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Abstract. We propose a regularization method based on the iterative conjugate gradient

method for the solution of a Cauchy problem for the wave equation in one dimension. This

linear but ill-posed Cauchy problem consists of finding the displacement and flux on a hostile

and inaccessible part of the medium boundary from Cauchy data measurements of the same

quantities on the remaining friendly and accessible part of the boundary. This inverse bound-

ary value problem is recast as a least-squares minimization problem that is solved by using

the conjugate gradient method whose iterations are stopped according to the discrepancy

principle for obtaining stable reconstructions. The objective functional associated is proved

Fréchet differentiable and a formula for its gradient is derived. The well-posed direct, adjoint

and sensitivity problems present in the conjugate gradient method are solved by using a

finite-difference method. Two numerical examples to illustrate the accuracy and stability of

the proposed numerical procedure are thoroughly presented and discussed.

Keywords Cauchy problem; wave equation; conjugate gradient method; regularization; in-

verse problem

1. Introduction

A plethora of research has been devoted to the study of Cauchy problems for various linear

and non-linear models, e.g. [1, 2] for linear and non-linear elliptic equations, and [3] for the

heat equation. The Cauchy problems arise in situations in which the aim is to determine

the data on a hostile and inaccessible (because of corrosion or cracks, for example) boundary

part from measurements of the Cauchy data on the remaining friendly and accessible part

of the boundary. These problems inevitably occur in the contexts of many biomedical and

engineering fields such as cardiology [4], elasticity [5] and heat transfer [6]. For example, in

cardiology physicians aim to identify the electrical potential of the inaccessible heart’s surface

for diagnostic purposes from measurements of the potential on accessible parts of the human

body [4].

Researchers in the field have proposed and successfully applied several analytical and nu-

merical techniques [3, 6–9] for the accurate and stable solutions of Cauchy problems, mostly

to elliptic and parabolic models. Bastay et al. [10] proposed and proved the convergence

of two iterative methods for the solution of the Cauchy problem for parabolic equations.

Hào [3] constructed a gradient-based minimization method for the Cauchy problem for the

heat equation, whereas Borachok et al. [8] and Chapko and Johansson [9] developed a mesh-
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less method of fundamental solutions and a boundary integral approach, respectively, for

Cauchy problems for parabolic and hyperbolic equations. Other numerical procedures for

obtaining accurate and stable solutions of Cauchy problems have also been devised, e.g. a

generalized finite-difference method for the solution of the Cauchy problem for the Navier

equations [5] in elasticity. Besides, Reinhardt et al. [6] and Berntsson et al. [7] coupled

the conjugate gradient method (CGM) with Tikhonov regularization to obtain accurate and

stable reconstructions for the solutions of the Cauchy problems for the heat and Helmholtz

equations, respectively.

As far as wave propagation phenomena are concerned, research aiming towards solving

Cauchy problems for hyperbolic equations was carried out in the past in [8,9,11–14]. The so-

called quasi-reversibility method has been applied to solve the Cauchy problem for the wave

equation [14–16]. This method’s idea is to approximate the original ill-posed problem by a

well-posed, but higher-order, problem for which analytical and numerical methods can be

easily applied. Klibanov and Rakesh [14] used such a method to regularize the Cauchy prob-

lem for the wave equation subjected to lateral Cauchy data for smooth, bounded domains.

Other related research was based on the use of mixed formulations of such an underlining

method, see Bécache et al. [12] for details. Numerical methods have also been devised and ap-

plied [8,9,13]. For instance, the authors of [13] applied a hybrid boundary integral approach

incorporating the Galerkin boundary element method to reconstruct an unknown boundary

condition from lateral Cauchy data in the wave equation on a 3-D annulus. Worth mentioning

here is also the analysis and solution of Weber [17] for the ill-posed inverse heat conduction

problem obtained by approximating the parabolic heat equation with a hyperbolic damped

wave equation with small parameter. Other applications of inverse analyses for hyperbolic

equations concern source/force identification problems [18–20].

As far as the practical applications in the field of thermal biology are concerned, Yang

[21] numerically estimated the skin temperature of a single-layered biological tissue from

temperature measurements within the tissue by an inversion method based on a finite-element

method incorporating the concept of future time steps, with extension to higher dimensions

also attempted [22]. Lee et al. [23] utilized the thermal-wave model of bio-heat transfer

and the CGM to accurately and stably recover the heat flux at the skin of a single-layered

biological tissue. Hsu [22] combined a finite-difference method (FDM) with the linear least-

squares method to identify the unspecified boundary conditions in a 3-D hyperbolic heat

conduction model.

