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A comparison of time to event 
analysis methods, using weight 
status and breast cancer as a case 
study
Georgios Aivaliotis1,2,3,6, Jan Palczewski1,2,6, Rebecca Atkinson2,6, Janet E. Cade4,6 & 
Michelle A. Morris2,3,5,6*

Survival analysis with cohort study data has been traditionally performed using Cox proportional 
hazards models. Random survival forests (RSFs), a machine learning method, now present an 
alternative method. Using the UK Women’s Cohort Study (n = 34,493) we evaluate two methods: a 
Cox model and an RSF, to investigate the association between Body Mass Index and time to breast 
cancer incidence. Robustness of the models were assessed by cross validation and bootstraping. 
Histograms of bootstrap coefficients are reported. C-Indices and Integrated Brier Scores are reported 
for all models. In post-menopausal women, the Cox model Hazard Ratios (HR) for Overweight (OW) 
and Obese (O) were 1.25 (1.04, 1.51) and 1.28 (0.98, 1.68) respectively and the RSF Odds Ratios (OR) 
with partial dependence on menopause for OW and O were 1.34 (1.31, 1.70) and 1.45 (1.42, 1.48). 
HR are non-significant results. Only the RSF appears confident about the effect of weight status on 
time to event. Bootstrapping demonstrated Cox model coefficients can vary significantly, weakening 
interpretation potential. An RSF was used to produce partial dependence plots (PDPs) showing OW 
and O weight status increase the probability of breast cancer incidence in post-menopausal women. 
All models have relatively low C-Index and high Integrated Brier Score. The RSF overfits the data. In 
our study, RSF can identify complex non-proportional hazard type patterns in the data, and allow 
more complicated relationships to be investigated using PDPs, but it overfits limiting extrapolation of 
results to new instances. Moreover, it is less easily interpreted than Cox models. The value of survival 
analysis remains paramount and therefore machine learning techniques like RSF should be considered 
as another method for analysis.

As machine learning methods continue to evolve and challenge the use of classical statistical approaches used 
by epidemiologists there will be unavoidable debates about how the two approaches compare, their suitability 
and whether machine learning techniques conflict with or complement classical statistics. In this article we 
examine two approaches and discuss how they compare in the context of survival analysis, the backbone of many 
epidemiological studies. We focus on time until breast cancer incidence using data from UK Women’s Cohort 
study (UKWCS), a large cohort set up to investigate the links between diet and chronic disease in the  1990s1. 
Breast cancer has been the subject of many epidemiological studies reported in the literature and the effects of 
factors like obesity (which we focus on here) are well known. This serves the purpose of this study well, which 
is not to extract epidemiological conclusions but to compare the two approaches: (generalised) linear statistical 
modelling and fully non-linear machine learning.

The most commonly used linear model in survival analysis is the Cox Proportional Hazards model. Cox 
Proportional Hazards assumption ( h(t) = ho(t)exp(

∑
i βiXi) , where h(t) is the hazard ratio at time t ,βi ’s are 

coefficients and Xi ’s are covariates.) means that there is a linear relationship between the predictors and the log 
hazard function at any time ( log(h(t)) = log(ho(t))+

∑
i βiXi)2. Cox models have been used widely to investigate 

the impact of lifestyle factors and personal characteristics, including physical  activity3,  obesity4 and  ethnicity5 on 
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incidence of breast cancer or other chronic disease. Such models have previously been applied to the UK Women’s 
Cohort Study (UKWCS) to investigate a range of dietary characteristics (see for example: meat  consumption6, 
fibre  intake7, dietary  pattern8) and Body Mass Index (BMI)9, in relation to breast cancer incidence. Interpretation 
of these classical models is mainstream in epidemiology. Flexible extensions of the classical Cox Proportional 
Hazards model are available in the  literature10 and in statistical package functionality. However, here we focus 
on the classical Cox Proportional Hazards model as it has been used in the extant literature for UKWCS.

