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Abstract

Heteroclinic-induced spiral waves may arise in systems of partial differential equations that

exhibit robust heteroclinic cycles between spatially uniform equilibria. Robust heteroclinic

cycles arise naturally in systems with invariant subspaces and their robustness is considered

with respect to perturbations that preserve these invariances. We make use of particular

symmetries in the system to formulate a relatively low-dimensional spatial two-point boundary-

value problem in Fourier space that can be solved efficiently in conjunction with numerical

continuation. Our numerical set-up is formulated initially on an annulus with small inner

radius, and Neumann boundary conditions are used on both inner and outer radial boundaries.

We derive and implement alternative boundary conditions that allow for continuing the inner

radius to zero and so compute spiral waves on a full disk. As our primary example, we

investigate the formation of heteroclinic-induced spiral waves in a reaction-diffusion model that

describes the spatiotemporal evolution of three competing populations in a two-dimensional

spatial domain—much like the Rock–Paper–Scissors game. We further illustrate the efficiency

of our method with the computation of spiral waves in a larger network of cyclic dominance

between five competing species, which describes the so-called Rock–Paper–Scissors–Lizard–

Spock game.

1 Introduction

In dynamical systems, a heteroclinic cycle is a set of trajectories that connect equilibria in a

topological circle (Guckenheimer & Holmes, 1988; Krupa, 1997). In general, such a cycle does

not persist under perturbation, unless the dynamical system has a special structure. More pre-

cisely, this phenomenon occurs in systems with special properties that allow for the existence

of a sequence of invariant subspaces. A heteroclinic cycle is called robust, or structurally sta-

ble, when it persists under small perturbations that preserve this special structure. In one of its

simplest forms, a robust heteroclinic cycle involves three saddle equilibria and their connecting
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trajectories in a system for which the equilibria are pairwise contained in an invariant subspace.

This situation often occurs in population models and cyclic interactions are known to provide a

naturally selective coexistence mechanism for interspecific competition between three subpopula-

tions, including morphs of the side-blotched lizard (Sinervo & Lively, 1996; Sinervo et al., 2000),

coral reef invertebrates (Jackson & Buss, 1975; Taylor & Aarssen., 1990), and strains of Escerichia

coli (Kerr et al., 2002; Kirkup & Riley, 2004). The dynamics near a robust three-equilibrium het-

eroclinic cycle also emulates the famous children’s game of Rock–Paper–Scissors, where Rock

crushes Scissors, Scissors cut Paper and Paper wraps Rock.

The focus of this paper is on the computation of spiral waves arising from cyclic interactions

between competing populations in the presence of spatial diffusion. We assume that this system

is modelled by a system of partial differential equations (PDEs) given in vector form as

Ut = f(U) + Uxx + Uyy. (1)

Here, U(x, y, t) ∈ R
m represents m different species, f : Rm → R

m is a sufficiently smooth func-

tion expressing the nonlinear kinetics (i.e., local species interactions), and the spatial derivatives

Uxx + Uyy are the Laplacian terms modelling diffusion. We are interested in a specific class of

(1) that satisfies the following assumption:

Assumption 1.1

We assume that, in the absence of spatial variation and diffusion terms, (1) admits an attracting,

robust heteroclinic cycle between equilibria solutions. Furthermore, we assume that f is invariant

under cyclic permutations of its arguments.

Systems of the form (1) that satisfy Assumption 1.1 describe a large class of problems that

feature heteroclinic cycles with permutation symmetries (i.e., cyclic symmetries). Well-known

examples of this class include those arising in equivariant bifurcation theory (e.g., the three-variable

Guckenheimer–Holmes cycle (Guckenheimer & Holmes, 1988) and the four-variable Field–Swift

cycle (Field & Swift, 1991)); population models (e.g., the May–Leonard model (May & Leonard,

1975) and other higher-dimensional generalisations of Lotka–Volterra type); and also those that

can appear in other mathematical modelling problems (e.g., the example of Proctor & Jones (1988)

from fluid mechanics). Note that the diffusion coefficients for all state variables in system (1) are

equal; this is necessary to preserve the permutation symmetry. If we perturb the system by

breaking this symmetry, for example by choosing unequal diffusion coefficients slightly different

from 1, we expect the dynamics to be similar, although the computations will be more expensive.

Remark 1.1 The computational method presented here can be generalized to compute spiral waves

in any reaction–diffusion system of the general form (1), but in the absence of the cyclic symmetry

given by Assumption 1.1 the computational cost will then likely be larger.

Figure 1 shows an example of a spiral wave for the simplest case of system (1) with m = 3; the

precise equations are given in equation (2) in the next section. The species are represented in terms

of their scaled densities a, b and c at an arbitrarily chosen instant in time. With m = 3 there exists
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Figure 1: A large spiral wave formed by the three competing species of system (2) with parameters σ = 3.2 and
ζ = 0.8, shown at a fixed moment in time. Panel (a) shows the spiral wave solution on an annulus in the (x, y)-plane;
the three different colours represent which of the population densities a, b and c is the largest. Panel (b) shows their
distribution in (a, b, c)-space along a selection of concentric circles around the origin in the (x, y)-plane; the smallest
and largest circles are the inner and outer boundaries of the computed domain at radii 0.01 and 600, respectively.
The grey dot is the coexistence equilibrium and the colored dots are the on-axis equilibria where only one species
survives.
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only one heteroclinic cycle, formed by connecting orbits between the equilibria (a, b, c) = (1, 0, 0),

(0, 1, 0) and (0, 0, 1). There also exists a spatially-uniform coexistence equilibrium (a, b, c) =
1

3+σ (1, 1, 1), at which all species survive. The spiral wave was computed on an annulus in the

(x, y)-plane, centred at the origin, with inner radius 0.01 and outer radius 600. Panel (a) illustrates

the spiral wave in the (x, y)-plane with red, green and blue regions indicating the dominance of

a, b and c, respectively, that is, which of the three populations, a, b or c is the largest. Panel (b)

shows the population densities (black curves) in (a, b, c)-space, where x and y vary along a family

of concentric circles around the origin; here, the smallest cycle in (a, b, c)-space corresponds to

the inner boundary with radius 0.01 in the (x, y)-plane and the largest corresponds to the outer

boundary of the annulus with the very large radius of 600. The grey dot is the coexistence

equilibrium and the coloured dots are the on-axis equilibria that are involved in the limiting

heteroclinic cycle. The periodic curves in the (a, b, c)-space are centred on a point which is close

to, but not exactly at, the coexistence equilibrium, indicating that the core of the spiral at (x, y) =

(0, 0) should satisfy a = b = c ≈ 1

3+σ . The population densities along the outermost circle

accumulate on a periodic solution that comes close to, but remains a finite distance from, each

of the three equilibria in turn. This periodic solution is related to the periodic travelling waves

found in the one-dimensional version of this problem, and to the underlying heteroclinic cycle

(Hasan et al., 2021). In contrast to the almost uniform distribution along the inner circle, the

variation of the population densities along the outer circle is non-uniform, with each of the species

being close to zero along two thirds of the perimeter.

