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Abstract—In electric power systems, detecting inter-area os-
cillations is crucial to the system operators for maintaining the
security of the grid – especially in the case of unstable oscillatory
behaviour. However, extracting information from unstable, noisy,
signals is complicated with conventional signal processing tools
suffering from insufficient adaptability. In this paper, we propose
a method based on Empirical Wavelet Transform (EWT) to
estimate in real-time the dominant inter-area modes in electricity
grids. EWT extracts the inherent modulation information by
decomposing the signal into its mono components under an
orthogonal basis. The instantaneous amplitude and instantaneous
frequency is estimated by applying Hilbert transform from the
narrow band components of the decomposed EWT signal. The
performance of the proposed method is demonstrated using the
Nordic test system.

Index Terms—Oscillatory instability, inter-area oscillations,
Empirical Wavelet Transform, Hilbert Transform, PMU.

I. INTRODUCTION

Inter-area oscillations are closely related to the small-signal

stability of electric power systems. Variations in the system

can excite natural frequencies and lead to oscillations. This

phenomenon is more prominent in weakly interconnected

power system with these oscillations in the range of 0.1 Hz

to 1 Hz. In addition, forced oscillations might also occur

due to bad controller tuning or malicious operations in the

system. In both cases, if the oscillations are not appropriately

damped, they can result in increased losses, undue stress on the

mechanical components of generators, and in extreme cases to

instability [1]. It is therefore important for system operators

to have in place real-time monitoring algorithms for detecting

and analyzing such events. The advent of phasor measurement

units (PMUs) and other real-time measurement methods in

electricity grids has made it easier to design data-driven online

detection methods.

Various measurement-based methods have been proposed

for early diagnostics of inter-area oscillations. Many modal

analysis methods use pre-determined basis to process data

and are therefore considered as non-adaptive or rigid. Existing

methods for inter-area oscillation analysis include Fourier

transform [2], continuous wavelet transform [3], Prony’s

method [4], [5] Matrix Pencil method [6], Kalman filter [7]

and total least square [8].

Most of the above methods work well with linear data, but

their performance deteriorates when the data is non-linear and

non-stationary. Furthermore these methods are inflexible as

they require prior knowledge of the signal to form a basis

function. Any approach with apriori basis could not fit well

to the variety of the data from different underlying distribu-

tions [9]. In contrast, adaptive decomposition methods adjust

to the transient features and emphasise the local characteristics

of the signals, without requiring any priori basis to match the

signal characteristics. Thus, they can adaptively extract the

constituent oscillation modes of mono-component nature [10].

Examples of adaptive decomposition methods include Em-

pirical Mode Decomposition (EMD) [9], Variational Mode

Decomposition (VMD) [11], Local Mean Decomposition

(LMD) [12] and more recently Empirical Wavelet Transform

(EWT) [13].

One of the most promising methods in terms of accuracy

and adaptability is EWT. It is able to detect all the local

maxima of the frequency spectrum, then get the boundaries

(midpoint of two consecutive maxima) to segment the Fourier

spectrum. However, as mentioned in [14], it is challenging to

employ Fourier spectrum analysis for determining the bound-

aries in noisy and non-stationary signals. Another problem

associated with EWT boundary detection method is selecting

the number of bounds in advance. In power systems, there is

a large number of closely spaced low-frequency oscillations

making it difficult to apriori guess the number of modes in a

signal. In [15], the authors proposed a solution to detect the

boundaries of the Fourier spectrum using the sliding window

approach. However, using just the sliding window technique

results in unnecessary segmentation and is computationally

expensive.

The decomposed EWT modes satisfy the requirements of

mono-component signals and can be used with the Hilbert

Transform (HT) to get the instantaneous frequency (IF) rep-

resentation. The analytical signal constructed from HT allows

to extract the instantaneous amplitude (IA) or envelop and

the damping Ratio (DR) of each mono-component. From HT

the average DR can also be calculated however, the most

common way of calculating the DR depends on first and

second derivatives, which introduces discontinuities.

Motivated by these existing issues, this paper proposes an

online method to estimate in real-time the frequency and DR

of oscillatory modes in electric power systems. The detection978-1-6654-3597-0/21/$31.00 ©2021 IEEE



methodology based on the EWT, is enhanced to automatically

determine the boundaries of the Fourier segments by using

a sliding window approach and then limiting the number of

segments with a threshold value to control the number of

modes. Then, HT is used to extract the frequency and DR of

the modes. The contributions of this paper can be summarized

as follows:

• We propose an adaptive EWT-based method for real-time

detection of oscillatory modes in electric power systems.