Note that we are investigating time to breast cancer incidence and that censored observations are indeed tak-
ing place randomly and independently of the event of interest. Therefore, there is no need to adjust the survival 
curves estimates for competing risks. We do however use age adjusted Cox regression as participants joined the 
UKWCS at different ages.

Recently the potential for the use of random forests, along with other machine learning techniques, in epi-
demiological research has been identified, but are yet to be well understood as a common epidemiological tool.

Weng et al.11,12 test a range of machine learning techniques, including random forest, on anonymized elec-
tronic medical records from nearly 700 UK family practices to predict cardiovascular disease episodes and find an 
increased accuracy in the predictions compared to classical statistical models. These methods have been applied 
in a number of genetic epidemiology genome wide association studies, where data are abundant and  complex12–15.

Random forests are a collection of decision trees each ‘grown’ on a bootstrap sample of a data  set16. Starting 
with the whole sample the tree splits (branches out) the data into nodes using splitting rules (based on randomly 
selected subset of variables) which maximise the difference between outcomes in each child node. Final nodes 
are the leaves of the tree.

Random survival forests (RSFs) are an extension of the approach used for right-censored survival data. 
They have a splitting rule which maximises the difference in survival between child nodes, or  leaves17,18. Each 
leaf has a survival function determined by the censor and/or death times of the members of that leaf. The for-
est predicts a survival function for an individual by averaging the survival functions belonging to each of the 
leaves they fall into when dropped down the trees. These methods make no assumptions about what the form 
of the association between variables and outcome is, however, they are often seen as black box models and can 
be difficult to interpret.

In some cases, the proportional hazards assumption made by Cox models is incorrect, but these cases are 
not necessarily easy to identify. Statistical tests developed are based on Schoenfeld  residuals19,20. For example, 
it is known from previous  research21 that the hazard due to weight status differs in pre- and post-menopausal 
women. As menopause is related to age this implies that the proportional hazards assumption for the whole age 
range is also violated. The complex relationships between variables require unpacking using methods aimed at 
reducing bias such as Directed Acyclic  Graphs22 and by running additional models on subsets of the data when 
an interaction is suspected (for example separate models are often run for pre- and post-menopausal women).

An RSF model imposes no constraints on the relationship between variables and as such may spot this 
relationship in menopause status without running a model specifically searching for it. However, RSFs perform 
poorly at extrapolation or interpolation in variable space where the training data are sparse. Although interpre-
tation of RSF models is difficult, exploring the complex relationships between variables can be facilitated by the 
use of Partial Dependence Plots (PDPs)23. PDPs are an approach to visualise relationships between variables, and 
are useful for knowledge discovery, for example: investigating systolic heart failure  patients24. We validate model 
performance using Harrell’s c-index (C)25 for discrimination and Integrated Brier Score (IBS) for calibration.

In this paper, we compare a random survival forest model to the classical Cox model when used to investigate 
the effects of weight status and other factors on the time to breast cancer incidence in the UK Women’s Cohort 
Study. The robustness of the Cox coefficients is tested using bootstraping and the advantages and drawbacks of 
each model are highlighted and their predictions are compared.

Methods
Data. Analysis was carried out on the UK Women’s Cohort study (UKWCS), a large cohort set up to inves-
tigate association between diet and chronic disease in the  1990s1. At baseline 35,372 women were recruited and 
completed postal questionnaires. Ethical approval was obtained from 174 local ethics committees during 1994 
and  199526.

The women were followed up with cancer incidence and mortality reports through NHS Digital. Breast cancer 
incidence data were unavailable for 879 women due to inability to match on NHS number, so analysis was car-
ried out on the remaining 34,493 women. Of these women 1571 (4%) developed breast cancer in a mean time to 
follow up of 15.3 years. Breast cancer incidence was defined as women free of cancer (except non-melanoma skin 
cancer) on the date of questionnaire completion at the beginning of the study (1995) who developed malignant 
breast cancer coded using ICD9 or 10 codes, before the end of the censor date (specific date 1st April 2014).

