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Modelling the links between farm 
characteristics, respiratory health 
and pig production traits
H. Gray1, M. Friel1, C. Goold1, R. P. Smith2, S. M. Williamson3 & L. M. Collins1*

Sustainable livestock production requires links between farm characteristics, animal performance and 
animal health to be recognised and understood. In the pig industry, respiratory disease is prevalent, 
and has negative health, welfare and economic consequences. We used national-level carcass 
inspection data from the Food Standards Agency to identify associations between pig respiratory 
disease, farm characteristics (housing type and number of source farms), and pig performance 
(mortality, average daily weight gain, back fat and carcass weight) from 49 all in/all out grow-to-finish 
farms. We took a confirmatory approach by pre-registering our hypotheses and used Bayesian multi-
level modelling to quantify the uncertainty in our estimates. The study findings showed that acquiring 
growing pigs from multiple sources was associated with higher respiratory condition prevalence. 
Higher prevalence of respiratory conditions was linked with higher mortality, and lower average daily 
weight gain, back fat and pig carcass weight. Our results support previous literature using a range of 
data sources. In conclusion, we find that meat inspection data are more valuable at a finer resolution 
than has been previously indicated and could be a useful tool in monitoring batch-level pig health in 
the future.

An increasing human population requires that global agricultural outputs increase by at least 50% by  20501–3, 
including arable, horticultural and animal products. Not only will there be more people to feed, but for some 
animal products (pork and poultry), there are trends of increased  consumption4. Per capita consumption of 
pork increased from 2012 to 2018, and pork was the most consumed meat product per capita in the European 
Union, China, Korea and Vietnam in  20184. In the UK, the annual consumption of pork increased by 1.5 kg per 
person from 2008 to  20185.

An increasing demand for pork, paired with concerns for the environmental pressures caused by  agriculture3, 
means that farmers must provide larger quantities of sustainably-produced meat. Understanding how to respond 
to this demand can be aided by identifying relevant links between good animal health, efficient production and 
farm infrastructure. Evidencing these links helps farmers make appropriate changes to produce healthy, produc-
tive animals under optimal conditions.

In the United Kingdom, health and performance data collection in the pig sector is commonly practised 
but not in a standardised manner. Data exist at different scales and resolutions and often in multiple, unlinked 
datasets with different owners. One of the largest national datasets is collected by the Food Standards Agency 
(FSA), which conducts ante- and post-mortem inspections on every pig submitted for slaughter in England to 
ensure it is fit for human consumption. Finer-scale health and welfare records are also maintained by farmers 
and pig companies, as well as by food assurance schemes (e.g. Red Tractor, RSPCA Freedom Food and Soil 
Association). Production and farm characteristics data may be recorded by pig producers at both batch and 
farm level to monitor production efficiency and to track the effects of farm characteristics decisions and disease 
control interventions. Integrating subsets of these locally- and nationally-held data sources can help to clarify 
the associations between certain health conditions, farm characteristics decisions, and production outcomes.

Respiratory disease is of particular importance in the pig industry as it presents a major health and welfare 
challenge, resulting in economic losses for  producers6–8. Respiratory disease is often a complex, multifactorial 
syndrome resulting from pathogens—viral, bacterial and parasitic—acting singly or in combination with the 
extent and severity of disease influenced by environmental/farm characteristics (e.g. temperature, humidity, 
hygiene) and host factors (e.g. pathogen and immune status). Depending on the severity, respiratory disease may 
manifest in overt clinical signs and mortality, or be subclinical, with the adverse effects noticed through poorer 
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than expected performance. In either situation, gross lesions of the respiratory tract detected at the abattoir 
provide a measure of the extent of disease.

Studies have attempted to quantify respiratory prevalence at differing resolutions, both on farm and at the 
abattoir. Controlled studies examining the on-farm presentation or post-mortem characteristics of specific res-
piratory conditions often involve labour-intensive data collection at slaughter and/or on-farm, including com-
prehensive diagnostic testing and serological testing to determine infection and previous exposure to respiratory 
pathogens. These more targeted approaches provide useful insights into disease on individual farms or within 
batches of pigs but typically are costly and involve relatively few farms, smaller numbers of pigs, and do not 
give an overarching view of the associations between farm characteristics, disease and production. By contrast, 
a small number of studies have investigated national datasets to validate their surveillance potential, to analyse 
temporal prevalence patterns and/or to link slaughter data to on-farm risk factors and production outputs (Real 
Welfare  Scheme9; British Pig Health Scheme/BPEX Health  Scheme10–14; Wholesome Pigs  Scotland10,11; Pig Regen 
Ltd. health and welfare  checks11). These datasets provide more standardised and detailed scoring of conditions 
in samples of slaughtered pigs, but they do not have the coverage of assessing every slaughtered pig.

Previous studies have investigated the associations between respiratory conditions and farm characteristics 
 factors14–23, as well as between respiratory conditions and production  traits6,12,24–28. Notable findings indicate 
that housing features, such as natural  ventilation17,29 and lack of  disinfection14,16, can increase the risk of respira-
tory conditions and that, in turn, respiratory conditions can have a negative impact on production traits such as 
average daily weight  gain6 and carcass  weight26.

