• Sensitivity analysis: Is the model sensitivity to input pa-

rameters and its impact on model predictions understood 

and controlled?

• Risk of tautology: is there a risk that a bias has been intro-

duced in the model form or inputs influencing the answer 

into the desired way?

• Simulation design: is the in silico experiment design rel-

evant to address the question(s) of interest?
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• Relevance to clinical outcome: are the in silico model re-

sults relevant for clinical purpose?

• Relevance to the COU: are the in silico results relevant to 

the context of use and specified clinical utility?

Comparator data

When performing the model validation, comparator data is 

required. This data can come from various sources, includ-

ing dedicated (in vitro/ex vivo/in vivo) validation experi-

ments, or historical nonclinical, clinical trials or real- world 

validation data. Additionally, this data can come from the 

same experiment used in model development, provided 

it is a different (unused) subset and is clearly defined in 

the approach upfront. Regardless of the source, data used 

to perform the validation needs to be trustworthy, mean-

ing of good quality, and relevant to the COU. Comparator 

data credibility factors are related to the test sample (e.g. 

animal disease model) and the test conditions (e.g. drug 

administration). For all factors, elements such as the quan-

tity, range of characteristics, measurements and measure-

ment uncertainty need to be reported. The measurements 

performed to characterize these test samples can be used 

as model inputs but can, in case of quantification of the 

uncertainty on the input, also enable quantification of the 

uncertainty in the model output. Furthermore, the meas-

urement data can be used during model evaluation to de-

termine equivalency between model input and comparator 

data. All aspects of the test samples and conditions need 

to be investigated separately, as they will have an im-

pact on the comparator data and hence on its usefulness 

to establish model credibility. Below, a non- exhaustive 

list is provided of comparator data elements requiring 

characterisation:

• Quantity: samples sizes, number of test conditions;

• Range of characteristics: range of test sample charac-

teristic of interest, range of test conditions;

• Measurement: rigor with which measurement data 

characterize each test sample, for both comparator 

input and output, as well as the test conditions;

• Uncertainty of measurements: uncertainty associated 

with tools and methods used to obtain measurements 

characterizing test samples and conditions.

When experimental data are reported in the literature 

as comparator data, most often insufficient information 

is available to assess the quality of said comparator data, 

including information on how exactly this data was estab-

lished: which model systems were used, which protocols 

were followed, etc. This meta- data is sometimes also re-

ferred to as the birth certificate of the data. As an example, 

consider the mechanical properties of arterial tissues which 

play an important role in models of arterial disease pro-

gression. Almost all publications describing the mechani-

cal properties of arterial tissues will mention information 

such as the species and anatomical location of the tested 

sample, the machine used and the loading protocol. Far less 

publications also include information on the time between 

donor death and sampling, time between sampling and test-

ing, and transport conditions of the sample even though 

these factors have been shown to have substantial influence 

on the obtained parameter values. Efforts are undertaken 

to ensure presence of the necessary metadata. The recently 

published standard ISO 21899:2020  specifies the general 

requirements for the validation and verification of process-

ing methods for biological material in biobanks. ASME is 

looking into expanding the IT’IS (Foundation for Research 

on Information Technologies in Society) tissue properties 

database,65 in eight material property groups (including 

mechanical, thermal and electromagnetic). Additionally, 

at the end of 2020, a new community challenge, C4BIO 

(c4bio.eu) was launched jointly by academia and industry 

to develop community- wide standardized testing protocols 

that include recording of the necessary metadata that will 

allow the data to pass regulatory scrutiny.

Assessment

With the previous steps completed, the accuracy of the 

model output can be assessed in terms of equivalency of 

input parameters as well as (rigor of the) output compari-

son.18 Equivalency of input parameters between the in silico 

model and comparator data is described for both type and 

range, with higher degrees of equivalency leading to higher 

credibility. Output comparison is related to a number of ele-

ments, starting with quantity –  i.e. how many outputs were 

compared. Additionally, increased equivalency of types 

of output between in silico model and comparator leads to 

higher credibility. Comparison of the output can be done 

through visual inspection (low credibility) and direct assess-

ment of the difference between experimental and computa-

tional results. Depending on the COU also statistical testing 

of predictions against random prediction null hypotheses 

(e.g. classification: AUROC; ranking: spearman correlation) 

might be warranted. To further increase credibility, uncer-

tainties coming from experiments and computations need to 

be quantified and incorporated in the output. Finally, when 

making the comparison, the level of qualitative and quantita-

tive agreement between quantities of interest that is deemed 

satisfactory needs to be in accordance with the COU (e.g. 

