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Abstract. The Stratospheric Sulfur and its Role in Cli-

mate (SSiRC) Interactive Stratospheric Aerosol Model In-

tercomparison Project (ISA-MIP) explores uncertainties in

the processes that connect volcanic emission of sulfur gas

species and the radiative forcing associated with the result-

ing enhancement of the stratospheric aerosol layer. The cen-

tral aim of ISA-MIP is to constrain and improve interactive

stratospheric aerosol models and reduce uncertainties in the

stratospheric aerosol forcing by comparing results of stan-

dardized model experiments with a range of observations.

In this paper we present four co-ordinated inter-model ex-

periments designed to investigate key processes which in-

fluence the formation and temporal development of strato-

spheric aerosol in different time periods of the observational

record. The Background (BG) experiment will focus on mi-

crophysics and transport processes under volcanically qui-

escent conditions, when the stratospheric aerosol is con-

trolled by the transport of aerosols and their precursors from

the troposphere to the stratosphere. The Transient Aerosol

Record (TAR) experiment will explore the role of small- to

moderate-magnitude volcanic eruptions, anthropogenic sul-

fur emissions, and transport processes over the period 1998–

2012 and their role in the warming hiatus. Two further exper-

iments will investigate the stratospheric sulfate aerosol evo-

lution after major volcanic eruptions. The Historical Erup-

tions SO2 Emission Assessment (HErSEA) experiment will

focus on the uncertainty in the initial emission of recent

large-magnitude volcanic eruptions, while the Pinatubo Em-
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ulation in Multiple models (PoEMS) experiment will provide

a comprehensive uncertainty analysis of the radiative forcing

from the 1991 Mt Pinatubo eruption.

1 Introduction

Stratospheric aerosol is an important component of the

Earth system, which influences atmospheric radiative trans-

fer, composition, and dynamics, thereby modulating the cli-

mate. The effects of stratospheric aerosol on climate are

especially evident when the opacity of the stratospheric

aerosol layer is significantly increased after volcanic erup-

tions. Through changes in the radiative properties of the

stratospheric aerosol layer, volcanic eruptions are a signif-

icant driver of climate variability (e.g. Myhre et al., 2013;

Zanchettin et al., 2016). Major volcanic eruptions inject vast

amounts of SO2 into the stratosphere, which is converted into

sulfuric acid aerosol with an e-folding time of about a month,

which might be prolonged due to OH depletion within the

dense SO2 cloud in the first weeks following a large volcanic

eruption (Mills et al., 2017).

Observations show that the stratospheric aerosol layer

remains enhanced for several years after major eruptions

(SPARC, 2006). Such long-lasting volcanic perturbations

cool the Earth’s surface by scattering incoming solar radi-

ation and warm the stratosphere by the absorption of in-

frared solar and long-wave terrestrial radiation which af-

fect the dynamical structure as well as the chemical com-

position of the atmosphere (e.g. Robock, 2000; Timmreck,

2012). The consequent heating of the stratospheric sulfate

layer, impacts stratospheric dynamics in various ways. It am-

plifies the Brewer–Dobson circulation (BDC) and modifies

the equator-to-pole temperature gradient, driving changes

in geostrophic zonal winds and the propagation of atmo-

spheric waves (e.g. Bittner et al., 2016; Toohey et al., 2014)

and strengthening the polar vortex (e.g. Charlton-Perez et

al., 2013). The heating from continued SO2 injection to

the stratosphere may further disturb or even “shut down”

the quasi-biennial oscillation (QBO) (e.g. Aquila et al.,

2014; Niemeier and Schmidt, 2017). The radiatively driven

changes also influence the transport and the lifetime of long-

lived species (N2O, CH4) (Pitari et al., 2016a; Visioni et al.,

2017). The enhanced stratospheric aerosol layer after large

volcanic eruptions also causes large mean age-of-air varia-

tions on timescales of several years (e.g. Ray et al., 2014;

Muthers et al., 2016; Garfinkel et al., 2017).

As the ocean has a much longer memory than the atmo-

sphere, large volcanic eruptions could have a long-lasting

impact on the climate system that extends beyond the du-

ration of the volcanic forcing (e.g., Zanchettin et al., 2012;

Swingedouw et al., 2017). The chemical and radiative ef-

fects of the stratospheric aerosol are strongly influenced by

its particle size distribution. Heterogeneous chemical reac-

tions, which most notably lead to substantial ozone deple-

tion (e.g. WMO/UNEP, 2007, chap. 3), take place on the

surface of the stratospheric aerosol particles and are de-

pendent on the aerosol surface area density. Aerosol par-

ticle size determines the scattering efficiency of the parti-

cles (e.g. Lacis et al., 1992) and their atmospheric lifetime

(e.g., Pinto et al., 1989; Timmreck et al., 2010). Smaller-

magnitude eruptions than the 1991 Mt Pinatubo eruption can

also have significant impacts on climate. It is now estab-

lished that a series of relatively small-magnitude volcanic

eruptions caused the increase in stratospheric aerosol ob-

served between 2000 and 2010 based on ground and satellite-

borne observations (Vernier et al., 2011b; Neely III et al.,

2013). Studies have suggested that this increase in strato-

spheric aerosol partly counteracted the warming due to in-

creased greenhouse gases over that period (e.g. Solomon et

al., 2011; Ridley et al., 2014; Santer et al., 2015). Small to

moderate volcanic eruptions after 2008 also show an im-

pact on the stratospheric circulation in the Northern Hemi-

sphere, in particular on the pattern of decadal mean age

variability and its trends during 2002–2011 (Diallo et al.,

2017). Since the 2006 SPARC Assessment of Stratospheric

Aerosol Properties Report (SPARC, 2006, herein referred to

as ASAP2006) the increase in observations of stratospheric

aerosol and its precursor gases and in the number of models

which treat stratospheric aerosol interactively has advanced

scientific understanding of the stratospheric aerosol layer and

its effects on the climate (Kremser et al., 2016, herein re-

ferred to as KTH2016). In particular, research findings have

given to the community a greater awareness of the role of

the tropical tropopause layer (TTL) as a distinct pathway

for transport into the stratosphere, of the interactions be-

tween stratospheric composition and dynamics, and of the

importance of moderate-magnitude eruptions in influencing

the stratospheric aerosol loading. In addition, over the last

decade several new satellite instruments producing observa-

tions relevant to the stratospheric aerosol layer have become

operational. For example, we now have a 2002–2012 record

of global altitude-resolved SO2, carbonyl sulfide (OCS)

and aerosol volume density measurements provided by the

Michelson Interferometer for Passive Atmospheric Sound-

ing Environmental Satellite (MIPAS ENVISAT; Höpfner et

al., 2013, 2015; Glatthor et al., 2015; Günther et al., 2018).

Furthermore aerosol extinction vertical profiles are avail-

able from limb-profiling instruments, such as the Scanning

Imaging Absorption Spectrometer for Atmospheric Chartog-

raphy (SCIAMACHY; 2002–2012; Bovensmann et al., 1999;

von Savigny et al., 2015), the Optical Spectrograph and

InfraRed Imager System (OSIRIS; 2001–present; Bourassa

et al., 2007), and the Ozone Mapping and Profiler Suite–

Limb Profiler (OMPS-LP; 2011–present; Rault and Lough-

man, 2013), and from the active sensor lidar measurements

such as the Cloud-Aerosol Transport System (CATS; 2015–

present; Yorks et al., 2015) and Cloud-Aerosol Lidar with

Orthogonal Polarization (CALIOP; 2006-present; Vernier et

Geosci. Model Dev., 11, 2581–2608, 2018 www.geosci-model-dev.net/11/2581/2018/
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al., 2009). Existing measurements have become more robust,

for example by homogenizing the observations of aerosol

properties derived from optical particle counter (OPC) and

satellite measurements during stratospheric aerosol back-

ground periods (Kovilakam and Deshler, 2015), which pre-

viously showed large differences (Thomason et al., 2008).

Other efforts include combining and comparing different

satellite data sets (e.g. Rieger et al., 2015). However, some

notable discrepancies still exist between different measure-

ment data sets. For example, Reeves et al. (2008) showed that

aircraft-borne Focused Cavity Aerosol Spectrometer (FCAS)

measurements of the particle size distribution during the

late 1990s yield surface area densities a factor 1.5 to 3 higher

than that derived from Stratospheric Aerosol and Gases Ex-

periment (SAGE-II) measurements.

On the modelling side there has been an increasing amount

of global three-dimensional stratospheric aerosol models de-

veloped within the last years and used by research teams

around the world (KTH2016). The majority of these global

models explicitly simulate aerosol microphysical processes

and treat the full life cycle of stratospheric aerosol, from the

initial injection of sulfur-containing gases and their transfor-

mation into aerosol particles to their final removal from the

stratosphere. Several of these models also include the inter-

active coupling between aerosol microphysics, atmospheric

chemistry, dynamics, and radiation.

Given the improvements in observations and modelling of

stratospheric aerosol since ASAP2006, we anticipate further

advances in our understanding of stratospheric aerosol by

combining the recent observational record with results from

the current community of interactive stratospheric aerosol

models. An Interactive Stratospheric Aerosol Model Inter-

comparison Project (ISA-MIP) has therefore been devel-

oped within the Stratospheric Sulfur and its Role in Cli-

mate (SSiRC) framework. The SPARC activity SSiRC (http:

//www.sparc-ssirc.org, last access: 26 June 2018) was initi-

ated with the goal of reducing uncertainties in the proper-

ties of stratospheric aerosol and assessing its climate forc-

ing. In particular, constraining simulations of historical erup-

tions with available observational data sets gives the poten-

tial to evaluate and substantially improve the accuracy of the

volcanic forcing data sets used in climate models. This will

not only enhance consistency with observed stratospheric

aerosol properties and the underlying microphysical, chemi-

cal, and dynamical processes but also improve their concep-

tual understanding. The use of such new volcanic forcing

data sets has the potential to increase the reliability of the

simulated climate impacts of volcanic eruptions, which have

been identified as a major influence on decadal global mean

surface temperature trends in climate models (Marotzke and

Forster, 2015).