From the above literature review it can be concluded that inverse modelling is the ap-

propriate approach to be employed when the data of interest are difficult or impossible to

measure directly or when the corresponding devices and process of measuring is expensive

and complicated. This conclusion justifies why it is important to solve the inverse problem

of reconstructing the displacement at x = 1 from measurements of the displacement and flux

at x = 0 for the one-dimensional wave equation in the domain QT :=(0, 1)× (0, T ) subjected

to initial conditions at t = 0, as proposed in this paper. For T > 1, it is known that, due to

the Holmgren unique continuation for the wave equation utt − uxx = 0 in QT , the solution to
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this Cauchy problem is unique only in the region:

R0
T = {(x, t) ∈ QT |0 < x < 1, 0 < t < T − x}, (1)

see [12] for more details. Even though the solution is unique in R0
T , it may not exist if there

is redundancy between the Cauchy and initial data at t = 0. In any case, it violates the

stability condition [13, 14], i.e. small changes in the input data cause large changes in the

output solution.

The next section presents the Cauchy problem for the one-dimensional wave equation.

2. Mathematical formulation

Consider the wave equation

utt − (a(x, t)ux)x = f(x, t), (x, t) ∈ QT=(0, 1)× (0, T ), (2)

where a(x, t) is the conductivity coefficient which is assumed positive, u(x, t) represents the

displacement and f(x, t) is a force acting on the system. In defining the solution domain

QT = (0, 1)× (0, T ) we have assumed, for simplicity, that the length of a vibrating string is

equal to unity. Also, 0 < T <∞ stands for the duration of the time-horizon.

Associated with (2), we have prescribed the initial conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ (0, 1), (3)

on the displacement and velocity, and the Neumann flux boundary condition

−a(0, t)ux(0, t) = ϕ(t), t ∈ (0, T ). (4)

We consider the inverse problem consisting of reconstructing the unknown boundary dis-

placement

u(1, t) = ψ(t), t ∈ (0, T ), (5)

from the measurement of the boundary displacement

u(0, t) = η(t), t ∈ (0, T ). (6)

To solve the inverse problem (2)-(4) and (6), we minimize the objective functional J :

L2(0, T ) → R+ defined by

J(ψ) :=
1

2
‖u(0, t)− ηǫ(t)‖2L2(0,T ), (7)

where u solves (2)-(5) for a given element ψ ∈ L2(0, T ), and ηǫ(t) is the noisy measured

boundary displacement, which satisfies

||ηǫ(t)− η(t)||L2(0,T ) ≤ ǫ, (8)
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where ǫ ≥ 0 represents the amount of noise. As usual with iterative regularization methods,

stopping the iterations in the minimization of (7) at an appropriate threshold given by the

discrepancy principle plays the role of regularization. Alternatively, one could incorporate a

regularization term λ‖ψ(t)‖2
L2(0,T ), where λ > 0 is the regularization parameter, directly into

(7). It was demonstrated elsewhere, see [24], that both these regularization methods produce

similar stable results in case of the inverse heat conduction problem (IHCP) for the parabolic

heat equation.

We briefly recall the well-posedness of the direct problem (2)-(5). Data of the inverse

problem can be contaminated with noise, hence we only require that the given functions are

square integrable. Similar to what was done in [10] for parabolic equations, we consider the

so-called very weak solution to (2)-(5), that is an element u satisfying

∫ T

0

∫ 1

0

u(x, t) (wtt − (a(x, t)wx)x) dxdt

=

∫ T

0

∫ 1

0

f(x, t)w(x, t)dxdt−

∫ 1

0

u0(x)wt(x, 0)dx+

∫ 1

0

v0(x)w(x, 0)dx

+

∫ T

0

ϕ(t)w(0, t)dt−

∫ T

0

ψ(t) (a(1, t)wx(1, t)) dt (9)

for every element w in H2(QT ) satisfying w(x, T ) = wt(x, T ) = 0 together with the mixed

boundary conditions a(0, t)wx(0, t) = 0 and w(1, t) = 0.