high regulatory impact requires high model accuracy and 

inclusion of uncertainties on both comparator and model 

results).
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Applicability and uncertainty

Once a model has been successfully run, then it is necessary 

to compare the completed activities and results with what was 

expected. If both are within the accepted parameters, then the 

model can be considered as credible; otherwise, it might be 

necessary to review the model or the question of interest.66 

By evaluating the applicability of the verification and valida-

tion activities to the COU, again mindful of the model risk, an 

assessment of whether there is sufficient model credibility to 

support the COU can be made.32 Applicability as defined in 

the ASME V&V40 refers to whether the measured quantities 

and the application domain of the Comparator and the model 

are identical, which is not always the case. Pathmanathan 

et al. provide a step- by- step guide for analysing applicabil-

ity during the validation of evidence for biomedical in silico 

models.67

Uncertainty is one of the critical aspects while assessing 

the credibility of a model. To study the model's uncertainty, it 

is necessary to check the uncertainty quantification (UQ) and 

sensitivity analysis (SA). UQ is the process of determining 

the uncertainty in model inputs, and then estimating the re-

sultant uncertainty in model outputs whereas SA is the study 

of which inputs most affect a model output. Overall, UQ 

and SA test the robustness of model predictions.67 A critical 

component of any uncertainty analysis is openness of the as-

sumptions being or not made, the tools used, and the way that 

results are interpreted. Educated decisions can only be made 

through an understanding of both the process of estimating 

uncertainty and its numerical results.68

REMAINING GAPS AND 
CHALLENGES FOR THE FUTURE

The aim of the white paper is to present a high- level frame-

work that could guide the whole model evaluation process 

in a holistic and comprehensive manner without neces-

sary focusing on very technical and specific aspects re-

lated to different specific applications or types of models. 

These topics will be covered in future communications. 

ASME V&V40 standard was indeed initially proposed for 

medical devices. However, this approach of establishing 

the credibility of a model and its associated simulations 

as a method to answer a scientific question of interest is 

general and also applicable to drug development. Some 

adaptation is needed to better fit to the context of drug 

development: of note the regulatory impact, which is one 

additional key point in the framework as proposed in the 

white paper, is not included in the ASME V&V40: The 

regulatory impact (which is conceptually different from 

the model influence) was added, to better fit to the drug 

development setting.

There is an increasing need for use of in silico models 

and simulations in drug development. There are for example 

settings where clinical data generation to demonstrate drug 

efficacy and/or safety is just not feasible due to ethical or 

practical constraints. Reliable models would offer an alter-

native source of evidence for drug efficacy and safety assess-

ment and per se would accelerate the availability of safe and 

effective drugs for patients.

There is a need for rigor and transparency in the meth-

ods used for model development and validation on the one 

hand and their wider acceptance as a valuable source of 

evidence by the scientific community including academia 

scientists, pharmaceutical industry, regulatory bodies and 

HTA/payers, on the other hand. Adequate model evaluation 

is considered a corner stone. An environment that permit 

establishing the credibility of mechanistic models and their 

adequate regulatory evaluation/assessment in a very ob-

jective and consistent manner is currently lacking with an 

unmet need for that. The proposed framework can be consid-

ered as an important step toward the creation of such an en-

vironment with well established, transparent and commonly 

agreed criteria for establishment of mechanistic model ac-

ceptability. The methods used for this purpose need to be 

well described and commonly agreed. Given the novelty, the 

multidisciplinary nature and the relatively recent arrival in 

the drug development setting of these mechanistic in silico 

models, we consider that we are still in the learning phase 

of identifying the most appropriate tools for model verifi-

cation, validation/qualification. Similar as for other quanti-

tative tools which have been used for longer and are more 

widely accepted (e.g. statistical approaches, popPK, PK/PD 

models), it is expected that the model evaluation tools will 

evolve in number and in performance with the increase of 

the use of these types of models.