• We enhance EWT to automatically determine the bound-

aries of Fourier segments using a window-based segmen-

tation of Fourier spectrum.

• We improve the accuracy of the average DR estimation

by applying logarithmic decrements on the IA without

introducing or spreading discontinuities.

The paper is organised as follows. Section II presents the

overall algorithm and the proposed methodology. Section III

presents some numerical results to verify the performance of

the proposed methods. Conclusions are provided in Section IV.

II. METHODOLOGY

The proposed framework is intended for real-time automatic

modal analysis of multi-dimensional PMU measurements. It

is assumed that the real-time, noisy, PMU data are collected

at the Supervisory Control and Data Acquisition (SCADA)

system and the algorithm is able to extract the existence of

oscillatory modes, their frequency, and DR. In case of unstable

or badly damped modes, an alarm is raised. Fig. 1 presents

the overview of the different steps involved in this analysis –

detailed below.

A. Online implementation considerations

Due to the large amount of PMU streaming data, online

analysis becomes computationally challenging. It is therefore

necessary to apply a diamensionality reduction method before

analysing the data. PCA is such a technique, frequently used

in electric power system applications. The voltage data matrix

to be analyzed by PCA is represented as X(s×m), consisting

of s observations obtained from the online measurements

of the voltage variables m(m ≪ s) measured over time

t. The matrix X can be decomposed via singular value

decomposition (SVD), X = UDVT . Where U ∈ R(s×s) and

V ∈ R(m×m) are unitary orthogonal matrices. The diagonal

matrix D ∈ R(s×m), contains singular values of decreasing

magnitude (λ1 ≥ λ2 ≥, . . . ,≥ λm) . If the elements of matrix

X are standardised, a correlation matrix C(X) = VΣVT can

be obtained by squaring D and dividing by (n−1). Similar to

D, matrix Σ is also a diagonal matrix and provides variance

of X, in which σ2
1 ≥ σ2

2 , . . . , σ
2
m ≥ 0.

The relationship between the PCs, Y(y1,y2, . . . ,ym) and

the original dataset X(s × m) is expressed as Y = XV =
UD. The quotient (

∑k
q=1 λq)/(

∑m
q=1 λq) = 0.90 is used to

determine the dimensionality of the system under consider-

ation as it describes the contribution of the k-th PC on the

variance of the data. By keeping only k components, the

Fig. 1. Flow diagram of the proposed methodology.

original dataset can be reduced to lower dimensions yk(t),
where (k ≤ m).

Due to the online nature of the detection algorithm, a sliding

window analysis must be employed. If we assume that the

event causing the oscillatory behaviour happens at time td,

the sliding window will gradually move from the pre-event

data to the area of interest (oscillatory). This transition gives

rise to erroneous calculations where the algorithm output is

not accurate. To eliminate this problem, we split the algorithm

into two stages. First, the algorithm is initialized in standby

where the sliding window is monitored to detect the initiation

of an event or disturbance. When the event is detected, then

the window is reset (to eliminate the pre-event data) and the

algorithm goes into the modal analysis stage as soon as the

window buffer is full. The disturbance is detected by the

employing the event detection method described in [16].

B. Empirical Wavelet Transform

To calculate instantaneous parameters, the individual oscil-

latory modes present in the signal should be separated from

each other (mono-component). The main idea in EWT is to

segment the frequency spectrum and then build a series of

wavelet filters capable of extracting the mono-components

from the signal. The steps required to analyse the real-signal

are as follows:

Step 1) Apply fast Fourier transform to the discrete signal

y(t) of the sliding window to obtain the frequency spectrum

in the range of [0, π].
Step 2) Let Fourier spectrum support be divided into N

contiguous segments, then N − 1 boundaries need to be



extracted excluding 0 and π. To find the boundaries, we detect

the local maxima Ln in the Fourier spectrum and obtain their

corresponding frequency ωn, where n = 1, 2, . . . , N .
Step 3) The boundary Ωn between two segments is then

defined as the centre of two consecutive maxima:

Ωn =
ωn + ωn+1

2
(1)

where ωn and ωn+1 are frequencies with n = 1, 2, . . . , N−1.

It should be noted that first (Ω0) and last (ΩN ) boundary

frequencies are 0 and π, respectively.
Step 4) The empirical wavelet can be defined as a band

pass filters on each segments of the frequency spectrum. The

empirical scaling function φ̂n(ω) and the empirical wavelets

ψ̂n(ω) are given by:

φ̂n(ω) =










1, if |ω| ≤ (1− γ)ωn

cos(π2α(γ, ωn)), if (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0, otherwise

ψ̂n(ω) =


















1, if (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos(π2α(γ, ωn+1)), if (1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

sin(π2α(γ, ωn)), if (1− γ)ωn ≤ |ω| ≤ (1− γ)ωn

0, otherwise

‘

where α(γ, ωn) = β( 1
2γωn)

(|ω| − (1− γ)ωn)). The parameter

γ ensures that no overlap between two consecutive transitions

occur and can be selected as γ < minn

(

ωn+1−ωn

ωn+1+ωn

)

.