Despite previous studies linking respiratory disease to production traits and farm characteristics factors, the 
majority of those studies have been exploratory and, thus, their results are correlational rather than causal. For 
example, previous studies have included multiple independent farm-level variables (in some cases more than the 
number of data points; e.g.16) and relatively low sample sizes. These characteristics of exploratory research risk 
increasing false  positives30 and require verification through replication attempts and confirmatory  research31. 
Determining causal associations requires confirmatory approaches testing a priori hypothesised relationships 
between pig health, production traits and farm characteristics, including representation of uncertainty in these 
relationships.

In this study, we examined the links between specific characteristics of farm infrastructure and farm charac-
teristics, respiratory conditions and production traits using routinely collected production and meat inspection 
data—the Collection and Communication of Inspection Results (CCIR) data (Food Standards Agency). Although 
meat inspection data has been criticised for being of low resolution for surveillance  purposes32,33, it provides 
the largest dataset on livestock health conditions at slaughter in the UK and has been proposed as a caveated 
method for monitoring animal  welfare34. We guarded our investigation from spurious findings by (i) adopting a 
confirmatory approach by testing a priori hypotheses based on theory; (ii) using Bayesian multi-level modelling 
and model selection using k-fold cross-validation to analyse all data sources within a single model and estimate 
parameter uncertainty; and (iii) pre-registering our hypotheses and methods on the Open Science Framework 
(https:// osf. io/ hu78g). Specifically, we tested the following hypotheses:

Global hypotheses (Fig. 1):

1. Farm characteristics impact respiratory condition prevalence, which then influences production outcomes.
2. Both farm characteristics and respiratory condition prevalence influence production outcomes, but there is 

no direct effect of farm characteristics on respiratory conditions.
3. Both farm characteristics and respiratory condition prevalence influence production outcomes, and farm 

characteristics factors have an impact on respiratory condition prevalence.

Specific hypotheses:

1. Disinfection: Disinfecting a room/building between batches of pigs will be associated with lower prevalence 
of respiratory conditions compared with when rooms are not disinfected between  batches14,16,35.

2. Batch source: Acquiring pigs from one source farm will be associated with lower prevalence of respiratory 
conditions compared with sourcing pigs from multiple  farms14,17.

3. Ventilation: Assisted ventilation (as opposed to passive/natural ventilation such as a window) will be associ-
ated with lower prevalence of respiratory conditions compared with natural  ventilation15–17,29.

4. Housing: Housing systems containing straw will be associated with higher prevalence of respiratory condi-
tions than housing systems not containing  straw22,36. Straw systems may have less control over the internal 
environment (e.g. curtains on barns versus an indoor thermostat system) and straw can contribute to dust 
which can have adverse respiratory effects.

5. Time: A higher average number of days spent on farm for finisher pigs will be associated with higher preva-
lence of respiratory conditions, compared to fewer days spent on farm.

6. A reduction in the prevalence of respiratory conditions will be associated with more favourable production 
traits: heavier deadweight, higher average daily weight gain, lower levels of finisher mortality, and more 
optimal back fat scores.

Methods
This study was approved by the Biological Sciences Faculty Research Ethics Committee, University of Leeds 
(Reference: LTSBIO-006).

https://osf.io/hu78g
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Datasets. Health data. Measures of respiratory disease were calculated using data provided by the FSA 
via their CCIR system. These data are collected at the abattoir by official veterinarians (ante-mortem) and meat 
health inspectors (post-mortem). CCIR is a compulsory system used to record presence or absence of specific 
conditions that can lead to partial or total rejection of a carcass. For each slaughter batch of pigs, the number of 
pigs with each condition observed is recorded. A slaughter batch refers to a delivery of pigs to the abattoir from 
the same farm, slaughtered on the same day. We were provided with CCIR data from September 2009–December 
2015. A subset of the CCIR data (hereafter termed ‘health data’) were used to calculate prevalence of respiratory 
conditions for each production batch of pigs (described below). Ante- and post-mortem data were combined 
and respiratory conditions were regarded as any of the following reported conditions: abnormal breathing rate/
depth; abnormal respiratory signs; coughing; pericarditis; pleurisy; pneumonia; respiratory; rhinitis; or twisted 
snout. If one pig had more than one condition (e.g. pneumonia and abnormal breathing) this would be recorded 
at batch level as two counts as conditions are not attributed to individual pigs.

Farm characteristics data. A random sample of 25 pig companies were directly contacted via email and invited 
to participate in the study. Six companies (24%) agreed to participate, four in England and two in Northern Ire-
land. However, it was not possible to gain CCIR data from Northern Ireland and therefore the data from these 
companies were excluded from the current study. Three out of the four English companies agreed to provide 
both farm characteristics and production data and a questionnaire was sent to the production managers of these 
companies. The data were gathered through an electronic (Microsoft Word document) questionnaire (not part 
of the pre-registration). The questionnaire was completed for 105 farms. Twenty-eight were self-completed by 
production managers of two companies. The remaining 77 were completed by a researcher (MF), through inter-
views with the managing director and being given access to the data required to complete the questionnaires.