The first international model inter-comparison of global

stratospheric aerosol models was carried out within

ASAP2006 and indicated that model simulations and satel-

lite observations of stratospheric background aerosol extinc-

tion agree reasonably well in the visible wavelengths but

not in the infrared. It also highlighted systematic differ-

ences between modelled and retrieved aerosol size, which

have later been linked to shortcomings in the retrieval meth-

ods with regard to the detection of Aitken mode sized

particles(R < 50 nm) in the lower stratosphere (Thomason et

al., 2008; Reeves et al., 2008; Hommel et al., 2011). While

in ASAP2006, only five global two- and three-dimensional

stratospheric aerosol models were included in the analysis,

there are today more than 15 global three-dimensional mod-

els available worldwide (KTH2016). No large comprehen-

sive model intercomparison has ever been carried out to iden-

tify differences in stratospheric aerosol properties amongst

these new interactive models. The models often show signif-

icant differences in terms of their simulated transport, chem-

istry, and removal of aerosols with inter-model differences

in stratospheric circulation, radiative dynamical interactions,

and exchange with the troposphere likely to play an im-

portant role (e.g. Aquila et al., 2012; Niemeier and Timm-

reck, 2015). The formulation of microphysical processes is

also important (e.g. English et al., 2013), as are differing

assumptions regarding the sources of stratospheric aerosols

and their precursors. A combination of these effects likely

explain the large inter-model differences as seen in Fig. 1

among the global stratospheric aerosol models which par-

ticipated in the Tambora intercomparison, a precursor to the

“consensus volcanic forcings” aspects of the CMIP6 Model

Intercomparison Project on the climatic response to volcanic

forcing (VolMIP; Zanchettin et al., 2016; Marshall et al.,

2018). Even for the relatively recent 1991 Mt Pinatubo erup-

tion, to reach the best agreement with observations, interac-

tive stratospheric models have used a wide range of SO2 in-

jections amounts, from as low at 10 Tg SO2 (Dhomse et al.,

2014; Mills et al., 2016) to as high as 20 Tg SO2 (e.g. Aquila

et al., 2012; English et al., 2013).

Volcanic eruptions are commonly taken as a real-world

analogue for hypothesized geoengineering via stratospheric

sulfur solar radiation management (SS-SRM). Indeed many

of the assumptions and uncertainties related to simulated

volcanic perturbations of stratospheric aerosol are also fre-

quently given as caveats around research findings from mod-

elling studies which seek to quantify the likely effects from

SS-SRM (e.g. National Research Council, 2015), the mech-

anism steps between sulfur injection and radiative cooling

being common to both aspects (Robock et al., 2013). We ex-

pect the analysis of the ISA-MIP experiments to improve our

understanding of model sensitivities to key sources of un-

certainty and to inform the interpretation of coupled climate

model simulations and the next Intergovernmental Panel on

Climate Change (IPCC) assessment. It will also provide a

foundation for co-operation to assess the atmospheric and cli-

mate changes when the next large-magnitude eruption takes

place.

In this paper, we introduce the new model intercomparison

project ISA-MIP developed within the SSiRC framework. In

www.geosci-model-dev.net/11/2581/2018/ Geosci. Model Dev., 11, 2581–2608, 2018
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Figure 1. Uncertainty in estimates of radiative forcing parameters

for the 1815 eruption of Mt Tambora: global average aerosol op-

tical depth (AOD) in the visible band from an ensemble of simula-

tions with chemistry–climate models forced with a 60 Tg SO2 equa-

torial eruption, from the Easy Volcanic Aerosol (EVA; Toohey et al.,

2016b) module with 56.2 Tg SO2 equatorial eruptions (thick dashed

magenta line), from Stoffel et al. (2015), from Crowley and Unter-

man (2013), and from Gao et al. (2008; aligned so that the erup-

tion starts on April 1815). The estimate for the Pinatubo eruption as

used in the CMIP6 historical experiment is also reported for com-

parison. The black triangle shows latitudinal position and timing

of the eruption. Chemistry–climate models are CESM (WACCM)

(Mills et al., 2016), MAECHAM5-HAM (Niemeier et al., 2009),

SOCOL (Sheng et al., 2015a), UM-UKCA (Dhomse et al., 2014),

and CAMB-UPMC-M2D (Bekki, 1995; Bekki et al., 1996). For

models producing an ensemble of simulations, the line and shad-

ing are the ensemble mean and ensemble standard deviation respec-

tively. Figure from Zanchettin et al. (2016).

Sect. 2 we provide an overview of the current state of strato-

spheric sulfur aerosol modelling and its greatest challenges.

In Sect. 3 we describe the scopes and protocols of the four

model experiments planned within ISA-MIP. A concluding

summary is provided in Sect. 4.

2 Modelling stratospheric aerosol: overview and

challenges

Before we discuss the current state of stratospheric aerosol

modelling and its greatest challenges in detail, we briefly de-

scribe the main features of the stratospheric sulfur cycle. We

are aware of the fact that the stratospheric aerosol layer also

contains organics and inclusions of meteoritic dust (Ebert et

al., 2016) and, after volcanic events, also co-exists with vol-

canic ash (e.g. Pueschel et al., 1994: KTH2016). However,

the focus of the ISA-MIP experiments described here is on

a comparison with measurements of the overall optical and

physical properties of the stratospheric aerosol layer, which

is mainly determined by sulfate.

2.1 The stratospheric aerosol life cycle

The stratospheric aerosol layer and its temporal and spatial

variability are determined by the transport of aerosol and

aerosol precursors in the stratosphere and their modifica-

tion by chemical and microphysical processes (Hamill et al.,

1997; ASAP2006; KTH2016). Volcanic eruptions can inject

sulfur-bearing gases directly into the stratosphere, which sig-

nificantly enhances the stratospheric aerosol load for years.

A number of observations show that stratospheric aerosol in-

creased over the first decade of the 21st century (e.g. Hof-

mann et al., 2009; Vernier et al., 2011b; Ridley et al., 2014).

Although such an increase was attributed to the possible

cause of Asian anthropogenic emission increase (Hofmann

et al., 2009), later studies have shown that small-to-moderate

magnitude volcanic eruptions are likely to be the major

source of this recent increase (Vernier et al., 2011b; Neely III

et al., 2013; Brühl et al., 2015).

Besides major volcanic eruptions, the photochemical ox-

idation of OCS, an insoluble gas mainly inert in the tro-

posphere, is a stratospheric source. Tropospheric aerosols

and aerosol precursors also enter the stratosphere through

the tropical tropopause and through convective updrafts in

the Asian and North American monsoons (Hofmann et al.,

2009; Hommel et al., 2011; Vernier et al., 2011a; Bourassa

et al., 2012; Yu et al., 2015). In the stratosphere, new sul-

fate aerosol particles are formed by binary homogenous nu-

cleation (Vehkamäki et al., 2002), a process in which sulfu-

ric acid vapour (H2SO4(g)) and water vapour condense si-

multaneously to form a liquid droplet. The condensation of

H2SO4(g) onto pre-existing aerosol particles and the coag-

ulation among particles shift the aerosol size distribution to

greater radii. This takes place especially under volcanically

perturbed conditions, when the concentrations of aerosol in

the stratosphere are higher (e.g. Deshler, 2008).

From the tropics, where most of the tropospheric aerosol

enters the stratosphere and the OCS chemistry is most ac-

tive, the stratospheric aerosol particles are transported pole-

ward within the large-scale BDC and removed through grav-

itational sedimentation and cross-tropopause transport in the

extratropical regions. Internal variability associated with the

QBO alters the isolation of the tropical stratosphere and

subsequently the poleward transport of tropical stratospheric

aerosol and modifies its global dispersal, particle size distri-

bution, and residence time (e.g. Trepte and Hitchman, 1992;

Hommel et al., 2015; Pitari et al., 2016b)

In general, under volcanically perturbed conditions with

larger amounts of injected SO2, aerosol particles grow to

much larger radii than in volcanically quiescent conditions

(e.g. Deshler, 2008). The simulation of extremely large vol-

canic sulfur-rich eruptions shows a shift to particle sizes even

larger than observed after the Pinatubo eruption and predicts

Geosci. Model Dev., 11, 2581–2608, 2018 www.geosci-model-dev.net/11/2581/2018/
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a reduced cooling efficiency compared to moderate eruptions

with moderate sulfur injections (e.g. Timmreck et al., 2010;

English et al., 2013).

2.2 Global stratospheric aerosol models: current status

and challenges

A comprehensive simulation of the spatio-temporal evolu-

tion of the particle size distribution is a continuing challenge

for stratospheric aerosol models. Due to computational con-

straints, the formation of the stratospheric aerosol and the

temporal evolution of its size distribution are usually param-

eterized with various degrees of complexity in global mod-

els. The simplest way to simulate the stratospheric aerosol

distribution in global climate models is the mass-only (bulk)

approach (e.g. Timmreck et al., 1999a, 2003; Aquila et al.,

2012), where only the total sulfate mass is prognostically

simulated and chemical and radiative processes are calcu-

lated assuming a fixed typical particle size distribution. More

complex methods are size-segregated approaches, such as the

modal approach (e.g. Niemeier et al., 2009; Toohey et al.,

2011; Brühl et al., 2012; Dhomse et al., 2014; Mills et al.,

2016), where the aerosol size distribution is simulated us-

ing one or more modes, usually of log-normal shape. The

mean radius of each mode of these size distributions varies

in time and space. Another common approach is the sec-

tional method (e.g. English et al., 2011; Hommel et al., 2011;

Sheng et al., 2015a; for ref prior to 2006 see ASAP2006,

chap. 5), where the particle size distribution is divided into

distinct size sections. Number and width of the size sections

are dependent on the specific model configuration but are

fixed throughout time and space. Size sections may be de-

fined by an average radius, or by an average mass of sulfur,

and are often spaced geometrically.

The choice of methods has an influence on simulated

stratospheric aerosol size distributions and therefore on ra-

diative and chemical effects. While previous model inter-

comparison studies in a box model (Kokkola et al., 2009) or

in a two-dimensional framework (Weisenstein et al., 2007)

were very useful for the microphysical schemes, they could

not address uncertainties in the spatial transport pattern,

e.g. transport across the tropopause and the subtropical trans-

port barrier or regional/local differences in wet and dry re-

moval. These uncertainties can only be addressed in a global

three-dimensional model framework and with a careful vali-

dation with a variety of observational data.