Most previous approaches for numerical continuation of spirals (Barkley, 1992; Bär et al.,

2003; Bordyugov & Engel, 2007; Dodson & Sandstede, 2019) have focussed on systems of reaction–

diffusion type, in which a spatially uniform equilibrium solution loses stability in a Hopf (Tur-

ing) bifurcation, leading to spiral waves. The spiral waves in our examples have oscillations

associated with heteroclinic cycles rather than Hopf bifurcations, so we call these heteroclinic-

induced spirals. As the radius of the spiral goes to infinity, the system approaches a periodic

orbit in the far field that is associated with a heteroclinic bifurcation from the heteroclinic cy-

cle (Postlethwaite & Rucklidge, 2017, 2019; Hasan et al., 2021). The proximity to a heteroclinic

cycle makes the continuation the spiral wave a challenge because in the far field, the variables

switch fairly abruptly from being nearly zero to being nearly one and back again.

Our method is based on the approach by Bordyugov & Engel (2007), who compute spiral waves

in reaction–diffusion systems as a continuation of solutions to a two-point boundary-value prob-

lem (BVP) formulated in Fourier space. In systems of heteroclinic networks, when the periodic

orbit in the far field approaches the heteroclinic cycle, the rapid switching between episodes of the

variables being nearly constant means that a large number of Fourier modes may be necessary.

Consequently, the computation of the spiral wave on a large domain requires solving a computa-

tionally expensive BVP. We make use of the symmetry of the heteroclinic cycle, imposing phase

relations between the Fourier modes, and so obtaining a significant reduction in the dimension

of the BVP; the efficiency of this approach is most apparent when a large number of species is

considered.

We also aim to study the dynamics on the full disk rather than just on an annulus, which is not
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possible using the Neumann boundary conditions suggested by Bordyugov & Engel (2007). More

precisely, when taking the inner boundary to zero radius, one encounters a singular Laplacian

with such boundary conditions. We derive and implement the correct boundary conditions at the

core in order to obtain a bounded Laplacian term in polar coordinates. In this way, we compute

the spiral waves on a full disk, as opposed to considering an annulus with a small hole around the

origin.

As our primary example, we use the three-species model illustrated in fig. 1 and introduced

in the next section. This is the simplest model with a robust heteroclinic cycle and the same

model that we studied in Postlethwaite & Rucklidge (2017, 2019) and Hasan et al. (2021), where

we focussed on the bifurcation structure of different types of heteroclinic cycles, and the compu-

tation of periodic travelling waves. The dynamics of the heteroclinic-induced spiral waves for this

model have also been investigated by others (Reichenbach et al., 2008; Szczesny et al., 2013, 2014;

Szolnoki et al., 2014), with focus on existence and break-up of the spiral-wave patterns in the

presence of small defects, based on analysis and simulation of the full PDE. We chose this three-

species competition model as our primary example because the numerical set-up and efficiency

gains are already evident for this simple example, and the computations are readily compared

with other results from the literature. We also show how to adapt the numerical set-up for the

computation of spiral waves in a system of the form (1) with m = 5; see already equation (14).

This higher-dimensional example not only has a heteroclinic cycle between all five equilibria with

only one surviving species, but also one between five equilibria with three surviving species each.

We compute spiral waves from both families to emphasise the versatility of our computational

method.

This paper is organised as follows. In the next section, we introduce our primary example

given by system (1) with m = 3 and review the method from Bordyugov & Engel (2007). In

section 2.3, we exploit the cyclic symmetry and present a reduced BVP. We discuss the boundary

conditions at the core of the spiral waves in section 2.5. In section 3, we present a case study where

we explore the properties of spiral waves for our primary example and compare with published

results. In section 4, we introduce the system of associated competing population model with cyclic

dominance between five species and implement the modified continuation method to compute two

families of five-component spiral waves. We conclude the paper with a discussion and final remarks

in section 5.

2 Computing spiral waves in the three-species model

The model for heteroclinic-induced spiral waves between three competing populations was first

proposed by Reichenbach et al. (2007) and is based on the system of three ordinary differential

equations introduced by May & Leonard (1975) as a model of competing populations without

spatial structure and diffusion. See (Frey, 2010; Szolnoki et al., 2014) for details and a recent

review. The system of partial differential equations (PDEs) is defined in terms of three population
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densities a(x, y, t), b(x, y, t), c(x, y, t) ≥ 0 that are scaled to unity; it is given by





ȧ = a (1 − a − b − c − (σ + ζ) b + ζ c) + ∇2a,

ḃ = b (1 − a − b − c − (σ + ζ) c + ζ a) + ∇2b,

ċ = c (1 − a − b − c − (σ + ζ) a + ζ b) + ∇2c.

(2)

The parameters σ and ζ are non-negative constants that represent removal and replacement rates

of two different interacting species, respectively (Szczesny et al., 2013). We used the notation ∇2

for the Laplace operator ( ∂2

∂x2 + ∂2

∂y2 ) that models the diffusion on the two-dimensional domain;

nonlinearity in the diffusion (Szczesny et al., 2013), is not included in this model. The only

nonlinearity is the population kinetics, as defined by the function f in system (1). Note the cyclic

symmetry of the kinetic term: if (a, b, c) = (d1, d2, d3) is a solution to system (2) then the cyclic

permutations (a, b, c) = (d2, d3, d1) and (a, b, c) = (d3, d1, d2) are also solutions to this system of

PDEs. Furthermore, in the absence of spatial distribution, the coexistence equilibrium point is

unstable and all trajectories are attracted to the heteroclinic cycle. Subspaces with one or more

population equal to zero are invariant, and hence, this system is of the form (1) and satisfies

Assumption 1.1.

Spiral waves for system (2) can be computed with any of the methods described by Barkley

(1992), Bär et al. (2003), Bordyugov & Engel (2007) or Dodson & Sandstede (2019). In this

section, we only review the numerical continuation method introduced by Bordyugov & Engel

(2007), because it forms the basis for our improved approach.