The full questionnaire can be found in supplementary materials (S1), but the questions of interest for this 
study pertained to: disinfection of buildings, housing type, number of source farms from which pigs were 
acquired, and ventilation type. Disinfection was a binary (yes/no) category depending on whether disinfectant 
was used in buildings between batches of pigs. Finisher housing type consisted of four categories: straw yards, 
slatted, kennels or mixed (where a mixture of housing types were used). Ventilation was a binary variable, with 
the options being natural or assisted (i.e. the use of mechanical fans) ventilation. Batch source was a categori-
cal variable with options of acquiring pigs from one, two, three, or more than three sources. Although genetic 
information is an important variable in explaining production parameters, this was not requested due to its 
commercial sensitivity and its variation within farms through time.

Production data. Finishing pig production data, at the batch level, were provided on a voluntary basis by the 
participating companies, with the variables of interest shown in Table 1. Only pigs slaughtered from growing 
herds (no breeding pigs) and all-in/all-out batches were used. In an all-in/all-out system, production batches 
enter holdings sequentially with a break in production between batches, allowing consecutive batches to be dis-
tinguishable within the health data. By contrast, in a continuous system, batches overlap and slaughter batches 
may be made up of pigs from several production batches. Attributing conditions in the health data to different 
production batches in a continuous system is particularly challenging without individual-level tagging and trac-
ing, which is not widely practiced commercially.

Data cleaning and matching. Due to the different resolutions and formats, datasets needed to be cleaned 
before being matched. Briefly, outliers were removed from health data as the dataset was found to contain erro-
neous entries, which did not match the nationally reported slaughter numbers from the Agriculture and Hor-
ticulture Development Board (AHDB; levy board). Including these erroneous entries would have resulted in 
an overcounting of respiratory conditions. Any entry containing > 10, 000 pigs slaughtered per day per abattoir 
was removed as this is not logistically possible and was therefore considered as an error. Production data were 
cleaned to remove records of farms with no unique identifiers as these could not be matched to slaughter health 
data. Farm characteristics data were retained if the farm provided a unique identifier and provided data for at 
least one category of interest (disinfection, ventilation, housing and number of source batches). Farms were 

Table 1.  Production batch data variable descriptions and an indication of whether these were used for data 
matching or data analysis.

Variable Explanation Use

Slapmark Slapmark for farm identification. This is used for matching to other datasets Matching

Pig entry date Date which pigs were placed on the farm Matching

Mortality Number of pigs that died between arrival and slaughter Analysis

Average days on site Average number of days between arrival and slaughter Analysis

Total placed Number of pigs placed on the farm to make up a batch Analysis

Total sold Number of pigs sent to slaughter Matching

Average daily weight gain Average kg of weight gained per pig from placement on farm to slaughter Analysis

Average deadweight Average carcass weight for the production batch Analysis

Average P2 Average back fat measured on the carcass by probe in the abattoir Analysis
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removed from the dataset if they were not classified as a finishing farm (this resulted in three breeding farms and 
one wean-to-30 kg farm being excluded). Figure 2 depicts the cleaning and matching process and the exclusions 
at each stage.

Farm characteristics data and production data were matched by using unique slapmarks—the herd specific 
alpha-numeric code that is applied as a tattoo to each pig before slaughter to identify its farm of origin. Health 
data and production data were matched using slapmarks and estimated slaughter date ranges, to ensure attribu-
tion to the correct batch of pigs from a farm. For example, for one production batch of pigs from one farm, we 
calculated the slaughter date range as − 35 and + 28 days (see Table S1 for sensitivity analysis) from the average 
slaughter date to give a minimum and maximum slaughter date. The slapmark was searched for in the health 
dataset and, if found, the slaughter date was checked to see if it fell within the estimated range. If both the slaugh-
ter date and slapmark corresponded, the number of pigs slaughtered and the number of respiratory conditions 
found at slaughter were both summed separately to give a total number of pigs and a total number of respiratory 
conditions for each batch, respectively. Matches for a production batch of pigs were deemed correct if the number 
of pigs returned from the CCIR data was within 230 of the number reported as sold. Two hundred and thirty 
was chosen as an appropriate cut off as this represents one delivery of pigs to the abattoir. A total of 656 batches 
from 53 farms were matched for production, CCIR and farm characteristics data.

Data processing. Following data matching and cleaning, the farm characteristics predictor variables (batch 
source, housing, ventilation and disinfection) were checked for frequency in the dataset and collinearity (see 
pre-registration). Ventilation and disinfection showed complete collinearity; only 20 (3%) batches had both 
assisted ventilation and were disinfected. The remaining 636 batches had both natural ventilation and were not 
disinfected. There was not enough variation in these predictors to use in the planned analysis, so they were omit-
ted from further analysis. Four producers did not provide data on housing. Given that housing and batch source 
were now the only farm characteristics being used as predictors, these four farms were removed from the analy-
sis. This left a total of 49 farms with 614 batches of pigs for analysis, equating to 836,093 pigs sold to slaughter. 
Forty-six of the farms were from one company and three of the farms from a second company. The variables of 
interest were then transformed for analysis (see Table 2).