The June 1991 eruption of Mt Pinatubo, with the vast net

of observations that tracked the evolution of the volcanic

aerosol, provides a unique opportunity to test and validate

global stratospheric aerosol models and their ability to simu-

late stratospheric transport processes. Previous model studies

(e.g. Timmreck et al., 1999b; Aquila et al., 2012) highlighted

the importance of an interactive online treatment of strato-

spheric aerosol radiative heating for the simulated transport

of the volcanic cloud. A crucial point is the simulation of

Figure 2. Schematic overview over the processes that influence the

stratospheric aerosol size distribution. The related SSiRC experi-

ments are listed below. BG stands for Background, TAR for Tran-

sient Aerosol Record, HErSEA for Historical Eruption SO2 Emis-

sion Assessment, and PoEMs for Pinatubo Emulation in Multiple

models.

the tropical stratospheric aerosol reservoir (i.e., the tropical

pipe, Plumb, 1996) and the meridional transport through the

subtropical transport barrier. Some models show a very nar-

row tropical maximum in comparison to satellite data (e.g.,

Dhomse et al., 2014) while others show too fast a transport

to higher latitudes and fail to reproduce the long persistence

of the tropical aerosol reservoir (e.g. Niemeier et al., 2009;

English et al., 2013). Sulfate geoengineering studies confirm

the importance of the model-dependent meridional transport

through the subtropical barrier (e.g. Niemeier and Timmreck,

2015; Visoni et al., 2018; Kleinschmitt et al., 2018). Rea-

sons for these differences need to be understood with a multi-

model comparison study, as suggested for example by Tilmes

et al. (2015).

3 The ISA-MIP experiments

Many uncertainties remain in the model representation of

stratospheric aerosol. Figure 2 summarizes the main pro-

cesses that determine the stratospheric sulfate aerosol mass

load, size distribution, and the associated optical proper-

ties. The four experiments in ISA-MIP are designed to ad-

dress these key processes under a well-defined experiment

protocol with prescribed boundary conditions (sea surface

temperatures (SSTs), emissions). All simulations will be

compared to observations to evaluate model performances

and understand model strengths and weaknesses. The ex-

periment Background (BG) focuses on microphysics and

transport (Sect. 3.1) under volcanically quiescent conditions,

when stratospheric aerosol is only modulated by seasonal

www.geosci-model-dev.net/11/2581/2018/ Geosci. Model Dev., 11, 2581–2608, 2018
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Figure 3. (a) Composite of QBO-induced residual anomalies in the MAECHAM5-SAM2 modelled aerosol mass mixing ratio with respect

to the time of onset of westerly zonal mean zonal wind at 18 hPa. Black contours denote the residual zonal wind. Dashed lines represent

easterlies, contour interval is 5 ms. (b) Same but for the modelled effective radius of aerosols with R ≥ 50 nm. Figure from Hommel et

al. (2015).

changes and interannual variability. The experiment Tran-

sient Aerosol Record (TAR) addresses the role of time-

varying SO2 emission, in particular the role of small- to

moderate-magnitude volcanic eruptions and transport pro-

cesses in the upper troposphere–lower stratosphere (UTLS)

over the period 1998–2012 (Sect. 3.2). Two further experi-

ments investigate the stratospheric sulfate aerosol size distri-

bution under the influence of large volcanic eruptions. The

Historical Eruptions SO2 Emission Assessment (HErSEA)

focuses on the uncertainty in the initial emission character-

istics of recent large volcanic eruptions (Sect. 3.3), while

Pinatubo Emulation in Multiple models (PoEMS) provides

an extensive uncertainty analysis of the radiative forcing of

the Mt Pinatubo eruption. In particular the ISA-MIP model

experiments aim to address the following questions:

1. How large is the stratospheric sulfate load under vol-

canically quiescent conditions, and how sensitive is the

simulation of this background aerosol layer to model-

specific microphysical parameterization and transport?

(Sect. 3.1)

2. Can we explain the sources and mechanisms behind the

observed variability in stratospheric aerosol load since

the year 2000? (Sect. 3.2)

3. Can stratospheric aerosol observations constrain uncer-

tainties in the initial sulfur injection amount and altitude

distribution of the three largest volcanic eruptions of the

last 100 years? (Sect. 3.3)

4. What is the confidence interval for volcanic forcing of

the Pinatubo eruption simulated by interactive strato-

spheric aerosol models and to which parameter uncer-

tainties are the predictions most sensitive to? (Sect. 3.4)

Table 1 gives an overview over all ISA-MIP experiments,

which are described in detail below. In general each ex-

periment will include several simulations from which only

a subset is mandatory (Tier1). The modelling groups are

free to choose in which of the experiments they would like

to participate; however, the BG Tier1 simulation is manda-

tory for all groups and the entry card for the ISA-MIP in-

tercomparison. All model results will be saved in a consis-

tent format (netCDF), made available via https://cera-www.

dkrz.de/WDCC/ui/cerasearch/ (last access: 26 June 2018),

and compared to a set of benchmark observations. More

detailed technical information about data requests can be

found in the Supplement and on the ISA-MIP webpage:

http://www.isamip.eu (last access: 26 June 2018).

It is mandatory for participating models to run with inter-

active sulfur chemistry (see review in SPARC ASAP2006)

in order to capture the oxidation pathway from precursors

to aerosol particles, including aerosol growth due to con-

densation of H2SO4. Chemistry–climate models (CCMs)

with full interactive chemistry follow the Chemistry Cli-

mate Initiative (CCMI) hindcast scenario REF-C1 (Eyring et

al., 2013, http://www.met.reading.ac.uk/ccmi/?page_id=11,

last access: 26 June 2018) for the treatment of chemical

fields and emissions of greenhouse gases (GHGs), ozone-

depleting substances (ODSs), and very short-lived sub-

stances (VSLSs). Sea surface temperatures and sea ice extent

are prescribed as monthly climatologies from the MetOffice

Hadley Center Observational Dataset (Rayner et al., 2003).

An overview of the boundary conditions is included in the

Supplement (Table S1). Table S2 reports the inventories to be

used for tropospheric emissions of aerosols and aerosol pre-

cursors. Anthropogenic sulfur emissions and biomass burn-

ing are taken from the Monitoring Atmospheric Composi-

tion and Climate (MACC)-CITY climatology (Granier et al.,

2011). S emissions from continuously erupting volcanoes are

taken into account using Dentener et al. (2006), which is

based on Andres and Kasgnoc (1998). OCS concentrations

Geosci. Model Dev., 11, 2581–2608, 2018 www.geosci-model-dev.net/11/2581/2018/
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Table 1. General overview of the SSIRC ISA-MIP experiments.

Experiment Focus Number of specific Years Total Knowledge gap to be addressed

experiments per yearsa

experiment

Background Stratospheric sulfur 1 mandatory + 20 20 (60) 20-year climatology to understand

stratospheric budget in volcanically 2 recommended sources and sinks of stratospheric

aerosol (BG) quiescent conditions background aerosol; assessment of

sulfate aerosol load under

volcanically quiescent conditions

Transient Transient stratospheric 4 mandatory + 3 optional 15 60 Evaluate models over the period

Aerosol aerosol properties over experiments (75, 105) 1998–2012 with different volcanic

Record the period 1998 to 2012 recommended are 5 (see emission data sets;

(TAR) using different volcanic also Table 4) understand drivers and

emission data sets mechanisms for observed

stratospheric aerosol changes

since 1998

Historic Perturbation of For each (× 3) eruption 4 180 Assess how injected SO2

Eruption SO2 stratospheric aerosol; control, median and recom. 6 (270) propagates through to radiative

Emission from SO2 emission 4 (2 × 2) of high/low effects for different historical major

Assessment appropriate for 1991 deep/shallow (see tropical eruptions in the different

(HErSEA) Pinatubo, 1982 El also Table 6) interactive stratospheric aerosol

Chichón, 1963, Agung models;

use stratospheric aerosol

measurements to constrain

uncertainties in emissions and gain

new observationally constrained

volcanic forcing and surface area

density data sets;

explore the relationship between

volcanic emission uncertainties

and volcanic forcing

uncertainties

Pinatubo Perturbed parameter 10 experiments per 3 per 90 (150, Intercompare Pinatubo perturbation

Emulation in ensemble of runs to parameter, where the experimentc 240) to stratospheric-aerosol properties with full

Multiple quantify uncertainty in number of parameters uncertainty analysis over PPE run

Models each model’s refers to the by each model;

(PoEMS)b predictions minimum (3), quantify sensitivity of predicted

reduced (5), or Pinatubo perturbation stratospheric

standard (8) aerosol properties and radiative

parameter set (see effects to uncertainties in injection

also Table 10) settings and model processes;

quantify and intercompare sources

of uncertainty in simulated

Pinatubo radiative forcing for the

different complexity models

a Each model will need to include an appropriate initialization and spin-up time for each ensemble member (∼ 3–6 years depending on model configuration). b As explained in the caption to
Table 11 and Sect. 3.4, models will need to restrict the PoEMS parameter scaling to volcanically enhanced air masses (either via a total-sulfur vmr (volume mixing ratio) threshold or a
passive volcanic SO2 tracer). c Although the Pinatubo enhancement to the stratospheric aerosol layer remained apparent until 1997 (e.g. Wilson et al., 2008), whereas the HErSEA
experiments will continue for longer, the PoEMS analysis will require only 3 post-eruption years to be run, as this gives sufficient time after the peak aerosol to characterize decay timescales
robustly (e.g. ASAP2006, Sect. 5).

are fixed at the surface at a value of 510 pptv (Montzka et al.,

2007; ASAP2006). If possible, dimethyl sulfide (DMS), dust,

and sea salt emissions should be calculated online depending

on the model meteorology. Models considering DMS oxi-

dation should calculate seawater DMS emissions as a func-

tion of wind speed and DMS seawater concentrations. Oth-

erwise, modelling groups should prescribe for these species

their usual emission database for the year 2000. Each group

can specify solar forcing for year-2000 conditions according

to their usual data set.

Modelling groups are encouraged to include a set of pas-

sive tracers to diagnose the atmospheric transport indepen-

dently of emissions, mostly following the CCMI recommen-

dations (Eyring et al., 2013). These tracers are listed in Ta-

ble S3. Models diagnose aerosol parameters as specified in

Tables S4 and S5. Additionally, volume mixing ratios of

specified precursors are diagnosed.
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Table 2. List of stratospheric aerosol and SO2 observations available for the BG and TAR time period.

Measurement/platform Time period 1998–2014 Reference

SO2 profile/MLS 2004–2011 Pumphrey et al. (2015)

SO2 profile/MIPAS 2002–2012 Höpfner et al. (2013, 2015)

Aerosol extinction profile, size/SAGE II 1998–2005 Russell and McCormick (1989)

Aerosol extinction profile, size/OSIRIS 2001–2011 McLinden et al. (2012),

Rieger et al. (2015)

Aerosol extinction profile/GOMOS 2002–2021 Vanhellemont et al. (2010)

Aerosol extinction profile/SCIAMACHY 2002–2012 Taha et al. (2011)

von Savigny et al. (2015)

Aerosol extinction profile/CALIOP 2006–2011 Vernier et al. (2009, 2011a, b)

Aerosol extinction or AOD merged products 1998–2011 Rieger et al. (2015)

AOD from AERONET and lidars Ridley et al. (2014)

Surface area density Kovilakam and Deshler (2015)

Eyring et al. (2013)

3.1 Stratospheric background aerosol (BG)

3.1.1 Summary of experiment

The overall objective of the BG experiment is to better under-

stand the processes involved in maintaining the stratospheric

background aerosol layer, i.e. stratospheric aerosol not re-

sulting from direct volcanic injections into the stratosphere.

