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Abstract: The interplay between fat mass and lean mass within human metabolism is not completely
understood. We aimed to identify specific circulating metabolomic profiles associated with these
body composition compartments. Cross-sectional analyses were conducted over 236 adults with
overweight/obesity from the Satiety Innovation (SATIN) study. Body composition was assessed
by dual-energy X-ray absorptiometry. A targeted multiplatform metabolite profiling approach was
applied. Associations between 168 circulating metabolites and the body composition measures were
assessed using elastic net regression analyses. The accuracy of the multimetabolite weighted models
was evaluated using a 10-fold cross-validation approach and the Pearson’s correlation coefficients
between metabolomic profiles and body compartments were estimated. Two different profiles
including 86 and 65 metabolites were selected for % body fat and lean mass. These metabolites mainly
consisted of lipids (sphingomyelins, phosphatidylcholines, lysophosphatidylcholines), acylcarnitines,
and amino acids. Several metabolites overlapped between these body composition measures but none
of them towards the same direction. The Pearson correlation coefficients between the metabolomic
profiles and % body fat or lean mass were 0.80 and 0.79, respectively. Our findings suggest alterations
in lipid metabolism, fatty acid oxidation, and protein degradation with increased adiposity and
decreased lean body mass. These findings could help us to better understand the interplay between
body composition compartments with human metabolic processes.

Keywords: metabolomics; body composition; fat mass; lean mass; SATIN

1. Introduction

Increased prevalence of obesity, assessed by body mass index (BMI), is one of the
largest health concerns globally being a major risk factor for a number of prevalent chronic
diseases [1]. However, BMI is an indirect estimate of adiposity as it does not distinguish
between fat mass and lean mass. An abundance of evidence indicates an increased risk of
cardiometabolic diseases [2,3] and mortality [4] for those who have an increased body fat
and/or reduced lean mass. However, the underlying mechanisms linking these two com-
partments of body composition with health outcomes are not fully understood. It has been
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suggested that several factors including genetic, physiologic, metabolic, and behavioral
may explain this link [5]. Prior studies have identified different circulating metabolites
such as amino acids, acylcarnitines, or lipid species associated with body fat [6–8], lean
mass [7,9–11], and metabolic risk [6,12,13]. However, to date, limited metabolomic-analysis
has been conducted using combinations of different metabolomic platforms to cover a
wide range of metabolites and examine their association with these body composition com-
partments. A comprehensive metabolite profiling (metabolomics) may provide a deeper
understanding of the interplay between fat mass and lean mass with human metabolism.
The exclusion of participants with manifestation ofeither cardiometabolic diseases also
reduces unwanted confounding when investigating body composition measures in relation
to metabolomic profiles [14].

Therefore, we used a multiplatform metabolomics approach to identify circulating
metabolomics profiles associated with body fat and lean mass in participants with over-
weight/obesity included in the EU project Satiety Innovation (SATIN) study.

2. Results

The general characteristics of the 236 participants are summarized in Table 1. The
mean age was 46.4 years, with a mean body mass index (BMI) of 31.1kg/m2. The majority
of women were pre-menopausal (>90%). The mean % body fat was 42.0, and the lean
mass was 47.2 kg. Pearson’s correlation analysis revealed that % body fat was significantly
correlated with lean mass (r = −0.71, p-value: <0.001).

Table 1. Characteristics of study participants.

Characteristics (n = 236)

Age, years 46.4 ± 10.7
Women sex, N (%) 184 (78)

Weight, kg 87.5 ± 11.2
BMI, kg/m2 31.1 ± 2.2
Body fat, % 42.0 ± 5.6

Lean mass, kg 47.2 ± 9.2
Glucose, mg/dL 93.3 ± 11.0

Total cholesterol, mg/dL 196.0 ± 34.9
HDL-C, mg/dL 55.7 ± 15.3
LDL-C, mg/dL 119.9 ± 30.5

Triglycerides, mg/dL 102.3 ± 48.9
Data shows mean ± SD or number (%); Abbreviations: BMI, body mass index; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein.

2.1. Circulating Metabolites Associated with Body Composition Measures

Of the 168 metabolites used in the analyses, the elastic net regression model selected
86 and 65 metabolites for % body fat and lean mass, respectively (Figures 1 and 2). The
selected metabolites shown in the respective Figures 1 and 2 were ranked from the highest
to the lowest elastic net positive and negative regression coefficients.