Statistical methods. The methods for analysis were pre-registered, with full details, amendments and code 
available at https:// osf. io/ hu78g. All data cleaning, processing and analysis was conducted in R v. 3.6.137. We 
tested three Bayesian multi-level model structures according to the different global hypotheses between respira-
tory conditions, farm characteristics, and production traits. The production outcomes were modelled separately 
because different global hypotheses may be better suited to different production traits. Weakly informative pri-
ors were used on all predictor regression coefficients (normal distributions with mean 0 and SD 1; see Figure S1) 
to mitigate against large, unlikely effect sizes and to aid computation. Data for P2 were missing for 126 batches 
(20.5%). These were treated as missing at random and were imputed within the model.

Models were computed using the Stan programming  language38 via the brms package (version 2.12.039), 
which estimates parameters using Hamiltonian Monte Carlo. Four Markov chains were run, each with a warm-
up period of 2500 iterations and 2500 iterations used for sampling. Thinning was set to 1. Convergence was 
checked using the Gelman–Rubin statistic with convergence indicated by values close to 1 and less than 1.05. 
Model comparisons were conducted using K-fold cross validation (in the brms package), whereby the model 
with lowest information criteria score (defined as − 2 times the expected log predictive density;  see40) indicates 
the best fit. The number of K-folds was set to 10. Model parameters were summarised by the mean and 95% 
highest density interval (HDI; the 95% most likely values in the distribution). Significance was inferred when 
the highest density interval did not contain zero.

Model 1. This model tests the hypothesis that farm characteristics (shown by F in the conceptual diagram; 
Fig. 2) impacts respiratory rate (R) which then influences the production outcomes (P).

Figure 1.  Conceptual diagrams for (a) Model 1, (b) Model 2 and (c) Model 3, where F represents farm 
characteristics, R represents respiratory prevalence and P represents production outcomes. The arrows indicate 
the direction of the relationships.

https://osf.io/hu78g
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Counts of respiratory conditions (R) for each batch (i) within a farm (F) are Poisson distributed, with rate λ1. 
The respiratory rate is a function of an intercept (α1), farm characteristics of housing (βHHF) and batch source 
(βBBF), the number of days on farm (βT1TF[i]), the batch size (βS1SF[i]) and a random intercept for each farm (r1F). 
Average days on farm is included because we assumed that the longer the pigs are on farm, the higher chance 

RF[i] ∼ Poisson(�1F[i])

log(�1F[i]) = α1 + βHHF + βBBF + βT1TF[i] + βS1SF[i] + r1F

DWF[i] ∼ Normal+(µ1F[i], σ1)

µ1F[i] = α2 + βR1RF[i] + r2F

MF[i] ∼ NegativeBinomial(�2F[i])

log(�2F[i]) = α3 + βR2RF[i] + βT2TF[i] + βS2SF[i] + r3F

P2F[i] ∼ Normal+(µ2F[i], σ2)

µ2F[i] = α4 + βR3RF[i] + βG1
G[i] + r4F

ADWGF[i] ∼ Normal+(µ3F[i], σ3)

µ3F[i] = α5 + βR4RF[i] + βT3TF[i] + r5F

Figure 2.  Data cleaning process showing how farm characteristics data, slaughter data, and production data 
were filtered and depicting the resulting inclusions at each stage (solid arrows). Matching between the three 
datasets is denoted by the dashed arrows.

Table 2.  Pig batch-level variables used in analyses and transformations for analysis.

Variable Type Transformation

Respiratory cases Count Mean-centred

Respiratory prevalence Continuous Mean-centred

Average daily weight gain Continuous Mean-centred

Batch source Categorical Sum-to-zero contrasts

Housing type Categorical Sum-to-zero contrasts

Batch size Continuous Mean-centred and scaled by 100 pigs

Time (days on farm) Continuous Mean-centred and scaled by 7 days
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there is of contracting a respiratory condition. Batch size is included as respiratory conditions are expressed as 
count data and are therefore affected by the number of pigs in a batch.

Average deadweight (DW) for each batch (i) within a farm (F) are normally distributed with mean (µ1) and 
standard deviation (σ1). The mean is a function of an intercept (α2), the effect of respiratory prevalence (βR1RF[i]: 
counts of respiratory conditions divided by the production batch size) and a random intercept for each farm (r2F).

Mortality (M) for each batch (i) within a farm (F) is Poisson distributed with rate λ2. The rate is a function of 
an intercept (α3), the effect of respiratory prevalence (βR2RF[i]), the average number of days on the farm (βT2TF[i]), 
the batch size (βS2SF[i]) and a random intercept for each farm (r3F). Average days on farm is included as the age 
of entry influences the period of time that the mortality rate is recorded and mortality rates may also vary with 
age; batches of pigs entering the farm at an older age (with fewer days on site) will tend to have lower mortality 
recorded than those entering as younger pigs. Batch size at entry is included as mortality is expressed as count 
data and is therefore affected by the number of pigs in a batch.