2.1 Spiral waves on an annulus: the Fourier decomposition

The spiral waves for systems of the form (1) are so-called rigidly rotating spirals, which are

periodic in time and any shift in time is equivalent to a rotation in space. Furthermore, the centre

of rotation, that is, the tip of the spiral, can be anywhere in the (x, y)-plane. To capture the

spatiotemporal rotation symmetry, it is convenient to re-write system (1) in polar coordinates,

where we define x = r cos φ and y = r sin φ, with r = 0 being the tip of the spiral. Then the PDE

is given by

Ut = f(U) + Urr +
1

r
Ur +

1

r2
Uφφ.

The next natural step is to assume that the spiral waves rotate at a constant angular frequency

ω and introduce the co-rotating variable θ = φ + ω t. Then ∂
∂φ 7→ ∂

∂θ and ∂
∂t 7→ ω ∂

∂θ + ∂
∂t , which

leads to the PDE in the co-rotating frame of reference:

Ut = f(U) + Urr +
1

r
Ur +

1

r2
Uθθ − ωUθ.

A rigid spiral wave with angular frequency ω and temporal period T = 2π/ω is a stationary

solution of this PDE, i.e., it satisfies

f(U) + Urr +
1

r
Ur +

1

r2
Uθθ − ωUθ = 0. (3)
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Since spiral wave solutions are periodic in θ, that is, U(r, θ) = U(r, θ + 2π), they can be expressed

as a Fourier series expansion with respect to the second argument. We assume that the Fourier

coefficients converge rapidly so that only a finite number of modes is sufficient to approximate

U(r, θ). Using N Fourier modes, where N is assumed to be even, we define N uniformly spaced

angles θ = 2π n
N , with n = 0, 1, . . . , N − 1, and approximate the spiral wave as

U(r, 2π n
N ) =

N−1∑

k=0

Û(r, k) e2π i k n

N .

Here, each Û(r, k), with k = 0, 1, . . . , N − 1, is a vector of (complex-valued) Fourier coefficients

associated with the kth Fourier mode, and it is defined as

Û(r, k) =
1

N

N−1∑

n=0

U(r, 2π n
N ) e−2π i k n

N .

The goal is to solve the PDE in the co-rotating frame (3) with respect to the unknown Fourier coef-

ficient vectors Û(r, k) and the unkown angular frequency ω. To this end, we need the Fourier trans-

form of the nonlinear kinetics function f . For the case of the three-species population model (2),

the nonlinear kinetics is quadratic and Fourier coefficients f̂(r, k), for k = 0, 1, . . . , N − 1, of the

discretised Fourier approximation

f
(
U(r, 2π n

N )
)

=
N−1∑

k=0

f̂(r, k) e2π i k n

N

can formally be expressed as a sum of convolutions in terms of the Fourier transforms â, b̂ and ĉ

of the population densities a, b and c, respectively. More precisely,

f̂(r, k) =




â − â ∗ â − (1 + σ + ζ) â ∗ b̂ − (1 − ζ) â ∗ ĉ

b̂ − b̂ ∗ b̂ − (1 + σ + ζ) b̂ ∗ ĉ − (1 − ζ) b̂ ∗ â

ĉ − ĉ ∗ ĉ − (1 + σ + ζ) ĉ ∗ â − (1 − ζ) ĉ ∗ b̂


 (r, k), (4)

where, for example, the convolution â(r, k)∗b̂(r, k) is calculated as a fast Fourier transform (FFT) of

the product a(r, θ) b(r, θ) obtained from the inverse fast Fourier transform (IFFT) of the individual

Fourier coefficients â(r, k) and b̂(r, k); in other words,

â(r, k) ∗ b̂(r, k) = FFT
(
IFFT [â(r, k)] IFFT

[
b̂(r, k)

])
.

Hence, in Fourier space, the PDE (3) is given by the large system of m N second-order complex

equations

f̂ (r, k) + Ûrr(r, k) +
1

r
Ûr(r, k) − k2

r2
Û(r, k) − i k ω Û(r, k) = 0,

for the N unknown Fourier coefficient vectors Û(r, k) ∈ C
m. Note that only derivatives with

respect to the radial coordinate remain. Hence, we can express the PDE (3) as a system of
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first-order ordinary differential equations (ODEs):





Û′ = Ûr,

Û′

r = −f̂ − 1

r Ûr + k2

r2 Û + i k ω Û,

r′ = 1,

(5)

where ′ represents derivation with respect to r and the last equation renders the system au-

tonomous. When split into real and imaginary parts, we now have 4 m N + 1 equations—2 m

for each of the real and imaginary parts of the N Fourier modes—and 4 m N + 1 unknowns—

the real and imaginary parts of the m-dimensional Fourier coefficient vectors Û(r, k), their m-

dimensional derivatives Ûr(r, k), and ω. In practice, we only need to consider equations for the

first 1

2
N + 1 modes, because U(r, θ) ∈ R

m; the 1

2
N − 1 Fourier coefficient vectors Û(r, k) for the

modes k = 1

2
N + 1, . . . , N − 1 are the complex conjugates of (non-zero) modes k = 1, . . . , 1

2
N − 1.

Furthermore, Û(r, 0) and Û(r, 1

2
N) are real. Hence, we are interested in solutions to a system of

2 m N + 1 ODEs for m (1

2
N + 1) real and m (1

2
N − 1) imaginary parts of the Fourier coefficients

and their derivatives, as well as the independent variable r.

The radial variable r is a time-like variable that fixes a particular solution segment for this

system of ODEs. We consider r ∈ [r0, r1], for some choices r0 and r1. Together with θ ∈ [0, 2π),

this defines an annulus as the spatial domain for the PDE (3). The spatial domain resembles a

disk if r0 is sufficiently small. If we were to let r1 → ∞, this would amount to a one-dimensional

spatial dynamical system connecting the core at r = 0 to a far-field periodic travelling wave in

the spirit of Woods & Champneys (1999). Moreover, computations of so-called boundary sinks,

which connect the core to the far field, are useful when investigating spatiotemporal instabilities

(Dodson & Sandstede, 2019).