Mean and SD of the set of 86 metabolites selected 9–10 times in the 10-fold CV elastic lin-
ear regression procedure (using lambda.min). Metabolites with negative coefficients (m = 43)
are plotted in the left part, whereas those with positive coefficients (m = 43) are shown
in the right part. Abbreviations: ARA + EPA, Arachidonic acid + Eicosapentaenoic acid;
LPC, Lysophosphatidylcholine; PC, Phosphatidylcholine; PE, Phosphatidylethanolamine; SM,
Sphingomyelin; TG, Triacylglycerides; TMAO, Trimethylamine N-oxide.

Mean and SD of the set of 65 metabolites selected 9–10 times in the 10-fold CV elastic lin-
ear regression procedure (using lambda.min). Metabolites with negative coefficients (m = 32)
are plotted in the left part, whereas those with positive coefficients (m = 33) are shown in
the right part. Abbreviations: ARA + EPA, Arachidonic acid + Eicosapentaenoic acid; LPC,
Lysophosphatidylcholine; PC, Phosphatidylcholine; PE, Phosphatidylethanolamine; PUFA,
polyunsaturated fatty acids; SM, Sphingomyelin; TG, Triacylglycerides.
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Figure 1. Coefficients (mean ± SD) for the metabolites selected 9–10 times in the 10-fold CV linear elastic regression and
associated with % body fat.

Figure 2. Coefficients (mean ± SD) for the metabolites selected 9–10 times in the 10-fold CV linear elastic regression and
associated with lean mass.

2.2. Metabolomic Profile of Body Fat

Forty-three metabolites were positively associated with % body fat, and 43 were neg-
atively associated. High positive regression coefficients were found for sphingomyelins
(SMs: C32:2, C34:2, C38:2, C34:0), linoleic acid, serine, threonine, alanine, six carnitines
(methylglutaryl-, tiglyl-, hexanoyl-, pimelyl-, decenoyl-, hexadecenyl-), phosphatidyl-
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choline (PC: C38:3), total lysophosphatidylcholine (LPC), TG C54:2, sucrose, glycolic acid,
followed by other carnitines, several PCs, SMs, and phosphatidylethanolamines (PEs), oleic
acid, palmitic acid, glycerol and phenylalanine.The highest negative regression coefficient
was found for tryptophan followed by SM C42:1, octadecanoyl-carnitine, TG C50:3, LPC
C18:2, SM C35:1, 3-hydroxybutanoic acid, methionine, PCs (C38:6, C40:4), eight other
carnitines (decadienoyl-, dodecanoyl-, C16 OH, free, glutaryl-, tridecanoyl-, octenoyl-,
methyl-malonyl-), LPC C16:0, SM C34:1, TMAO, leucine, other carnitines, several PCs and
SMs, omega-3 fatty acids, and citric acid. Other LPC species negatively associated with
body fat were C16:0 and C20:4.

2.3. Metabolomic Profile of Lean Mass

Out of the 65 metabolites associated with lean mass, 33 had positive and 32 nega-
tive regression coefficients. The highest positive regression coefficients were observed
for two carnitines (octenoyl-, octadecanoyl-) and tryptophan followed by methionine,
PC C40:5e, docosahexaenoic acid, valine, SM C42:1, glutaryl- and dodecanoyl-carnitine,
LPCs (C16:0, C20:4, C20:0, C16:1e), several other carnitine species, leucine, and glu-
tamic acid. High negative regression coefficients were obtained for SMs C32:2, glycerol,
lysophosphatidylcholinemethylglutaryl-carnitine, SM C42:3 cholesterol, linoleic acid, sev-
eral PCs, SMs, glycine, glucose, oleic acid, and other carnitines.

2.4. Pearson Correlations between Metabolomic Profiles and Body Compartments

In the training set, the unbiased metabolomic profiles acquired using the 10-fold cross-
validation approach was strongly correlated with % body fat (r = 0.80, p-value: <0.001) and
moderately with lean mass (r = 0.78, p-value: <0.001) (Table 2).

Table 2. Ten-fold CV Pearson (95% CI) correlations between the multimetabolite model and % body fat and lean bodymass.

% Body Fat p-Value Lean Mass p-Value

Pearson’s correlation coefficient (95%CI) 0.80 (0.75, 0.84) <0.001 0.78 (0.72, 0.83) <0.001

All metabolites were obtained 10 times in the cross-validation procedure for the elastic net Gaussian regression using “lambda.min” option.
Abbreviations: CV, cross-validated.

