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Abstract: Roadside collisions are a significant problem faced by all countries. Urbanisation has led to
an increase in traffic congestion and roadside vehicle collisions. According to the UK Government’s
Department for Transport, most vehicle collisions occur on urban roads, with empirical evidence
showing drivers are more likely to break local and fixed speed limits in urban environments. Analysis
conducted by the Department for Transport found that the UK’s accident prevention measure’s cost
is estimated to be £33bn per year. Therefore, there is a strong motivation to investigate the causes
of roadside collisions in urban environments to better prepare traffic management, support local
council policies, and ultimately reduce collision rates. This study utilises agent-based modelling as
a tool to plan, experiment and investigate the relationship between speeding and vehicle density
with collisions. The study found that higher traffic density results in more vehicles travelling at a
slower speed, regardless of the degree to which drivers comply with speed restrictions. Secondly,
collisions increase linearly as speed compliance is reduced for all densities. Collisions are lowest
when all vehicles comply with speed limits for all densities. Lastly, higher global traffic densities
result in higher local traffic densities near-collision sites across all adherence levels, increasing the
likelihood of congestion around these sites. This work, when extended to real-world applications
using empirical data, can support effective road safety policies.

Keywords: agent-based model; traffic simulation; urban environment; autonomous agents; data
analysis; collisions; speed adherence

1. Introduction

A lack of adherence to speed limits can have serious consequences and pose a sig-
nificant risk to life for drivers, passengers and members of the public. According to UK
Government reports, car users account for the largest proportion of casualties across all cat-
egories of injury. A total of 736 car passengers/drivers suffered fatal collisions in 2019 [1,2].
Furthermore, on 30 mph (miles per hour) roads, 54% of cars exceeded the speed limit in
the first quarter of 2019. In addition, 6% of these cars exceeded the speed limit by over
10 mph. This increased in the second quarter of 2019 to 56%. Similarly, 37% of fatalities
among car passengers/drivers in 2019 occurred on urban roads—an increase of 1% since
2018. An additional 57% of fatalities occurred in rural roads, down 3% since 2018. These
trends are evident outside of the UK. According to [3], almost half of the reported driving
offences in the Northern Territory of Australia are regulatory; these include speeding and
non-adherence to road rules. In Norway, a longitudinal study conducted on 145 young
drivers (up to 25 years old) found that speeding behaviour was the main factor (80%) in
causing motor vehicle collisions [4].
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Driving speeds are a vital component in exploring the factors that lead to collisions.
Several empirical studies in speed and collision rates found evidence that crash rates
increase faster given the increase in speed in minor roads compared to major roads. Two
important factors related to collision rates are traffic density and traffic flow [5]. Further-
more, the authors in [6] found that population density is a contributory factor in accident
frequency. The authors suggest that population densities in cities are higher than in rural
areas; thus, people are more exposed to vehicle collisions. Similarly, the authors in [7,8]
collected empirical data from drivers in the form of surveys to conduct studies in driver
behaviour; this method was also adopted by [9]. These studies found that an increase in
speed led to an increase in collision rates and that fast moving vehicles have a higher crash
rate than slow moving vehicles. References [7,8] both reported a power function to describe
this relationship, while the authors in [9–11] reported an exponential function. These latter
three studies also found that the crash rate increases faster with increasing speed on urban
than on rural roads. Methodological differences in the operationalisation of variables, and
the influence of coincidental factors, all may account for differences in results at a detailed
level [5].

Self-driving cars play an important role in vehicle collision research. Reference [12]
found that human-like driving policies are necessary to ensure the safety of passengers
in these vehicles. The authors apply deep-reinforcement learning algorithms to simulate
collision avoidance in dynamic settings. By adopting human expert knowledge data and
feeding these data into the model, the authors found that human-like driving policies
can be achieved. Similarly, reference [13] developed a hybrid online POMDP planning
and deep-reinforcement learning algorithm to enable self-driving cars to avoid collisions,
including pedestrians. The research aims to deploy a collision-free navigation system such
that vehicles are better equipped at handling high-risk scenarios. The authors found that
their hybrid solution outperforms each applied technique, POMDP and deep-reinforcement
learning on average. Moreover, the author in [14] attempts to explore how and if ethics
can be adopted in self-driving cars by comparing real-world scenarios where self-driving
cars fail to adopt human intuition to avoid a collision with a pedestrian as doing so would
result in the vehicle breaking its own intrinsic rules. The author in [14] points out that
self-driving cars cannot be sure that a road ahead is clear, such that it should cross and
avoid hitting a person that it may encounter. These vehicles will estimate the confidence
interval at 98 to 99 per cent, which ultimately means engineers would have to decide how
high the confidence interval must be. Thus, engineers would need to consider what object
is ahead, i.e., plastic bag or a person making this an essential line of enquiry in this field
of research. While most of the research in self-driving car technologies is in its infancy,
developing new technologies to handle collision is welcomed, which could, in turn, be
adopted by regular non-self-driving vehicles.