To ensure that system (5) has a well-defined solution for each of the 1

2
N + 1 Fourier modes,

we need to impose 2 m N + 1 boundary conditions and an additional phase-pinning condition. As

suggested by Bordyugov & Engel (2007), we impose Neumann (zero radial derivative, or no flux)

boundary conditions on U on the inner and outer radial boundary of the chosen annulus in the

spatial domain; in terms of the corresponding Fourier coefficients, these are

Û′(r0, k) = 0,

Û′(r1, k) = 0.
(6)

To ensure uniqueness of the computed spiral wave, it is standard to impose a phase-pinning

condition (Barkley, 1992). We use the suggestion from (Bordyugov & Engel, 2007) and fix the

imaginary part of the first Fourier mode (or any other Fourier mode k ≥ 1) of one of the variables

at r = r1:

Im(â(r1, 1)) = constant, (7)

where we set this constant to 0. An alternative approach would be to replace this phase-pinning

boundary condition with an integral condition. However, the described single boundary condition

is qualitatively equivalent and computationally faster.
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2.2 Starting point for continuation

The solution to the BVP (5)–(7) is an r-dependent family of Fourier coefficient vectors for the first
1

2
N + 1 modes. Using these Fourier coefficients and their complex-conjugates, we can reconstruct

an approximation to the spiral wave defined on the annulus centred at the origin with radius

r ∈ [r0, r1] in the space-time domain. To obtain such a solution, we follow the continuation

approach from (Bordyugov & Engel, 2007) that constructs the solution starting from an (almost)

infinitely thin annulus. More precisely, while our goal is to find the spiral wave on a large disk,

that is, with r0 = 0 and very large r1, we start from a situation where r0 ≈ r1 and allow r0 and r1

to vary, so that r0 becomes very small and, subsequently, r1 very large. This approach is useful,

because the solution with r0 = r1 away from 0 can be approximated by a periodic travelling wave.

Indeed, since the time periodicity of a (rigidly rotating) spiral wave is equivalent to a rotation in

the (x, y)-plane, the solution restricted to the circle with radius R = r0 = r1 is, in fact, given by

a periodic function of both space and time.

Periodic travelling waves can be found as periodic orbits of the one-dimensional travelling-

frame equation

f(U) + Uξξ − γ Uξ = 0, (8)

which is a stationary solution of the one-dimensional form of PDE (1) along the x-direction in

absence of y, formulated with respect to the travelling-frame variable ξ = x+γ t and the wavespeed

γ of the periodic travelling wave. Such periodic travelling waves have wavelength L that depends

on γ (Postlethwaite & Rucklidge, 2017). In (Postlethwaite & Rucklidge, 2017, 2019; Hasan et al.,

2021), we investigated and computed such travelling waves, along with their stability properties,

and showed that they, together with the limiting heteroclinic cycles for large wavelength values,

provide a mechanism for the existence and stability of spiral waves of system (2).

Due to the spatiotemporal symmetry of a (rigidly rotating) spiral wave, a solution to equa-

tion (8) along a radial direction can equivalently be obtained as a solution along the angular

direction, formulated in the co-rotating variable θ = φ + ω t as

f(U) +
1

R2
Uθθ − ωUθ = 0, (9)

where we assume that r = R is constant. Since θ is an angular coordinate, it is natural to impose

periodic boundary conditions

U(2π) = U(0) and Uθ(2π) = Uθ(0).

We remark that periodic solutions of (9) coincide with one-dimensional periodic orbits of (8) with

wavespeed γ = Rω and wavelength L = 2πR.

Translated in terms of Fourier modes, we assume that Û′(r, k) ≈ 0 and Û′′(r, k) ≈ 0 in

system (5). In other words, the periodic solution of (9) is an approximate solution of

f̂ (k) − k2

R2
Û(k) − i k ω Û(k) = 0,

9
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Figure 2: The first step for continuing spiral waves of system (2) with σ = 3.2, ζ = 0.8, ω ≈ 0.3346 and radius
R = 5. Panel (a) shows the θ-periodic solution for system (9) and panel (b) the corresponding distribution of the
three populations a (red), b (green) and c (blue) given by system (5) and defined on a thin annulus in the (x, y)-plane
of width ε = 0.002 centred around r = R.

defined on a very thin annulus with r1 = r0 + ε, for 0 < ε ≪ 1.

Figure 2 shows the starting solution for the BVP (5)–(7) with σ = 3.2 and ζ = 0.8. Panel (a)

shows the periodic solution of system (9) with period 2π for R = 5, which exists when ω ≈ 0.3346.

This periodic solution is created in a Hopf bifurcation at ω ≈ 0.2640. Panel (b) shows the

distribution of the one-dimensional periodic solution along a thin two-dimensional annulus; in

Fourier space, this solution is given by approximately constant Fourier coefficient vectors for all

r ∈ [r0, r1]. Here, we used ε = 0.002 and set

r0 = R − 1

2
ε = 4.999 and r1 = R + 1

2
ε = 5.001.

The red, green and blue regions represent the spatial dominance of a, b and c, respectively.

The spiral wave can now be found on a larger domain by continuation of this solution to

the BVP (5)–(7), where we first decrease r0 and then increase r1; the resulting spiral wave for

r ∈ [0.01, 600] is shown in fig. 1. For the example system (2), where m = 3, this means the one-

parameter continuation of a system of 2 m N + 1 = 6N + 1 real ODEs with the same number of

unknowns. To obtain a good approximation to the spiral wave, it is imperative that a sufficiently

large number N of Fourier modes is computed. The appropriate choice for N depends on the

system. The almost two-fold reduction of the BVP, obtained by taking into account that real-

valued solution vectors must have complex-conjugate pairs of Fourier coefficients, still leaves us

with a very large system of equations. Since we wish to explore cases where the far-field dynamics

limits onto the one-dimensional TW solution of (9), and since these solutions are associated with

heteroclinic cycles, potentially with sharp transitions, one may need to work with many Fourier

modes. Nevertheless, for the examples considered in this paper, we find that N = 60 is sufficient.

We note here that Barkley (1992) and Bär et al. (2003) constructed the initial solution by

descretising the BVP into a large-scale system of Fourier-space ODEs (with 121×256 and 51×128

grid points, respectively) and integrating the ODEs until a spiral wave is obtained. This process is

computationally expensive and requires a choice of parameters for which the existence of a spiral

10
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wave is known a priori. In our study, we obtain the initial guess more reliably and efficiently by

finding periodic orbits in a six-dimensional travelling-frame system of ODEs. Dodson & Sandstede

(2019) solve the stationary problem for spiral waves using the MATLAB built-in function fsolve at

each continuation step. In contrast, we perform all computations with the BVP set-up supported

by the pseudo-arclength continuation software AUTO (Doedel, 1981; Doedel et al., 2007); this is

also the approach taken by Bordyugov & Engel (2007).

The next steps in developing the method are to take advantage of the cyclic symmetry of this

problem, and to address the issue of the boundary condition at the inner edge of the annulus,

which needs to be changed once the inner radius r0 approaches zero.

2.3 Exploiting cyclic symmetry

For systems of the form (1) satisfying Assumption 1.1, the cyclic symmetry of the nonlinear kinetic

term provides an opportunity for further reduction of the number of Fourier coefficients that must

be computed in the BVP (5)–(7) to obtain an N -mode approximation of a spiral wave solution.

