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ABSTRACT Neuromorphic vision sensors provide low power sensing and capture salient spatial-temporal

events. The majority of the existing neuromorphic sensing work focus on object detection. However, since

they only record the events, they provide an efficient signal domain for privacy aware surveillance tasks.

This paper explores how the neuromorphic vision sensor data streams can be analysed for human action

recognition, which is a challenging application. The proposed method is based on handcrafted features.

It consists of a pre-processing step for removing the noisy events followed by the extraction of handcrafted

local and global feature vectors corresponding to the underlying human action. The local features are

extracted considering a set of high-order descriptive statistics from the spatio-temporal events in a time

window slice, while the global features are extracted by considering the frequencies of occurrences of the

temporal event sequences. Then, low complexity classifiers, such as, support vector machines (SVM) and

K-Nearest Neighbours (KNNs), are trained using these feature vectors. The proposedmethod evaluation uses

three groups of datasets: Emulator-based, re-recording-based and native NVS-based. The proposed method

has outperformed the existingmethods in terms of human action recognition accuracy rates by 0.54%, 19.3%,

and 25.61% for E-KTH, E-UCF11 and E-HMDB51 datasets, respectively. This paper also reports results for

three further datasets: E-UCF50, R-UCF50, and N-Actions, which are reported for the first time for human

action recognition on neuromorphic vision sensor domain.

INDEX TERMS Neuromorphic vision sensing (NVS), event cameras, dynamic vision sensing (DVS), human

action recognition (HAR), local features, global features.

I. INTRODUCTION

Neuromorphic vision sensing (NVS), also known as dynamic

vision sensing and event camera sensing, which has

emerged recently, is capable of capturing fast spatio-temporal

spikes (changes) in a scene with low power consumption

[1]–[8]. Such data is of the form of a continuous stream

of spatio-temporal events or spikes, as opposed to regularly

uniformly spatio-temporal sampled values traditions imag-

ing systems, as in active pixel sensing (APS). This allows

NVS to measure changes in intensity at each pixel asyn-

chronously, instead of acquiring the intensity of that pixel,

i.e., non-uniformly sampling temporally leading to a render-

ing frame rate up to 2000 fps with consuming low power.

It encodes the intensity change at each pixel in the form of

an event or a spike. FIGURE 1 shows an example of a stream

of events for a person running. This stream is represented as

The associate editor coordinating the review of this manuscript and

approving it for publication was Alessia Saggese .

FIGURE 1. Representation of the events of a running action using an
emulator to generate the events. Green/Red points are for visualisation
of ON and OFF events.

3D points, referring to the spatial location (in terms of (x,y)

coordinates and the time of the event. An event is recorded

either as an initiation (ON) and a termination (OFF), shown

in green and red points, respectively in FIGURE 1. Each

event in this figure has potentially valid information that can

be explored to understand the scene, in terms of object and

action recognition. Although success has been reported in

visual content understanding using traditional imaging in the
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literature, in order to optimally use event or spike data from

NVS, novel algorithms for processing and learning such data

are needed. In this work, we explore how NVS data can be

analysed for human action recognition (HAR).

HAR from video sequences captured using conventional

APS imaging systems primarily detect and model motion

patterns to learn important features of an action to train a

classifier [9]–[22]. The features can be either handcrafted or

learned by deep learning approaches. Although these have

shown very high accuracy rates for benchmark datasets,

such conventional vision systems often suffer from many

limitations, such as, limited frame rate, high redundancy

within the successive frames and motion blurring, affect-

ing the performance of action recognition [22], [23]. Also,

pre-processing steps, such as estimating motion from video

pixels (block matching, optic flow or phase correlation)

are computationally expensive. Furthermore, conventional

video-based HAR has also caused privacy issues in the con-

text of assisted living [24]–[26]. Exploration of NVS data

for HAR also enables to overcome some of these limita-

tions intrinsic to conventional imaging-based HAR. As NVS

encodes the intensity change at each pixel and samples

at non-uniform sampling rates, events with high frequency

of occurrences correspond to high motion present in the

scene, which is a solution for motion blurring due to high

speed motion as often seen in conventional APS cameras.

Such a high motion response means that NVS based camera

is regarded as a data-driven sensor since the output NVS

depends on the magnitude of the apparent motion in the

scene [23]. These advantages combined with low power con-

sumption and low throughput for streaming have emerged

NVS as a suitable vision sensor for robotics andmobile-based

applications [27]–[29].