Women self-reported their height and weight at the time of the questionnaire which were used to calculate 
Body Mass Index (BMI) and a World Health Organisation defined category was assigned as follows; underweight 
for BMI less than 18.5; normal weight (N) between 18.5 and 24.9; overweight (OW) between 25 and 30 and 
obese (O) over 30. They also answered questions about diet using a Food Frequency Questionnaire and alcohol 
consumption at baseline, following which, nutrient intake values and ethanol consumption in grams per day 
was calculated.

Time to event is defined at the time the women entered the cohort until the censor date or incidence of breast 
cancer.

Variables used are known to be risk factors of breast cancer in the  literature29–32. RSF and Cox models were 
built using age, height, hormone replacement therapy status, alcohol consumption and folate intake at the time 
of completing the questionnaire, the number of times the women reported being pregnant, the computed total 
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walking time calculated from reported walking time in summer and winter and dietary pattern. Dietary pattern 
is a previously defined variable created using cluster analysis on the initial food frequency questionnaire of the 
 UKWCS33.

We fitted 3 different Cox models, one on all data with menopause status as a covariate, one only for women 
who joined the study postmenopausal and one for all data including interactions between menopausal status 
and weight status.

RSF and exploring variable relationships. Random survival forests were grown using the “randomFor-
estSRC” package in  R34. Random forests like other machine learning techniques, often learn better on balanced 
 data35, though this is not a requirement. To ensure a level playing field between RSFs and Cox models breast 
cancer cases were not up-sampled in the models reported. The possibility of up-sampling breast cancer cases 
using weighted samples was also explored (not reported here) with minor differences in the results (mainly 
dampening slightly the overfitting of RSF). The random survival forests internal data imputation procedure was 
used for missing data.

PDPs23 were used to investigate the effect of a single variable on the predicted time to event generated by the 
forest. The forest makes predictions of time to breast cancer incidence for each individual set of variables, but 
the impact of changing a single variable an overall random forest prediction, is not clear. In order to investigate 
the average impact of one variable, the whole dataset is modified to take the same value for the variable of inter-
est and breast cancer at 15 years is predicted. For continuous variables this is repeated for a range of values and 
for categorical variables prediction is made for all possible values. PDPs show the average of these predictions 
over the whole dataset. To investigate interactions between variables, PDPs will be plotted with additional par-
tial dependence (PD) on a second variable by setting that to a fixed value as well. Confidence intervals for RSF 
models were calculated using standard errors in the mean of the predicted breast cancer event as suggested by 
Ishwaran and  Kogalur34 but should be interpreted with caution.

CoxPH and bootstrapping. Cox models were used to estimate hazard ratios (HR) and 95% confidence 
intervals (CI) using the “survival” and “pec” packages in  R36-38. 13,463 (39%) of the records in UKWCS dataset 
had missing data in one or more of the variables (most missing values are related to the number of pregnancies 
due to no pregnancies often being recorded as missing values). Multiple imputation was performed using the 
“mice” package in  R39. Cox models were trained on the whole dataset (regardless menopause status) and post-
menopause only women. In order to check consistency of the HRs, we run Cox models on 100 bootstrapped data 
samples. Each bootstrap sample was taken with replacement and was equal to the size of the training dataset. 
Imputation took place after the bootstrap sample was selected. Cox models were built on each bootstrap sample 
and histograms were created (see Fig. 1) to show the distribution of the coefficients for each model built on boot-
strap sample. The distribution of the coefficients is indicative of whether the results of the full dataset are robust 
to small changes in the composition of the sample.