Safety intervention policies in reducing variations in speed play an essential role in
reducing collision rates. Interventions include speed humps, roundabouts, road markings,
signposts and traffic lights. However, the measures that have been found to increase
speed limit adherence are those that physically prevent a vehicle from driving faster than
necessary, such as speed humps [15]. Safety measures deployed in vehicles have also
lead to a decrease in collisions. The European Union has made it mandatory through
legislative requirements for vehicles to be fitted with advanced emergency braking systems
and other measures, which lead to a decrease of 5000 fatal collisions on European roads per
year [16]. Alternatively, signposts that show the expected speed limit do not automatically
imply that drivers will match the indicated speed limit. The authors in [17] refer to static
speed limit signposts as passive speed control. They argue that passive control alone is
generally only sufficient at sites where the hazards are obvious, and drivers understand and
accept the speed limitation [15]. Ultimately, the authors in [18] found that active signalling,
using dynamic signs informing a driver that they are exceeding the speed limit, has more
effect than passive control since drivers may also interpret the signal as an indication for
impending danger. In addition, the authors in [19] found that, when comparing a signpost
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with a marked police car in increasing speed adherence, the police car had a significant
effect on driving speed the drivers were in active fear of being reprimanded. According
to [20], features such as edge markings that visually narrow the road, the vicinity of
buildings, reduced carriageway widths, barriers in the carriageway and pedestrian activity
all tend to reduce speed.

The concepts discussed above provide insight into the literature on empirical evidence
of collisions in Great Britain, the impact of speeding, safety intervention policies and road
design. However, the decision to speed or comply with speed limits comes down to the
individual driver. Speeding is a major contributory factor to roadside accidents [21]. To
date, the majority of research in this area has investigated an extensive range of important
factors from the viewpoint of those who exceed speed limits. This focus is understandable,
given that faster vehicle speeds increase both risks of crash involvement and severity of
crash outcomes [22].

The earlier statistics show that work needs to be done to curb the number of accidents
on urban roads. This study will utilise a novel 3D Urban Traffic Agent-Based Model [23] to
conduct several experiments by testing multiple traffic density and speed limit adherence
parameters to illustrate how these measures impact vehicle collisions among a heteroge-
neous agent population of vehicles in a simplification of an urban environment. This study
adopts the widely accepted definition of collisions, defined by [24] as: “an observational
situation in which two or more road users approach each other in space and time to such
an extent that a collision is imminent if their movements remain unchanged”. The study
ultimately aims to assess the impact traffic density and speed limit adherence have on
collision rates by utilising a novel agent-based model to provide recommendations on
reducing these rates and inform policy.

Section 2 introduces the agent-based modelling methodology by describing what it is
and how it has been adopted in similar research. Section 3 will describe the agent-based
model using established protocols such as the Overview, Design concepts and Details
(ODD) [25]. This section outlines the purpose of the model, agents and environment
characteristics. Section 4 describes the number of experiments conducted, the rationale
behind them and an analysis of the subsequent outcomes. Lastly, Section 5 consists of the
studies’ initial aims, which was found after experimentation, and the recommendations
made for future urban road infrastructure planning.

2. An Individual-Based Modelling Approach to Traffic Simulation

The traffic system is characterised by multiple individual actors (drivers) and a street
network made up of individual rules such as right of way and speed limits. Given the
nature of this system’s individual-level components, it is evident that these systems are
perfectly poised to be studied using individual-based modelling methods. According
to [26], individual-based modelling refers to simulation models that treat individual entities
as unique and discrete components with at least one property, for example, age, height,
position and these properties change during the life cycle of these entities. Therefore, in
this study, vehicles can be thought of as individual heterogeneous entities with their own
rules, while the urban street network is the environment in which these vehicle entities are
observed from within. The aim is to test various interventions in this simplified world and
collect observational data from these entities to assess the impact of these interventions.

Agent-Based Modelling (ABM) is a tool that allows the study of emergent behaviour
of a system by simulating the actions and interactions of a collection of autonomous
agents. It is used in a wide variety of disciplines such as ecology [27], crime [28] and
sociology [29]. Implementing simple rules for the agents can lead to the reproduction of
complex phenomena observed in the real world. Like all models, an agent-based model
simplifies the isolated study of the effect of particular agent behaviour. In light of these
advancements, several scholars advocate for contemporary simulation models as better
suited in studying the underlying mechanisms of crash occurrence. Furthermore, these
methods represent a richer and more detailed set of alternatives than statistical models [30].
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Traffic in an urban space is a complex system that includes the environment (a road
network with a plethora of features like intersections, traffic lights, roundabouts, hills and
weather conditions) and drivers’ behaviour as individuals. Urban traffic management
has reached utmost importance worldwide as cities battle congestion and its impacts on
public health and fossil fuel emissions. Many computational models exist—SUMO [31],
AIMSUN [32], ARCHISIM [33] and PARAMICS [34], to name several—which aim to
simulate traffic flow and aid the design and layout of urban roads and thereby help to
minimise the impact of congestion. However, these models are typically explicitly collision-
free; driver behaviour is formulated to prevent collisions. However, some contemporary
academic research has focused on various aspects of roadside collisions. The authors in [35]
applied data mining techniques on data captured from intersection accidents to support
real-time collision detection systems at intersections. A review of near-collision driver
behaviour models by [36] found that most research has mainly been interested in the details
of control in near-crash and crash-phases and have thus not needed to provide an account of
why these states were reached in the first place. Furthermore, the authors in [36] argue that
some authors have modelled reactions to collision warnings in various ways [37–39], while
none of the models has addressed the phenomena of behavioural adaptation to long-term
system exposure. The model adopted in this study [23] allows for the vehicle’s life-cycle to
be observed at an individual level while also observing the global patterns that emerge
overtime at the street network level. The authors in [36] also found that almost all papers
focused on a narrow set of collisions, namely rear-end collisions. Thus, they recommend
looking at a more diverse range of pre-crash scenarios to achieve full credibility. The
model adopted in this research deploys an environment that can observe multiple vehicle
behaviours while applying the laws of physics. A variety of collisions among vehicles
can then be observed. An example of this is where vehicles tip over if a collision occurs
with a heavier, faster-moving vehicle, which ultimately captures a more realistic array of
possible collisions and repercussions. Ultimately, collisions occur and contribute to various
undesirable circumstances on roads, such as traffic jams and congestion. Furthermore, the
rate, type, and severity of these collisions are emergent properties of the system, impacted
by driver interaction, driver behaviour, and the environment.