Although NVS-based vision applications have seen

emerged fast recently [23], it has not resulted in many works

in human motion analysis. Most recent works exploring NVS

data for human motion analysis consists of low semantic

tasks, such as, hand or finger movement analysis [30]–[37]

and human fall detection [38]. However, exploring NVS data

for higher-level semantic tasks, such as, multi-class HAR,

is still in early stages [39]–[43]. One reason for this slow

progress of NVS domain HAR is the high cost of NVS

devices compared to the conventional APS cameras [8] lead-

ing to insufficient annotated NVS domain HAR training

datasets [41], [44]. Recently emerged software-based emu-

lators for converting APS data into NVS data [45], [46] were

also found useful for generating test data.

However, rather than extending conventional HAR

approaches used in classical computer vision, new paradigms

are need to be explored for efficiently understanding NVS

data for HAR and other applications. Some of the challenges

in NVS data include presence of noisy events, understanding

true motion, lack of clarity of contexts in object boundaries

due to lack of intensity data, high sparsity of data and

missing spatio-temporal connectivity inNVS data. Therefore,

effective NVS-domain feature extraction algorithms are

needed for the advancement of usage of NVS devices in real

applications. In this work, we present a novel methodology

for efficient understanding of NVS data for HAR applica-

tions. The main contributions of our work include:

1) A methodology for pre-processing NVS data includ-

ing a new algorithm for de-noising NVS data, i.e., to

remove the noisy events that may have been resulted

in due to certain acquisition parameters used in NVS

devices;

2) A methodology for extracting a new set of global tem-

poral features to model the global (long term) motion

patterns considering a long duration NVS event data

stream;

3) A methodology for extracting a new set of local

spatio-temporal features to model local (short term)

motion patterns considering a shorter durations of con-

nected events in short durations of an NVS event data

stream; and

4) Fusion of features for training a classifier and evalua-

tion of the proposed method for various types of NVS

data (real data, emulated data and recorded NVS from

an RGB playback) covering various types of actions.

The rest of this paper is organized as follows: Section II

reviews the related work on exploring the NVS domain for

HAR. In Section III, we present the proposed methodology

for understanding NVS data for HAR. Section IV shows the

experimental evaluation of the performance of the proposed

method and discussion followed by the concluding remarks

in Section V.

II. RELATED WORK

The existing work on neuromorphic vision sensing in

computer vision can be grouped into three themes: object

detection [47]–[49], pedestrian detection [50], [51] and hand

gesture recognition [33]–[35]. There is only a little work

on exploring the neuromorphic data beyond object detection

addressing highly semantic applications, such as, multi class

action recognition, which still poses an important challenge.

As mentioned in Section I, work on using NVS data for

HAR is still in early stages [39]–[43]. Most of these methods

start with temporally aggregating the polarities into a collec-

tion of NVS data frames by considering a non-overlapping

time window corresponding to the frame rate of conven-

tional APS cameras. This is followed by using these NVS

frames for either extracting handcrafted motion features

or learned features for representing the actions in the test

sequences.

In [41], 8-bit gray-scale frames are constructed from the

events. Pixels of these frames are initialised with 128 and

then either are increased or decreased considering the polar-

ities of the events recorded at each spatial location (pixel)

by considering the time interval corresponding to an actual

frame. This is followed by extracting motion event features

(magnitude and direction of motion) considering stacked

event frames with variable stack sizes depending on the

VOLUME 9, 2021 82687
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FIGURE 2. The pipeline of the proposed method for NVS domain HAR.

motion level in the activity. Finally, these motion information

is fed into a convolution neural network (CNN) for feature

learning for HAR. They demonstrate the usability of event

data in HAR compared to conventional camera-based vision

systems, where complex optic flow estimation is required.

A similar approach was followed in [40] by using two CNNs

to learn features from event frames and corresponding optic

flow from the original RGB. Converting the events into

frames is also applied in [43] to classify the actions of the

neuromorphic version of UCF11 dataset. A time stamp aggre-

gation algorithm is used to create the frames from the events,

where these frames are fed into CNN for classification with a

92.90% of accuracy. In [39], three 2D motion maps (on x-y,

x-z and y-z planes) and Motion Boundary Histogram (MBH)

are constructed from the events. Speeded Up Robust Fea-

tures (SURF) are extracted through grid search on the 2D

motion maps followed by k-means clustering to create a

Bag of visual vocabulary (BoVV) of k words from motion

maps and MBH. Finally, the feature vectors constructed from

BoVV are used to train the linear SVM. Also Graph CNN

based methods were reported for NVS-domain object recog-

nition, with case studies on HAR in [42].