β(x) is an arbitrary function defined as

β(x) =











0, if x ≤ 0

1, if x ≥ 1

β(x) + β(1− x) = 1, ∀ x ∈ [0, 1]

(2)

Step 5) Having defined the empirical wavelet and scaling

function, the empirical wavelet transforms W ǫ
y (n, t) of the

signal is defined in a way similar to the classic wavelet

transform. The approximate coefficients can be expressed as

the inner product of analysed signal y(t) with scaling function:

W ǫ
y (0, t) = 〈y, φ1〉 =

∫

y(τ)φ1(τ − t)dt = (ŷ(ω)φ̂1(ω))
∨

In the same way, the detailed coefficients are obtained by the

inner product of analysed signal y(t) with empirical wavelets:

W ǫ
y (n, t) = 〈y, ψn〉 =

∫

y(τ)ψ̂n(τ − t)dt = (ŷ(ω)ψ̂(ω))∨

where W ǫ
y (n, t) denotes the detailed coefficients at time t

for the n filter bank. φ1(ω) and ψ(ω) are empirical wavelet

function and empirical scaling function respectively. φ̂1(ω)
and ψ̂(ω) are Fourier transform of φ1(ω) and ψ(ω) which

are defined by (II-B) and (II-B). The reconstructed signal can

be obtained by:

y(t) =W ǫ
y (0, t)

∗φ1(t) +

N
∑

n=1

W ǫ
y (n, t)

∗φn(t) (3)

The empirical mode yn(t) can be given by:

y0(t) =W ǫ
y (0, t)

∗φ1(t)

yn(t) =W ǫ
y (n, t)

∗ψn(t)
(4)

C. Proposed Segmented Empirical Wavelet Transform

To enable the automatic detection of boundaries for the

adaptive decomposition of EWT, we propose the window

based Segmented Empirical Wavelet Transform (SEWT) for

mode separation. A drawback of EWT is that when the

analysed signal comprised of noise and contain frequencies

close to each other some local maxima might appear in the

detected peak sequence, which lead to improper segmentation.

SEWT divides the Fourier spectrum without being stuck in

the local maxima. However, as the window moves along

the spectrum, some unnecessary segmentation is produced.

Therefore, a threshold is added, which retain peaks as a

percentage of the maximum amplitude in the spectrum range.

The implementation steps are given below:

1) Consider a real voltage signal y(t), which is sampled at

a frequency of Fs. First, we apply FFT on the discrete

signal y(td) to obtain the frequency spectrum Xω .

2) Then, we choose a step size as the reciprocal of the

Nyquist frequency N of the signal:

S =
1

N
, where N =

Fs

2
(5)

The step size is chosen as the reciprocal of Nyquist

frequency to ensure it is small enough to cover the low

frequency range in the inter-area oscillations.

3) We divide the FFT spectrum in segments Λn using the

step size S:

Λn = Xω[j × S, (j + 1)× S]j=1,2,....,p (6)

where p is the length of spectrum Xω .

4) We find the maximum in each segment Lmax =
{L1, L2, ...} and sort them in a decreasing order.

5) We filter the maxima Lmax those above a selected

threshold α: LZ
max = {Ln ≥ α|n = 1, . . . , N}. Where

the threshold α determines which peaks are retained as

a percentage of the maximum amplitude.

6) Finally, the boundaries are defined as midpoints between

two consecutive maxima as in (1).

Fig. 2 shows the segmentation of the Fourier spectrum using

SEWT algorithm. The dashed vertical lines represent the

detected Fourier boundaries.The most dominant frequencies

can be retained by increasing the value of the threshold.

D. Hilbert Transform

The empirical modes are narrow band components, there-

fore HT can be applied to study the signal’s time variability in

detail. For a given real signal y(t), the analytical signal z(t)
can be given as:

z(t) = y(t) + iH[y(t)] = A(t)eiθ(t) (7)



Fig. 2. Segmentation of Fourier spectrum using SEWT, with the threshold
values of 0% (blue), 10% (green) and 15% (red) of the maximum amplitude.

where A(t) represents IA envelop, θ(t) is the instantaneous

phase (IP) and H[y(t)] is the HT of y(t) and is defined using

Cauchy principal value p.v. as:

H[y(t)] =
1

π
p.v.