The simulations prescribed for this experiment are time-slice

simulations for the year 2000 with prescribed SST includ-

ing all sources of aerosols and aerosol precursors except

for explosive volcanic eruptions. The result of BG will be

a multi-model climatology of aerosol distribution, composi-

tion, and microphysical properties in the absence of volcanic

eruptions. By comparing models with different aerosol mi-

crophysics parameterization and simulations of background

circulation with a variety of observational data (Table 2),

we aim to assess how these processes impact the simulated

aerosol characteristics.

3.1.2 Motivation

The total net sulfur mass flux from the troposphere into

the stratosphere is estimated to be about 181 Gg S yr−1

based on simulations by Sheng et al. (2015a) using the

SOCOL-AER model, 1.5 times larger than reported in

ASAP2006 (KTH2016). This estimate, however, could be

highly dependent on the specific characteristics of the model

used, such as the strength of convective systems, scavenging

efficiency, and the occurrence of stratosphere–troposphere

exchange. Therefore, especially in the lower stratosphere, the

simulated distribution of stratospheric background aerosol

could show a very large inter-model variability.

OCS is still considered the largest contributor to the

aerosol loadings in the middle stratosphere. Several stud-

ies have shown that the transport to the stratosphere of tro-

pospheric aerosol and aerosol precursors constitutes an im-

portant source of stratospheric aerosol (KTH2016 and ref-

erences herein) although new in situ measurements indicate

that the cross-tropopause SO2 flux is negligible over Mexico

and Central America (Rollins et al., 2017). Observations of

the Asian Tropopause Aerosol Layer (ATAL; Vernier et al.,

2011a) show that, particularly in the UTLS, aerosol of tropo-

spheric origin can significantly enhance the burden of aerosol

in the stratosphere. This tropospheric aerosol has a more

complex composition than traditionally assumed for strato-

spheric aerosol: Yu et al. (2015), for instance, showed that

carbonaceous aerosol makes up to 50 % of the aerosol load-

ings within the ATAL. The rate of stratospheric–tropospheric

exchange (STE) is influenced by the seasonality of the circu-

lation and the frequency and strength of convective events in

large-scale phenomena such as the Asian and North Amer-

ican monsoon or in small-scale phenomena such as strong

storms. Model simulations by Hommel et al. (2015) also re-

vealed significant QBO signatures in aerosol mixing ratio

and size in the tropical middle stratosphere (Fig. 3). Hence,

the model-specific implementation of the QBO (nudged or

internally generated) could impact its effects on the strato-

spheric transport and, subsequently, on the stratospheric

aerosol layer.

In this experiment, we aim to assess the inter-model vari-

ability of the background stratospheric aerosol layer and

of the sulfur mass flux from the troposphere to the strato-

sphere and vice versa. We will exclude changes in emis-

sions and focus on the dependence of stratospheric aerosol

concentrations and properties on stratospheric transport and

STE. The goal of the BG experiment aims to understand

how the model-specific transport characteristics (e.g. isola-

tion of the tropical pipe, representation of the QBO and the

strength of convective systems) and aerosol parameteriza-

tions (e.g. aerosol microphysics and scavenging efficiency)

affect the representation of the background aerosol.
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Table 3. Overview of BG experiments.

Exp-name Specific description/ Period Ensemble Years per Tier

volcanic emission size member

BG_QBO Background simulation Time slice year 2000 monthly 1 20 1

varying with internal or nudged

QBO

BG_NQBO Perpetual easterly phase of the Time slice year 2000 monthly 1 20 2

QBO for the whole simulation varying without QBO

BG_NAT Only natural sources of aerosol Time slice year 2000 monthly 1 20 2

(including biomass burning) varying with internal or nudged

QBO (when possible)

3.1.3 Experiment set-up and specifications

The BG experiment prescribes one mandatory (BG_QBO)

and two recommended (BG_NQBO and BG_NAT) simula-

tions (see Table 3). BG_QBO is a time-slice simulation with

conditions characteristic of the year 20001, with the goal of

understanding sources, sinks, composition, and microphysi-

cal characteristics of stratospheric background aerosol under

volcanically quiescent conditions. The time-slice simulation

should be at least 20 years long, after a spin-up period of at

least 10 years to equilibrate stratospherically relevant quan-

tities such as OCS concentrations and the age of air. The pe-

riod seems to be sufficient to study differences in the aerosol

properties but needs to be extended if dynamical changes,

e.g. in NH winter variability, are to be analysed. Modelling

groups should run this simulation with varying QBO, either

internally generated or nudged to the 1981–2000 period.

If resources allow, each model should perform the sensi-

tivity experiments BG_NQBO and BG_NAT. The specifics

of these two experiments are the same as for BG_QBO,

but BG_NQBO should be performed without varying QBO2

and BG_NAT without anthropogenic emissions of aerosol

and aerosol precursors, as indicated in Table S1. The goals

of these sensitivity experiments are to understand the effect

of the QBO on the background aerosol characteristics and

the contribution of anthropogenic sources to the background

aerosol loading in the stratosphere.

3.2 Transient Aerosol Record (TAR)

3.2.1 Summary of experiment

The aim of the TAR experiment is to investigate the rel-

ative contributions of volcanic and anthropogenic sources

to the temporal evolution of the stratospheric aerosol layer

between 1998 and 2012. Observations show that there is a

1To ensure comparability to the AeroCom simulations (http://

aerocom.met.no/Welcome.html, last access: 26 June 2018).
2Models with an internally generated QBO might nudge the

tropical stratospheric winds.

transient increase in stratospheric aerosol loading, in partic-

ular after the year 2003, with small-to moderate-magnitude

volcanic eruptions contributing significantly to this increase

(e.g. Solomon et al., 2011; Vernier et al., 2011b; Neely III et

al., 2013; Ridley et al., 2014; Santer et al., 2015; Brühl et al.,

2015). TAR model simulations will be performed using spec-

ified dynamics, prescribed sea surface temperature and time-

varying SO2 emissions. The simulations are suitable for any

general circulation or chemistry transport models that simu-

late the stratospheric aerosol interactively and have the capa-

bility to nudge meteorological parameters to reanalysis data.

The TAR protocol covers the period from January 1998 to

December 2012, when only volcanic eruptions have affected

the UTLS aerosol layer with SO2 emissions about an order

of magnitude smaller than Pinatubo. Time-varying surface

emission data sets contain anthropogenic and natural sources

of sulfur aerosol and their precursor species. The volcanic

SO2 emission inventories contain information of all known

eruptions that emitted SO2 into the UTLS during this period.

It comprises the geolocation of each eruption, the amount of

SO2 emitted, and the height of the emissions. SO2 emissions

from continuously degassing volcanoes are also included.

3.2.2 Experiment set-up and specifications

Participating models are encouraged to perform up to seven

experiments, based on five different volcanic SO2 emission

databases (hereafter referred to as VolcDB). Four experi-

ments are mandatory; three others are optional. The vol-

canic experiments are compared to a reference simulation

(TAR_base) that does not use any of the volcanic emission

databases but emissions from continuously degassing volca-

noes. The aim of the reference simulation is to simulate the

non-volcanically perturbed state of the stratospheric aerosol

layer. In contrast to the experiment protocol BG (Sect. 3.1),

here time-varying surface boundary conditions (SST/SIC)

are applied, whereas BG intercompares model simulations

under climatological mean conditions and uses constant

2000 conditions.
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An overview of the volcanic emission inventories is given

in Table 4 and in Fig. 4. VolcDB1/2/3 are new compilations

(Bingen et al., 2017; Neely and Schmidt, 2016; Carn et al.,

2016), whereas a fourth inventory (VolcDB4; Diehl et al.,

2012), provided earlier, for the AeroCom community mod-

elling initiative, is optional. The databases use SO2 observa-

tions from different sources and apply different techniques

for the estimation of injection heights and the amount of

emitted SO2. The four inventories are provided in the form

of tabulated point sources, with each modelling group to

translate emitted SO2 mass for each eruption into model lev-

els spanning the upper and lower emission altitudes. To test

the effect of the implementation strategy (point source vs.

cloud), an additional non-mandatory experiment has been set

up: TAR_db1_3D with VolcDB1_3D as corresponding data

set which provides a series of discrete 3-D gridded SO2 in-

jections at specified times. In both versions of VolcDB1, the

integral SO2 mass of each injection is consistent.

We recommend performing one additional non-mandatory

experiment TAR_sub in order to quantify and isolate the ef-

fects of eight volcanic eruptions that either had a statisti-

cally significant effect on, for instance, tropospheric tem-

peratures (Santer et al., 2014, 2015) or emitted signifi-

cant amounts of SO2 over the 1998 to 2012 time period.

This experiment uses a subset of volcanic emissions (Vol-

cDBSUB) that were derived based on the average mass of

SO2 emitted using VolcDB1, VolcDB2, and VolcDB3 for

the following eruptions: 28 January 2005 Manam (4.0◦ S,

Papua New Guinea), 7 October 2006 Tavurvur (4.1◦ S, Papua

New Guinea), 21 June 2009 Sarychev, (48.5◦ N, Kyrill,

UDSSR) 8 November 2010 Merapi (7.3◦ S, Java, Indone-

sia), and 21 June 2011 Nabro (13.2◦ N, Eritrea). In addi-

tion the eruptions of Soufrière Hills (16.4◦ N, Montserrat) on

20 May 2006, Okmok (53.3◦ N, Alaska) on 12 July 2008, and

Kasatochi (52.1◦ N, Alaska) on 7 August 2008 are consid-

ered (Table S6) although these are not discernible in climate

proxies (Kravitz et al., 2010; Santer et al., 2014, 2015).

To summarize the number of experiments to be conducted

within TAR, four are mandatory (TAR_base with no vol-

canic emission, Tar_db1/2/3), one additional one is recom-

mended (TAR_sub), and two others are optional (TAR_db4

and TAR_db1_3D; see Table 5 for an overview).

Volcanic SO2 emission databases

VolcDB1 (Bingen et al., 2017; Brühl, 2018) are updates

from Brühl et al. (2015) using satellite data of MI-

PAS and OMI. For TAR, VolcDB1 has been extended

based on data from Global Ozone Monitoring by Occul-

tation of Stars (GOMOS), SAGE II, Total Ozone Map-

ping Spectrometer (TOMS), and the Smithsonian database.