Therefore, a need exists for documenting the available 

tools, the manners they are being used, the conditions 

for their adequate use and the challenges encountered. 

This white paper is one step in that direction, outlining 

a framework, similar to that of the ASME V&V40 for 

medical devices, emphasizing the need for transparency 

in the data sources and methods used, the clear link with 

the scientific question and the context of use, as well as 

the proposed acceptability of criteria. In addition, this 

white paper contains a glossary of key terms used in the 

context of in silico model development and evaluation. 

Given the sometimes- conflicting terminologies that exist 

in this domain, such a glossary should be included in all 

communication to facilitate the communication and avoid 

misunderstanding during scientific review of regulatory 

submissions or research papers.

The current hurdles for larger acceptability of in silico 

models as a reliable source of evidence for high (regulatory) 

impact applications in drug development include:
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1. lack of international standards and best practice docu-

ments commonly accepted by all relevant stakeholders,

2. poor communication between stakeholders to that regard, 

and

3. relatively slower development of regulatory science as 

compared to commercial solution developments.

There is currently an unmet need for regulatory guid-

ance/best practice documents clearly describing standards 

for mechanistic in silico model development, evaluation 

and reporting considering the specificities not only in their 

structure, the data sources for their construction and eval-

uation but also in the software and algorithms used for 

their implementation. Ideally, this should take the format 

of an ICH guideline to ensure involvement of all relevant 

stakeholders and wider acceptability by regulators, drug 

developers and the scientific community. Lack of general 

framework of reference inevitably results in fragmentation 

of initiatives, development of conflicting terminologies, 

and difficult communication. A general framework on the 

other hand would ensure coordination of initiatives, har-

monization of terminology and efficient communication 

among different stakeholders. Such a general framework 

for computer modelling and simulation is highly needed. 

Stakeholders such as the EMA, the VPH institute and the 

Avicenna Alliance already initiated the dialog and brain-

storming on best practices for computer modelling and 

simulation, as illustrated in this white paper.

Besides this, the VPH institute and Avicenna Alliance 

are also leading an initiative focusing on Good Simulation 

Practice (GSP), in analogy with the Good Laboratory 

Practice (GLP), Good Clinical Practice (GCP) and Good 

Manufacturing Practice (GMP) guidelines. GSP will in-

deed provide a quality framework for recognition of com-

pliance monitoring procedures. Compliance with GSP 

will ensure that validated models and digital data gener-

ated by in silico methods will be of high quality, valid and 

reliable.

EXAMPLES WORKED OUT 
ACCORDING TO THE CREDIBILITY 
MATRIX

In this section, we provide three use cases of models follow-

ing the above- described verification and validation strategy. 

These are models that have not yet received formal regu-

latory approval but the developers are in various stages of 

interaction with regulatory bodies. After a brief summary 

of the model, a credibility matrix is used to provide key 

information on the different steps of the flowchart show in 

Figure 1.

EXAMPLE 1: Universal system simulator.

The Universal Immune System Simulator (UISS) is an agent- 

based model of the human immune system that accounts for both 

innate and acquired immune response. In the past, UISS has been 

successfully applied to a large number of immune system disease 

modelling scenarios.69- 74 In preliminary studies,75- 78 it has been 

shown that the resulting simulator (UISS- TB) could be used to 

simulate the relevant individual human physiology and physio-

pathology in patients affected by Mycobacterium tuberculosis 

(MTB) and to test in silico the efficacy of new vaccines against 

tuberculosis. (Figure 2) Moreover, UISS shows the capability of 

simulating the intrinsic immune system behaviour against MTB 

infection (eliciting or not eliciting the complete clearance of the 

infection or, eventually, allowing the chronic establishment of 

MTB reservoir inside the host due to both MTB characteristics 

and genetic features of the host). The key elements of the frame-

work for UISS agent- based model as proposed by the developer 

are summarized below.

F I G U R E  2  UISS- TB predicts the dynamic of the tuberculosis course with a specific vaccine administered, suggesting possible interactions to 

maximize the chance of success in a personalized fashion
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Credibility matrix

Drug Therapeutic vaccines for pulmonary tuberculosis, such as RUTI.

Type of model Physiology based agent- based model (ABM).