Driver behaviour can be observed in many ways; these include surveys, camera
footage, police reports, to name but a few. A prominent method within the literature is
the Driver Behaviour Questionnaire (DBQ) introduced in 1990 by [40]. This questionnaire
consists of 50 items describing various problems and violations while driving, which
members of the public can fill out. After surveying 520 drivers, the authors in [40] identified
that errors are statistically distinct from violations, indicating that different psychological
mechanisms trigger errors and violations. The authors in [41] found that violations were
more prevalent among young drivers compared to senior drivers. On the other hand,
errors decreased for younger drivers but remained constant with age among older drivers.
The differences between attitudes among drivers in rural areas and urban areas reflect
the significant difference among collisions in these areas. The authors in [42] identified
that urban road network design consisted of higher lengths of road and traffic volume,
which in turn increased the collision rates. The authors in [43] add to this by highlighting
the strongest predictors of fatality rates due to vehicle collisions as being age and number
of residents in the geographical areas. The authors in [44] adopted Naturalistic Driving
Study (NDS) data which contains driver, trip and vehicle specific information. These
data represent driver behaviour before, during and after the adoption of high-visibility
enforcement programs. Furthermore, the study focused specifically on aggressive driving
behaviour; these include speeding and tailgating to explore the intensity and duration of
these behavioural patterns. The study found that high-visibility enforcement programs are
likely to reduce speeding only in some instances. A survey result showed that drivers in
rural areas are more likely to drive without a seat belt on or while intoxicated with alcohol
compared to drivers in urban areas [45]. The author in [46] identified two components that
impact traffic risk. These are system risk and risk culture. The latter consists of factors
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independent of the driver, such as vehicle condition, weather and road plans. The former
are human factors such as norms, feelings, attitudes and perceptions of risk. Adding to this,
the authors in [47] attempted to analyse taxi driver speeding behaviours captured by GPS
trajectory data. These data captured the hourly speeding frequency and average speeding
severity of each driver. Their study concludes that aggressive driver behaviour among
taxi drivers are linked to longer trips, short delivery time, high monetary value, driving
at night, and, lastly, forced low-speed limits. Given all of the above, the authors in [43]
highlight the impact physical changes to road networks can have by enforcing slower
speeds such as road humps, while also indicating that driver behaviour may also be altered
indirectly by influencing the public’s attitudes and norms which links to the literature on
“self-explaining” roads [48] mentioned earlier in the Introduction section.

Accident reduction is a crucial aim of transport management. It has been hypothesised
that higher congestion leads to fewer road fatalities [49] as congestion leads to lower
overall speeds, and therefore collisions are less likely to occur. While some evidence
of this relationship has been found in some scenarios such as on single-carriage rural
roads in the UK [50], results are much less conclusive in other scenarios such as in cities
such as London [51] or on highways such as the M25 motorway around London [52].
Furthermore, it has been argued that, in many empirical studies, congestion is evaluated
using proxy variables such as volume over capacity ratio or employment density [53] and
that, to fully understand the impact of congestion, data with high levels of spatial and
temporal resolution are needed [54]. Microscopic traffic simulations track all vehicles’
positions and velocity in the simulated road network in small time steps, allowing traffic
dynamics to be observed in high spatial and temporal resolution. These simulations could
complement empirical investigations and yield further insight into the interactions between
road environment, speed, traffic density, congestion and accidents, adding to the debate
regarding the impact of vehicular congestion on the frequency of road accidents [55].

The ABM described in this study has been designed to investigate the relationship
between driver adherence to speed limits and the subsequent impact on the number of
collisions. Unlike the previously described models, it utilises a physics engine provided by
the Unity development platform. This feature allows physical collisions to occur between
vehicles. The interaction between traffic density, adherence level and collisions can be
studied by increasing the number of agents. The study will ultimately aim to argue for
various policy interventions such as reducing or increasing density to reduce collision rates
and regulate speeding in dense road networks and, by utilising the agent-based model,
show the extent to which these interventions impact the system as a whole.

3. Model Description

This section describes the agent-based model adopted for this study. A general
description of the model can be found at [23]. The model description includes the purpose
of the model, the parameters that can be selected, the output variables from the model post
simulation run, overview of the model workflow, and, lastly, a detailed description of the
vehicle agents and environment. The Overview Design and Details (ODD) protocol will be
utilised to explain the model [25].