The existing work that uses hand-crafted features has

achieved an accuracy rate of 75.13% [39], while the works

that have used deep learning have achieved accuracy rates

ranging from 51.5% to 92.9% [40]–[43] as detailed in

Section IV-B. It can be also observed that the accuracy rates

of these methods depend on the quality of the constructed

event frames. The choice of time intervals plays a significant

role in this. All these methods create motion maps from NVS

events followed by either handcrafted feature learning or

deep learning. In either way, they do not take the full advan-

tage of NVS event data, which can be considered as motion

information. Following the approach of frame creation or

motion parameter estimation has added complexity similar

to conventional cameras based vision algorithms. Therefore,

in our present work, we focus on extracting features on the

NVS event domain, i.e., exploring the events directly, for

HAR. Accordingly, we propose a new method that explores

the NVS domain alone by considering the temporal patterns

of ON and OFF events locally and globally to extract robust

description for HAR. The proposed method analyses the

patterns of the polarities using only NVS domain events

and avoids converting the events into other domains without

losing the essence of neuromorphic computing.

III. THE PROPOSED NVS DOMAIN FEATURE

LEARNING

This section presents the proposed method for NVS domain

HAR including the novel contributions on noise removal

and constructing local and global spatio temporal event

descriptors. FIGURE 2 depicts the block diagram of the

proposed method with the pipeline of operations. The pro-

posed method is divided into five main steps: pre-processing

for noisy event removal, NVS domain local feature extrac-

tion, NVS domain global feature extraction, feature fusing,

and classification. We start this section by introducing the

NVS operation and the notation followed by the description

of the main steps of the proposed method in subsequent

subsections.

82688 VOLUME 9, 2021
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A. NVS OPERATION AND OUR NOTATIONS

In contrast to the standard pixel-domain based camera, where

the sensors record the information of pixels at a constant

frame rate, the NVS acquires the change of luminance with

a variable sampling rate at each pixel. Accordingly, an event

is triggered if the luminance at a pixel changes, i.e., the log

intensity exceeding a predefined threshold is sufficient to be

considered as an event. This mechanism is performed inde-

pendently and continuously for each pixel in the chip’s array

in NVS cameras, and the pixel is set to idle in case there is no

luminance change has been detected, leading to temporally

and spatially adapted independent and non-uniform temporal

sampling for each pixel.

We denote an event, ek , acquired at the coordinates, xk and

yk , corresponding to a pixel, Pk , in the sensor array and at

the timestamp, tk , with the polarity pk , i.e., the orientation

of the shifted log intensity, LPk = log(Ik ), where k is the

event index and Ik is the intensity at Pk . Thus, an event is

represented as ek = (xk , yk , tk , pk) as soon as the magnitude

of L(Pk ) is shifted since the last event recorded at Pk , i.e.,

1L (xk , yk , tk) = L (xk , yk , tk)− L (xk , yk , tk −1t) , (1)

exceeds a temporal contrast threshold [7].1t is the timewhen

the pixel Pk is idle since the last event at Pk . When the log

intensity at Pk exceeds the, ek is triggered with the polarity,

pk ∈ {−1, 1}, i.e., the orientation of log intensity change,

1L. It can be noticed that Eq. (1) is similar to finding the

pixel difference between successive frames in conventional

cameras based computer vision. This pixel difference, i.e.,

log intensity, is evidence of the presence of motion in the

scene. Therefore, this allows us to infer the implied motion

in the scene by exploiting the events statistics rather than

going through computationally expensive motion estimation

algorithms often used in computer vision applications.

B. PRE-PROCESSING THE NOISY EVENTS

Depending on the threshold magnitude, some events are

recorded in isolation without leading to any semantic

meaning. We denote such events as noisy events and a

pre-processing step for removing such events (de-noising) is

applied on the events stream.

Let E = {en|en = (xn, yn, tn, pn), and 1 ≤ n ≤ N }, is a

stream of events, where N is the length of the event stream.