Sensitivity analysis adjusting for age and sex showed that 16 metabolites of the 86 previ-
ously selected from the unadjusted model were associated with % body fat (Supplemental
Figure S1), while 9 metabolites were selected for lean mass (Supplemental Figure S2).

3. Discussion

Using baseline data from the SATIN study and performing a comprehensive metabo-
lite profiling, we identified two different metabolomic profiles associated either with %
body fat or with lean mass. These metabolites mainly included lipid species and acylcar-
nitines suggesting lean tissue- and adipose-related alterations in lipid metabolism with
increased adiposity and decreased lean mass. Furthermore, some metabolites associated
with measures of body fat were consistently associated with lean mass. This may reflect
correlations between these body composition measures. Interestingly, the identified multi-
metabolite models exhibited strong correlations with the body composition compartments.

A previous study that performed a lipidomic analysis in plasma of adults with obesity
or normal weight revealed LPC as the most significant lipid associated with obesity [15].
In our study, most of the associations between these lipid species were observed for
body fat. Noticeably, among lipids, the most prominent associations were for SM C32:2
with both body compartments but in opposite directions. This SM is not unknown in
obesity research, as it has been shown to be associated with BMI in young Australian
adults [16] and in Mexican American adults [17]. We also observed, for the first time,
that the SM C32:2 was accompanied by other SMs with two double bonds (i.e., SM C34:2,
SM C38:2, SM C41:2) and positively associated with % body fat, while negatively with
lean mass. On the other hand, SMs with one double bond (i.e., SM C42:1, SM C35:1,
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SM C34:1, SM C40:1, SM C38:1) were negatively associated with body fat, whereas SM
C42:1 was positively associated with lean mass and these associations have not previously
reported. Previous experimental studies suggest that sphingolipids may play a role in
adipogenesis by directing the adipocyte toward storage [18]. Given the role of circulating
sphingolipids in atherosclerosis development [19], the increased circulating concentrations
of SMs with two double bonds and decreased concentrations with one double bond
associated with increased adiposity we found in our analysis could partially explain the
increased cardiovascular risk associated with excessive adiposity. However, the exact
molecular species could not be specified—a known pitfall of most screening methods. PCs,
the most abundant phospholipids in mammalian membranes and direct substrates for the
formation of SMs, were mostly associated with body fat. Our results in relation to LPC
species and lower % body fat or higher lean mass are in line with previous findings from
the comparison between lean and non-diabetic individuals with obesity [15,20].

A metabolite profile, including 24 and 20 acylcarnitines, was related to% body fat
and lean mass, respectively. Most of these compounds were consistently associated with
both body composition measures but in the opposite direction. Our results confirm pre-
viously positive associations between twoacylcarnitines (hexanoylcarnitine and hexade-
cenoylcarnitine) and % body fat [8]. However, our associations of octenoylcarnitine and
tetradecadienylcarnitine with % body fat were not in the same directions as reported by
Mai and colleagues [8]. It is likely that the higher body fat correlates with an upregulated
beta oxidation of fatty acids, which predominantly leadsto higher amounts of short- or
medium- chain-acylcarnitines.

Among the fatty acids assessed, docosahexaenoic acid was positively associated
with lean mass and negatively with body fat. A previous study in children with obesity
showed inverse associations between docosahexaenoic acid in red blood cells and % body
fat [21]. On the contrary, the omega-6 fatty acid, linoleic acid, which has been identified as
obesogenic [22], was associated with increased body fat and decreased lean mass. Beyond
similarities with previous studies, we also found oleic acid to be associated with both
body composition measures in similar directions as linoleic acid. Oleic acid has been
shown to stimulate adipogenesis in hen preadipocytes by increasing the expression of key
adipogenic transcription factors such as CCAAT/enhancer binding protein, alpha, or fatty
acid binding protein 4 [23].

Besides the altered fatty acid oxidation with increased adiposity, changes in amino
acid metabolism have also been reported. In a small cross-sectional study of Japanese
adults, higher levels of branched-chain amino acids, lysine, tryptophan, cystine, and
glutamate, while lower levels of asparagine, citrulline, glutamine, glycine, and serine
were associated with obesity [24]. In a larger study, higher levels of several amino acids
were found in obese versus lean Japanese subjects [25]. Similar to our study, Murphy and
colleagues reported associations of several amino acids (tryptophan, methionine, valine,
leucine, glutamic acid) with lean mass [7]. Amino acids have well-established roles in
maintenance of muscle nitrogen balance [26]. On the other hand, serine, threonine, alanine,
and phenylalanine were associated with increased body fat. It is possible that the greater
the adiposity the higher the protein degradation increasing the circulating concentrations
of these amino acids [27].