The VolcDB1_3D data set, for the optional experiment

TAR_db1_3D, contains volume mixing ratio distributions of

the injected SO2 cloud on a T42 Gaussian grid with 90 levels.

The integral SO2 mass for each injection is the same. Vol-

Figure 4. Annual total volcanic sulfur dioxide (SO2) emission from

three different emission data sets between 2003 and 2008 to be used

in the Tier1 MITAR experiments. VolcDB1 (Bingen et al., 2017)

considers only stratospheric SO2 emissions; VolcDB2 (Neely and

Schmidt, 2016) and VolcDB3 (Carn et al., 2016) consider both tro-

pospheric and stratospheric SO2 emission.

cDB2 (Mills et al., 2016; Neely and Schmidt, 2016) contains

volcanic SO2 emissions and plume altitudes for eruptions

that have been detected by satellite instruments including

TOMS, OMI, OMPS, the Infrared Atmospheric Sounding

Interferometer (IASI), the Global Ozone Monitoring Experi-

ment (GOME/2), the Atmospheric Infrared Sounder (AIRS),

the Microwave Limb Sounder (MLS), and the MIPAS in-

strument. The database is compiled based on published es-

timates of the eruption source parameters and reports from

the Smithsonian Global Volcanism Program (http://volcano.

si.edu/, last access: 26 June 2018), NASA’s Global Sul-

fur Dioxide Monitoring website (http://so2.gsfc.nasa.gov/,

last access: 26 June 2018) as well as the Support to Avia-

tion Control Service (http://sacs.aeronomie.be/, last access:

26 June 2018). The tabulated point source database also in-

cludes volcanic eruptions that emitted SO2 into the tropo-

sphere only, as well as direct stratospheric emissions, and has

been used and compared to observations in Mills et al. (2016)

and Solomon et al. (2016).

VolcDB3 uses the most recent compilation of the volcanic

degassing database of Carn et al. (2016). Observations from

the satellite instruments TOMS, the High-resolution Infrared

Sounder (HIRS/2), AIRS, OMI, MLS, IASI, and OMPS are

considered, measuring in the UV, IR, and microwave spectral

bands. Similar to VolcDB1/2, VolcDB3 also includes tropo-

spheric eruptions.

Historically VolcDB4 is an older data set, which relies on

information from TOMS, OMI, the Global Volcanism Pro-

gram (GVP), and other observations from the literature, cov-

ering the time period from 1979 to 2010. In contrast to the

other inventories, VolcDB4 has previously been applied by

a range of models within the AeroCom community (http:

//aerocom.met.no/emissions.html, last access: 26 June 2018;

Diehl et al., 2012; Dentener et al., 2006). Hence, it adds valu-
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Table 4. Overview of volcanic emission data sets for the different TAR experiments. Sensor acronyms: MIPAS: Michelson Interferometer for Passive Atmospheric Sounding; GOMOS:

Global Ozone Monitoring by Occultation of Stars; TOMS: Total Ozone Mapping Spectrometer; OMI: Ozone Monitoring Instrument; OMPS: Ozone Mapping and Profiler Suite; IASI:

Infrared Atmospheric Sounding Interferometer; GOME: Global Ozone Monitoring Experiment; AIRS: Atmospheric Infrared Sounder; MLS: Microwave Limb Sounder; HIRS: High-

resolution Infrared Radiation Sounder; References to the observational data and emission sources included are given in the reference paper and for VolcDB1(_3D) also in Table S2.1.

VolcDB1_3D is a three-dimensional database, containing the spatial distributions of the injected SO2 as initially observed by the satellite instruments. In both versions of VolcDB1, the

integral SO2 mass of each injection is consistent.

Volcanic VolcDB1 VolcDB2 VolcDB3 VolcDB4 VolcDBSUB VolcDB1_3D

database

Covering period Dec 1997– Jan 1990– 1978–2014 1979–2010 Dec 1997–

Apr 2012 Dec 2014 Apr 2012

Observational MIPAS, GOMOS, OMI, OMPS, TOMS, HIRS/2, TOMS, OMI MIPAS, GOMOS,

data sets SAGEII, TOMS, IASI, TOMS, AIRS, OMI, SAGEII, TOMS,

OMI GOME/2, AIRS, MLS, IASI, and OMI

MLS, MIPAS OMPS

Reference Brühl et al. (2018), Mills et al. (2016), Carn et al. (2016)c Diehl et al. (2012), Subset of eight 3-D netCDF

Bingen et al. (2017)a Neely and Schmidt (2016)b AeroCom-II volcanoes; Brühl (2018),

HCA0 v1/v2d contains SO2 Bingen et al. (2017)f

emissions and

plume altitudes

averaged over

the three mandatory

databases;

details are

given in the

Appendix (Table S6)e

a https://cera-www.dkrz.de/WDCC/ui/cerasearch/entry?acronym=SSIRC_1 (last access: 26 June 2018). b http://catalogue.ceda.ac.uk/uuid/bfbd5ec825fa422f9a858b14ae7b2a0d (last access: 26 June 2018).
c https://measures.gesdisc.eosdis.nasa.gov/data/SO2/MSVOLSO2L4.2/ (last access: 26 June 2018). d http://aerocom.met.no/download/emissions/HTAP (last access: 26 June 2018).
e http://isamip.eu/fileadmin/user_upload/isamip/volc_sub_v185.dat (last access: 26 June 2018). f https://cera-www.dkrz.de/WDCC/ui/cerasearch/entry?acronym=SSIRC_1 (last access: 26 June 2018).

w
w

w
.g

eo
sci-m

o
d

el-d
ev.n

et/1
1

/2
5

8
1

/2
0

1
8

/
G

eo
sci.

M
o

d
el

D
ev.,

1
1

,
2

5
8

1
–

2
6

0
8

,
2

0
1

8



2592 C. Timmreck et al.: ISA-MIP: motivation and experimental design

Table 5. Overview of TAR experiments.

Exp-name Volcanic Specific description Period Years Tier

database per

name member

TAR_base – No sporadically erupting Transient 1998–2012 15 1

volcanic emission monthly varying

TAR_db1 VolcDB1 Volcanic emission data set Transient 1998–2012 15 1

(Brühl et al., 2015 and updates) monthly varying

TAR_db2 VolcDB2 Volcanic emission data set Transient 1998–2012 15 1

(Mills et al., 2016) monthly varying

TAR_db3 VolcDB3 Volcanic emission data set Transient 1998–2012 15 1

(Carn et al., 2016) time varying

TAR_db4 VolcDB4 Volcanic emission data set Transient 1998–2010 13 3

(Diehl et al., 2012) and updates time varying

TAR_sub VolcDBSUB Subset of strongest eight volcanoes; Transient 1998–2012 15 2

averaged SO2 emissions and monthly varying

averaged injection heights from

VolcDB1/2/3

TAR_db1_3D VolcDB1_3D NetCDF version of volcanic Transient 1998–2012 15 3

emission data set VolcDB1 monthly varying

(Brühl et al., 2015, and updates)

Figure 5. Example results from interactive stratospheric aerosol simulations with the UM-UKCA model (Dhomse et al., 2014) of five

different SO2 injection realizations of the 1991 Pinatubo eruption (see Table 8), The model tropical mean extinction in the mid-visible

(550 nm) and near-infrared (1020 nm) is compared to that from SAGE-II measurements. Only two of the five injection realizations inject

below 20 km and the impact on the timing of the peak and general evolution of the aerosol optical properties is apparent. In this model the

growth to larger particle sizes and subsequent sedimentation to lower altitudes is able to explain certain signatures seen in the satellite data

(see also Mann et al., 2015).
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able information to the TAR experiments because it allows

an estimation of how the advances in observational methods

impact modelling results. It should be noted that VolcDB4 al-

ready contains the inventory of Andres and Kasgnoc (1998)

for S emissions from continuously erupting volcanoes and

should not be allocated twice when running this experiment.

Boundary conditions, chemistry, and forcings

To reduce uncertainties associated with model differences in

the reproduction of synoptic and large-scale transport pro-

cesses, models are strongly encouraged to perform TAR ex-

periments with specified dynamics, where meteorological

parameters are nudged to a reanalysis such as the ECMWF

ERA-Interim (Dee et al., 2011). This allows models to rea-

sonably reproduce the QBO and planetary wave structure in

the stratosphere and to replicate as closely as possible the

state of the BDC in the simulation period. Nudging also al-

lows comparing directly to available observations of strato-

spheric aerosol properties (Table 2), such as the extinction

profiles and aerosol optical depth (AOD), and should en-

able the models to simulate the ATAL (Vernier et al., 2011a;

Thomason and Vernier, 2013), which, so far, has been studied

only by very few global models in great detail (e.g. Neely III

et al., 2014; Yu et al., 2015).

3.3 Historical Eruption SO2 Emission

Assessment (HErSEA)

3.3.1 Summary of experiment

This HErSEA experiment will involve each participating

model running a limited ensemble of simulations for each

of the three largest volcanic perturbations to the stratosphere

in the last 100 years: 1963 Mt Agung, 1982 El Chichón, and

1991 Mt Pinatubo.

The main aim is to use a wide range of stratospheric

aerosol observations to constrain uncertainties in the SO2

emitted for each eruption (amount, injection height). Several

different aerosol metrics will be intercompared to assess how

effectively the emitted SO2 translates into perturbations to

stratospheric aerosol properties and simulated radiative forc-

ings across interactive stratospheric aerosol CCMs with a

range of different complexities. Whereas the TAR simula-

tions (see Sect. 3.2) use specified dynamics and are suitable

for chemistry transport models, for this experiment, simu-

lations must be free-running with radiative coupling to the

volcanically enhanced stratospheric aerosol, thereby ensur-

ing the composition–radiation–dynamics interactions associ-

ated with the injection are resolved. We are aware that this

specification inherently excludes chemistry transport models,

which must impose atmospheric dynamics. However, since

the aim is to apply stratospheric aerosol observations in con-

cert with the models to re-evaluate current best estimates of

the SO2 input and in light of the first-order impact the strato-

spheric heating has on hemispheric dispersion from these

major eruptions (e.g. R. E. Young et al., 1994), we assert that

this apparent exclusivity is entirely justified in this case.