E is partitioned into time slices, T = {Tw|1 ≤ w ≤ W },

where Tw is the time slice w. This partitioning is based on

the principle of the frame rate that one would expect for a

conventional camera video sequence. For example, if we have

an NVS stream for 5 seconds, we generate 150 event slices

assuming a 30 frames per second frame rate.

After partitioning the stream into event slices, for each slice

let Ew = {eℓ|eℓ = (xℓ, yℓ, tℓ, pℓ), and 1 ≤ ℓ ≤ L}, be the

event stream in slicew, where L is the length of the total event

stream in a slice, the following operations are applied. For

each event eℓ at spatio-temporal location (xℓ, yℓ, tℓ), a 3 × 3

window on xy plane centered on the event location (xℓ, yℓ, tℓ)

is considered and the number of events Cℓ(x,y) recorded on

each of nine spatial coordinates (x, y) of the window over

the total time of the slice is counted. This is followed by

computing the total number of events in the 3D window-

slice, Sℓ, and the maximum events over the slice length, mℓ,

as follows:

Sℓ =

xℓ+1
∑

i=xℓ−1

yℓ+1
∑

j=yℓ−1

Cℓ(i,j) . (2)

mℓ =
i=xℓ+1,j=yℓ+1

max
i=xℓ−1,j=yℓ−1

Cℓ(i,j) . (3)

Finally, eℓ is processed to obtain new polarity, p′ℓ, of the

event as follows:

p′ℓ =

{

pℓ if Sℓ < (k × 3× 3× mℓ),

0 otherwise,
(4)

where {k ∈ R
+|k < 1} is a user defined parameter for

controlling the number of events to be removed. We present a

discussion on the choice of the parameter k in Section IV-A.

C. LOCAL SPATIO-TEMPORAL FEATURE EXTRACTION

An action event stream can be represented considering the

overall spatio-temporal patterns appear in the overall action

sequence, as well as considering the local variations corre-

sponding to the actions. In this section we address how to

extract local features from the events stream, considering the

events in partitioned time slices, Tw. Since each action results

in different spatio-temporal patterns of events at each time

window, the local descriptors aim to recognise these patterns

leading to representing discriminating features for specific

action streams.

The process is started with Ew at Tw, by sorting all eℓ in

the ascending order of the x coordinate followed by grouping

these events in Tw into
{

sg|1 ≤ g ≤ G
}

, where sg defines ρ

events that are successive and have the same polarity, such

that,

sg = {ei|ei = (xi, yi, ti, pi), and 1 ≤ i ≤ ρ}, (5)

where xi+1 ≥ xi and pi+1 = pi ∀i. According to Eq. (5),

all events in sg represent a pattern of log intensity change.

Processing such patterns of polarities contributes to tracking

the dynamic changes for each action and capturing the local

structure of the events. This is achieved by modelling these

changes in terms the relationship of horizontal and vertical

locations, i.e., (x, y) coordinates of the events in each set, sg
in terms of the following quantities:

mg = µx(sg)− µy(sg), (6)

vg = σ 2
x (sg)− σ 2

y (sg), (7)

dg = σx(sg)− σy(sg), (8)

where µ, σ 2 and σ are the mean, variance and the standard

deviation of the spatial coordinates x and y of the events in sg,

respectively. This gives us three data vectors,Mw = {mg|1 ≤

g ≤ G}, Vw = {vg|1 ≤ g ≤ G} and Dw = {md |1 ≤ g ≤ G},

for each Tw. Then these data vectors are transformed

VOLUME 9, 2021 82689
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Algorithm 1 RLE of Polarities in a Stream of Events With N

Events
1: Initialize Count ←− 0.

2: Initialize RunLengths←− [ ].

3: for do i←− 1 to N

4: if pi = pi+1 then

5: Count ←− Count + 1,

6: else

7: RunLengths←− [RunLengths Count].

8: Count ←− 0.

9: end if

10: end for

11: Return RunLengths.

into 3 vectors containing higher order statistics of the data

vectors as follows:

F1w = [µ(Mw),max(Mw),min(Mw), σ (Mw), . . .

. . . σ 2(Mw), γ (Mw), κ(Mw)], (9)

F2w = [µ(Vw),max(Vw),min(Vw), σ (Vw), . . .