3.1. Purpose

The agent-based model used in this research is the 3D Urban Traffic Simulator in
Unity [23], this includes the data produced during model experiments, found in the Sup-
plementary Materials. The model was designed to provide researchers with the ability to
simulate hypothetical vehicle drive–cycle activity scenarios in a 3D urban environment. The
model utilises heterogeneous autonomous vehicle agents with granular control parameters
such as vehicle mass, velocity, traction and downforce to name but a few. Similarly, the
street network is developed around a built-up urban environment that contains the foun-
dations of a dense urban street network with varying road speed limits and intersection
rules.
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3.2. Variables

The model requires input variables to run an experiment and output results that can
later be analysed. The parameters that can be modified are listed in Table 1.

Table 1. Model entities and parameter values, where [X, Y] are a random uniform distribution of
values (inclusive) [23].

Entity Parameter Values

Vehicle Mass [1, 7500] (kg)
Top Speed [30, 45] (mph)
Ray-cast Length [1, 20] (m)

Environment N. Of Vehicles [1, 500]
Speed Adherence [0, N]
Roads 1295
Intersections 354

The model consists of two entities: the vehicle agents and model environment. The
vehicle parameters are:

• The vehicle mass parameter, each vehicle can weigh up to 7500 kg; the model dis-
tributes vehicles arbitrarily across the environment with varying weights, from small
cars to large goods vehicles (LGVs) to capture heterogeneity, every vehicle must have
a mass of at least one such that the laws of gravity apply during the simulation ex-
periment. Mass only becomes significant when collision severity is of importance;
however, all collisions are considered in this study.

• The top speed measure is between 30 and 45 mph, and is only applied to vehicles that
do not adhere to speed limits (break speed limit rules), for example, vehicles that are
driving on a 20 mph road can bypass the speed limit and drive at 45 mph which is
more than double the speed limit. This measure is applied only if Speed Adherence is
≥1 (source [2]).

• The ray-cast length parameter can be between 1 to 20. The variable assigns a distance
between two vehicles in meters (source [56]).

The environment specific parameters are:

• The number of vehicles in the model, N; this can be between 1 and 500.
• The speed adherence variable can be between 0 ≤ x ≤ N. This assigns the proportion

of vehicles that will not adhere to the speed limits (vehicles that break the local and
fixed speed limits) applied to the road which they are driving on during simulation.

• The urban road network consists of 1295 roads which vehicles drive on and 354 inter-
sections which consist of right of way rules. The street network has been developed
to depict a small urban town.

The parameters mentioned above, once selected, are used to initialise the experiment
(model-run) which lead to output variables. These variables observe data points every
step of the simulation experiment. Table 2 describes the output variables that the model
produces.

The model outputs thirteen variables (refer to Table 2). The agent ID variable allows
for a micro-level analysis of the agent behaviours during model execution at the street
level, and this helps identify specific agents in the environment. The collisions variable is a
cumulative number that increases each time the vehicle collides with another; this includes
contact made between two or more vehicles on all road types and intersections. Top speed
is the speed limit associated with the road that the vehicle is currently on, and the vehicle
is trying to match the speed; however, in scenarios where some vehicles do not adhere to
speed limits, the top speed for those vehicles would be a value between 30 and 45 mph
ultimately breaking the speed limit. The current speed variable is the vehicle’s speed at
the current time of the simulation run. The distance of travel is in meters which tracks
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the vehicle’s distance from the starting position on the road network up until the current
simulation step. The ray-cast length variable is the distance the vehicle can identify objects
ahead, for example, other vehicles. Traction control is either 1 (on) or 0 (off). If the traction
control is on, the vehicle has full traction capability such that each wheel can adapt to the
surface; however, it is not utilised for this study as not all vehicles have access to traction
control. The velocity magnitude is a scalar value demonstrating the rate of motion at a
specific time. The vehicleMass variable assigns a weight to the vehicle between 1 to 7500 in
kilograms to capture heterogeneity. The physics engine in Unity requires that every object
has a mass assigned to it to ensure gravity is applied. Downforce coefficient is between
0.1 and 10; for this research, it is left at 0.1 to have no impact. Lastly, date-time stamps are
included in each row of data recorded such that time-series analysis can be applied [23].

Table 2. Model output variables, source [23].

Variable Output Type Example Value

AgentID Integer −38,572
xAxisPos Float 75.94560
zAxisPos Float 20.1927
collisions Integer 12
topSpeed(mph) Float 20.0
currentSpeed(mph) Float 18.0
distanceOfTravel(meters) Float 13.0
raycastLength Integer 6
tractionControl Integer 0
velocityMagnitude(BETA) Float 0.195808
vehicleMass Integer 1500
downforce Float 0.1
date-time DateTime 18 January 2021 13:05:40

3.3. Model Overview

The agent-based model was developed using Unity. Unity is a 3D software develop-
ment platform consisting of a rendering and physics engine and graphical user interface.
Unity has received wide-spread acceptance in several industries, including gaming, auto-
motive and film [57].

The following workflow diagram describes the processes that the model [23] under-
goes during run-time.

The Urban Traffic Simulator [23] workflow (refer to Figure 1) takes input values for
the five variables described earlier (refer to Table 1). The software then resets all parameters
to start the simulation scene, producing the agents and environment. Once the model has
reset, the model produces all agents, starting locations, and environment parameters before
the simulation starts. Now, the model runs each frame, and every change that occurs is
stored with a time-stamp. Fixed Update is used to compute any physics elements such as
vehicle wheels, mass and velocity. The Update method computes variables in each frame.
The model utilises Fixed Update due to the number of physics components used; therefore,
multiple changes occur during simulation run-time for each frame, and these changes are
captured to output the thirteen variables’ (Table 2) post-simulation run; once this is done,
the model is stopped (destroyed).