Scientific 

Question(s) of 

interest (QOI)

What is the dose- response curve of a specific vaccine for active tuberculosis in a reference population of adults 

affected by Mycobacterium tuberculosis?

What is the most optimal dose to maximize the efficacy of tuberculosis vaccine?

Context of use UISS is a physiology-  and agent- based model of the human immune system. UISS- TB includes a disease model 

component for the infection of pulmonary tuberculosis, the treatment (the therapeutic vaccine to be tested) effect 

component, and is run over a virtual population, representative of the target population.

The aim of the model is the dose selection for confirmatory trials, with a significant reduction of the human 

experimentation in the phase II dose- response trial. Data input would include:

− clinical data from the phase 1 safety assessment trial

− clinical data from a limited scale exploratory trial: only a single arm (e.g. drug- response strains) and only two arms 

(a placebo group and a treatment group with a dose close to the maximum tolerated dose (MTD).

Acceptability 

criteria

(Precision level)

• Data/input for model building

The UISS- TB model is informed by a set of NI = 22 inputs, named vector of features (VoFs), formed by quantities 

that can be measured/observed in an individual MTB patient. All 22 inputs have to be considered with their 

admissible minimum, maximum, and average values.

• Model structure and key parameters:

Model structure and parameter sources and values should be disclosed and justified for the disease and the drug model, 

as well as for the virtual population simulator.

• Model verification acceptancy criteria

a. Computation (Calculation, platform) and code verification

GitLab versioning control system will be used. The following will be monitored and results provided:

For the Deterministic model

− Absence of Round- off errors

− Absence of Conservation errors.

− Absence of Discretisation errors.

− Uniqueness: repeated deterministic runs produce identical results.

− Smoothness: analyse lag correlation.

− Non- chaoticity: Lyapunov’s exponent.

− Time step convergence analysis

For the stochastic model verification.

− Convergence and consistency analysis.

o. Software Quality Assurance

GitLab QA to run regression testing, including all VV&UQ tests.

Long- term: Compliance with IEC 62304 “Medical Device Software -  Software Life Cycle Processes”.

• Model validation activities and related acceptancy criteria

• The UISS model needs to be able to model to simulate and to adequately predict the key features of patients 

experimentally recruited in the Phase 2 study.

• The UISS model needs to be able to predict the distribution of immunogenicity biomarkers at the other three 

follow- up time points and compare these to those observed experimentally.

Regulatory impact Medium: modelling results are additional evidence to be complemented by data from clinical trials.

Risk based analysis 

of decision 

consequence

In the case of UISS- TB- IG, an underestimation of the optimal dose might affect the efficacy of the treatment, and an 

overestimation might induce adverse effects. If we assume that the final decision is the marketing authorisation of 

the new therapeutic vaccine, the influence of the model is low for both the final efficacy component and the safety 

component that will rather be informed by the results of the confirmatory Phase 3 trial. For a lower- than- optimal 

prediction, we could have an increased risk of recurrence. For the higher- than- optimal prediction, we could have 

an increase of reported adverse effects. However, typical overdosing adverse effects for TB vaccines ore mild in 

nature (occasional muscle spasms, pain at the site of injection, etc.). Thus, also the consequence of a model error 

can be considered mild.

Credibility activities 

results

The credibility factors (as described in Section 9) were evaluated with overall satisfactory results Details and results of 

model verification activities have been previously published.72,81

Model informed 

decision

The dose- response relationship was characterized for efficacy of vaccine against tuberculosis that allowed optimal 

dose selection for the confirmatory trial.
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Of note, the credibility matrix above was initially proposed 

by the authors and refined after discussion with regulators. 

As described, two related questions are to be addressed by the 

agent- based model: characterization of the dose- response rela-

tionship for efficacy and dose selection. The COU is presented 

with a link to the question, the data source and an analysis of 

clinical consequences if the model is wrong (as part of a risk- 

based analysis). Regulatory impact is considered medium, 

model acceptability criteria are provided a reference as well for 

the results credibility activities implemented to meet the pre- 

specified criteria.

EXAMPLE 2: Virtual Assay for Drug Cardiac Testing.