. . . σ 2(Vw), γ (Vw), κ(Vw)], (10)

F3w = [µ(Dw),max(Dw),min(Dw), σ (Dw), . . .

. . . σ 2(Dw), γ (Dw), κ(Dw)], (11)

where γ and κ denote the skewness and the kurtosis, respec-

tively. Then for each element in feature vectors, F1w , F2w and

F3w the average over all W slices are computed to get the

average feature vectors, F1, F2 and F3, respectively. These

three vectors are concatenated to get the local feature vector,

FL = {F1,F2,F3}, with 21 feature elements for the event

stream E. As an example, mean values of these feature vector

elements for six sequences of one of the datasets (E-KTH) in

FIGURE 3.

D. GLOBAL FEATURE EXTRACTION

Global features are extracted by considering the event stream

for an action as a whole without resorting it into time-based

slices. On the spatio-temporal event space, for each spatial

coordinate (x, y), all temporal events are stacked into tempo-

ral groups,HE = {δh|1 ≤ h ≤ H}, where H is the total num-

ber of temporal groups for the given (x, y). A group is defined

as the continuous occurrence of events (either pl = +1 or

pl = −1) at user-specified temporal sampling periods. The

minimum events for a group is considered as 2, while just the

isolated single events are disregarded as noise. For all events

in δh, the consecutive similar polarity counts recorded as

run-length encoding (RLE) as detailed in Algorithm 1. RLE

keeps only the counts of consecutive occurrences without

keeping the magnitudes of the polarities. Run lengths of all

HE for all spatial locations are collected as a set, R.

The first part of the global feature vector represents the spa-

tial locations, R, by computing the histogram of run-length

encoded polarities (HRLEP),H. Our experiments have found

that partitioning HRLEP into 5 bins is sufficient to capture

FIGURE 3. Local features (FL) for six human actions in E-KTH dataset.
(Values are normalized in the 0-100 region for visualization).

the discriminative features from R. Then the global temporal

feature vector,FG(E) consisting of the 5-binH and four other

global features considering both R and E for the whole event

stream as follows: FG(E) = {H,F4,F5,F6,F7}, where

F4 = max(R), (12)

F5 = max(W ), (13)

82690 VOLUME 9, 2021
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FIGURE 4. Global features (FG) for six human actions in E-KTH dataset.
(Values are normalized in the 0-100 region for visualization).

F6 and F7 are the number of ON and OFF events in E,

respectively. The global features extracted from six sequences

of the E-KTH dataset are shown in FIGURE 4 as an

example.

E. FEATURE FUSION AND CLASSIFICATION

Finally, both FL(E) and FG(E) are fused to construct an

overall feature vector, F(E), as

F(E) = {FL(E),FG(E)}. (14)

This F(E) is a 30 dimensions feature vector to represent the

action inE, and it is used to train the classifier for recognising

the actions.

We conducted our experiments with several classifiers

and found that the best results are obtained with KNN and

QSVM. On one hand, from the complexity perspective, these

classifiers have less complexity, especially KNN, compared

to other classifiers. On the other hand, these classifiers are

commonly used in the applications of computer vision for

FIGURE 5. Two examples for the same frame from a fencing sequence in
UCF50 dataset explaining the amount and the distribution of the events
in each frame: (a) PIX2NVS emulator has been used to generate the
stream of the events and (b) The DVS240C camera has been used to
acquire the events. For visualisation, the ON and OFF events are plotted
with green and red colours, respectively.

their efficiency, therefore, it is easy to compare with the

existing work.

IV. PERFORMANCE EVALUATION

This section reports the extensive experiments conducted

using challenging datasets to evaluate the performance of the

proposed methodology for using NVS data for human action

recognition.

A. DATASETS AND EXPERIMENTS SET UP

The publicly available and widely used NVS datasets can be

categorised into three main groups: Emulator based datasets

generated from the commonly used RGB datasets; datasets

of NVS devices based re-recording of RGB video displayed

on a monitor and datasets of actions acquired by native

NVS devices. In our naming of datasets we identify these

three groups with the prefixes E-, R- and N-, respectively in

VOLUME 9, 2021 82691
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FIGURE 6. An example of pre-processing considering 0.03s time slice and three different user defined values; (b) k = 0.125, (c) k = 0.25, and
(d) k = 0.5 applied on four actions: Column 1 walking; Column 2 waving; Column 3 throwing; and Column 4 get-up.