Comparison between RSF and CoxPH. Odds ratios (ORs) for the odds of breast cancer incidence 
before 15 years were generated for RSF to provide comparison with the Cox HRs and to summarise the effect of 
that variable over this time period. To generate the odds ratio from the RSF the probability of incidence can be 
found from the survival function: P(incidence at t ≤ T|X1 = b) = 1− S(T|X1 = b) , where S(T|X1 = b) is the 
survival function generated by a PDP with partial dependence on variable X1 having a constant value b . From 
this probability, odds ratios were generated.

In traditional models such as logistic regression and Cox models the ORs or HRs are fixed values which fully 
specify the model. In random survival forest models the model is specified only by the splits in every tree in the 
forest and ORs are estimated from the predicted survival generated by the model. ORs generated by RSFs do not 
have to be stable for changes of other variables, for example menopause status.

Figure 1.  Histograms of coefficients of variable O (Obese) for Cox models trained on 100 bootstrap samples, 
illustrating that the distribution of the coefficients agrees with the reported confidence intervals for HRs.
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ORs and HRs are not equivalent. HRs refer to hazard, the likelihood of an incidence at a given instance in time 
whereas ORs refer to the ratio of the probability that an incidence will occur before a given time compared to 
this not happening. In order to convert ORs to HRs, the baseline hazard or survival would need to be estimated.

Estimating the non-parametric baseline hazard or some parametric form is possible and indeed useful if one 
wants to compare the effect of a variable as captured by different models. Here, however, we propose the follow-
ing theorem that allows us to compare the form of the models produced (positive or inverse relationships) and 
the relative magnitude of the ratios.

Theorem 1 An HR of 1 is equivalent to an OR of 1 and an HR greater (smaller) than 1 is equivalent to an OR 
greater (smaller) than 1.

(See Appendix B for the proof).
Evaluation. Significance in traditional models is checked using a confidence interval and quantified by the 
p value which tells us the probability of obtaining the results if the null hypothesis, that all HR = 1, were true. To 
calculate variable importance for an RSF, first the prediction error is calculated for the case where the data set 
is dropped down all trees of the forest but at each node for the variable of interest the daughter node is chosen 
randomly. Variable importance is then defined as the difference in prediction error between this case and the 
actual prediction  error16,17.

Both Cox and RSF models were K-fold cross validated (K = 100). Harrell’s c-index25 is a measure of the predic-
tive power of a survival model and was computed for both RSF and Cox proportional hazards. We additionally 
report Integrated Brier Score (IBS) for all models. Several other measures of performance for survival models 
are available and readily produced by R packages, e.g. Nagelkerke, R2 , slope shrinkage, discrimination index, the 
unreliability index and more. IBS and Harrell’s C-index are well understood and established measures both for 
Cox models as well as RSF, so we favour these for our research. C-Index considers every possible pair of outcomes 
that are observed and measures the proportion of cases for which the model predicts correctly which has the 
better outcome (longer time to breast cancer incidence)17,25,28. It is therefore assessing how well the model ranks 
instances based on their risk. IBS on the other hand, is testing for accuracy of predicted probabilities directly 
by comparing them to the status at selected times, i.e. measures calibration of the model to the date. The two 
measures evaluate different aspects of model accuracy. We compare c-indices between models using box plots.

All analysis was carried out in R version 3.6.3. The R script is available at: https:// github. com/ matga- leeds/ 
RSF_v_ Cox_ on_ UKWCS/ blob/ 1656d 93780 e96d9 8f333 6fbeb 71798 449a3 35faf/ code_ public.R.

Results
Initially, it was confirmed (through Kaplan–Meier curves and a chi-squared test) that the proportional hazards 
assumption held. Table 1 summarises the results from Cox analysis and from an RSF of the data set with both 
pre- and post-menopause women and the data set for post-menopause women only, with normal weight used 
as reference category. All coefficients of other model covariates are not reported as these variables were used 
to adjust for confounders. Confidence intervals are given for the coefficients in order to assess significance. We 
see that the distributions from the bootstrap samples largely support the conclusions on significance from the 
confidence intervals.