As well as analysing and evaluating the individual model

skill and identifying model consensus and disagreement for

these three specific eruptions, we also seek to learn more

about major eruptions which occurred before the era of satel-

lite and in situ stratospheric measurements. Our understand-

ing of the effects from these earlier eruptions relies on de-

riving volcanic forcings from proxies such as sulfate deposi-

tion to ice sheets (Gao et al., 2007; Sigl et al., 2015; Toohey

et al., 2013), from photometric measurements from astro-

nomical observatories (Stothers, 1996, 2001), or from doc-

umentary evidence (Stothers, 2002; Stothers and Rampino,

1983; Toohey et al., 2016a). Although HErSEA has no spe-

cific experiment to understand the relationship between the

ice core sulfate deposition and the stratospheric aerosol layer

enhancements that drive the surface cooling, there is the po-

tential for a systematic inter-model study (e.g. similar to Mar-

shall et al., 2018) to identify how uncertain historic volcanic

forcings derived from ice core sulfate deposition may be.

3.3.2 Motivation

In the days following the June 1991 Pinatubo eruption, satel-

lite SO2 measurements show (e.g. Guo et al., 2004a) that

the peak gas phase sulfur loading was 7 to 11.5 Tg S (or

14–23 Tg SO2). The chemical conversion to sulfuric aerosol

that occurred in the tropical reservoir over the following

weeks and the subsequent transport to mid- and high latitudes

caused a major enhancement to the stratospheric aerosol

layer. The peak particle sulfur loading, through this global

dispersion phase, reached only around half that in the ini-

tial SO2 emission; the maximum particle sulfur loading was

measured as 3.7 to 6.7 Tg S (Lambert et al., 1993; Baran and

Foot, 1994), based on an aqueous sulfuric acid composition

range of 59 to 77 % by weight (Grainger et al., 1993).

Whereas some model studies with aerosol microphysical

processes find consistency with observations for SO2 injec-

tion values of 8.5 Tg S (e.g., Niemeier et al., 2009; Toohey

et al., 2011; Brühl et al., 2015), several recent microphysi-

cal model studies (Dhomse et al., 2014; Sheng et al., 2015a;

Mills et al., 2016) find best agreement for an injected sul-

fur amount at, or even below, the lower end of the range

of the satellite SO2 measurements; see also Fig. 5. Model

predictions are known to be sensitive to differences in as-

sumed injection height (e.g. Sheng et al., 2015b; Jones et

al., 2016), and whether models resolve radiative heating and

“self-lofting” effects also affects subsequent transport path-

ways (e.g. R. E. Young et al., 1994; Timmreck et al., 1999b;

Aquila et al., 2012). Another potential mechanism that could

explain part of the apparent model–observation discrepancy

is that a substantial proportion of the sulfur may have been

removed from the plume in the first months after the erup-
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Table 6. Overview of HErSEA experiments.

Exp-name Specific description/volcanic emission Period Ensemble Years per Tier

size member

HErSEA_Pin_Em_Ism Pinatubo episode, Transient 1991– 3 5 1

SO2 Emission = medium, Inject shallow @ medium-alt. 1995

HErSEA_Pin_Eh_Ism Pinatubo episode, incl. GHGs & 3 5 1

SO2 Emission = high, Inject shallow @ medium-alt. ODSs

HErSEA_Pin_El_Ism Pinatubo episode, (monthly varying 3 5 1

SO2 Emission = low, Inject shallow @ medium-alt. SST &

HErSEA_Pin_Em_Isl Pinatubo episode, sea-ice from 3 5 2

SO2 Emission = medium, Inject shallow @ low-alt. HadISST

HErSEA_Pin_Em_Idp Pinatubo episode, as for CCMI) 3 5 2

SO2 Emission = medium, Inject over deep altitude-range

HErSEA_Pin_Cntrol Pinatubo episode, 3 5 1

No Pinatubo SO2 emission

HErSEA_ElC_Em_Ism El Chichón episode, Transient 1982– 3 5 1

SO2 Emission = medium, Inject shallow @ medium-alt. 1986

HErSEA_ElC_Eh_Ism El Chichón episode, incl. GHGs & 3 5 1

SO2 Emission = high, Inject shallow @ medium-alt.

HErSEA_ElC_El_Ism El Chichón episode, SO2 ODSs (monthly 3 5 1

Emission = low, Inject shallow @ medium-alt. varying SST and

HErSEA_ElC_Em_Isl El Chichón episode, sea-ice from 3 5 2

SO2 Emission = medium, Inject shallow@low-altitude HadISST

HErSEA_ElC_Em_Idp El Chichón episode, as for CCMI) 3 5 2

SO2 Emission = medium, Inject over deep altitude-range

HErSEA_ElC_Cntrol El Chichón episode 3 5 1

no El Chichón SO2 emission

HErSEA_Agg_Em_Ism Agung episode Transient 1963– 3 5 1

SO2 Emission = medium, Inject shallow @ medium-alt. 1967

HErSEA_Agg_Eh_Ism Agung episode, incl. GHGs & 3 5 1

SO2 Emission = high, Inject shallow @ medium-alt. ODSs

HErSEA_Agg_El_Ism Agung episode, (monthly varying 3 5 1

SO2 Emission = low, Inject shallow @ medium-alt. SST and sea-ice

HErSEA_Agg_Em_Isl Agung episode, from HadISST 3 5 2

SO2 Emission = medium, Inject shallow @ low-alt. as for CCMI)

HErSEA_Agg_Em_Idp Agung episode, 3 5 2

SO2 Emission = medium, Inject over deep altitude-range

HErSEA_Agg_Cntrol Agung episode 3 5 1

no Agung SO2 emission

tion due to accommodation onto co-emitted ash/ice (Guo et

al., 2004b) and subsequent sedimentation.

This ISA-MIP experiment will explore these issues fur-

ther, with the participating models carrying out co-ordinated

experiments of the three most recent major eruptions, with

specified common SO2 amounts and injection heights (Ta-

ble 6). This design ensures the analysis can focus on

key inter-model differences such as stratospheric circula-

tion/dynamics, the impacts from radiative dynamical inter-

actions, and the effects of aerosol microphysical schemes.

Analysing how the vertical profile of the enhanced strato-

spheric aerosol layer evolves during global dispersion and

decay will provide a key indicator for why the models differ,

and what the key driving mechanisms are. Furthermore, the

actual response of the BDC and mean age of air to Pinatubo

is poorly constrained by existing reanalysis data (Garfinkel et

al., 2017). While some modelling studies reported a decreas-

ing mean age of air following volcanic eruptions throughout

the stratosphere (Garcia et al., 2011; Garfinkel et al., 2017),

others show an increase in mean age (Diallo et al., 2017).

Moreover, Muthers et al. (2016) found a decreasing mean

age of air in the middle and upper stratosphere and an in-

creasing mean age below, while Pitari et al. (2016a) found a

decreasing mean age at higher levels of 30 hPa in the tropics

and 10 hPa in the middle latitudes after the Pinatubo erup-

tion. The HErSEA experiment in combination with a passive

volcanic tracer might therefore help to better constrain the re-

sponse of the BDC to volcanic eruptions using observations

and help to clarify the uncertainties in the age-of-air changes

after the Pinatubo eruption. For all three major eruptions, we

have identified key observational data sets (Table 7) that will

provide benchmark tests to evaluate the vertical profile, cov-

ering a range of different aerosol metrics.
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Table 7. List of stratospheric aerosol observation data sets from the three large eruptions of the 21st century (Agung, El Chichón, and

Mt Pinatubo). For NDACC archive, see http://www.ndsc.ncep.noaa.gov/data/ (last access: 26 June 2018).

Eruption Measurement/platform References

Pinatubo Extinction/AOD [multi-l]: SAGE-II, AVHRR, Hamill and Brogniez (SPARC, 2006, and references

HALOE, CLAES therein)

Balloon-borne size-resolved concentration profiles Deshler (1994, Kiruna, EASOE), Deshler et al.

(CPC, OPC) (2003)

Impactors on ER2 (AASE2), FCAS, and FSSP on Pueschel et al. (1994), Wilson et al. (1993), Brock et

ER2 (AASE2) al. (1993)

Ground-based lidar; airborne lidar NDACC archive; S. A. Young et al. (1994), Browell

Ship-borne lidar measurements et al. (1993)

Avdyushin et al. (1993); Nardi et al. (1993), Stevens et

al. (1994)

El Chichón Satellite extinction/AOD 1000 nm (SAM-II) Hamill and Brogniez (SPARC, 2006 & references

Balloon-borne particle concentration profiles therein)

Ground-based lidar Hofmann and Rosen (1983, 1987).

NDACC archive

Agung Surface radiation measurements Dyer and Hicks (1965), Pueschel et al. (1972), Moreno

(global dataset gathered in Dyer and Hicks, 1968) and Stock (1964), Flowers and Viebrock (1965)

Balloon-borne measurements Rosen (1964, 1966, 1968), Pittock (1966)

Ground-based lidar, searchlight, and twilight Clemesha et al. (1966), Grams and Fiocco (1967), Kent et

measurements al. (1967), Elterman et al. (1969), Volz (1964, 1965, 1970)

Aircraft measurements Mossop (1963, 1964), Friend (1966)

3.3.3 Experiment set-up and specifications

Each modelling group will run a mini-ensemble of transient

AMIP-type runs for the three eruptions with upper and lower

bound SO2 emissions and three different injection height set-

tings: two shallow (e.g. 19–21 and 23–25 km) and one deep

(e.g. 19–25 km) (see Table 7). The seasonal cycle of the

BDC affects the hemispheric dispersion of the aerosol plume

(e.g. Toohey et al., 2011), and the phase of the QBO is also

known to be a key control for tropical eruptions (e.g. Trepte

and Hitchman, 1992). In order to quantify the contribution

of the tracer transport, it is recommended to additionally ini-

tialize and transport a passive tracer Volc (Table S3). Note

that since the AMIP-type simulations will be transient, pre-

scribing time-varying sea surface temperatures, the models

will automatically match the surface climate state (ENSO,

NAO) through each post-eruption period. Where possible,

models should re-initialize (if they have internally generated

QBO) or use specified dynamics approaches (e.g. Telford et

al., 2008) to ensure the model dynamics are consistent with

the QBO evolution through the post-eruption period. General

circulation models should use GHG concentrations appropri-

ate for the period, and models with interactive stratospheric

chemistry should ensure the loading of ODSs matches that

for the time period.

Table 8 shows the settings for the SO2 injection for each

eruption. Note that experience of running interactive strato-

spheric aerosol simulations shows that the vertical extent of

the enhanced stratospheric aerosol will be different from the

altitude range in which the SO2 is injected. So, these sensi-

tivity simulations will allow us to assess the behaviour of the

individual models with identical settings for the SO2 injec-

tion.