the dataset names. More details about these datasets are as

follows:

1) Emulator-Based: In this group of datasets, the neu-

romorphic data for corresponding RGB sequences is

generated by using an emulator. There are several

emulators, such as, PIX2NVS [46], pyDVS [45] and

ESIM [52], that are designed to simulate the native

DVS cameras. In our experiments, PIX2NVS emula-

tor was used to generate the events from the video

sequences since the work in the literature is based

on PIX2VNS. We used four datasets, KTH [53],

UCF11 [54], UCF50 [55] and HMDB51 [56] and con-

verted them into the neuromorphic datasets, E-KTH,

E-UCF11, E-UCF50 and E-HMDB51, respectively.

E-KTH dataset contains 597 sequences showing

6 action classes performed by 25 different subjects and

4 different camera views. E-UCF11 dataset contains

11 action classes, while E-UCF50 contains 50 different

classes in 6681 sequences. E-HMDB51 dataset, which

is one of the largest datasets used in HAR, contains

6766 clips distributed in 51 action classes. The action

categories of this dataset can be grouped into five types

based on the body movements. The RGB version of

this dataset is considered challenging due to containing

clips collected from the Internet and YouTube.

2) Re-Recording-Based: In this group, we used R-UCF11

and R-UCF50 datasets, which have been acquired by

playing the original RGB versions of UCF11 and

UCF50, respectively on the monitor and positioning

the DAVIS240C vision sensor camera in the opposite

82692 VOLUME 9, 2021
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TABLE 1. Detailed statistical information of the datasets used in the
experiments.

of the monitor to record the events [44]. R-UCF11 and

R-UCF50 datasets contain the same number of video

clips and the classes as the original RGB versions con-

verted to the NVS domain with 240 × 180 spatial res-

olution. More details about these datasets can be found

in [54], [55].

3) Native NVS-Based: In these datasets, NVS devices

are used to acquire real NVS data. We used the

dataset in [57] which was acquired by recording

10 real human actions in an office environment using

DAVIS346redColor camera. Herein, we refer to this

dataset as N-Actions dataset. N-Actions dataset con-

tains 10 action classes captured in 450 NVS sequences

with 346× 260 spatial resolution.

The statistical details of all these datasets used in the

experiments reported in are summarized in TABLE 1.

The native NVS-based datasets show a high presence of

noisy events compared to the other groups of datasets. As an

example, FIGURE 5 compares a time slice of an action

sequence from E-UCF50 dataset and the corresponding slice

from R-USCF50 dataset. They show presence of various

amounts of noisy events. Sometimes, the number of noisy

events is much higher than the number of events related to

the action. Although NVS data can be intrinsically noisy

depending on the threshold used for an event determination,

we have noticed that the noise can be as high as 70% of the

overall captured events for data streams in N-Actions dataset.

In such cases, application of our proposed pre-processing

presented in Section III-B is helpful in removing such

noise.

FIGURE 6 shows an example for de-noising a sampled

slice from walking action acquired by a native neuromor-

phic camera from the dataset N-Actions. Using different

values for the parameter k in the pre-processing noisy event

removal algorithm. On one hand, it can be observed that the

highest value for k , e.g., k = 0.5, as shown in the fourth

row in FIGURE 6, removes the majority of the noisy events

as well as a large portion of events corresponding to the

action. Removing this amount of events can lead to the loss

of important features of the action representation. On the

other hand, choosing a small value for k , e.g., k = 0.125,

as shown in second row in FIGURE 6, can result in retaining

FIGURE 7. Confusion matrix of the proposed HAR on E-KTH dataset using
QSVM (Overall accuracy: 93.14%).

FIGURE 8. Confusion matrix of the proposed HAR on E-UCF11 dataset
using QSVM (Overall accuracy: 94.43%).

many noisy events leading to generating inaccurate features.

Thus, the value of k aims to remove the majority of the

noisy events while retaining the events corresponding to the

action. This can be observed in the third row in FIGURE 6,

when the best filtering result is presented with k = 0.25.

With k = 0.25, we demonstrate that the filtering algorithm

keeps the most important events that represent the action.

In this case, the pre-processing step has resulted in removing

approximately 70% of events in each slice and retaining the

relevant events of the action. This representation is impor-

tant in our method because it aims to model the dynamics

of the action instead of measuring the speed of the action.