3.4. Agent

The vehicles are classed as autonomous agents; the vehicle population is hetero-
geneous (every vehicle has distinguishable characteristics). These agents apply similar
characteristics to real-world motor vehicles; they have four wheels, steering angle, traction,
mass, and drag. Each vehicle agent applies the following set of rules during its drive cycle,
refer to Algorithm 1.
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Figure 1. Workflow diagram depicting processes that the Urban Traffic Simulator undergoes during
run-time.

Algorithm 1: Vehicle agent rules in pseudocode.

while Model running do
Drive;
if not_adherence == true then

accelerate to top speed [30, 45];
else

accelerate matching road speed limit;
end
if vehicle_ahead == true then

match speed of that vehicle;
else

continue at current speed;
end
if at_intersection == true AND vehicle_present == false AND right_of_way == true
then

reduce speed and drive out of intersection;
else if at_intersection == true AND vehicle_present == true AND right_of_way ==
false then

halt till intersection_clear == true;
else if at_intersection == true AND vehicle_present == false AND right_of_way ==
false then

reduce speed and drive out of intersection;
else

halt till intersection_clear == true;
end

end

The rules described in Algorithm 1 allow vehicle agents to navigate the environment
and collect data. Each vehicle follows the same rules. However, the features vary and
depend on the input values from Table 1. These vehicle agents are a simplification of real
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vehicles. Therefore, it is not expected to perfectly simulate real-world vehicles but includes
the fundamental features that all vehicles retain.

If a vehicle is not adhering to speed limits, it can increase its speed between 30 to
45 mph. If vehicle X is ahead of Y, Y given the rules in Algorithm 1 should decrease speed
to match vehicle X’s speed. When a vehicle arrives at an intersection, if it has the right of
way, i.e., on a horizontal lane and no vehicles are at the intersection, it reduces its speed to
10 mph and drives through the intersection. If the vehicle is at the intersection and does not
have the right of way, it should wait until the intersection is cleared. If the vehicle is at an
intersection, it does not have the right of way, and there are no vehicles at the intersection,
the vehicle is free to reduce speed to 10 mph and drive through the intersection. Lastly, all
vehicles that adhere to the speed limit increase or decrease speed to match the road’s speed
limit [23].

3.5. Environment

The vehicle agents described earlier require an environment to function within. The
model [23] deploys an urban street network that is described as a T-type network [58].
This street network contains similar characteristics to downtown Philidelphia [59] and San
Francisco [60]. T-network patterns are like grid-shaped networks but include t-junctions.
Several added features such as eight-lane intersections described in [61] are also utilised
to add complexity. The street network contains 1295 roads and 354 intersections, which
were arbitrarily generated to cover a small town. The individual roads, speed limits and
intersection rules are described in the following Figure 2.

Figure 2. Urban Street Network roads and intersections, (A): two-way local road, (B): two-way corner
road, (C): two-way fixed road, (D): eight-way intersection and (E): two-way T-junction.

The environment contains three road types with varying fixed and local speed limits
and intersections with right of way rules. The environment is a simplification of the real
world. Therefore, it does not utilise all intersection types. Moreover, overtaking is not
utilised in the model as passing-lanes (overtaking lanes) do not exist in the street network
and are commonly found in motorways or multi-lane highways [62]. However, it does
contain the basic features of an urban street network which have also been observed
in several cities across the United States [59,60]. The following list describes each road,
intersection and the speed limits assigned to these roads from Figure 2:

• (A) Two-way local road with a speed limit rule of 20 mph.
• (B) Two-way corner road with a speed limit rule of 10 mph.
• (C) Two-way fixed road with a speed limit rule of 30 mph.
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• (D) Eight-way intersection, where right of way is for traffic on horizontal lanes, speed
limit rule of 10 mph.

• (E) Two-way T-junction, right of way is for horizontal lanes, speed limit rule of 10 mph.

The speed limits for the three road types (Figure 2A–C) were derived from UK gov-
ernment sources such as [2], where urban streets consist of local 20 mph and fixed 30 mph
zones; however, corner roads sometimes require lower speeds such as 10 mph as vehicles
require more room to turn. A UK Government report identifies roads in built-up areas as
having a fixed speed limit of 30 mph. However, for dense areas—usually city centres—this
may be designated 20 mph by local councils to keep pedestrians safe from collisions [63].

For comparison, the urban street network in the Urban Traffic Simulator [23] is roughly
the same size as the town of Morley, UK (refer to Figure 3). Morley has 1526 roads compared
to 1295, which the urban street network possesses.

Figure 3. Urban Street Network of Morley, UK (data source: [64]).

3.6. Summary

The model description section describes the rules vehicle agents follow for every road
type and intersection it encounters. Five rules govern the vehicle’s behaviour; these broadly
involve increased or reduce speed depending on road or speed adherence, interacting with
intersections in a safe way to reduce the risks of collisions. The environment comprises
three road types and two intersections, with varying local and fixed speed limits taken
from empirical data via UK government sources. Lastly, the town of Morley, UK happens
to be very similar in size to the urban street network applied in the model; this provides a
realistic snapshot of the global scale of the street network involved. In the next section, the
model is used to run nine hypothetical scenarios. The output data from these scenarios
will be quantitatively analysed in several ways.