Virtual Assay is a software for running human in sil-

ico drug trials to augment drug cardiac testing.79 The 

core engine provides a user- friendly graphical user in-

terface (GUI) to efficient algorithms for the sampling 

and solution of populations of virtual human cardiac cell 

models (Figure 3). Each model in the population is char-

acterized by a different set of ion channel parameters, 

with biology described in the form of systems of ordi-

nary differential equations, producing non- identical ac-

tion potential outputs to account for variability. The Drug 

Module directly converts the drug action parameters for 

their use by the Core Engine in each of the models of the 

population. The Analysis Module finally generates visual 

reports of the conducted drug- dose response studies, per 

individual model and provides statistics of biomarkers of 

drug action across the entire population, including the 

automatic detection of adverse drug effects. The key el-

ements of the framework Virtual Assay model for drug 

cardiac safety testing as proposed by the developer are 

summarized below.

Credibility matrix

Drug All new drugs candidates given the regulatory requirement of assessment of in vivo drug- induced pro- 

arrhythmic cardiotoxicity, and especially those that may be ruled out due to potential false positive signal 

based on hERG assays and multichannel effects.

Type of model The Virtual Assay Software: human- based cardiac electrophysiology modelling and simulation framework.

F I G U R E  3  schematic overview of the Virtual Assay software platform at its main components: the Core Engine (middle), Drug Module (left) 

and Analysis Module (right). X: ion channel availability; h: hill coefficient; D: doses; IC50: half- maximal inhibitory concentration; M.P.: Membrane 

Potential; CTRL: Control (no drug)
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Credibility matrix

Scientific Question(s) of 

interest (QOI)

Would the drug result in risk of developing Torsades de Pointes in the human population, even in the context 

of positive hERG assays and multichannel effects?

Context of use INPUT: in vitro data on drug- induced action on ion channels (through 2 key parameters: the concentration that 

causes 50% of ion channel blockage (IC50) and the steepness of the drug response curve (Hill coefficient (h))

OUTPUT: Simulations with the Virtual Assay software categorize drugs as being safe or inducing pro- 

arrhythmic cardiotoxicity in human.

Decision on the potential cardiotoxicity will be informed by the simulations, combined with experimental data 

from animal models and potentially stem- cell derived cardiomyocytes. Mechanistic models can be helpful 

to rule out a positive non- clinical signal.

Acceptability criteria

(Precision level)

• Data/input for model building:

In vitro data on drug action on 3 cardiac ion channels (Nav1.5, Cav1.2 and hERG). Evidence of the acceptable 

quality and documentation on the sources of data will be provided.

• Model structure and key parameters:

The structure of the Virtual Assay software is summarised in Figure 3. The Core Engine (middle panel) 

generates a virtual population of human cells. A Drug Module (left panel) allows simulating the drug 

action on the ion channels using the input data. The Analysis Module (right panel) extracts metrics from 

the simulation for drug classification. Justification of model structure and parameter sources is provided 

in.82

• Model verification activities and related acceptancy criteria

• Computation (platform) and code verification

Virtual Assay has been developed in C++. Drug simulations in a modern laptop require approximately 5- 10 

minutes for each drug concentration for a population of 100 cell models, and simulations are run in parallel 

on multiple cores. Verification of numerical scheme and code comparison has been conducted as explained 

in.82

▪ Software Quality Assurance

The Virtual Assay software includes documentation and benchmark verification test cases. Details on software 

verification are provided in.82

▪ Model assumptions and related sensitivity analysis

Sensitivity analysis is incorporated in the population of models, as this consists of using the same baseline 

model but with key parameters varied randomly, thus generating thousands of virtual cells.

▪ Numerical and graphical tools

The Virtual Assay software incorporates a friendly interface, simulation software and visualisation of outputs.

▪ Uncertainty management

The population of models approach incorporated in Virtual Assay tackles uncertainty in electrophysiology 

model parameters. In the case of uncertainty in input values, simulations with the most extreme cases are 

run and compared.

• Model validation activities and related acceptancy criteriaThe accuracy of drug classification using 

Virtual Assay was requested to be superior to the classification based on hERG alone and at least 80%.

The sensitivity in the prediction of cardiac toxicity of individual drugs needs to be >60% or 70%.