Indeed, the Fourier coefficients also have cyclic symmetry, because the Fourier transformation

is an equivariant of this symmetry group. Note that the discretisation of the Fourier transform

breaks this equivariance unless N is divisible by m. We explain how to implement the symmetry

reduction for this restricted class of reaction-diffusion systems with the three-species model (2) as

an example; hence, we assume that N is an integer multiple of 2m = 6.

The cyclic symmetry of system (2), defined as the permutation (a, b, c) 7→ (b, c, a), introduces

an additional phase-shift invariance of its spiral waves in the azimuthal direction, namely,

b(r, θ) = a(r, θ − 2π
3

),

c(r, θ) = a(r, θ + 2π
3

),

for all r and θ. Hence, it is sufficient to consider only the first component of the co-rotating frame

equation (3), which is given by

f1

(
a(r, θ), a(r, θ − 2π

3
), a(r, θ + 2π

3
)
)

+ arr +
1

r
ar +

1

r2
aθθ − ω aθ = 0,

where f1 is the first component of the kinetics function f . This is related to the approach by

(Wulff & Schebesch, 2006) to compute periodic orbits in ODEs with cyclic symmetry. The co-

rotating frame equation in Fourier space for each mode k is then given by

f̂1(r, k) + ârr(r, k) +
1

r
âr(r, k) − k2

r2
â(k) − i k ω â(r, k) = 0. (10)

Here similarly, f̂1(r, k) is the kth coeffcient of the discretised Fourier approximation of f1, which

is the first component of the Fourier coefficient vector (4), given by

â(r, k) − [â ∗ â](r, k) − (1 + σ + ζ) [â ∗ b̂](r, k) − (1 − ζ) [â ∗ ĉ](r, k).

Since N is assumed to be divisible by m = 3, we can express b̂(r, k) and ĉ(r, k) also in terms of

11
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â(r, k), namely,

b̂(r, k) = â(r, k) e−2π i k /3 and ĉ(r, k) = â(r, k) e2π i k /3.

As a consequence, we now only need to solve 2N + 1 real ODEs.

The boundary conditions for the reduced BVP are just the first components of each of the two

conditions in (6), with the same phase-pinning condition (7). Hence, they are given by

â′(r0, k) = 0,

â′(r1, k) = 0,

Im(â(r1, 1)) = 0.

(11)

In general, for a system with m species, the number of real differential equations is reduced by

almost a factor m, from 2 m N + 1 to 2 N + 1. In other words, the increase in the number of

species m in system (1) has no effect on the size of the BVP and only adds a minor extra cost

to the computation because of the additional convolutions in the first component of the Fourier

coefficient vector f̂ . We note here also that a similar reduction can be obtained when computing

spiral waves that obey a different permutation symmetry, involving a subset of the m species, but

the efficiency gains in such instances will be smaller than a factor m.

2.4 Growing the spiral wave solution by continuation

We use the substantially reduced BVP (10)–(11) to compute a spiral wave for system (2) with

σ = 3.2 and ζ = 0.8. Recall that we already found a starting solution for these parameter values

in the form of a periodic travelling wave interpreted as a solution on a very thin annulus with

inner radius r0 = 4.999 and outer radius r1 = 5.001; see fig. 2. We set N = 60 and initialise the

continuation with the Fourier coefficients corresponding to this travelling wave solution. We then

continue the BVP (10)–(11) in the direction of decreasing r0 while keeping r1 fixed and treating

the angular frequency ω as a free parameter. Figure 3 shows four snapshots of this continuation

process, where we plot the solution in the (x, y)-plane with r0 = 3 in panel (a), r0 = 1 in panel (b),

r0 = 0.5 in panel (c), and r0 = 0.01 in panel (d), which is the last step after which we stopped the

continuation. Panel (d) illustrates that the computed solution can be viewed as a computation on

a disk of radius r1 = 5.001 in the (x, y)-plane, even though the domain is, in reality, an annulus,

and the inner boundary condition needs to be considered before r0 can be decreased further. It is

also clear that r1 is too small to show the true nature of the spiral wave.

The size of the annular spatial domain can be increased with a second continuation step where

we keep r0 fixed and increase r1 to obtain a spiral wave solution on a sufficiently large domain.

Figure 4 shows the evolution of the spiral wave as r1 is increased. As in fig. 3, we show each stage

of the continuation step by plotting the spiral wave in the (x, y)-plane at a fixed moment in time;

here, r1 = 30 in panel (a), r1 = 55 in panel (b), r1 = 85 in panel (c), and r1 = 110 in panel (d).

Panel (e) illustrates how the angular frequency ω varies during the continuation; here, we plot ω

versus the outer radius r1. Note that the initial value ω ≈ 0.3346 for [r0, r1] = [4.999, 5.001] has

increased to ω ≈ 0.5537 as r0 was decreased to 0.01. As the outer radius of the spiral is increased

12
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Figure 3: Illustration of the continuation steps taken to compute a spiral wave for system (2) with σ = 3.2 and
ζ = 0.8 by varying the inner radius r0. Starting from the solution shown in fig. 2(b) with N = 60, panels (a)–(d)
show the solutions to the BVP (10)–(11) on the (x, y)-plane at a fixed moment in time, where r0 = 3, r0 = 1,
r0 = 0.5, and r0 = 0.01, respectively.

from r1 = 5.001, the angular frequency ω drops again sharply, and then levels off very quickly to

ω ≈ 0.4400. We stopped the continuation when r1 = 600; the spiral wave for this value is shown

in fig. 1(a) and ω ≈ 0.4400 here as well.

2.5 Boundary conditions at the core: spiral waves on a full disk

In the initial thin annulus, we used Neumann boundary conditions in the radial direction in order

to have an initial solution that is approximately independent of r. As the inner radius r0 is

decreased towards zero, these boundary conditions are no longer appropriate since they lead to

singularities in the Laplacian. To see this, consider one Fourier coefficient â(r, k) with wavenumber

k; for small r, this coefficient will behave as

â(r, k) ∼ rjeikφ,

where j ≥ 0 is an integer. The corresponding Laplacian is

∇2rjeikφ = (j2 − k2)rj−2eikφ.
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Figure 4: Illustration of the continuation steps taken to compute a spiral wave for system (2) with σ = 3.2, ζ = 0.8
and r0 = 0.01 by varying the outer radius r1. Starting from the solution shown in fig. 3(d) with N = 60, panels (a)–
(d) show the solutions to the BVP (10)–(11) on the (x, y)-plane at a fixed moment in time, where r1 = 30, r1 = 55,
r1 = 85, and r1 = 110, respectively. Panel (e) shows the angular frequency ω versus r1.