∫ +∞

−∞

y(τ)

t− τ
dτ (8)

In terms of y(t) and its HT, the IA, IP and IF are defined as:

IA = A(t) =
√

y2(t) + H[y(t)]2 (9)

IP = θ(t) = tan−1

(

H[y(t)]

y(t)

)

(10)

IF = f(t) =
1

2π

dθ(t)

dt
(11)

The instantaneous damping function ζ(t) is calculated using

the technique provided in [17]:

ζ(t) =

√

ρ(t)2

1 + ρ(t)2
(12)

where

ρ(t) =

∣

∣

∣

∣

∣

ln IA0

IA(t)

2π · IF(t) · t

∣

∣

∣

∣

∣

(13)

and IA0 is the initial amplitude.

E. Average parameters

While the average frequency Favg is calculated by taking

the average of (11), to obtain the average damping coeffi-

cient, a damping equation (mentioned in[18]) is commonly

used. However, it relies on computing the derivative which

introduces discontinuities. In this paper, we estimate average

DR ζavg with a combination of a logarithmic decrement and

IA envelop obtained from the (9). The most common way to

calculate DR of a free decaying oscillation is with:

ζ =
δ

√

(2π)2 + δ2
(14)

where δ is the logarithmic decrement of peak amplitudes of

two points x1 and x2, exactly n cycles apart

δ =
1

n
ln
x1
x2

(15)

By using (14) and (15) the average DR ζavg can be

estimated much more precisely from successively discrete de-

caying points of the IA envelop (Fig. 3). First the logarithmic

decrement is calculated by replacing the peaks in (14) with

Fig. 3. IA envelop fitted with the reconstructed EWT signal.

each successive sample (n=1) in the envelop and then dividing

it by total number of samples s in the window W0:

δi =
( 1
n
ln IAi

IAi+1
)

s
(16)

where IAi is the value of IA at the i-th envelop sample. Next

the average DR ζavg is calculated by substituting (16) in (14)

and adding all the values:

ζavg =
s

∑

i=1

δi
√

(2π)2 + δ2i
(17)

III. NUMERICAL RESULTS

A. System model and case study description

The proposed scheme is tested using the Nordic test sys-

tem [19]. Time-domain simulations were conducted using the

dynamic simulation software PyRAMSES [20] and the results

were saved in a database, emulating the PMU measurements.

Only voltage magnitude measurements are used from the 20

synchronous generators. A window of 20 s sliding with 1 s of

new data each time is chosen (19 s overlap).

Two case study scenarios were investigated a) Stable oscil-

lations model (C1) and b) Unstable oscillations model (C2).

For C2 several generator PSS controllers were deactivated to

destabilise the system. In both cases, the modes are excited by

applying a three-phase fault at bus 4072 at time t = 50 s which

is automatically cleared after 100 ms. All the measurements

are sampled at 50 Hz. Gaussian white noise is added to the

voltage signals with Signal to Noise Ratio (SNR) of 50 dB.

We performed a small-signal stability analysis on the orig-

inal differential-algebraic model used for the above two cases

and identified the main electromechanical modes as detailed in

Table I. These are used as a benchmark (BM) for our real-time

detection algorithm that only uses the data flow.

B. Case study 1; Stable Model:

In the first step, PCA is applied to the normalized voltage

magnitude data. The first principal component (PC1) accounts

for 83% of the variation, while the second component (PC2)

accounts for 8% of the total explained variance. Therefore,

TABLE I
SMALL-SIGNAL STABILITY ANALYSIS.

C1 C2

Mode2 Mode3 Mode2 Mode3 Mode4

Frequency(Hz) 0.538 0.742 0.533 0.766 0.949
DR (%) 3.7 3.9 -0.4 -0.1 0.3



Fig. 4. Case 1: PC1 and PC2 for the 20 generator buses from Nordic-32 test
system. PC1 captures 83% of the variation, while the PC2 captures 8% of the
total explained variance.

Fig. 5. Case 1: Decomposition of PC1 voltage signal using SEWT.

only the first two PCs are retained since together they capture

a total of 91% variation. Fig. 4 shows the reduced signal

obtained after applying PCA on 20 voltage buses.