Average back fat (P2) is measured on the carcass by probe in the abattoir for each batch (i) within a farm (F) 
and is normally distributed with mean (µ2) and standard deviation (σ2). The mean is a function of an intercept 
(α4), the effect of respiratory prevalence (βR3RF[i]), the effect of average daily weight gain (βG1GF[i]: a measure of 
growth, average grams gained per day) and a random intercept for each farm (r4F).

Average daily weight gain (ADWG) for each batch (i) within a farm (F) is normally distributed with mean 
(µ3) and standard deviation (σ3). The mean is a function of an intercept (α5), the effect of respiratory prevalence 
(βR4RF[i]), the average days on the farm (ΒT3TF[i]) and a random intercept for each farm (r5F). Average days on farm 
is included as average daily weight gain is time-dependent. For example, pigs entering the farm at a younger age 
consume less feed and may have a lower average daily weight gain for their time on farm compared with those 
animals entering at an older age.

Model 2. Model two tests the hypothesis that both farm characteristics and respiratory rate influence produc-
tion outcomes, but there is no direct effect of farm characteristics on respiratory conditions.

Respiratory counts are now modelled as a function of only the number of days on farm (βT1TF[i]), the batch size 
(βS1SF[i]), and a random intercept for each farm (r1F). All production outcome variables are modelled as in Model 
1, with the addition that in Model 2 each has the farm characteristics in the deterministic part of the equation 
to reflect the direct link between farm characteristics and production in the model schematic.

Model 3. Model 3 is a combination of Models 1 and 2. This tests the hypothesis that both farm characteristics 
and respiratory rates influence production outcomes, as well as farm characteristics affecting respiratory rates.

Respiratory rates are modelled as in Model 1 and all production variables (deadweight, mortality, back fat 
and average daily weight gain) are modelled as in Model 2. Note here that farm characteristics are included in 
the deterministic parts of both the respiratory and production equations as farm characteristics now has two 
links in the conceptual diagram.

RF[i] ∼ Poisson(�1F[i])

log(�1F[i]) = α1 + βT1TF[i] + βS1SF[i] + r1F

DWF[i] ∼ Normal+(µ1F[i], σ1)

µ1F[i] = α2 + βH1
HF + βB1BF + βR1RF[i] + r2F

MF[i] ∼ NegativeBinomial(�2F[i])

log(�2F[i]) = α3 + βH2
HF + βB2BF + βR2RF[i] + βT2TF[i] + βS2SF[i] + r3F

P2F[i] ∼ Normal+(µ2F[i], σ2)

µ2F[i] = α4 + βH3
HF + βB3BF + βR3RF[i] + βG1

G[i] + r4F

ADWGF[i] ∼ Normal+(µ3F[i], σ3)

µ3F[i] = α5 + βH4
HF + βB4BF + βR4RF[i] + βT3TF[i] + r5F[i]

RF[i] ∼ Poisson(�1F[i])

log(�1F[i]) = α1 + βH1
HF + βB1BF + βT1TF[i] + βS1SF[i] + r1F

DWF[i] ∼ Normal+(µ1F[i], σ1)

µ1F[i] = α2 + βH2
HF + βB2BF[i] + βR1RF[i] + r2F

MF[i] ∼ NagetiveBinomial(�2F[i])

log(�2F[i]) = α3 + βH3
HF + βB3BF + βR2RF[i] + βT2TF[i] + βS2SF[i] + r3F

P2F[i] ∼ Normal+(µ2F[i], σ2)

µ2F[i] = α4 + βH4
HF + βB4BF[i] + βR3RF[i] + βG1

G[i] + r4F

ADWGF[i] ∼ Normal+(µ3F[i], σ3)

µ3F[i] = α5 + βH5
HF + βB5BF[i] + βR4RF[i] + βT3TF[i] + r5F
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Results
The final dataset contained pigs from 614 batches from 49 farms. Mean batch size was 1362 pigs (sd = 841; 
min = 116; max = 4696), mean start weight was 35.26 kg (sd = 3.92; min = 19.65; max = 77.54) and the mean days 
spent on the farm was 94 (sd = 10.15; min = 50; max = 129). Three farms used slats, nine used straw yards, 13 
used mixed housing and 24 used kennels. All farms using kennels provided straw. Batch sources were as fol-
lows: (i) one source (10 farms); (ii) two sources (20 farms); (iii) three sources (10 farms); (iv) more than three 
sources (9 farms).

Model fits. Model 1 was the best fit (had the best out of sample predictive accuracy) for mortality (K-fold 
information criteria: model 1 = 38,532; model 2 = 38,684; model 3 = 38,946) and average daily weight gain out-
comes (K-fold information criteria: model 1 = 39,951; model 2 = 40,145; model 3 = 40,111), meaning these traits 
are likely to be affected by farm characteristics via the effect of farm characteristics on respiratory conditions. 
Model 3 was the best fit for deadweight (K-fold information criteria: model 1 = 37,538; model 2 = 37,401; model 
3 = 36,655) and P2 (model 1 = 27,837; model 2 = 28,102; model 3 = 27,804), meaning these traits are influenced by 
farm characteristics directly, as well as indirectly through farm characteristics affecting respiratory rates.