Regulatory impact High regulatory impact: modelling and simulation results constitute the key source of evidence to answer the 

question of interest, i.e. replacing data traditionally generated in a clinical trial

Risk based analysis of 

decision consequence

High clinical influence given the new Q&A Guidelines: impact on the decision to accept phase 1 to 3 trial 

designs, and also based on this model, waiver of intensive monitoring of electrocardiogram (ECG) in 

confirmatory trials. This is also crucial for the evaluation of cardiotoxicity in cancer drugs. Wrong model 

prediction/simulation could expose patients to risk of lethal arrhythmias, in following clinical trials due to 

cardiotoxic drugs.

Credibility activities results The credibility factors (as described in Section 9) were evaluated with overall satisfactory results. Details and 

results of model verification activities have been previously published.80- 82

Model informed decision The drug’s pro- arrhythmic cardiotoxicity was characterized for 62 compounds, based on their Torsade 

de pointe (TdP) score. Each drug could be categorized as safe or risky based on their TdP score. 

Subpopulations of patients at higher risk were identified for some of the drugs.

The credibility matrix above was also proposed by the 

authors and discussed with regulators. One question is ad-

dressed by the model and associated simulations for each 

tested drug: characterization of risk of developing Torsade 

de Pointes. The COU is presented is presented in relation 

to its role in the overall decision making and analysis of 
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clinical consequences if the model is wrong (as part of a 

risk- based analysis). Regulatory impact is considered high, 

model acceptability criteria are provided as well as a ref-

erence for the results credibility activities implemented to 

meet the pre- specified criteria.

EXAMPLE 3: Myocardial physiology.

A QSP type disease model and a Virtual Population 

are used to evaluate the ranges of clinical benefit through 

C1 modulation, and refine the target population based on 

response variability analysis in a Virtual Population of 

ST Elevation Myocardial Infarction (STEMI) treated with 

percutaneous coronary intervention (PCI) (Figure 4). It is 

hypothesized that blocking ROS production at the level of 

the complex 1 (C1), the beginning of the respiratory chain, 

will reduce damage of the overwhelming ROS production 

during the reperfusion and bring a relevant clinical benefit. 

Key features of the model as per the framework are pre-

sented below.

F I G U R E  4  Disease Computational Model structure. Light blue rectangles represent the submodels with the associated number of parameters, 

variables and reactions. Dark blue rectangles represent the major connector variables shared between submodels. Myocardium submodels are 

duplicated throughout 10 zones to introduce a spatial discretization of the myocardium

Credibility matrix

Investigational product Modulator of respiratory complex 1: inhibitor of ROS production

Type of model QSP- type disease model: based on ordinary differential equations (ODE). The model had 625 parameters and 173 

ODE.

Scientific Question(s) of 

interest (QOI)

What is the target population to demonstrate the effect of C1 modulation as it would have been evaluated in a 

classical phase 2 clinical trial?

Context of use A mechanistic disease model describing myocardial infarction pathophysiology and effects of C1 modulation is used 

with a Virtual Population to identify markers that characterize responders to C1 modulation in a Phase II setting in 

silico.

Data extracted from the scientific literature and preclinical in vitro experiments and in vivo experiments were used to 

build and calibrate the model.

Individual patient data from a subset of a clinical trial dataset were used for a quantitative calibration of the clinical 

outcomes calculated by the model combined with a Virtual Population.

The model and related simulator are proposed to support an upcoming Phase III trial design aimed at confirming the 

drug clinical benefit.

Acceptability criteria Code verification should include the convergence analysis of all dynamics concerning space discretization of the 

left ventricle. As all patients will use the same space discretization, the model needs to present qualitatively the 

same results by predictive visual check for two discretization schemes so that it is safe to assume that inter- patient 

variability is unchanged.

Calculation verification was carried out by using the simulation outputs obtained with the lowest possible solver 

tolerances as reference solution. The error between simulated outputs and reference solutions needs to be lower 

than a given threshold (1%).
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Credibility matrix

Further quantitative acceptability criteria on the software side are model item transparency, documentation 

completeness and unit checking.