4. Experimental Results

As mentioned previously, this study aims to quantify the relationship between speed
limit adherence within different population sizes and the subsequent impact on collisions.
The experiments will conduct multiple model execution scenarios under nine conditions,
refer to Table 3. The goal is to quantitatively identify the best and worst-case scenarios
concerning the number of collisions in an urban street network. More specifically, low,
mid and full adherence to speed limits will be compared across low, mid and high traffic
density (number of vehicles); these are identified as the independent variables, while the
dependent variable is the number of collisions. All other parameters will remain constant
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to ensure a heterogeneous population of vehicles across all experiments. The model is still
in its infancy and can be thought of as a proof of concept. Thus, factors such as weather and
time of day have not yet been implemented but will be considered for future extensions.
The main variables of interest at this current time for this study are adherence to speed
limit, vehicle density and collisions.

As described in the background section, the relationship between collision rate and
traffic density has been theorised but not empirically verified. Since collisions in the real
world can be caused by many factors, we will focus on collisions caused by speeding.
Our question is: do higher traffic densities suppress the higher collision rates caused by
speeding in an urban environment?

Table 3. Experiment conditions.

Independent Variable Measure Low Adherence Mid Adherence High Adherence

Low traffic density 50 vehicles (25%) and
15 adherence (30%)

50 vehicles (25%) and
30 adherence (60%)

50 vehicles (25%) and
50 adherence (100%)

Mid traffic density 100 vehicles (50%) and
30 adherence (30%)

100 vehicles (50%) and
60 adherence (60%)

100 vehicles (50%) and
100 adherence (100%)

High traffic density 200 vehicles (100%) and
60 adherence (30%)

200 vehicles (100%) and
120 adherence (60%)

200 vehicles (100%) and
200 adherence (100%)

Each experiment ran five times with different random seeds for five minutes due to
the computational demand required to render 3D agents. Final collision values were aver-
aged across runs and normalised by the number of vehicles, with the standard deviation
displayed in the error bars. The results are shown in Figure 4.

Figure 4. Number of collisions (normalised by number of vehicles) against the percentage of non-
adherence to speed limits, refer to Supplementary Materials for data used.

Firstly, it is important to note the size of the error. While some variance in model runs
is expected, the extent of the overlap between scenarios makes drawing firm conclusions
from these experimental results difficult. However, in future studies, this will be taken into
account.

While keeping account of this variance, it is still clear that there is a greater difference
in collision rates between 50 and 100 vehicles than between 100 and 200. This suggests that
there exists a critical density at which the number of collisions begins to scale linearly with
traffic density; prior to this critical point, an increase in vehicles results in a disproportion-
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ately large increase in collisions. Similar patterns were found in empirical data collected
in the subsequent studies [7–9]. In Figure 4, we see little evidence of reduction (either
proportional or absolute) in the number of collisions as traffic density increases. Higher
traffic density also does not appear to suppress the effects of low-speed limit adherence
on collisions. As can be seen from the trend lines in Figure 4, collisions increase at a
near-identical rate as a function of the percentage of non-adherence. Higher traffic densities
also appear to loosely correlate with greater variance in collisions between runs.

While collision prevention is a primary goal of traffic management, the prevention of
congestion—and its impact on public health and CO2 emissions—is equally crucial [65,66].
As described in the background, it has been suggested that these goals could conflict [49,54].

There is no single definition of congestion—several different definitions have been
developed for different congestion scenarios [67] or for identifying congestion from the
available data [68]. In this study, congestion will be understood both as a decrease in the
overall traffic speed in the system and as an increase in the number of vehicles with speeds
under 5 mph at a given time. Local traffic density (the number of vehicles in a particular
area of the network) will also be considered under the assumption that this correlates with
congestion and being of interest in its own right.

To compare traffic flow for the different scenarios, the average speed of all vehicles
was calculated. The results are shown in Figure 5. Lower adherence to speed limits leads
to higher average speed for systems of varying density. However, the average speed of
systems with low adherence is impacted more by increasing the density. For example,
when increasing the number of vehicles from 50 to 200 for 100% speed limit adherence, the
average speed decreases by 3.6%. When increasing the number of vehicles from 50 to 200
for 30% speed limit adherence, the average speed decreases by 13.3%; therefore, as density
increases, the average speed of vehicles decreases.

Figure 5. Average speed of vehicles against number of vehicles for each adherence scenario, refer to
Supplementary Materials for data used.

While the average speed of traffic is an essential factor for considering the overall
efficiency of the system (at least concerning average journey times), it does not communicate
the distribution of speeds (for example, some vehicles may enjoy short journey times while
others are stuck in congestion) or how these are spatially located.

The average agents’ speed, the spread of agents’ speed, and the percentage of vehicles
below 5 mph at the final time step of each scenario are presented in Table 4. The spread of
speed, which is the standard deviation of all agents’ speeds, increases with lower adherence
by a factor of more than 1.6 from 100% adherence to 30% adherence for all traffic densities.
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This increase is expected since non-adhering drivers can access a broader range of speeds
up to 45 mph while adhering drivers cannot exceed 30 mph. The fraction of vehicles below
5 mph includes vehicles that have collided and cannot move, including vehicles stuck
behind these collisions. There is an increase in this fraction for 100 and 200 vehicles as
adherence decreases. This increase is not evident for 50 vehicles.