Respiratory conditions. The results presented in this section are model estimates and summary statistics, 
and all raw data are available in the supplementary material (Figure S1). Given that respiratory conditions were 
modelled in the same way for all outcomes for the best-fitting models, parameter estimates were checked for 
similarity and then the posterior distributions were averaged across all models. Overall, there was an average 
of 142 (95% HDI: 124–167) counts of respiratory conditions for an average batch size of 1360 pigs, equating to 
10.4% (95% HDI: 9.1–12.2%) prevalence. As would be expected, smaller on-farm batch sizes were associated 
with fewer respiratory condition counts. As batch size increased by 100 pigs, respiratory counts increased by 
a multiplicative factor of 1.051 (95% HDI: 1.046–1.057). However, the uncertainty around these estimates is 
very large, partly because we are lacking data from farms with large batch sizes (see Figure S2). We found that 
acquiring pigs from one batch source was associated with lower counts of respiratory conditions than acquir-
ing from multiple farms (Fig. 3 and Table 3). There were no significant effects of either average number of days 
on farm (estimate: − 1.0027, 95% HDI: − 1.0086, 1.0033) or housing type (see Table S2) on respiratory counts. 
However, when comparing the slatted housing to the other housing types, although the highest density interval 
is wide (showing increased uncertainty in the estimate), the majority of the distribution sits above zero (Fig. 4), 
suggesting a probable higher count of respiratory conditions for slatted housing than for mixed housing, straw 
yards, or kennels.

Respiratory effects on production outcomes. For an average batch (with mean batch size and mean 
days on farm), the mean (HDI) production parameters were estimated as follows. Deadweight: 80.80 kg (95% 
HDI: 80.32, 81.28); average daily weight gain: 780 g (95% HDI: 772, 788); P2: 11.38 (95% HDI: 11.20, 11.57); 
mortality: 2.3% (HDI: 2.1, 2.5). Higher respiratory prevalence was associated with significantly poorer produc-
tion performance for all production outcomes (Fig. 5). For every 1% increase in respiratory prevalence, we saw 

Figure 3.  The effect of the number of source farms from which pigs are acquired on the respiratory prevalence 
at slaughter. Respiratory prevalence was calculated from the counts of respiratory conditions and the total pigs 
in the batch. Circles denote the mean posterior estimates and vertical line segments show their 95% highest 
density intervals.
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a 0.09 kg decrease in deadweight (95% HDI: − 0.12, − 0.06), a 1.44 g decrease in average daily weight gain (95% 
HDI: − 1.91, − 0.98) and a 0.018 mm decrease in P2 (95% HDI: − 0.03, − 0.009). A 1% increase in respiratory 
prevalence increased mortality by a multiplicative factor of 1.018 (95% HDI: 1.013, 1.023). This indicates, for an 
average batch, an increase of 5.76 counts of mortality for a 10% increase in respiratory prevalence (from 30.9 to 
36.66).

Additional deadweight predictors. Neither the number of batch sources, nor the housing type had a 
significant effect on deadweight (see Table S3 and Table S4).

Additional average daily weight predictors. Average daily weight gain decreased by 32.35  g (95% 
HDI: − 35.51, − 29.19) for every week additional to the average number of weeks on farm, reflecting pig growth 

Table 3.  Summary of comparisons of the effect of the number of pig batch sources on the counts of 
respiratory conditions recorded at slaughter.

Comparison (no. of source farms) Mean difference 95% highest density interval

1 vs 2 − 9.15 − 11.78, − 6.57

1 vs 3 − 9.36 − 13.06, − 5.81

1 vs > 3 − 9.79 − 13.93, − 5.87

2 vs 3 − 0.21 − 4.35, 3.83

2 vs > 3 − 0.63 − 5.14, 3.75

3 vs > 3 − 0.42 − 5.40, 4.35

Figure 4.  The difference in respiratory prevalence as a result of comparing the different housing types. Circles 
denote the mean posterior estimates and vertical line segments show their 95% highest density intervals. 
The horizontal dashed line indicates a difference of zero. The inset shows the predicted counts of respiratory 
conditions for each housing types. Respiratory prevalence was calculated from the counts of respiratory 
conditions and the total pigs in the batch. Kennels = kennelled housing; Mix = mixed housing (combinations of 
different housing types on one farm); Straw = straw yards and slats = slatted flooring.
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curves. This is to be expected as average daily weight gain decreases as pigs near slaughter weight and their 
growth curves plateau.

Additional P2 predictors. Slatted floors were associated with lower P2 scores, with no difference in P2 
between kennels, mixed housing and straw yards (Fig. 6 and Table 4). However, caution should be taken when 
interpreting these results as there were only 20 batches of pigs from three farms with slats. As expected, higher 
P2 scores were associated with higher average daily weight gain. For every 10 g increase in average daily weight 
gain, we saw a 0.05 increase in P2 (95% HDI: 0.04, 0.06). There was no significant effect of batch source on P2 
(Table S5).

Additional mortality predictors. Mortality counts increased with increasing batch size by a multiplica-
tive effect of 1.08 (95% HDI: 1.06, 1.09). For every additional week on farm, mortality increased by a multiplica-
tive factor of 1.10 (95% HDI: 1.07, 1.12). Both results are logical in terms of increased probability of death given 
larger numbers of pigs and a longer time spent on farm.