Our study has several strengths. A comprehensive metabolite profiling was performed
using combinations of different metabolomic platforms to quantitatively analyze a wide
range of metabolites. The body composition was assessed by dual-energy X-ray absorp-
tiometry (DXA), an objective, gold-standard method for measuring adiposity. Our study
participants were overweight/obese but free of chronic diseases and were non-smokers, all
factors that may affect the concentrations of these metabolites. Concerning limitations, we
evaluated a sample of individuals mainly consisting of women with overweight/obesity
and without comorbidities that could limit the generalizability of our results to other popu-
lations. However, the replication of prior associations with % body fat and lean mass [25]
suggests that some of the findings may be not specific to our population characteristics.
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Second, due to the cross-sectional design, causation and direction of causality cannot be
inferred, therefore both directions are currently plausible and require further investigation.
Third, the relatively small sample size did not allow us to conduct stratified analyses by
age and sex and thus examine whether the obtained metabolic profile differ depending on
ageor sex of the participants.

4. Materials and Methods
4.1. Study Design and Participants

The present study was nested within the SATIN work package 5, including 236 par-
ticipants from Denmark and Spain. Detailed information about study design, visits, and
methods has been previously published [28,29]. The SATIN study was designed as a two-
phase, double blinded parallel, randomized multicenter trial. Eligible participants were
men and women (20–65 years) with a BMI of 27.0 to 35.0 kg/m2, fat mass ≥23%, and with-
out comorbidities at baseline. Participants with significant weight changes (±3 kg in the
last three months), severe chronic medical conditions (type 1 or 2 diabetes, cardiovascular
diseases, hypertension, chronic kidney diseases, liver diseases, active inflammatory bowel
diseases, cancer, bariatric surgery and other interventions, psychological or behavioral
problems, psychiatric disorders), drug addictions, regular alcohol consumption above
recommendations and current smoking (including smoking cessation within the last three
months prior to study) were excluded from the study. After an initial 8-week low-calorie
diet (Modifast®, Nutrition et Santé, France), participants who reached at least an 8% weight
reduction, after a 7–10 days run-in period for diet stabilization, were randomly allocated in
a 1:1 ratio to the second part of the study (weight-loss maintenance period) following one of
the two intervention: (1) Regular diet including an active satiety-enhancing product (active
intervention group) or (2) regular diet including a similar control product without satiety
enhancing properties (control group) for 12 weeks. In the current analysis, participants
with available blood samples and DXA data at the beginning of the first period (before
weight loss diet) were considered.

The study was conducted in accordance with the ethical principles set forth in the
current version of the Declaration of Helsinki (Fortaleza, Brazil, October 2013). The pro-
tocol was approved by the local institutional review boards and Ethics Committees of all
the recruiting centres (the Municipal Ethical Committee of Copenhagen/Scientific Ethics
Committee of the Metropolitan regions of Denmark (journal no. H-15008553), the Dan-
ish Data Protection Agency (journal no. 2015-57-0117), and the Ethical Committee for
Clinical Research (journal no. 15-07-30/7assN2) and all participants provided written
informed consent. This trial was registered in: clinicaltrials.gov (accessed on 12 May
2021) (identifier: NCT02485743). In addition, all study procedures were aligned between
sites before initiation of the study and on-site monitoring visits were carried out by an
independent monitor.

4.2. Anthropometry and Routine Biochemical Measurements

All anthropometric measures were performed by trained staff. Height without shoes
was measured to the nearest 0.5 cm and body weight while wearing light clothing and
having emptied the bladder was measured to the nearest 0.1 kg. Both were measured in
metric units and using a wall-mounted stadiometer (Seca, Hamburg, Germany) and digital
calibrated scales (Copenhagen: Lindell Tronic 8000, SamhallLavi; Reus: Tanita SC-331S,
Tanita Corporation of America Inc., Arlington Heights, IL, USA), respectively, and used to
determine BMI.