Model acceptability is mainly assessed on the 4 outcomes with a quantitative validation based on independent 

individual data extracted from a previous clinical trial dataset (placebo arm, 26 patients). In our COU, the most 

important capability of the model is a correct prediction of a class/individual outcome based on its descriptors 

(and needs to be validated as such). For trial design purposes we should thus compare virtual patient classes with 

real patient classes and individual patient (ranks) with individual patient (ranks), respectively. According to these 

two requirements two precision levels have been checked for classifying ranking and patients by the model

• A response classifier model should have the capacity to identify patients with a severe outcome according to 

Receiver Operating Characteristic (ROC), Area Under the Curve (AUC) above 0.7 for a number of classification 

scenarios (similar as for any predictive biomarker).

• A response ranking model should have a significant capacity to rank individual patient's outcome severity. This 

capability should be tested by a suitable statistical procedure, i.e. by Spearman rank correlation significantly 

different from random permutation.

Qualitative acceptability criteria need to be checked for validating explorative capabilities of the disease model not 

covered by the quantitative input (patient descriptors) output (creatine phosphokinase (CPK), troponin I (TnI), Infarct 

Size (IS) and left ventricular ejection fraction (LVEF)) validation. A set of credibility factors are defined including

• Model form is deemed acceptable if the conceptual form is validated by a biologist, a clinician or logical modelling; 

if model granularity allows the answer to the QOI; if a transparency checking is allowed in the model structure.

• Model inputs are deemed acceptable if used assumptions are listed and their impact on model prediction explored 

and if a sensitivity analysis has been performed

• Model is deemed relevant to the context of used if the simulation protocol is delivered prior the experiment; M&S 

output(s) is/are biomarker(s), a surrogate or a clinical outcome; validity domain is relevant to the COU

Regulatory impact Medium: modelling results are additional evidence to be complemented by data from clinical trial.

Risk based analysis of 

decision consequence

The treatment being indicated as a complement of the first line (percutaneous coronary intervention), suboptimal 

patient selection will not result in harm to patients. However, it may lead to a suboptimal design for the phase 3 

and a suboptimal indication for market authorisation, leading to off- label use of the drug.

Credibility activities 

results

All credibility factors were evaluated:

Model form evaluation

• KM validation: Acceptable (Validation by review)

• Relevance of Computational Model granularity: Good (Model granularity is adapted to the QOI(s))

• Transparency checking: Good (Comprehensive checking)

• Model reuse: Good (The model or a part of the submodels has been reused from a different COU)

Model inputs evaluation

• Uncertainty management: Poor (No uncertainty management performed yet)

• Sensitivity analysis: Poor (No sensitivity analysis performed yet)

Relevance to the Context of Use

• Simulation design: Acceptable (Simulation protocol delivered prior the experiment)

• Relevance to clinical outcome score: Good (M&S output(s) is/are clinical outcome)

• Relevance to the COU: Good (Relevance of M&S output(s) of interest and validity domain to COU)

The model of ischemia reperfusion was quantitatively validated on 4 outcomes. Evaluation metrics for the primary 

outcome (Infarct size) were the following:

• Spearman rank correlation: 0.51

• ROC curve AUC average: 0.77The Computational Model of myocardial ischemia reperfusion is thus validated for 

the anticipated use but should be completed with uncertainty analyses.

Model informed decision Two criteria were identified to characterize optimal responders: Final TIMI flow grade above 3 and Mid or Proximal 

lesion location. The selection of this sub- population doubles the clinical benefit (from 5% to 10% of average 

infarct size reduction).

These results support a subgroup analysis with the results of a potential phase 3 clinical trial evaluating 

C1 modulation.

Based on the provided information in the credibility ma-

trix by the Sponsor above, the question of interest for the 

Myocardial physiology model consists in the characterization 

of the target population to demonstrate the effect of C1 modula-

tion. The COU in link to the scientific question is related to the 

optimization of the confirmatory trial design. The mechanistic 
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model and related simulator were developed using data from 

the scientific literature, preclinical in vitro experiments and in 

vivo experiments. Individual patient data from a subset of a 

clinical trial dataset were used for a quantitative calibration of 

the clinical outcomes calculated by the model combined with a 

Virtual Population. Regulatory impact is considered medium, 

Model acceptability criteria are provided as well as the credi-

bility activities implemented to meet the pre- specified criteria. 

Risk- based analysis and final model informed decision are also 

provided.
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