RSF predicts significantly higher OR for overweight post-menopausal women relative to all women. Since 
there are more post-menopausal women in the sample the coefficient for the dataset with post- and pre-meno-
pause women (that is regardless of menopause status) is still significant. This was the same for the model with up-
sampling, not reported here. This is not true for Cox PH because the inverse effects of being overweight between 
pre- and post- menopausal status inflate the estimation error. See the histograms of Fig. 1 for the coefficients 

Table 1.  Summary of Cox and RSF models reporting HRs and ORs for breast cancer incidence by weight 
status, when compared to normal weight status.

Cox proportional hazards RSF

HR (95% CI) C-Index/IBS OR (95% CI) C-Index/IBS

All

UW 0.84 (0.51, 1.36)

0.57/0.025

1.10 (1.08, 1.12)

0.53/0.021

OW 1.13 (0.98, 2.30) 1.24 (1.21, 1.27)

O 1.16 (0.94, 1.42) 1.36 (1.33, 1.39)

Post-menopause

UW 0.55 (0.23, 1.34)

0.56/0.028

1.11 (1.09, 1.13)

OW 1.25 (1.04, 1.51) 1.34 (1.31, 1.70)

O 1.28 (0.98, 1.68) 1.45 (1.42, 1.48)

All with interaction

UW 0.50 (0.21, 1.22)

0.57/0.025OW 1.22 (1.02, 1.47)

O 1.24 (0.96, 1.60)

https://github.com/matga-leeds/RSF_v_Cox_on_UKWCS/blob/1656d93780e96d98f3336fbeb71798449a335faf/code_public.R
https://github.com/matga-leeds/RSF_v_Cox_on_UKWCS/blob/1656d93780e96d98f3336fbeb71798449a335faf/code_public.R
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of the OW variable in the 100 bootstrap sample-based Cox PH models. Note that the histograms of the coef-
ficients are in line with the results reported in Table 1. The reason we include them in this study is to point out 
the potential variability of the coefficients when there are small changes in the sample.

The age PDP in Fig. 2A shows a different picture for time to event for pre- and post-menopausal women. The 
probability of non-incidence within 15 years for pre-menopausal women starts higher than that of post-men-
opausal ones but reduced much faster with age. Although this is partly due to there being less pre-menopausal 
than post-menopausal women in the data, a Cox model cannot spot this change in the age variable as it forces a 
constant HR for all ages. These plots show additional freedom to that available in a Cox model as the PDP plots 
for Cox models are constrained to be monotonically increasing for HR greater than one or decreasing for HR 
less than one. For the equivalent notion of a PDP in a Cox model see Appendix B.

Weight status in relation to time to breast cancer incidence in pre-menopausal women tends to show an 
inverse association (overweight and obese appearing to be protective) and in post-menopausal women a positive 
association (increasing risk with increasing weight). Although this relationship influences the ORs and HRs (see 
comment in results above) this is not reflected in the PDP of Fig. 2C where lines move in parallel.

The Cox model assumes a relationship between the variables that obey the proportional hazards assumption. 
It is expected that the effect of the interaction between weight status and menopause status cannot be represented 
within this assumption because previous research has found inverse relationships between weight status and 
breast cancer pre-menopause and positive relationships post-menopause40. Including these interactions explicitly 
in the model results into shifting the non-interaction coefficients closer to the ones from the post-menopause 
only model. The interaction coefficients are not significant indicated by the inflated variance as explained above 
and only the coefficient for OW is significant.

Figure 2.  (A) Partial dependence plot of the relationship between menopausal status and Breast cancer 
incidence over age. Note that the curves are crossing, an effect that cannot be modelled directly under the 
proportional hazards assumption; (B) Histogram of age by menopause status; (C) Partial dependence plot of the 
relationship between weight status and Breast cancer incidence over age, illustrating OW and O have increased 
probability of incidence for all ages; (D) Histogram of age by weight status.
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The RSF allows interaction between variables to account for this relationship so odds ratios were generated 
from the existing RSF model with additional partial dependence on menopause. If we did not expect this inter-
action to have an effect there would be no way to easily identify it with a Cox model, however it could be easily 
identified in the RSF using PDPs with PD on weight status and menopause.