For these major eruptions, where the perturbation is much

larger than in TAR, model diagnostics include AOD and ex-

tinction at multiple wavelengths and heating rates (K day−1)

in the lower stratosphere to identify the stratospheric warm-

ing induced by simulated volcanic enhancement, includ-

ing exploring compensating effects from other constituents

(e.g. Kinne et al., 1992). To allow the global variation in size

distribution to be intercompared, models will also provide a

3-D monthly effective radius, which also includes cumulative

number concentration at several size cuts for direct compari-

son to balloon measurements. Examining the co-variation of

the particle size distribution with variations in extinction at

different wavelengths will be of particular interest in relation

to approaches used to interpret astronomical measurements

of eruptions in the pre in situ era (Stothers, 1996, 2001). A

three-member ensemble will be submitted for each different

injection setting.

3.4 Pinatubo Emulation in Multiple models (PoEMs)

3.4.1 Summary of experiment

The PoEMS experiment will involve each interactive strato-

spheric aerosol model running a perturbed parameter ensem-

ble (PPE) of simulations through the 1991–1995 Pinatubo-

perturbed period. Variation-based sensitivity analysis will

derive a probability distribution function (PDF) for each

model’s predicted Pinatubo forcing, following techniques ap-

www.geosci-model-dev.net/11/2581/2018/ Geosci. Model Dev., 11, 2581–2608, 2018



2596 C. Timmreck et al.: ISA-MIP: motivation and experimental design

Table 8. Settings to use for initializing the mini-ensemble of interactive stratospheric aerosol simulations for each eruption in the HErSEA

experiment. For Pinatubo the upper range of SO2 emission is based on TOMS/TOVS SO2 observations (Guo et al., 2004a). The SO2

emissions flux ranges and central values (in parentheses) are specifically for application in interactive stratospheric aerosol (ISA) models

rather than any new data compilation. The lower range and the central values are defined according to some recent Pinatubo studies (Dhomse

et al., 2014; Mills et al., 2016; Sheng et al., 2015a) which have identified a modest downward adjustment of initially observed SO2 amounts to

agree with HIRS/ISAMS measurements of peak sulfate aerosol loading (Baran and Foot, 1994). The adjustment assumes either uncertainties

in the satellite measurements or that loss pathways in the first few weeks after these eruptions are either underpredicted (e.g. due to coarse

spatial resolution) or omitted completely (accommodation onto ash/ice) in the ISA models. The El Chichón SO2 central estimate is taken

from Krueger et al. (2008), and an emission range is based on assumed ±33 %, while for Agung the SO2 emission estimate is from Self and

King (1996). For Pinatubo, injection height ranges for the two shallow and one deep realization are taken from Antuña et al. (2002). The

El Chichón values are based on the tropical lidar signal from Fig. 4.34 of Hamill and Brogniez (2006), whereas for Agung we considered the

measurements presented in Dyer and Hicks (1968) including balloon soundings (Rosen, 1964) and ground-based lidar (Grams and Fiocco,

1967).

Eruption Location Date SO2 (Tg) Shallow × 2 Deep

Mt Pinatubo 15◦ N, 120◦ E 15 Jun 1991 10–20 (14) 18–20, 21–23 km 18–25 km

El Chichón 17◦ N, 93◦ W 4 Apr 1982 5–10 (7) 22–24, 24–26 km 22–27 km

Mt Agung 8◦ S, 115◦ E 17 Mar 1963 5–10 (7) 17–19, 20–22 km 17–23 km

plied successfully to quantify and attribute sources of uncer-

tainty in tropospheric aerosol forcings (e.g. Carslaw et al.,

2013). The approach will teach us which aspects of the ra-

diative forcing from major eruptions is most uncertain and

will enable us to identify how sensitive model predictions of

key features (e.g. timing and value of peak forcing and de-

cay timescales) are to uncertainties in several model param-

eters. Comparing the time signatures of different underlying

aerosol metrics (mid-visible AOD, effective radius, particle

number) between models, and crucially also against obser-

vations, may also help to reduce the natural forcing uncer-

tainty, potentially thereby making the next generation of cli-

mate models more robust.

3.4.2 Motivation

The sudden global cooling from major eruptions is a key sig-

nature in the historical climate record and a natural global

warming signature occurs after peak cooling as volcanic

aerosol is slowly removed from the stratosphere. Quantita-

tive information on the uncertainty range of volcanic forc-

ings is therefore urgently needed. The amount of data col-

lected by satellite-, ground-, and airborne instruments in

the period following the 1991 eruption of Mount Pinatubo

(see, e.g., Sect. 3.3.2, Table 7) provides an opportunity to

test model capabilities in simulating large perturbations of

stratospheric aerosol and their effect on the climate. Re-

cent advances in quantifying uncertainty in climate models

(e.g. Rougier et al., 2009; Lee at al., 2011) involve running

ensembles of simulations to systematically explore combina-

tions of different external forcings to scope the range of pos-

sible realizations. There are now a large number of general

circulation models (GCMs) with prognostic aerosol mod-

ules, which tend to assess the stratospheric aerosol perturba-

tion through the Pinatubo-perturbed period (see Table 9). Al-

though these different models achieve reasonable agreement

with the observations, this consistency of skill is achieved

with considerable diversity in the values assumed for the ini-

tial magnitude and distribution of the SO2 injection. The SO2

injections prescribed by different models range from 5 to

10 Tg S, and the upper edge of the injection altitude varies

among models from as low as 18 km to as high as 29 km, as

shown in Table 9. Such simulations also differ in the choice

of the vertical distribution of SO2 injection (e.g. uniform,

Gaussian or triangular distributions) and the horizontal in-

jection area (one to several grid boxes). The fact that differ-

ent choices of injection parameters lead to similar results in

different models points to differences in the models’ internal

treatment of aerosol evolution. Accurately capturing micro-

physical processes such as coagulational, growth, and subse-

quent rates of sedimentation has been shown to be important

for volcanic forcings (English et al., 2013), but some studies

(e.g. Mann et al., 2015) identify that these processes inter-

play also with aerosol–radiation interactions, the associated

dynamical effects changing the fate of the volcanic sulfur and

its removal into the troposphere. The PoEMS experiment will

specifically assess this issue by adjusting the rate of specific

microphysical processes in each model simultaneously with

perturbations to SO2 emission and injection height, thereby

assessing the footprint of their influence on subsequent vol-

canic forcing in different complexity aerosol schemes and

the relative contribution to uncertainty from emissions and

microphysics.

3.4.3 Experiment set-up and specifications

For each model, an ensemble of simulations will be per-

formed varying SO2 injection parameters and a selection of

internal model parameters within a realistic uncertainty dis-

tribution. A maximin Latin hypercube sampling strategy will
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Table 9. List of SO2 injection settings used in different interac-

tive stratospheric aerosol model simulations of the 1991 Mount

Pinatubo eruption. ∗ Main peak at 23.5 km, secondary peak at

21 km.

SO2 Study SO2

mass height

(Tg S) (km)

5 Dhomse et al. (2014) 19–27

5 Mills et al. (2016) 18–20

7 Sheng et al. (2015a, b) 17–30

8.5 Timmreck et al. (1999a, b) 20–27

8.5 Niemeier et al. (2009); 24

Toohey et al. (2011)

8.5 Brühl et al. (2015) 18–26∗

10 Pitari and Mancini (2002) 18–25

10 Oman et al. (2006) 19–29

10 Aquila et al. (2012, 2013) 16–18, 17–27

10 English et al. (2013) 15.1–28.5

be used to define parameter values to be set in each PPE

member in order to obtain good coverage of the parame-

ter space. The maximin Latin hypercube is designed such

that the range of every single parameter is well sampled

and the sampling points are well spread through the multi-

dimensional uncertainty space – this is achieved by splitting

the range of every parameter into N intervals and ensuring

that precisely one point is in each interval in all dimensions,

where N is the total number of model simulations, and the

minimum distance between any pair of points in all dimen-

sions is maximized. Figure 6 shows the projection onto two

dimensions of a Latin hypercube built in eight dimensions

with 50 model simulations. The size of the Latin hypercube

needed will depend on the number of model parameters to be

perturbed; the number of simulations to be performed will be

equal to 10 times the number of parameters – 7 per parame-

ter to build the emulator and 3 per parameter to validate the

emulator. All parameters are perturbed simultaneously in the

Latin hypercube.

In order to be inclusive of modelling groups with less

computing time available and of different types of aerosol

schemes, we define three options of experimental design with

different numbers of perturbed parameters and thus simula-

tion ensemble members. The three options involve varying

all eight (standard set), five (reduced set), or three (minimum

set) of the list of uncertain parameters, resulting in ensem-

bles of 80 (standard), 50 (reduced), or 30 (minimum) PPE

members. The parameters to be varied are shown in Table 10

and include variables related to the volcanic injection, such

as its magnitude, height, latitudinal extent, and composition,

and to the life cycle of the volcanic sulfate, such as the sed-

imentation rate, its microphysical evolution, and the SO2 to

SO2−
4 conversion rate.

Figure 6. Illustration of the Latin hypercube sampling method.

Each dot represents the value used in one of the particular simula-

tions with a perturbed parameter ensemble (PPE) with 50 members

(realizations/integrations).

Prior to performing the full PPE, modelling groups are en-

couraged to run “one-at-a-time” (OAT) test runs with each

of the process parameters increased/decreased to its maxi-

mum/minimum value. Submission of these OAT test runs is

encouraged (following the naming convention in Table 11)

because as well as being an important check that the model

parameter scaling is being implemented as intended, the re-

sults will also enable intercomparison of single-parameter ef-

fects between participating models ahead of the full ensem-

ble. When imposing the parameter scalings, the models must

only enact that change in grid boxes with volcanically en-

hanced air masses. This can be determined either via total

sulfur volume mixing ratio threshold suitable for the partic-

ular model or via the “passive tracer Volc” recommended in

Sect. 3.3.3. Restricting the perturbation to the Pinatubo sulfur

will leave pre-eruption conditions and tropospheric aerosol

properties unchanged, ensuring a clean “uncertainty pdf” for

the “volcanic forcing”.

That this restriction to the parameter scalings is opera-

tional is an important preparatory exercise and will need to

have been verified when running the OAT test runs.

Once a modelling group has performed the PPE of simu-

lations as defined by the Latin hypercube a statistical anal-

ysis will be performed. Emulators for each of a selection of

key metrics will be built, following the approach described

by Lee et al. (2011), to examine how the parameters lead to

uncertainty in key features of the Pinatubo-perturbed strato-

spheric aerosol. The emulator builds a statistical model be-

tween the ensemble design and the key model output and

once validated allows sampling of the whole parameter space

to derive a PDF of each key model output.