Table 4. Average speed, spread of speeds, and fraction of vehicles moving below 5 mph for each
scenario (where v = vehicles and ad = adherence percentage).

Scenario Speed (mph) Spread (mph) Vehicles under 5 mph (%)

50 v, ad 30% 13.49 5.69 7.6
50 v, ad 60% 11.74 5.8 12.0
50 v, ad 100% 9.96 3.34 6.0
100 v, ad 30% 12.24 6.93 17.0
100 v, ad 60% 11.21 5.84 13.4
100 v, ad 100% 9.9 3.56 6.2
200 v, ad 30% 11.59 6.85 20.6
200 v, ad 60% 11.17 5.52 12.7
200 v, ad 100% 9.42 4.08 11.1

The above Table 4 shows that higher traffic densities and lower speed adherence result
in a greater fraction of vehicles travelling at very low speeds at any given point in time,
even though the average speed is higher. Similarly, low-speed adherence with low traffic
densities increases the average speed without increasing the fraction of vehicles at very
low speeds.

This study is concerned with the spatio-temporal analysis of the whole urban street
network. However, Figure 6 shows that local micro-level phenomena can also be observed.
We hope to conduct a comprehensive analysis of micro-level interactions between density,
congestion and collisions for future studies.

The local traffic densities within 30 metres of a collision site, one second before the
collision takes place, is shown in Figure 6. Higher global traffic densities result in higher
local traffic densities near-collision sites across all adherence levels. This is highlighted
when comparing Figure 6c,f,i, where the modal value of the number of additional vehicles
present near a collision increases from 0 to 1; that is to say that, for lower global vehicle
densities, we typically observe that no additional vehicles are present at a collision site.
Whilst for a large population of 200 vehicles, we observed that it is common for at least
one other vehicle to be present. Furthermore, lower adherence results in higher local traffic
densities near collision sites for 100 vehicles (Figure 6d–f) and 200 vehicles (Figure 6g–i)
but not 50 vehicles (Figure 6a–c).

Collisions, when they occur, appear to be more likely to take place in the presence of
other vehicles both when global traffic density is increased and when adherence level is
lowered. However, an increase in local traffic density alone does not appear to cause an
increase in collisions; a similar pattern was observed in [69]. This can be seen by comparing
local traffic density results for 100 vehicles and 200 vehicles, which Figure 4 shows to have
a near-equal collision rate despite Figure 6 showing that 200 vehicles have a higher local
traffic density near collision sites.

However, according to Figure 6, there is also an increase in local traffic density as
adherence decreases, which always results in more collisions. This indicates that local
traffic density may have a contributory effect towards collisions when combined with low
adherence to speed limits, a higher average speed, or greater speed variance.
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(a) 50 vehicles, 30% speed
limit adherence

(b) 50 vehicles, 60% speed
limit adherence

(c) 50 vehicles, 100% speed
limit adherence

(d) 100 vehicles, 30%
speed limit adherence

(e) 100 vehicles, 60% speed
limit adherence

(f) 100 vehicles, 100%
speed limit adherence

(g) 200 vehicles, 30%
speed limit adherence

(h) 200 vehicles, 60%
speed limit adherence

(i) 200 vehicles, 100%
speed limit adherence

Figure 6. Distribution of number of additional vehicles involved in simulated collisions based on
number of vehicles in system and proportion of vehicles adhering to speed limits.

4.1. Summary

To conclude, the experiments found that a higher traffic density results in more
vehicles travelling at lower speeds through space and time. This is the case even when
70% of vehicles do not adhere to speed limit rules, i.e., driving between 30 to 45 mph.
Furthermore, collisions increase linearly as the non-adherence measure is increased. This is
the case for all traffic densities; however, lower densities lead to fewer collisions. Lastly,
collisions are at their lowest amount when all vehicles comply with speed limits for all
densities.

In the next section, an overview of the results is provided. Furthermore, the findings
from the paper will be validated by comparing the results with empirical findings. Addi-
tionally, recommendations for reducing collisions will be made, and, lastly, future avenues
for research will be discussed.

5. Discussion

The goal of this study was to understand the relationship between traffic density and
the number of collisions. Moreover, the paper aimed to look at the concept of higher traffic
density serving to suppress collisions by regulating driver speed, especially if drivers were
not adhering to prescribed speed limits. Previous studies indicate that higher levels of
congestion can result in fewer road accidents. This theory was the case for a single highway
segment in Detroit [70]. Similarly, the authors in [71] found this to be the case on two to
three-lane motorways in France. However, this is not true at intersections [72], or on urban
roads in London [51,71], where the number of accidents was found to increase linearly at
low to mid-levels of traffic and nonlinearly at high levels of traffic.

This study found that higher levels of traffic density do not reduce the frequency of
collisions. Furthermore, higher traffic levels do not suppress the increased collision rates
caused by non-adherence to speed limits. Empirical findings found that traffic congestion
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has little or no impact on the frequency of road accidents; however, it should be noted that
the results are constrained to the M25 London motorway [52]. The author in [42] found
that an increase in collision rates resulted from the road network design of urban roads,
which consisted of higher lengths of road and high traffic density. This study aims to
contribute to the ongoing debate as to whether traffic congestion impacts the frequency of
road accidents [55].