Post-menopause HR increased with increasing weight status OW 1.25 (1.04, 1.51) and O 1.28 (0.98, 1.68).
This is a commonly reported  trend40. Bootstrap sample models confirm the above results. In the whole data 
(regardless of menopause status), we see that the histograms of the coefficients go below 1 whereas most values 
for post-menopause only data stay above 1 (see Fig. 1). For the random survival forest, the first column shows 
ORs predicted with partial dependence on menopause status only.

The random survival forest has very high training sample c-index (approximately 95%) but testing sample 
c-index of only 0.53. This suggests that the model fit by the random forest overfits the data by learning closely 
specific instances, hence the variables used in the forest do not describe much of the variance in the outcome. 
The Cox models have a testing sample c-index of 0.57 and 0.56 respectively, so have predictive power for new 
data better than that of the RSF which additionally shows wider variability. It is clear that all models have poor 
predictive ability (0.5 would indicate random guessing) in terms of ranking women based on risk. This is not 
surprising in datasets where risk is low and the vast majority of women are incidence-free at censoring time. See 
the box plot in Fig. 3 for comparison.

Both Cox and RSF models however appear to have very high Integrated Brier Score (IBS) in the area of 
0.025–0.028 for Cox models and 0.021 for the RSF respectively. This is due to the relative low number of breast 
cancer cases in the sample making prediction, rather than ranking (see C-Index) an easier task. Note that only 
4% of the data are actual instances of breast cancer at 15 years.

Discussion
Both Cox Proportional Hazards and RSFs confirmed significant increased risk of breast cancer incidence for 
increased weight status post-menopause. In order to get the best out of both methods, however, it is important 
to approach the methods with caution and to keep in mind their strengths and weaknesses.

Advantages and disadvantages of Cox proportional hazard models. In this paper we have shown 
that Cox models are effective at identifying the relationship between breast cancer and its covariates, at least 
for the dataset examined, but the process of investigating interactions relies heavily on knowledge of previous 
research or intuition and a priori causal planning. In cases like the one we investigated above it requires addi-
tional models to be run (such as pre- and post-menopause). It may be sensible to calculate a test for trend on 

Figure 3.  Boxplot showing the c-indices for three Cox Proportional Hazard Models (all data with an 
interaction term, Post-menopausal women only, the full sample) and the Random Survival Forest.
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the weight variable and possibly use it as a continuous predictor. Furthermore, here we were mainly comparing 
the two approaches and not investigating the epidemiological problem in depth. What is more, it is unlikely that 
using the continuous variable would clarify things because firstly, some categories (underweight) have very few 
data and secondly, due of the non-linear relationship between weight and menopause.

Interpreting Cox proportional hazard models. The Cox model is sensitive to perturbations in the 
sample consistency. In big data situations, additional care is needed when applying traditional models. In cases 
where there are many variables, multiple combinations of these variables could be used for model adjustment. 
Therefore, it is likely that in some of these combinations a high significance value is found (a multiple testing 
phenomenon). Care is needed in such situations to avoid reading too much importance into a single model that 
may be the only one, of thousands of possible models, that finds a strong  relationship41,42. This problem can be 
reduced by running bootstrapped  models43 and cross validation in assessing fit of models.