The Laplacian of â(r, k) should be well behaved at any point on the disk, so at r = 0, we must

have either j2 − k2 = 0 or j ≥ 2. Therefore, for the zeroth Fourier mode (k = 0), we have j = 0

or j ≥ 2, that is, the radial derivative of the zeroth mode is zero at r = 0. For the first Fourier

mode (k = 1), we can have j = 1 or j ≥ 2, so the first Fourier mode is zero at r = 0. Similarly,

for k ≥ 2, we must have j ≥ 2. Imposing Neumann boundary conditions (6), where Û′(r0, k) = 0

for all k, allows for the possibility that â(0, k) 6= 0 for all k, which leads to an infinite Laplacian

for k ≥ 1 in the limit r0 → 0. Hence, in order to continue to r0 = 0 without a singularity in
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Figure 5: Dependence on the parameter σ of the value a = b = c = µ0 at the core of the spiral wave for system (2)
computed with radius R = 30 and N = 60 Fourier modes using Dirichlet and Neumann boundary conditions (12).
Shown are results from numerical continuation with respect to σ for fixed ζ = 1, 2, . . . 10. The curves illustrate the
difference µ0 −

1

3+σ
for each of the ten different values of ζ.

the Laplacian, we require a Neumann boundary condition only for k = 0 and impose Dirichlet

boundary conditions at r = r0 for all other k:

Û′(r0, 0) = 0,

Û(r0, k) = 0, for k > 0.
(12)

As r0 → 0, the cyclic symmetry implies that a, b and c all take on the same value at r = 0: we

denote this common value by µ0. Note that these boundary conditions translate to a Dirichlet

boundary condition in physical space, namely, U(0, θ) = µ0. These boundary conditions must be

coupled with the phase condition (7).

As was the case for the Neumann boundary conditions (6), the modified Dirichlet boundary

conditions (12) are also readily implemented for the reduced BVP (10)–(11), because they translate

directly to conditions for the component â of Û only. Rather than set up the modified BVP from

scratch (which would not work in the initial thin annulus), we continue the spiral wave that was

already computed as a solution to BVP (10)–(11) with Neumann boundary conditions to that of a

BVP with the modified Dirichlet boundary conditions via a homotopy step. We define, for k > 0,

the hybrid boundary conditions

(1 − λ) Û′(r0, k) + λ Û(r0, k) = 0,

where we initially set λ = 0. We then continue the known solution from λ = 0 to λ = 1, while

keeping ω as a free parameter. Following this, we can continue r0 to zero resulting in a spiral wave

on a full disk with radius R = r1.

3 Comparison of computational results

To test the accuracy and efficiency of our modified method, we compare the results obtained from

the reduced BVP (10)–(11) with direct simulations of the laboratory-frame PDEs (2). We note
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that the full BVP (5)–(7) produces solutions with the same cyclic symmetry as assumed in the

reduced BVP (10)–(11), so the results are identical, with a substantial gain in efficiency.

For the BVP method, we compute spiral waves on a disk with radius R = 30 and continue

them with respect to ω, σ and ζ. The PDE simulations were conducted on a large square box in

the (x, y)-plane of size 2000 × 2000; see (Postlethwaite & Rucklidge, 2017; Hasan et al., 2021) for

precise details on this computational set-up.

3.1 Values of a, b and c at the core

We have defined µ0 to be the common value of a, b and c at the core r = 0. Results from

direct PDE simulation show that this common value is close to (but not equal to) the coexistence

equilibrium point value, a = b = c = 1

3+σ (Szczesny et al., 2014; Postlethwaite & Rucklidge, 2017).

Our continuation scheme gives the same result for the values of a, b and c at the core as the direct

simulation of the PDEs. In fig. 5 we compare µ0 to 1

3+σ . The continuation results reveal that

µ0 → 1

3+σ as σ → 0, and more quickly for smaller ζ. Even for larger σ, the difference is only of

order 10−3. We note that this comparison is not possible without the final step of changing the

boundary conditions and continuing to r0 = 0.

3.2 Angular frequency of spiral waves

Postlethwaite & Rucklidge (2017) conjectured that the angular frequency of the spiral waves was

related to the imaginary part of the complex eigenvalue at the coexistence equilibrium point. In

particular, they suggested a linear relationship

ω ∼ 2

3
×

√
3(σ + 2ζ)

2(3 + σ)
, (13)

where the 2

3
pre-factor was obtained by fitting a straight line to PDE simulations in the range

0.1 ≤ σ ≤ 20 and 0 ≤ ζ ≤ 10. The spiral angular frequency in the simulations was only estimated

at parameter values where reasonably large stable spirals could be found.

To test this conjecture, we computed the angular frequency ω by continuation. Figure 6 shows

the relation between the angular frequency ω and system parameters σ and ζ. Panel (a) shows this

relation in the (ζ, ω)-plane for σ = 1, 2, . . . , 10. By inspection, we find that all curves are almost

linear with an approximate slope of
√

3 (3 + σ)−1 rather than the conjectured 2

3

√
3 (3 + σ)−1 as

postulated by Postlethwaite & Rucklidge (2017). This is more evident in panel (b) where we plot

the same curves with ω rescaled by a factor of
√

3 (3 + σ)−1; note that the slopes are all about 1

in this projection.

Figure 6(c) shows the same curves with 2ω(3 + σ)/
√

3 plotted against 2ζ + σ. Our contin-

uation results, over a full range of σ and ζ (each between 1 and 10) contradict the conjecture

of Postlethwaite & Rucklidge (2017). The observations of Postlethwaite & Rucklidge (2017) were

predominantly based on relatively small values of σ and ζ, where large enough stable spirals could

be found and their frequencies measured. There is a rough agreement for small σ and ζ, but the

discrepancies for larger values are quite significant; see (Postlethwaite & Rucklidge, 2017, fig. 4).
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Figure 6: Dependence of the angular frequency ω on parameters ζ and σ for spiral waves of system (2) computed
on a disk with radius R = 30 and N = 60 Fourier modes. Panels (a)−(c) show the curves for fixed σ = 1, 2, . . . , 10
in three different projections. Panel (d) shows a comparison between the continuation results (black curves) and
direct simulations of the laboratory-frame equations (2) (orange dots) for σ = 2, 3.2, 5.0 and 10.0.

Figure 6(d) demonstrates that the continuation results (black curves) and direct simulations (or-

ange dots) agree extremely well.

We find that the angular frequency is better approximated by the linear function

ω ≈
√

3 (3

2
σ + 2ζ)

2(3 + σ)
;

compare with (13). While this value is still similar to the imaginary part of the coexistence

equilibrium, the difference is not just a factor of 2

3
. On the other hand, our updated value still

indicates linear dependency on ζ and the slope
√

3 (3+σ)−1 appears to be valid over a large range

of values for both σ and ζ.