In the experiments, we have used the noisy event removal

pre-processing with k = 0.25.

Since the last two groups of datasets were captured using

real NVS devices, there is no notion of temporal frame rate

for these datasets. Therefore, a time window for extracting

local features needs to be determined. In order to correspond

with the first group of sequences, which were emulated using

the conventional RGB video with 30 frames per second frame

rate, for these experiments, we have defined the size of the

window, w, to be Tw =
1
30
= 0.033 seconds.

In this section, we report the human action recogni-

tion performance of the proposed algorithm using the two
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FIGURE 9. Confusion matrix of the proposed HAR on E-HMDB51 dataset using QSVM (Overall accuracy: 87.61%).

TABLE 2. HAR accuracy rates(%) of the proposed method.

classifiers, KNN and QSVM. KNN classifier is set up

with K = 1 neighbour and Mahalanobis distance measuring.

The reported results were generated using the 5-fold cross

validation.

B. PERFORMANCE OF THE PROPOSED HUMAN ACTION

RECOGNITION METHODOLOGY

TABLE 2 shows the overall recognition accuracy percent-

ages for the seven datasets, E-KTH, E-UCF11, E-HMDB51,

E-UCF50, R-UCF50, R-UCF11 and N-Actions for the

proposed algorithm with various feature variants. It shows

the performance of the handcrafted local and global fea-

tures separately and together using two different classifiers:

KNN and QSVM. TABLE 3 compares the performance of

our proposed method with that of the existing algorithms

in the literature. The corresponding confusion matrices are

shown in FIGURE 7, FIGURE 8, FIGURE 9, FIGURE 10,

FIGURE 11, FIGURE 12 and FIGURE 13, respectively.

The overall recognition accuracy percentages using the

proposed features were evaluated individually (as local only

82694 VOLUME 9, 2021



S. Al-Obaidi et al.: Making Sense of Neuromorphic Event Data for HAR

FIGURE 10. Confusion matrix of the proposed HAR on E-UCF50 dataset using KNN (Overall accuracy: 69.81%).

TABLE 3. HAR accuracy rates(%) of the proposed method comparison with the existing work.

and global only) and as a combined feature vector. It is

evident from the results in TABLE 2 that using the con-

catenated local and global feature vector has resulted in the

best averages for each of the datasets. It has achieved the

best average recognition accuracy rates of 93.14%, 94.43%,

87.61%, 69.45%, 68.96%, 82.61% and 61.94% for E-KTH,

E-UCF11, E-HMDB51, E-UCF50, R-UCF50, R-UCF11 and

N-Actions respectively. For all datasets apart from E-UCF50

and R-UCF50 datasets, QSVM classifier has performed

better than the KNN classifier. The proposed method have

outperformed the accuracy rates achieved by the state of the

art on exploring the neuromorphic data streams for HAR

by 0.54%, 19.3% and 25.61% for E-KTH, E-UCF11 and

E-HMDB51, respectively, as observed in TABLE 3. There

is no reported previous work for HAR using the E-UCF50,

R-UCF50, and N-Actions datasets to our best knowledge.

Furthermore, we summarize the comparison between our

proposed method and deep learning based work on neuro-

morphic sensing data in the domain of HAR in TABLE 3.

Note that the reference [43] is not peer reviewed at the

time of preparation of the present article. For the datasets

of E-HMDB51 and E-KTH, our proposed handcrafted fea-

ture based method has outperformed the deep learning

based methods.
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FIGURE 11. Confusion matrix of the proposed HAR on R-UCF50 dataset using KNN (Overall accuracy: 68.96%).

FIGURE 12. Confusion matrix of the proposed HAR on R-UCF11 dataset
using QSVM (Overall accuracy: 82.61%).

In some cases, the confusionmatrix shows that it is hard for

the classifier to discriminate between the actions accurately

using the NVS data. For example, some very high similarity

actions like, jogging, running and walking in EKTH have

resulted in some confusion among them in the classification,

as can be seen in FIGURE 7. This is because our proposed

method focuses on modelling the dynamic patterns of the

actions instead of their speed. Since these actions have similar

patterns during the time, similar description features due

FIGURE 13. Confusion matrix of the proposed HAR on N-Actions dataset
using QSVM (Overall accuracy: 61.94%).

to the similar temporal changes in the action are obtained.