Once the event is detected (see Section II), the compressed

PCA signal is decomposed. Fig. 2 shows the results of the

segmentation of the Fourier spectrum using three different

thresholds α and a step size of 0.04 Hz. Fig. 5 shows the modes

extracted using SEWT with the threshold α = 15%. The

method analyses all the modes but we only consider Mode-2

and Mode-3 as these modes contain more abundant impulse

information. Their corresponding frequencies are estimated

0.54 Hz and 0.77 Hz. The signal power of Mode-0 and Mode-

1 is negligible and therefore discarded. Meanwhile, the noise

is separated from the dominant components. Therefore, HT is

applied to Mode-2 and Mode-3 only.

Fig. 3 shows the decaying amplitude from HT for Mode-

2. The envelop obtained from the application of the HT is

fitted to the reconstructed EWT signal. At the beginning and

end of the time series there is a difference due to the end

effect [18] of HT as a result of a finite time series. In a real

time, analysis, we have a continuous stream of data therefore

to overcome this issue the left and right tails of the IA envelop

are discarded without extending the ends. No information is

lost as the discarded data is overlapping with the next/previous

sliding windows. The average DR and the instantaneous DR

of the truncated envelop are computed using (17) and (13).

Fig. 6 shows the corresponding IA and instantaneous DR

of the extracted modes using the online estimation approach.

The estimated average DR, after application of proposed

algorithm, is shown in Fig. 7. When the oscillatory response is

initiated, the sliding window moves from the pre-event to the

oscillatory data. The output of the SEWT algorithm during

Fig. 6. Case 1: Top panel shows IF f(t) and the bottom panel shows
instantaneous DR ζ(t) of extracted modes from PC1.

Fig. 7. Case 1: Estimates for the average DR ζavg from the PC1 during the
event. The results are obtained using a 20 seconds sliding window.

this phase would be inaccurate, as shown by the red dots,

thus ignored. Using the event detection technique, SEWT will

only start reporting when the sliding window moves into the

oscillatory zone. Thus, the pre-event results are discarded and

the algorithm will only report the ζavg estimates shown in blue

and green for Mode-2 and Mode-3, respectively.

The performance is assessed using the Mean Squared Error

(MSE). The estimates of average DR and average frequency

for each sliding window are compared with the BM values

from the small-signal analysis. The MSE is found by averaging

the squared error over the sampled window length. Table II

provides the results of the MSE for SEWT compared to EWT

and VMD. SEWT PC1 and SEWT PC2 indicate the results

obtained from the PC1 and PC2, respectively. Correlation

analysis of the PCs suggest that PC1 is positively correlated

with all the twenty generators except g4. Thus, there is a

direct relation between all the voltage buses and all of them

participate in the oscillations. PC2 has large negative associ-

ations with busses g1, g2, g19, and g20, therefore the larger

part of variations are coming from them. Further analysis of

the voltage variables indicates that the negatively correlated

generators mainly contribute to the strong 0.54 Hz mode while

the rest of generators contribute to the 0.54 Hz mode and a

weak 0.77 Hz mode. This mode is vaguely visible in the PC2

as reflected by the high MSE of the DR ζavg in Table II.

C. Case study 2; Unstable Model:

For C2 the voltage response of the system is displayed in

Fig. 8. The total variance accounts for 93% of the information

(85% for PC1 and 8% for PC2). Note that with this distur-

bance, in addition to Mode-1 and Mode-2 discussed in case C1

there is also another mode detected around 0.9 Hz. Analysis

of the voltage variables for C2 indicates that these modes are

visible in all the busses. Therefore these modes are adequately

captured by both PCs leading to a low MSE in Table II.



Fig. 8. Case 2: Temporal evolution of voltage signals.

Fig. 9 shows the SEWT estimation of the average DR

and average oscillation frequency for case C2. The red dots

highlight the negative DR and the blue dots indicate that

the DR estimates are positive. It can be seen from Fig. 9

that the algorithm tracks the actual DR of the mode dynami-

cally throughout the disturbance. These results show that the

proposed methodology can provide valuable feedback on the

evolving status of the DR level of the oscillatory mode to the

operator during this complex disturbance process.

IV. CONCLUSION

This paper describes the real-time application of a proposed

EWT-based technique for estimating the modal frequency and

DR. The algorithm is highly adaptive to the signal’s oscillation

characteristics. The proposed SEWT method automatically es-

timates the number of modes based on the frequency contents

of the signal. The window-based automatic mode detection

method locates the local maxima, and the use of amplitude

threshold avoids any unnecessary segmentation of the Fourier

spectrum. Unlike conventional single-channel methods, the

proposed algorithm is based on multi-variate data analysis and

captures the global dynamic features. In addition, through data

compression, it is effective in reducing noise errors. Test result

evaluation and comparison with existing methods reveal that

the proposed method shows excellent potential for real-time

monitoring and identification of inter-area oscillations.
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