Following classical results of well-posedness and regularity, we assume that the coefficient a

is positive and has a continuous derivative in each variable throughout the space-time cylinder

QT , i.e. a ∈ C1(QT ) (in some parts considerable less smoothness works, for example, in the

definition of a very weak solution a ∈ L∞(QT ) is enough). Then, following [10], we have:

Given f ∈ L2(QT ), u0, v0 ∈ L2(0, 1) and ϕ, ψ ∈ L2(0, T ), there exists a unique very weak

solution u ∈ L2(QT ) to (2)-(5) and the following a priori estimate holds:

‖u‖L2(QT ) ≤ C(‖f‖L2(QT ) + ‖u0‖L2(0,1) + ‖v0‖L2(0,1) + ‖ϕ‖L2(0,T ) + ‖ψ‖L2(0,T )). (10)

It is possible to show regularity of this solution under suitable compatibility conditions

using, for example, the standard Faedo-Galerkin ansatz; we refer to [25] for an overview of

regularity results for solutions to the wave equation with Dirichlet, respectively Neumann,

boundary conditions, and for mixed problems [26]; see also [27, Thm 8.1]. It is interesting

to note, as pointed out in [25, Remarks 2.1] that, for the wave equation, there is so-called

hidden regularity, meaning that smoothness on the lateral boundary can be shown although

this does not follow from a trace theorem, see further [28]. A standard source of results for

the wave equation in general form is [29, Chapter 3, Sections 8–9], see also the more recent

work [30].

We finally remark that the problem where one and only one boundary condition of either

Dirichlet or Neumann type is placed along each of the four sides of the space-time rectangle

QT is only well-posed when the quotient of two different sides of the rectangle is an irrational

number (uniqueness fails otherwise), see [31].
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The structure of the remainder of the paper is as follows. In Section 3, we recast the inverse

Cauchy problem under investigation as a variational problem and prove that the objective

functional associated is Fréchet differentiable and derive a formula for its gradient. The CGM

is then described for the minimization of the objective functional. Section 4 demonstrates

the proposed inversion method and discusses its accuracy and stability for two numerical

benchmark examples. The conclusions are highlighted in Section 5.

3. Variational problem

In this section, we prove that the objective functional defined in equation (7) is Fréchet

differentiable and derive a formula for its gradient. In doing so, let us introduce the following

adjoint problem to the problem given by (2)-(5):

vtt − (a(x, t)vx)x = 0, (x, t) ∈ QT , (11)

v(x, T ) = vt(x, T ) = 0, x ∈ (0, 1), (12)

− a(0, t)vx(0, t) = ηǫ(t)− u(0, t), t ∈ (0, T ), (13)

v(1, t) = 0, t ∈ (0, T ). (14)

Theorem 3.1. The objective functional defined in (7) is Fréchet differentiable and its gra-

dient is given by

J ′(ψ) = a(1, t)vx(1, t), t ∈ (0, T ), (15)

where v(x, t) is the solution of the adjoint problem given by equations (11)-(14).

Proof. Taking a small variation ∆ψ ∈ L2(0, T ) of ψ, we have

J(ψ +∆ψ)− J(ψ) = 〈u(0, t;ψ)− ηǫ(t),∆u(0, t;ψ)〉L2(0,T ) +
1

2
||∆u(0, t;ψ)||2L2(0,T ), (16)

where ∆u(x, t;ψ) is the solution of the sensitivity problem

(∆u)tt − (a(x, t)(∆u)x)x = 0, (x, t) ∈ QT , (17)

∆u(x, 0) = (∆u)t(x, 0) = 0, x ∈ (0, 1), (18)

a(0, t)(∆u)x(0, t) = 0, t ∈ (0, T ), (19)

∆u(1, t) = ∆ψ(t), t ∈ (0, T ). (20)

From the a priori estimate (10) for the sensitivity problem (17)-(20), we have

||∆u(0, t;ψ)||2L2(0,T ) = o
(

‖∆ψ‖L2(0,T )

)

, as ‖∆ψ‖L2(0,T ) → 0. (21)

Moreover, multiplying (11) by ∆u(x, t) and integrating by parts twice, using (12)-(20), yield

∫ T

0

(u(0, t;ψ)− ηǫ(t))∆u(0, t;ψ)dt =

∫ T

0

a(1, t)vx(1, t)∆ψ(t)dt. (22)

Therefore, equation (16) becomes

J(ψ +∆ψ)− J(ψ) =

∫ T

0

a(1, t)vx(1, t)∆ψ(t)dt+ o
(

‖∆ψ‖L2(0,T )

)

. (23)
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From the right-hand side of the above equation and the definition of the Fréchet derivative,

we see that J(ψ) is Fréchet differentiable and its gradient at ψ is given by (15).