Advantages and disadvantages of RSFs. This paper has demonstrated that RSFs can be used to pro-
duce odds ratios for breast cancer incidence and to identify the relationships without the assumptions made by 
traditional models. RSFs have the advantage that they are non-linear models and so can represent any form of 
interaction between variables. An RSF can be grown on a data set with a large number of variables, furthermore 
PDPs can be used to investigate potential interactions between variables. In this way a random survival forest is 
a more general model and can be used to easily spot new or unexpected trends in the data. Flexible extensions of 
Cox models can allow for time dependent and even nonlinear effects but are still bound by the dimensionality of 
the model. These extensions (especially related to time dependent covariates) are not readily available for RSFs. 
On the other hand, RSFs perform poorly at prediction for data where there was little comparable training data as 
the lack of model structure makes extrapolation meaningless. Therefore, for extreme values on continuous vari-
ables and in categorical variables for which there is little training data (here in the underweight BMI category) 
predictions are unreliable. By contrast, a traditional Cox model would typically perform better in such cases 
as it just extrapolates linearly the trends of the model. If random survival forests are interpreted with care and 
together with PDPs they may give more insight into the associations between risk factors..

However, RSFs as other machine learning methods are very efficient in learning patterns and in datasets with 
relatively few cases compared to no number of censored observations, like the one examined here, they tend to 
learn precisely instances and thus overfit.

Interpreting RSFs. Although random forests deal better with interactions between variables, care is still 
needed when interpreting PDPs. For example, a forest which uses age, menopause status and weight status 
is unlikely to produce reliable results in a partial dependence plot for menopause and weight status because 
relabelling people aged under 40 as post-menopause (erroneously) is creating a set of variables that were likely 
unprecedented in the training set and as such asking the model to extrapolate the patterns. It is therefore impor-
tant to be aware when PDP predictions are based upon sufficient training data to be reliable.

RSFs ability to fit any relationship and take any form makes them difficult to summarise. If interactions are 
largely known and can be accounted for the simplicity of the output HRs that completely define a Cox model 
is attractive. RSFs in this paper have been used to generate ORs at 15 years follow up. These ORs can be used 
to draw similar results about relationships as from HRs from the Cox model and so can be used as a summary 
while the RSF still allows for much more in depth investigation of interactions between variables through PDPs, 
without the need to introduce new models.

Traditional models where the risk factors describe little of the variance of the outcome tend to have worse 
training data c-index than RSFs. In this case both models have similar testing c-indices which imply poor predic-
tive power. Poor predictive power is not surprising in these models because breast cancer incidence is relatively 
low and fairly random in women with any combination of variables but is slightly more prevalent in groups 
which have certain risk factors.

Future work. Building on the sparse use of machine learning to date in epidemiology, perhaps in the future, 
epidemiology will be pursued with the use of both tools and as such our judgment of the value of information 
produced by each will be more measured. No epidemiologist would claim the whole story of a disease could be 
explained with a few numbers and yet a lot of significance is read into the hazard and odds ratios produced by 
models. Interpreting the results of machine learning algorithms is just as fraught, if not more so, with the danger 
of assigning too much value to the information produced especially at the extremes of the model. In the future 
pursuit of an accurate understanding of risk factors, RSFs may be used to investigate interactions and then tra-
ditional models used to summarise the results. This may be achieved by training RSFs on large datasets and then 
using a series of PDPs to identify any interactions that may influence results. A Cox model may then be trained 
on a subset of data that avoids interactions to produce HRs that summarise the risk. Further work is required to 
unpack why these RSF models overfit.

Conclusion
Post-menopausally, increased BMI has been found to be a risk factor for breast cancer in the UKWCS. This has 
been achieved using traditional Cox models and using an RSF. The structure of the RSF model is not as easy to 
interpret as a Cox model and overfits, limiting extrapolation of results to new instances. Generating ORs for a 
time towards the end of the study period helps to summarise RSF models and compare them with Cox models. 
RSF can be used to investigate in more detail the interactions between variables and allows forms of interaction 
to be interpreted that are prevented from being observed by the assumptions of the Cox model. Caution is needed 
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when interpreting the results of either model to ensure an appropriate amount of importance is read into their 
results. Both approaches have merit and could be used in combination to provide further insights.

The Cox Proportional Hazard method still has high utility in epidemiological research but this paper shows 
that RSFs could be considered as an alternative or complementary method.
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