These actions have similar global features due to the similar

temporal changes in the action. This is evident from the global

features depicted in FIGURE 4, as those features are very

close to each other for these three classes.

This issue of high rate of similarities can also be observed

in the confusion matrix of E-UCF11 dataset in FIGURE 7.

For example, the spiking action archived a high rate of sim-

ilarity with both jumping and walking actions, since there

are similarities in the dynamics of these actions in some
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FIGURE 14. ROC curves and their corresponding AUC values for E-KTH, E-UCF11, R-UCF11, N-Actions datasets.

situations. The biking also provides another example of a

high rate of similarity with swing activity since they have

similar instants of motion. Other cases can be found clearly

in FIGURE 9, where the eat action shows a rate of 12% of

similarity with drink action since these two actions include a

similarity in performing these actions.

N-Action dataset shows more examples of similarities

among the actions since this dataset contains several actions

that have the same dynamic in achieving these actions, such

as kicking, which has a similarity with most of the actions in

this dataset. The lower accuracy rates in these cases are partly

due to the non-uniform temporal sampling in neuromorphic

sensing failing to capture the speed differences in some sim-

ilar actions. The presence of a large number of noisy events

also plays a part in this issue.

We notice in TABLE 2, the HAR accuracy rates of N-

Actions, R-UCF50 and R-UCF11 datasets are much lower

compared to those of most of the emulator-based datasets.

This is likely to be due to the generation of a high proportion

of unnecessary events (so called noisy events) in the data

streams captured by the actual NVS devices, compared with

the emulator based datasets, where most events are concen-

trated around the pixels correspond to the human actions in

the sequences, as shown in FIGURE 5.

For the further justification of the classification results,

the Receiver Operating Curve (ROC) plots for each class

in the smallest datasets (E-KTH, E-UCF11, R-UCF11, and

N-Actions) are shown in FIGURE 14. The correspond-

ing Area Under Curve (AUC) values are also shown in

FIGURE 14. The minimum and the maximum AUC values

for the classes in all datasets are shown in TABLE 4. The

majority of the classes show large AUC values. However,

the classes that are highly similar with the other classes show

lower AUC values. As an example, the jogging action in

E-KTH dataset, which has the lowest accuracy rate, shows

the lowest AUC with 0.964 compared to the other actions

in the dataset. This lowest AUC value correlates with the

lowest accuracy rate of the same action appeared in the con-

fusion matrix in FIGURE 14. The tennis action in R-UCF11

dataset also shows the lowest AUC value for that dataset. This
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TABLE 4. AUC for the classification of the seven datasets used in the
proposed method.

corresponds to showing a high rate of similarity with other

actions in this dataset as evident from the accuracy rate of

this action shown in FIGURE 12.

C. COMPUTATIONAL COMPLEXITY OF THE PROPOSED

METHOD

All experiments in this paper were implemented usingMatlab

R2018a on a PC with Intel processor, CPU@3.6GHz and

RAM 16GB. The proposed feature extraction algorithm con-

sists of three main steps: De-noising, local feature extraction

and global feature extraction. The computational complexity

for each of these steps isO(N ), where N is the number of the

events in an action. Thus, leading to the total computational

complexity for including all three steps in the order ofO(3N ).

V. CONCLUSIONS

In this work, we have presented a new methodology

for learning the data streams from emerging neurmorphic

vision sensing devices. Our proposed method consists of a

pre-processing step followed by the generation of a feature

vector to capture local and global features correspond to the

underlying human action. The local features were extracted

considering a set of high-order descriptive statistics from

the spatio-temporal events in a time window slice, while the

global features were extracted by considering the frequen-

cies of occurrences of the temporal event sequences. Then

a classifier was trained using these feature vectors. The pro-

posed method was evaluated using three groups of datasets:

Emulator-based, re-recording-based and native NVS-based.

The proposed method has outperformed the HAR accuracy

rates of the existing methods by 0.54%, 19.42% and 25.61%

for E-KTH, E-UCF11 and E-HMDB50 datasets, respectively.

This paper also reported the results for three further datasets,

which were used for the first time in the literature for human

action recognition on neuromorphic vision sensor domain.

It was also noted that the re-recording-based and native

NVS-based datasets were providing lower rates of HAR accu-

racy compared to those for emulator-based datasets, due to the

presence of a high number of noisy events in the sequences

directly captured by the NVS devices.
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