In the next subsection, the CGM is described for the minimization of the objective func-

tional defined in (7).

3.1 Iterative procedure

To find the unique minimizer of the objective functional defined in equation (7) we employ

the CGM given by the recursive relations

ψn+1 = ψn − αndn, n = 0, 1, . . . , (24)

where the direction of descent dn is given by

dn =

{

−J ′(ψn), if n = 0,

−J ′(ψn) + βndn−1, if n = 1, 2, . . . ,
(25)

the Fletcher–Reeves conjugate coefficient βn is given by [32]

β0 = 0, βn =
‖J ′(ψn)‖2

L2(0,T )

‖J ′(ψn−1)‖2
L2(0,T )

, n = 1, 2, . . . , (26)

and the search step size αn is computed as the minimizer

αn = argmin
α≥0

J(ψn − αdn), n = 0, 1, . . . . (27)

Other choices for βn such as the Polak-Ribiere [33], Hestenes-Stiefel [34] or Dai-Yuan [35] can

also be adopted.

In (25), d0 is −J ′(ψ0), so the usual gradient descent method requires moving in the direction

of the negative gradient of J at ψ0. For n ≥ 1 however, we insist that the directions dn be

conjugate to each other in order to enforce the iteration to follow narrow valleys in regions

where the steepest descent would otherwise slow down.

To evaluate αn, we set ∆ψn = dn and linearize u(0, t;ψn − αdn) by a first-order Taylor

series expression to obtain

u(0, t;ψn − αdn) ≈ u(0, t;ψn)− αdn
∂u

∂ψn
(0, t;ψn) ≈ u(0, t;ψn)− α∆u(0, t;ψn), (28)

where ∆u(0, t;ψn) is found by solving the sensitivity problem (17)-(20) with ∆ψn = dn.

Then, differentiating J(ψn − αdn) with respect to α and making it zero yield

αn =
〈u(0, t;ψn)− ηǫ(t),∆u(0, t;ψn)〉L2(0,T )

‖∆u(0, t;ψn)‖2
L2(0,T )

. (29)

3.2 Stopping criterion

For stability, we stop the iterations according to the discrepancy principle, i.e. we stop the

iterations at the first iteration n∗ for which, according to (7) and (8),

J(ψn∗) ≈ ǫ2/2 =: ǭ. (30)
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For exact data, we stop the iterative procedure at the first iteration n∗ for which J(ψn∗)

attains a small positive value such as 10−5.

3.3 Algorithm

The CGM’s steps are summarized as follows:

1. Set n = 0 and select an arbitrary initial guess ψ0 ∈ L2(0, T ).

2. Solve the direct problem given by equations (2)-(5) to obtain u(x, t;ψn) and compute

J(ψn) from equation (7).

3. Stop if the stopping criterion (30) is satisfied. Else go to step 4.

4. Solve the adjoint problem given by equations (11)-(14) to find v(x, t;ψn). Compute the

gradient J ′(ψn) from equation (15), the conjugate coefficient βn from equation (26),

and the direction of descent dn from equation (25).

5. Solve the sensitivity problem given by equations (17)-(20) to obtain ∆u(x, t;ψn) by

taking ∆ψn = dn and compute the search step size αn from equation (29).

6. Update ψn+1 from equation (24), set n = n+ 1 and go to step 2.

4. Numerical results and discussion

In the numerical examples below, we use the FDM, as in [36], based on the unconditionally

stable Crank-Nicolson scheme with uniform mesh size ∆x = 1/M and time step ∆t = T/N ,

to solve the direct, adjoint and sensitivity problems present in the CGM described in Section

3.3. The trapezoidal rule is used for discretizing the integrals in equations (26) and (29).

The accuracy error functional, as a function of the number of iterations n, is defined as

E(ψn) = ||ψn − ψ||L2(0,T−1), (31)

where ψn stands for the numerical result obtained by the CGM at the iteration number n

and ψ denotes the true boundary displacement defined in equation (5), if available.