Blood samples were collected in fasting conditions before the initial weight-loss period.
Plasma was obtained, aliquot, and stored at −80 ◦C until the metabolomics analysis. A general
routine biochemical analysis including glucose and lipid profile wasperformed using standard
enzymatic automated methods (COBAS; Roche Diagnostics Ltd., Rotkreuz, Switzerland).

clinicaltrials.gov


Metabolites 2021, 11, 317 7 of 11

4.3. Body Composition Assessment

A Lunar Prodigy X-ray Bone Densitometer (Lunar Prodigy Primo, GEHealthcare,
Little Chalfont, UK, in participants from Reus and GE Lunar iDXA, Encore software
version 16.2 in participants from Copenhagen) was used to acquire DXA scans and assess
body fat, and lean mass. The DXA scan was performed in fasting conditions with the
participants only wearing light clothing and after emptying the bladder. The DXA scan
was performed according to the manufacturer’s instructions for the device and calibrated
according to manufacturer’s instructions. The same device and software were used for
the same participant throughout the entire study. In women, and according to local
requirements and procedures, a pregnancy test (by urine stick) was performed before each
scan, or the women were asked to clearly state lack of pregnancy in Denmark. In case of a
positive test/statement the scan was not conducted. Body fat is expressed relative to total
body mass as percentage, and lean mass as kg as is standard practice [30,31].

4.4. Multiplatform Targeted Metabolomics

Metabolites were analyzed using a multiplatform approach previously published [32].
These platforms comprise proton nuclear magnetic resonance (1H-NMR), liquid chromatog-
raphy coupled to high resolution mass spectrometry (LC-HRMS), and gas chromatography
coupled to high-resolution mass spectrometry (GC-HRMS). Fasting blood samples for
GC-HRMS analysis were dried and stored at −80 ◦C until analysis.

4.5. Automated Plasma Sample Extraction

For metabolite extraction, the Bravo Automated Liquid Handling Platform from
Agilent Technologies was used to extract plasma samples in 96-well format plates.

For GC-HRMS analysis, a protein precipitation extraction will be made by adding
400 of µL MeOH: H2O (8:1) mixture to a volume of 100 µL of plasma. The mixture was
stirred and centrifuged and the supernatants were collected in new 96-well plates that
contain internal standard mixture. This plate was evaporated to dryness with a vacuum
centrifugation system (Speed Vac) and dried extracts were reconstituted with 30 µL of
methoxyamine and incubated during 90 min at 37 ◦C. Finally, the metabolites were sylilated
with 45 µL of MSTFA + 1% TMCS at room temperature during 60 min.

For LC-HRMS analysis and NMR analyses, lipidic fraction was obtained by a liquid-
liquid extraction using a methanol/methyl-tert-butyl ether mixture. These solvents were
automatically and sequentially added to a volume of 100 µL of plasma with agitation stages
between them and final centrifugation to promote phase separation. Then, a small aliquot
of the supernatant (organic phase) was dispensed and diluted 1:10 with methanol in a new
96-well plates containing deuterated internal standards for each family of lipids (Lipidomix
SPLASH from Avanti Polar Lipid) for lipidomic analysis using liquid chromatography
coupled to a time of flight high resolution mass spectrometry (LC-HRMS).

For lipidomic analysis by NMR, a second aliquot of the supernatant (organic phase)
was dispensed in new 96 well plates that was evaporated to dryness with Speed Vac. After-
wards, they were reconstituted with a solution of CD3Cl: CD3OD with 4% D2O and 0.01%
TMS (0.067 mM, Eretic Signal 6.166 mM) and analyzed by proton NMR (1H-NMR) [33].

4.5.1. 1H-NMR

Samples were prepared following the procedure previously published [29]. NMR
spectra were recorded at 300 K on an Avance III 600 spectrometer (Bruker, Germany)
at 600.20 MHz using a 5 mm PBBO gradient probe. Lipid samples were measured and
recorded in PROCNO 11 using a simple pre-saturation sequence (recycle delay (RD)–
90◦–ACQ pre-saturation pulse (zgpr) program). Specific 1H regions of diacylgycerols,
triglycerides, and total lipids based on terminal methyl and methylene signals were identi-
fied in the spectra using a comparison in the AMIX 3.9 software (Bruker, Germany) after
pre-processing and visual checking of the NMR dataset.
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4.5.2. LC-HRMS

The lipid species in plasma samples were determined by ultra-high performance liquid
chromatography (UHPLC) coupled to quadrupole-time of flight (qTOF) high resolution
mass spectrometry (MS) (6550 iFunnel series, Agilent Technologies, Spain) (following the
procedure described in Hernandez-Alonso et al. [34]). Lipids were separated in a C18
reversed phase column (Kinetex C18-EVO from Phenomenex) and a ternary mobile phase
(water/methanol/2-propanol) was used. The lipids measurements were generated from
specific RT, isotope peaks relation and the most intense adduct form observed. Each lipid
was quantified with an internal standard calibration method using one analytical standard
and one deuterated internal standard for each lipid family (lysophosphatidylcholines,
phosphatidylcholines, sphingomyelins, and triglycerides). Specific vendor software was
used (Quantitative Mass Hunter from Agilent).