4 Five-species model

In this section, we illustrate the gains in computational efficiency obtained when taking into

account the cyclic symmetry of spiral waves in larger heteroclinic networks. Heteroclinic networks
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Equilibrium ξ1 ξ2 ξ3 ξ4 ξ5

(a, b, c, p, q) (1, 0, 0, 0, 0) (0, 1, 0, 0, 0) (0, 0, 1, 0, 0) (0, 0, 0, 1, 0) (0, 0, 0, 0, 1)

Equilibrium η1 η2 η3 η4 η5

(a, b, c, p, q) (s, s, 0, 0, s) (s, s, s, 0, 0) (0, s, s, s, 0) (0, 0, s, s, s) (s, 0, 0, s, s)

Table 1: Equilibrium points in the heteroclinic network of system (14), where s = (3 + σ)−1.

of five competing species in an ODE form was first studied by Field & Richardson (1992) and then

further investigated in Podvigina (2013), Afraimovich et al. (2016) and Bayliss et al. (2020). Just

as for the three-strategy Rock–Paper–Scissors game, the extended game of Rock–Paper–Scissors–

Lizard–Spock (Kass & Bryla, 1995) can be viewed as a population model for competing species;

each population density represents the probability density of winning the game when consistently

playing the same strategy, e.g., always Rock, or always Scissors. Hence, the game can be modelled

as a PDE of the form (1) using similar equations as in system (2), but with m = 5 species. More

precisely, we consider





ȧ = a (1 − ρ − (σ + ζ) (b + p) + ζ (c + q)) + ∇2a,

ḃ = b (1 − ρ − (σ + ζ) (c + q) + ζ (p + a)) + ∇2b,

ċ = c (1 − ρ − (σ + ζ) (p + a) + ζ (q + b)) + ∇2c,

ṗ = p (1 − ρ − (σ + ζ) (q + b) + ζ (a + c)) + ∇2p,

q̇ = q (1 − ρ − (σ + ζ) (a + c) + ζ (b + p)) + ∇2q,

(14)

where p(t, x, y) and q(t, x, y) are two additional (non-dimensionalised) species and ρ = a + b +

c + p + q. Here, we assume that the removal rate σ and replacement rate ζ are the same for all

species interactions. Spatiotemporal patterns for five-species reaction-diffusion systems have been

obtained via stochastic simulations and studied in (Hawick, 2011; Cheng et al., 2014; Park et al.,

2017), but a precise continuation or computation of the spiral wave has not been attempted before.

System (14) has five equilibria at which only one population (a, b, c, p, and q, respectively)

survives, which we denote by ξi, where the index i = 1, 2, 3, 4, 5 represents the component in the

vector (a, b, c, p, q) of the surviving species. There are also five equilibria η1 − η5, each of which

has three surviving populations; more precisely, at each equilibrium ηi, components with indices

i − 1, i,i + 1 (mod 5) survive. The coordinates of the equilibrium points ξ1 − ξ5 and η1 − η5 are

given in table 1. Note that each triple ξi−1, ξi, ξi+1 lies in an invariant subspace that contains

the equilibrium ηi. Moreover, there exists a coexistence equilibrium with a = b = c = p = q =

1/(5 + 2σ), where all five species coexist.

Figure 7 shows all possible five-component heteroclinic cycles of system (14) in the form of a

directed graph, where each node represents an equilibrium and the edges the connecting orbits.

As for the three-species model, there exists a heteroclinic cycle that consecutively connects all five

equilibria ξi with i = 1, . . . , 5; this cycle is highlighted in red in fig. 7(a) and we refer to it as

Γ1. There exists a second heteroclinic cycle between these five equilibria: instead of connecting

ξi to ξi+1 for i = 1, . . . , 5 (mod 5), the connection is from ξi to ξi+3 for i = 1, . . . , 5 (mod 5); this

cycle is highlighted in blue in fig. 7(a) and we refer to it as Γ2. There also exists a heteroclinic
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Figure 7: Heteroclinic network of system (14) with nodes ξ1, ξ2, ξ3, ξ4 and ξ5 that represent equilibria at which
only one population survives, and η1, η2, η3, η4 and η5 that represent equilibria at which three populations survive.
Panel (a) highlights heteroclinic cycles Γ1 (red) and Γ2 (blue) involving all five equilibria ξi, and panel (b) shows
shows the heteroclinic cycle Γ3 (green) involving all five equilibria ηi, with i = 1, . . . , 5; see table 1 for the definition
of the equilibria.

cycle between the other five equilibria, connecting ηi to ηi+1 for i = 1, . . . , 5 (mod 5); this cycle is

highlighted in green in fig. 7(b) and we refer to it as Γ3.

There are many other heteroclinic cycles, some longer and some involving fewer than five

equilibria. For example, there exist five heteroclinic cycles in system (14) between three of the

five equilibria ξi with i = 1, . . . , 5. More precisely, these are formed by triples ξi−1, ξi, ξi+1 that

surround an associated coexistence equilibrium ηi, with i = 1, . . . , 5 (mod 5). Hence, the dynamics

is entirely restricted to the lower-dimensional invariant subspace involving these equilibria, which

is perfectly described by system (2). Here, we focus only on the dynamics of the heteroclinic cycles

between five equilibria.

With our reduced BVP method, we take advantage of the cyclic symmetry in the system; in

complete analogy to the steps outlined in section 2.3, we can express each of the five species in

terms of appropriate phase shifts of the first. As a starting solution, we determine the associated

periodic travelling wave given as a periodic orbit of the one-dimensional travelling-frame equation

f(U) + Uξξ − γUξ = 0, (15)

where the solution vector U(ξ) = [a(ξ), b(ξ), c(ξ), p(ξ), q(ξ)]T ∈ R
m now represents m = 5 species,

the vector f represents the kinetics terms in system (14), and ξ = x + γt is the travelling-frame

variable. In the travelling-frame coordinate, we find periodic orbits that are associated to only

two of the three heteroclinic cycles between five equilibria, namely, Γ2 and Γ3, that is, the blue

and green cycles highlighted in fig. 7. Using these two periodic orbits, we set up two different

versions of the reduced BVP (10)–(11): for cycle Γ2, we can exploit the permutation symmetry

(a, b, c, p, q) 7→ (p, q, a, b, c),
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and for cycle Γ3, we use

(a, b, c, p, q) 7→ (b, c, p, q, a).