Variance-based sensitivity analysis will then be used to de-

compose the resulting probability distribution into its sources

providing information on the key sources of uncertainty in

any model output. The two sensitivity indices of interest are

called the main effect and the total effect. The main effect

measures the percentage of uncertainty in the simulated met-
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Table 10. Groups will need to translate the 0–1 latitude-spread parameter into a sequence of fractional injections into all grid boxes between

the equator and 15◦ N. For example for a model with 2.5◦ latitude resolution, the relative injection in the six latitude bins between 0 and

15◦ N would take the form [0, 0, 0, 0, 0, 0, 1] for extent factor = 0 and [0.167, 0.167, 0.167, 0.167, 0.167, 0.167] for extent factor = 1.

Injection ratios for intermediate values of the spread factor would be calculated by interpolation between these two end member cases.

Parameters Minimum Reduced Standard Uncertainty range

set set set

1 Injected SO2 mass X X X 5–10 Tg S

2 Mid-point height of 3 km thick injection X X X 18–30 km

3 Latitudinal extent of the injection X X X Factor 0–1 to varies from one-box

injection at 15◦ N (factor = 0)

to equator-to-15◦ N (factor = 1)

4 Sedimentation velocity X X Multiply model calculated

velocity by a factor 0.5 to 2.

5 SO2 oxidation scaling X X Scale gas phase oxidation of SO2

by a factor 0.5 to 2

6 Nucleation rate of sulfate particles X Scale model calculated rate by a

factor 0.5 to 2.

7 Sub-grid particle formation factor. X Emit fraction of SO2 as sulfuric

acid particles formed at sub-grid

scale (0 to 10 %)

8 Coagulation rate X Scale the model calculated rate

by a factor 0.5 to 2.

Table 11. Overview of PoEMS one-at-a-time (OAT) test runs. Note that when imposing the parameter scaling, the models should only

enact the change in volcanically enhanced air masses (where the total sulfur volume mixing ratio exceeds a threshold suitable for their

model). Perturbing only the volcanically enhanced air masses will ensure, pre-eruption conditions and tropospheric aerosol properties remains

unchanged by the scalings.

Exp-name Specific description/volcanic emission Period Tier

PoEMS_OAT_med SO2 Emission = medium, Inject shallow @ medium-alt. 1

Processes unperturbed.

PoEMS_OAT_P4h SO2 Emission = medium, Inject shallow @ medium-alt. 2

Sedimentation rates doubled

PoEMS_OAT_P4l SO2 Emission = medium, Inject shallow @ medium-alt. 2

Sedimentation rates halved

PoEMS_OAT_P5h SO2 Emission = medium, Inject shallow @ medium-alt. 3

SO2 oxidation rates doubled

PoEMS_OAT_P5l SO2 Emission = medium, Inject shallow @ medium-alt. 3

SO2 oxidation rates halved

PoEMS_OAT_P6h SO2 Emission = medium, Inject shallow @ medium-alt. Transient 3

Nucleation rates doubled 1991–1995

PoEMS_OAT_P6l SO2 Emission = medium, Inject shallow @ medium-alt. 3

Nucleation rates halved

PoEMS_OAT_P7h SO2 Emission = medium, Inject shallow @ medium-alt. 3

% SO2 as primary SO4 × 2

PoEMS_OAT_P7l SO2 Emission = medium, Inject shallow @ medium-alt. 3

% SO2 as primary SO4 × 0.5

PoEMS_OAT_P8h SO2 Emission = medium, Inject shallow @ medium-alt. 2

Coagulation rates doubled

PoEMS_OAT_P8l SO2 Emission = medium, Inject shallow @ medium-alt. 2

Coagulation rates halved
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ric due to each parameter variation individually. The total ef-

fect measures the percentage of uncertainty in the key model

output due to each parameter, including the additional con-

tribution from its interaction with other uncertain parameters.

The sources of model parametric uncertainty (i.e. the sensi-

tivity indices) will be identified for each model with discus-

sion with each group to check the results. By then comparing

the sensitivity to the uncertain parameters across the range

of participating models, we will learn about how the model’s

differing treatment of aerosol processes and the inherent dy-

namical and chemical processes resolved in the host model

together determine the uncertainty in its predicted Pinatubo

radiative forcings.

The probability distribution of observable key model out-

puts will also be compared to observations in order to con-

strain the key sources of uncertainty and thereby reduce the

parametric uncertainty in individual models. The resulting

model constraints will be compared between models provid-

ing quantification of both parametric uncertainty and struc-

tural uncertainty for key variables such as AOD, effective ra-

dius, and radiative flux anomalies. This sensitivity analysis

will also identify the variables for which better observational

constraints would yield the greatest reduction in model un-

certainties.

4 Conclusions

The ISA-MIP experiments will improve our understanding

of stratospheric aerosol processes, chemistry, and dynamics

and constrain climate impacts of background aerosol “vari-

ability”, small volcanic eruptions, and large volcanic erup-

tions. The experiments will also help to resolve some dis-

agreements amongst global aerosol models, for instance the

difference in volcanic SO2 forcing efficacy for Pinatubo (see

Sect. 3.3.2). The results of this work will help constrain the

contribution of stratospheric aerosols to the early 21st cen-

tury global warming hiatus period, the effects of hypothetical

geoengineering schemes, and other climate processes that are

influenced by the stratosphere. Overall, they provide an ex-

cellent opportunity to answer some of these questions as part

of the greater WCRP SPARC and CMIP6 efforts. For ex-

ample, the CMIP6 Geoengineering Model Intercomparison

Project (GeoMIP, Kravitz et al., 2015) investigates common

ways in which climate models treat various geoengineering

scenarios some of them via sulfate aerosols (e.g. Tilmes et

al., 2015). However, there is a large inter-model spread for

the cooling efficiency of sulfate aerosol, i.e. the normalized

cooling rate per injected unit of sulfur (Moriyama et al.,

2016). ISA-MIP is therefore of special importance for Ge-

oMIP as it could help to understand the reason for these un-

certainties, to better constrain the forcing efficiency and to

improve future scenarios. Furthermore, it is so far not clear

whether the large inter-model spread of the CMIP5 models in

the simulated post-volcanic climate response mostly depends

on uncertainties in the imposed volcanic forcing or on an in-

sufficient representation of climate processes. To discrimi-

nate between the individual uncertainty factors, it is useful to

develop standardized experiments/model activities that sys-

tematically address specific uncertainty factors. Hence, ISA-

MIP, which covers the uncertainties in the pathway from the

eruption source to the volcanic radiative forcing, will com-

plement the CMIP6 VolMIP project (Zanchettin et al., 2016),

which addresses the pathway from the forcing to the cli-

mate response and the feedback by studying the uncertain-

ties in the post-volcanic climate response to a well-defined

volcanic forcing. ISA-MIP also complements the chemistry

climate model initiative (CCMI; Eyring et al., 2013) and

the Aerosol Comparison (AeroCom) initiative (Schulz et al.,

2006) as well as the Aerosol Chemistry Model Intercompari-

son Project (AerChemMIP; Collins et al., 2017) as it concen-

trates on stratospheric aerosol which is not in the focus of all

these activities.

As well as identifying areas of agreement and disagree-

ment among the different complexities of models in top-level

comparisons focussing on fields such as zonal-mean mid-

visible AOD and extinction profiles in different latitudes,

ISA-MIP also intends to explore relationships between key

parameters. For example, how does sulfate deposition to the

polar ice sheets relate to volcanic forcing in the different in-

teractive stratospheric aerosol models that predict the trans-

port and sedimentation of the particles? Or how do model

“spectral extinction curves” evolve through the different vol-

canically perturbed periods and how do they relate to simu-

lated effective radius compared to the theoretical approach to

derive effective radius from Stothers (1997, 2001)? There is

considerable potential to apply the model uncertainty analy-

sis to make new statements to inform our confidence in vol-

canic forcings derived from ice core and astronomical mea-

surements for eruptions before the in situ measurement era.

Code and data availability. The model output from the all sim-

ulations described in this paper will be distributed through the

World Data climate Center https://cera-www.dkrz.de/WDCC/ui/

cerasearch/ with digital object identifiers (DOIs) assigned. The

model output will be freely accessible through this data portal af-

ter registration.
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Appendix A: List of abbreviations

AeroCom Aerosol Comparisons between Observations and Models

AOD Aerosol optical depth

ASAP2006 Assessment of Stratospheric Aerosol properties (SPARC, 2006)

AVHRR Advanced Very High Resolution Radiometer

BDC Brewer–Dobson circulation

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization

CATS Cloud-Aerosol Transport System

CCM Chemistry–climate model

CCMI Chemistry-Climate Model Initiative

CMIP Coupled Model Intercomparison Project

CMIP5 Coupled Model Intercomparison Project, phase 5

CMIP6 Coupled Model Intercomparison Project, phase 6

ECMWF European Centre for Medium-Range Weather Forecasting

ENSO El Niño–Southern Oscillation

ENVISAT Environmental Satellite

ERA-Interim ECMWF Interim Re-Analysis

EVA Easy Volcanic Aerosol

GCM General circulation model

GHG Greenhouse gases

GOMOS Global Ozone Monitoring by Occultation of Stars

HALOE Halogen Occultation Experiment

ISA-MIP Interactive Stratospheric Aerosol Model Intercomparion Project

IPCC Intergovernmental Panel on Climate Change

MAECHAM5-SAM2 Middle Atmosphere version of the European Center/HAMburg model,

atmospheric GCM (cycle 5) with the Stratospheric Aerosol Model (version 2)

MIPAS Michelson Interferometer for Passive Atmospheric Sounding

NAO North Atlantic Oscillation

NH Northern Hemisphere

OMI Ozone Monitoring Instrument

OMPS Ozone Mapping and Profiler Suite

OMPS-LP Ozone Mapping and Profiler Suite–Limb Profiler

OPC Optical particle counter

OSIRIS Optical Spectrograph and InfraRed Imager System

PDF Probability density function

QBO Quasi-biennial oscillation

SAGE Stratospheric Aerosol and Gas Experiment

SAM II Stratospheric Aerosol Measurement II

SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Chartography

SPARC Stratosphere–troposphere Processes And their Role in Climate

SSiRC Stratospheric Sulfur and its Role in Climate

SST Sea surface temperature

SIC Sea ice cover

TOMS Total Ozone Mapping Spectrometer

TOVS TIROS Operational Vertical Sounder

VolMIP Model Intercomparison Project on the climate response to Volcanic forcing
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