4.5.3. GC-HRMS

Following the procedure described in Hernandez-Alonso et al. [34], samples were
analyzed in a 7890A Series GC coupled to a triple quadrupole (QqQ) (7000 series; Agilent
Technologies, Barcelona, Spain) using the J&W Scientific HP5-MS (30 m × 0.25 mm i.d.,
0.25 µm film; Agilent Technologies, Barcelona, Spain) chromatographic column and helium
as a carrier gas. Ionization was carried out with electronic impact recording data in “Full
Scan” mode.

Metabolite measurements were based on specific RT plus an ion fragmentation pattern.
Quantification was performed by internal standard calibration, using the corresponding an-
alytical standard for each determined metabolite (succinic d4 acid, glycerol 13C3, norvaline,
L-methionine-(carboxy-13C, methyl-d3), D-glucose 13C6, myristic-d27 acid, and alpha-
tocopherol d6), and a deuterated internal standard depending on the family of metabolite.

4.6. Statistical Analyses

Characteristics of study participants were described as means (SD) for quantitative
traits and percentages for categorical variables. Individual metabolites with equal or
more than 20% missing values were excluded, otherwise data were imputed using the
random forest imputation method “missForest” function from the “randomForest” v 4.6-14
R package. Subsequently, 9 metabolites were excluded from the 178 quantitative panel
metabolites included in the study, leaving 168 metabolites for further analyses. Rank-based
inverse normal transformation was applied to the metabolomics data to improve normality.
Gaussian regression with an elastic net penalty was used to build a multimetabolite model
for each of the body composition measures (“caret” v 6.0-84 and “glmnet” v 3.0-2 R
package). We performed 10-fold cross-validation (CV) to find the optimal value of the
tuning parameter that result in a mean squared error within 1-SD of the minimum [35].
The performance of the model was examined based on parameters of “lambda.min”. The
multimetabolite model was computed as the weighted sum of the selected metabolites
with weights equal to regression coefficients from the model.

A 10-fold cross-validation (CV) approach was performed splitting the whole dataset
into training and validation sets (80% and 20%, respectively). Subsequently, in the training
set, we applied this approach to obtain the performance of the model without overfitting.
Models were optimized using argument best Tune of the “caret” R package. In order to
report the coefficients from each CV iteration, s = “lambda.min” was selected as it gives the
minimum mean CV error. The alpha parameter was also estimated using 0.1 increments
from 0 (i.e., Ridge regression) to 1 (i.e., Lasso regression). The alpha value of the model with
the best predicting accuracy in the validation sets was 0.8 and the lambda.min values were
1.119 and 0.568 for fat mass and lean mass models, respectively. Weighted models for each
training-validation datasets (i.e., for every 80–20 split datasets) were constructed using the
metabolite coefficients obtained from the elastic net regression of each training set. Pearson
correlations were calculated to evaluate the performance of the multimetabolite model
in assessing % body fat or lean mass in the validation set. For reproducibility purposes,
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we presented the regression coefficients using 10 iterations of the 10-CV elastic regression
approaches in the whole dataset. To address potential confounding effects of age and sex on
the association between metabolites and body compartments, we conducted a sensitivity
analysis by adding them as covariates. All the analyses were performed using R statistical
software (v 3.6.1).

5. Conclusions

In conclusion, this study identified specific profiles of 86 metabolites associated with
% body fat and 65 metabolites associated with lean mass in a sample of adults with
overweight/obesity. These findings suggest alterations in lipid metabolism, fatty acid
oxidation, and protein degradation with increased adiposity and decreased lean mass and
contribute to further our understanding of the interplay between body compartments and
metabolic status that could link body composition with metabolic disorders.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11050317/s1, Figure S1: Coefficients (mean ± SD) for the metabolites selected
9–10 times in the 10-fold CV linear elastic regression and associated with% body fat adjusted for age
and sex, Figure S2: Coefficients (mean ± SD) for the metabolites selected 9–10 times in the 10-fold
CV linear elastic regression and associated with lean mass adjusted for age and sex.
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