Therefore, the first component of the co-rotating frame equation (3) for cycle Γ2 is given by

f1

(
a(r, θ), a(r, θ − 4π

5
), a(r, θ + 2π

5
), a(r, θ − 2π

5
), a(r, θ + 4π

5
))

)
+

arr +
1

r
ar +

1

r2
aθθ − ω aθ = 0,

where

f1(a, b, c, p, q) = a (1 − ρ − (σ + ζ) (b + p) + ζ (c + q)) .

Similarly, for cycle Γ3, we use

f1

(
a(r, θ), a(r, θ − 2π

5
), a(r, θ − 4π

5
), a(r, θ + 4π

5
), a(r, θ + 2π

5
))

)
+

arr +
1

r
ar +

1

r2
aθθ − ω aθ = 0.

In this way, we reduce the number of real differential equations from 2 m N + 1 = 10 N + 1 to

2 N + 1, which is about a five-fold reduction.

The numerical continuation is performed in Fourier space, using equation (10) for each of the

first 1

2
N + 1 Fourier modes. The kth coefficient of the discretised Fourier approximation of f1 is

now given by

f̂1(r, k) = â − â ∗ â − (1 + σ + ζ) â ∗ (b̂ + p̂) − (1 − ζ) â ∗ (ĉ + q̂), (16)

where we dropped the dependence on (r, k) for notational convenience.

The modifications of the set-up for the BVP (10)–(11) are all that is needed to compute spiral

waves of system (14). Note that it hardly matters that there are now five rather than three species,

because we still only compute the evolution of the population density of one of these species; the

number of differential equations and boundary conditions are the same for both the three-species

and five-species models. The only difference in computational cost is the evaluation of five instead

of three nonlinear terms.

We compute the spiral waves of system (14) that correspond to the two cycles Γ2 and Γ3 on

a full disk in the (x, y)-plane, centred at the origin, with inner radius r0 = 0 and outer radius

r1 = 300, by solving the BVP(10)–(11) with Dirichlet boundary conditions (12). The result is

shown in fig. 8, where the colours red, green, blue, yellow, and black represent the populations

a, b, c, p, and q, respectively. In the top row, we show the spiral wave in the (x, y)-plane with

colours indicating the species that is dominant in that region. The bottom row shows the spatial

profile along the outermost circle of the computed domain (at r = 300); here the horizonal axis

is the 2π-periodic co-rotating variable θ. Panels (a1) and (a2) are for the spiral wave associated

with the cycle Γ2 and panels (b1) and (b2) for the spiral wave associated with Γ3. Note that

the profile shown in panel (a2) lies close to the heteroclinic cycle Γ2. Similarly, the profile shown

in panel (b2) is reminiscent of the heteroclinic cycle Γ3; the small oscillations around 1

3+σ are
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Figure 8: Spiral waves of the five-species system (14) with σ = 3.2, ζ = 0.8 computed on a full disk of radius
R = 300 with N = 80 Fourier modes. Panels (a1) and (b1) show the spiral waves that correspond to cycles Γ2 and
Γ3 with angular velocities ω ≈ 0.260376 and ω ≈ 0.093288, respectively; panels (a2) and (b2) show the corresponding
distribution of the five species along outer boundary of the domain.

formed due to the saddle-focus nature of the equilibria η1 − η5. The core of both spiral waves

shown in fig. 8 admits a common value for all five species. This value is close to the coexistence

equilibrium a = b = c = p = q = 1/(5 + 2σ), for both spirals, within 10−3.

5 Discussion

This paper presents a numerical study of spiral waves in systems of symmetric heteroclinic net-

works. As an adaptation of the method introduced by Bordyugov & Engel (2007), we combined

methods from discrete Fourier transforms, boundary-value problem formulations and group sym-

metries to generate a fast algorithm for computing and continuing spiral waves in cyclic dominance

models. The proposed continuation method is an efficient way to explore the dynamics of spi-

ral waves in symmetric systems. In particular, this method is an efficient way to explore spiral

waves in a large heteroclinic networks of five (or more) competing species. We emphasise that

the numerical method presented here can be modified to compute spiral waves for any reaction-

diffusion system. More precisely, one needs to follow the steps presented in section 2 but ignore

the symmetry exploitation presented in section 2.3.

We found that the angular frequency of spiral waves in system (2) was not directly related to the

linear frequency of the equilibrium point at the core, as postulated by Postlethwaite & Rucklidge
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(2017). The results from the modified continuation method also accurately match results from

direct integration. We introduced Dirichlet boundary conditions (12) in order to obtain a bounded

(non-singular) Laplacian term at the core as r → 0. Applying these boundary conditions allow us

to compute spiral waves on a full disk instead of an annulus. What is more, a challenging task in

direct simulations is to locate and determine the common value of the variables at the core. Using

our boundary conditions, we are able to determine the precise location and value at the core and

investigate its dynamics.

Spatiotemporal instabilities of spiral waves come in different shapes and forms and may

emerge from the far field, the core, or the boundary conditions (Dodson & Sandstede, 2019;

Sandstede & Scheel, 2000, 2020). The Dirichlet boundary conditions (12) proposed in this pa-

per is an essential starting point to compute and identify core instabilities. Just as we have done

for travelling waves (Hasan et al., 2021), we plan to compute spectra of heteroclinic-induced spi-

ral waves. Such computations require a coupling of the stationary problem and the augmented

eigenvalue problem. Hence, obtaining linear spectra of spiral waves in large domains is a compu-

tationally expensive task. Our symmetry-based reduction can be applied to reduce the number

of ODEs for the augmented eigenvalue problem and thus facilitate fast and efficient computa-

tion of spectra of spiral waves in spatiotemporal systems of large heteroclinic networks. One

shortcoming of this approach is that the the augmented eigenvalue problem would have full rank,

which makes the stability analysis computationally expensive. However, one can perform itera-

tive steps to compute the largest eigenvalue or even a selected number of dominant eigenvalues

efficiently (Dijkstra et al., 2014; Saad, 2011).

For the five-species system, we were only able to find spiral waves associated with two of the

three heteroclinic cycles between five equilibria. At first glance, it may seem like the heteroclinic

cycles Γ1 and Γ2 are of a similar type, but the heteroclinic connections in Γ1 are two dimensional,

and the heteroclinic connections in Γ2 are one dimensional–more precisely, there exists a two-

dimensional manifold of connecting orbits between ξ1 and ξ2. It may be that this structural

difference has a role to play in the bifurcation of long-period periodic orbits from these heteroclinic

cycles. We plan to investigate this in future work by examining system (14) with one spatial

dimension in the travelling frame coordinates and investigating the heteroclinic bifurcations which

occur in the resulting 10-dimensional system of ODEs.
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