This study found that high-density systems are affected to the same degree as low-
density systems and provide no protective effect. This would suggest that the traffic
management goals of congestion-reduction and accident-reduction are not in conflict for
urban road networks.

This study also suggests that lower traffic density on average leads to fewer collisions
regardless of adherence levels, as was observed in [72]. However, as adherence decreases,
this leads to increased collisions relative to the number of vehicles in the urban environment.
These findings were also observed in [73].

Empirical evidence from UK government sources in 2019 shows that, on average, 55%
of vehicles in 2019 exceeded the speed limit on urban roads. During this time, 63% of
all collisions occurred on these urban roads [1,2]. This study also shows that increases in
collisions are more likely as more vehicles break speed limit rules.

This study’s results do not reflect the same linear-to-nonlinear relationship between
accidents and traffic levels as [71,72]. At low to mid traffic densities, collisions increase
disproportionately as traffic density increases. Collisions begin to increase proportionately
at a critical point in density, so an individual vehicle’s risk of colliding does not increase
as traffic increases. However, the results reflect the global number of collisions against an
urban road network’s global traffic density rather than studying micro-level intersections
or specific urban roads. The study also attempted to provide a micro-level analysis to
supplement the findings of the research. The analysis observed the distribution of the
number of additional vehicles involved in collisions based on the global number of vehicles
and the proportion of vehicles adhering to speed limits. We found that higher global traffic
density resulted in higher local traffic density near collision sites. Furthermore, we found
that lower adherence results in higher local traffic densities near collision sites for 100 to
200 vehicles; this is not the case for 50 vehicles. This indicates that local traffic density
may contribute to collisions when combined with low adherence to speed limits, a higher
average speed, or greater speed variance. Lastly, this micro-level analysis shows that
additional vehicles are present within 30 m of a collision, ultimately leading to congestion
at the local level.

The results in this study do show that higher traffic density results in higher levels
of congestion. Even when maximum adherence is achieved, increased density resulted
in reduced average vehicle speed, and this effect was greater for systems with lower
adherence. Therefore, with high density, non-adhering vehicles are more likely to reduce
their speeds more often as they find slower-moving vehicles ahead of them.

It should also be noted that conclusions drawn from this study are from the tested
traffic densities. Studying a greater range of densities may reveal a more complex rela-
tionship. Conducting this study with a greater number of model runs per scenario may
yield more precise insights into the relationship between collisions, traffic density, speed
adherence, and speed distribution.

Since non-adherence to speed limits was found to increase collision rates for all traffic
densities, this study recommends implementing measures to increase adherence to speed
limits on all roads regardless of their traffic level. This may include the introduction
of more speed cameras, which have been found to reduce speeding significantly [74].
Feedback signs which broadcast the percentage of drivers who have stayed within the
speed limit of an area have also been found to be effective at reducing speeding and
resulting accidents [75].

Another important finding from this study suggests that, if fewer vehicles occupy a
street network, the total number of collisions is reduced. The most dramatic reduction in
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collisions may be areas that shift from medium traffic density to low traffic density. These
findings support pedestrianisation policies, as these policies should reduce collision rates
among vehicles in these urban environments and reduce CO2 exposure. A report titled
“The effect of pedestrianisation and bicycles on local business” published in 2017 found
that: According to the 2012 Economic Impact Study, pedestrian activity has risen by 11%,
with 35% fewer accidents with pedestrians and 63% fewer traffic accidents in New York
Times Square [76].

6. Conclusions

This study aimed to explore the relationship between vehicle density and adherence
to speed limits with collision rates through agent-based modelling. This area of research is
still in its infancy but has shown that agent-based modelling is a powerful method that
can provide the means to simulate hypothetical yet realistic properties of the real world
and produce insight into these properties that can be empirically validated. Thus, this
study will allow traffic practitioners and safety scientists to test their hypotheses through
agent-based modelling in a safe, low-cost way prior to advising real-world policies.

In this study, the severity of collisions is not quantified. Since each vehicle’s momen-
tum is recorded in the model, this is a potential avenue for further study. Quantifying
collision severity would allow future studies to categorise severe collisions (life-threatening)
to mild collisions (dent in a vehicle), thus providing a more realistic snapshot of collision
types. Some past studies have tried to quantify collision severity using alternate means
such as the ordered logit model and the ordered probit model [77]. Similarly, empirical
research found that mild collisions such as those that are not fatal were more likely to occur
in cities across the UK [55]; this can be a future avenue to explore using ABMs.

Another avenue to explore would be to incorporate changing weather into the agent-
based model. Weather plays a significant role in having an impact on driver behaviour,
which can, in turn, lead to higher collision rates, i.e., vehicles are more likely to collide
during snowy conditions [78–80]. Given the ABMs drag, traction control and downforce
parameters, the phenomena mentioned above can be modelled in future studies.

Supplementary Materials: To download the data and software scripts used in the analysis of
results, visit: https://github.com/SedarOlmez94/TrafficSimulatorResults, accessed on: 07 June 2021.
Download the 3D Urban Traffic Simulator here: https://www.comses.net/codebases/32e7be8c-b0
5c-46b2-9b5f-73c4d273ca59/releases/1.1.0/, accessed on: 07 June 2021.
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