Discussion
In this study, we linked routinely recorded production and slaughter data with self-reported farm characteristics 
to assess the associations between farm characteristics, respiratory conditions and production outcomes. To guard 
against false positive findings, and to ameliorate the influences of noisy observational data, we took a hypothesis-
driven, confirmatory approach by pre-registering the study methods and using Bayesian multi-level modelling 
and model selection using cross-validation. Using a Bayesian approach allowed us to quantify the uncertainty 
around our parameters by providing the probability of different parameter values given the data  (see41).

Figure 5.  The effect of respiratory prevalence on (a) deadweight; (b) average daily weight gain; (c) P2 and (d) 
mortality. The posterior mean is denoted by the solid black line with the 95% highest density interval of the 
mean shown by the dashed lines. The grey lines show 100 representative samples from the posterior distribution 
marginalising across farm random effects. Respiratory prevalence was calculated from the counts of respiratory 
conditions and the total pigs in the batch.
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The best-fitting Bayesian multi-level models suggested that, in all cases, farm characteristics indirectly influ-
ence production parameters through their effect on the prevalence of respiratory conditions. Additionally, farm 
characteristics directly influence the production parameters of deadweight and P2 scores (holding respiratory 
conditions constant). We found that a higher prevalence of respiratory conditions at slaughter was associated 
with pigs sourced from multiple origins and that higher prevalence of respiratory conditions detected at slaughter 
had negative associations with all production parameters of interest.

In line with our hypothesis and previous  studies14,17, acquiring pigs from multiple source farms was associated 
with a higher prevalence of respiratory conditions at slaughter. This effect showed one source to be better than 
more than one source, with no difference in respiratory prevalence when acquiring from two, three, or more than 
three sources. Argostini et al.42 also found increased mortality for pigs sourced from multiple origins. We could 
not directly test for mortality effects as the most appropriate mortality model did not include a direct relation-
ship with farm characteristics. Wiltshire (2018) reported that multi-phase pig production systems have higher 
risk of disease transmission in a realistic agent-based  model43. The results of this study provide evidence that 
obtaining pigs from more than one source adversely affects respiratory health and productivity. This is likely, in 
part, to be associated with the differing pathogen and immune status of pigs from different sources, together with 
the potential stress associated with initial mixing pigs from different sources. All in/all out production batches 
have farm characteristics and health advantages over continuous systems as pigs are of a single age. However, 
the capacity of the all in/all out finishing farm may necessitate sourcing pigs from more than one breeding or 
nursery site to fill it over a short period of time.

We hypothesised that housing using straw would be associated with higher levels of respiratory illness. Find-
ings from the literature concerning the effect of housing on respiratory conditions are mixed, with some reporting 
higher respiratory conditions in pigs on  slats17,20 and others with pigs housed on straw-bedded  flooring22. We 
hypothesised that straw may give increased respiratory conditions in view of the supporting literature, the fact 
that types of housing containing straw tend to have less precise and uniform control over the internal environ-
ment (e.g. curtains on barns versus an indoor thermostat system) and because straw can contribute to dust which 
can have adverse respiratory  effects36. Regulation of internal environment, for example through more controlled 
ventilation, has been shown to be associated with lower respiratory condition  prevalence15–17 but we found no 

Figure 6.  The effect of pig housing type on P2 score (a measure of back fat). Circles denote the mean posterior 
estimates and vertical line segments show their 95% highest density intervals. Kennels = kennelled housing; 
Mix = mixed housing (combinations of different housing types farm); Straw = straw yards and slats = slatted 
flooring.

Table 4.  Summary of comparisons of the effect of housing type on the backfat (P2) scores of batches of pigs.

Comparison Mean difference 95% highest density interval

Slats vs straw yards − 2.44 − 3.06, − 1.78

Slats vs kennels − 2.25 − 2.83, − 1.65

Slats vs mixed − 2.38 − 3.00, − 1.79

Kennels vs straw yards − 0.19 − 0.52, 0.16

Kennels vs mixed − 0.13 − 0.45, 0.20

Mixed vs straw yards − 0.06 − 0.46, 0.32
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significant effect of housing. However, there was a high level of uncertainty to the housing results, especially 
for slatted housing, represented by a large highest density interval (Fig. 3) and likely due to the small number 
of batches from three farms. Nevertheless, the majority of the parameter values contained within the pairwise 
intervals between slats and all other housing conditions were positive, meaning a higher prevalence of respira-
tory conditions in slatted systems was plausible and likely.

The number of days a batch of pigs spent on the finishing farm was included in the model to account for the 
assumption that pigs spending longer in production have more chance of contracting a respiratory disease. We 
did not find evidence to support this and these results suggest that it is not simply a case that additional days on 
farm leads to a greater chance of infection. However, in our dataset, the majority of batches were slaughtered 
within a similar timeframe (days of farm: mean = 94, sd = 10, min = 50, max = 129) and any additional time spent 
on farm outside of this may not be extreme enough to see an effect either on farm or at slaughter. Although we 
hypothesised that more days on farm would increase the risk of encountering a respiratory condition, it could 
also be the case that pigs spend longer on farm because of a respiratory condition. We are unable to disentangle 
these two data-generating processes in explaining the significant association between time on farm and respira-
tory prevalence because the former is a between-batch process where the latter is a within-batch process. Testing 
these hypotheses would require using within-batch, pig-level data (where all pigs within the batch arrive on 
the farm at the same number of days before slaughter weight) to assess whether pigs that contract respiratory 
conditions are kept longer on farm, or whether the association is driven by a between-batch time on farm effect. 
These hypotheses are not necessarily mutually exclusive. It could also be the case that the number of days on 
farm is an over-simplified proxy for a multitude of other unmeasured variables, such as diet, season, or earlier 
housing/management factors throughout the lifecycle. It would be worth future studies taking a causal model-
ling approach to build on these results.

Increased prevalence of respiratory disease at slaughter was associated with higher mortality, lower dead-
weight, lower average daily weight gain and lower back fat (P2). Our findings for back fat oppose two other 
studies which found no effect of respiratory  conditions6 or lung  lesions44 on fat depth scores. Our results for 
mortality, deadweight and average daily weight gain mirror results from previous, smaller, but potentially more 
sensitive studies. For example, two studies using the national British Pig Health Scheme (BPHS) dataset found 
that increases in measures of enzootic pneumonia and pleurisy were associated with lower carcass  weights12,26. 
A New Zealand study detected reductions of 2.2 g in average daily weight gain, for each 1% of lung volume 
affected by enzootic  pneumonia25 and Straw et al.28, in a small scale study, also found a decrease in average daily 
weight gain when pigs were exposed to causative agents of pneumonia. A study of naturally occurring PRRSV 
and influenza Type A co-infection challenges on US pig farms found both a reduction in average daily weight 
gain and an increase in mortality as the disease prevalence  increased6. The CCIR data, which we used as health 
data, has been criticised for being relevant across farms, but not at the batch level, due to issues of incorrect 
identification of pigs in  batches32 and a lack of sensitivity for some certain  conditions33. However, we show here 
that CCIR data may be useful as a surveillance tool at batch level for broad categories of health conditions, mir-
roring relationships between key production traits and respiratory conditions seen in previous studies.

Both the models for P2 and deadweight allowed for direct links between farm characteristics and the produc-
tion outcomes. Of these, we found that housing had a significant affect on P2, with slats associated with lower 
P2 scores. However, the effect of slats on P2, as well as the effect of slats on respiratory prevalence (discussed 
above) are likely to be conflated with other factors. Only 20 batches from three farms were housed on slats. Thus, 
the effects of slats may instead reflect other unknown specifics of those farms or companies and may not be 
applicable to the wider population. Secondly, the genetics of outdoor-bred pigs (those finished on straw in our 
dataset) mean these breeds tend to be less lean, which could impact P2 results. We therefore stress the tentative 
nature with which we present our results for slatted systems and highlight the need for more farms, from more 
companies, with slats in future analyses.

In order to support implementation of sustainable improvements in production, particularly where these 
require significant financial and other resources, good evidence and better mechanistic understanding of the fac-
tors affecting health and production performance in pigs is vital. Interestingly, our model comparison approach 
highlighted that the four production traits were not all best modelled in the same way and this is something for 
future studies to take into consideration. There are additional relevant associations to be explored through this 
analytical approach, if the data can be obtained. Examples of these include exploring the association of respiratory 
conditions at slaughter with herd status for different pathogens (or combinations of pathogens) or with herds 
with different levels of antimicrobial use. Additionally, possible future analyses could include finer level details 
by, for example, modelling the relationship between specific respiratory conditions first (e.g. using latent vari-
able  models45) rather than using simple sum scores as used in this study. This would be of use given the previous 
studies have identified different risk factors for different respiratory conditions (e.g.17). Specific hypotheses about 
the transmission and development of respiratory conditions and their detection at slaughter could also be tested 
using formal mathematical models, such as agent-based models of livestock production networks (e.g.  see43). 
Any future studies would be strengthened by obtaining data from a wider pool of producers, providing more 
varied data on management practices and infrastructure and allowing for analysis of the effects of disinfection 
and ventilation. Finally, future analyses would benefit from a more standardised data recording format within 
the pig industry for farm characteristics and batch level production data. Standardised recording would allow for 
useful analyses with nationally held health and welfare datasets and for comparisons of the production impacts 
of differing farm characteristics protocols.
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Conclusions
In summary, we found that acquiring pigs from multiple sources was linked to a higher prevalence of respira-
tory conditions at slaughter. Increased prevalence of respiratory disease was associated with poorer farm-based 
performance metrics of mortality, deadweight, back fat and pig carcass weight. Our results show that carcass 
inspection data recorded in the abattoir are a valuable tool for monitoring respiratory conditions at batch-level. 
We advocate standardised recording of data in the pig industry to better understand how farm characteristics 
impact on production performance and health, to enable investigation and monitoring of sustainable farming 
practices in the future.
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