The noisy data ηǫ(t) is simulated by adding random noise to the exact data η(t), as follows:

ηǫ(tj) = η(tj) + ǫj, j = 1, N, (32)

where tj = j∆t for j = 0, N are the FDM time nodes and ǫj for j = 1, N are N random vari-

ables generated from a Gaussian normal distribution with mean zero and standard deviation

σ = p × maxt∈[0,T ] |η(t)|, where p represents the percentage of noise. We use the MATLAB

function normrnd(0, σ,N) to generate the random variables (ǫj)j=1,N .

In the next two subsections, we present two numerical examples to verify the accuracy and

stability of the proposed CGM. As pointed out at the end of section 1, in case of constant

coefficient a(x, t), the uniqueness of a solution of the Cauchy problem (2)-(4) and (6) holds

only in the region R0
T defined in (1). Explicit uniqueness results for the general case of a

non-constant a(x, t) are not known at present, although some sidewise profile control has
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very recently been attempted in [37] for the wave equation ρ(x)utt − (a(x)ux)x = 0 with

space-dependent uniformly bounded positive coefficients ρ(x) and a(x).

We take T = 2 and then, according to the theory [12], the solution for the boundary

displacement (5) at x = 1 can be uniquely identified only for t ∈ (0, 1), which is obtained

from (1) with x = 1 and T = 2.

4.1 Example 1

In this example, we take the input data

a(x, t) = 1, u(x, 0) = u0(x) = 1 + x, ut(x, 0) = v0(x) = 1 + x, f(x, t) = (1 + x)et, (33)

−a(0, t)ux(0, t) = ϕ(t) = −et, (34)

and consider the boundary displacement

u(0, t) = η(t) = et. (35)

It can be verified by direct substitution that the analytical solution of the inverse problem

given by equations (2)-(4) and (6) is

u(x, t) = (1 + x)et, u(1, t) = ψ(t) = 2et. (36)

From the theory, we already know that u(1, t) can be retrieved uniquely only in the interval

t ∈ (0, 1) from the Cauchy data (34) and (35). We take the initial guess ψ0
1(t) = (e2− 1)t+2

as well as ψ0
2(t) = 2(e− 1)t+ 2, and run the CGM described in Section 3.3 with ∆t = ∆x =

0.025 for 10 iterations. Both these initial guesses are linear functions of t, while the exact

solution for ψ(t) is an exponential function. The first initial guess satisfies ψ0
1(0) = ψ(0)

and ψ0
1(2) = ψ(2), while the second initial guess satisfies ψ0

2(0) = ψ(0) and ψ0
2(1) = ψ(1).

Since the initial guess ψ0
2 equals the exact solution at t = 1 we expect to obtain a better

convergence and numerical results for it compared to the initial guess ψ0
1. This conclusion is

clearly illustrated in Figures 1(a) and (b), which show the monotonic decreasing convergence

of the objective functional J(ψn) and the accuracy error functional E(ψn), respectively, as

functions of the number of iterations n, starting from the initial guesses ψ0
1(t) and ψ0

2(t) for

exact data, i.e. p = 0.

Figures 2(a) and (b) present the corresponding numerical solutions for the unknown bound-

ary displacement ψ(t) alongside the exact solution (36) starting from ψ0
1(t) for t ∈ [0, 2] and

t ∈ [0, 1], respectively. Similar results to those reported in Figures 2(a) and (b) are depicted

in Figures 2(c) and (d), but starting from ψ0
2(t). As discussed before, uniqueness can be

ensured only on the time interval t ∈ (0, 1), as illustrated in Figures 2(a) and (c). Moreover,

the results obtained with the initial guess ψ0
2(t) presented in Figure 2(d) are more accurate

and stable than those obtained with the initial guess ψ0
1(t) presented in Figure 2(b).

Next, we consider noisy input data with p ∈ {1, 10}% noise. We present results only for the

initial guess ψ0
2(t) = 2(e − 1)t + 2. The monotonic decreasing convergence of the objective

functional J(ψn) and the accuracy error functional E(ψn), as functions of the number of

iterations n, are presented in Figures 3(a) and (b), respectively. As expected, these curves
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attain lower values for p = 1% noise than for the higher amount of noise p = 10% with which

the input boundary displacement data (32) is contaminated. The graphs in Figure 3(b) also

show that there is a minimum (at iteration number n = 2) in the accuracy error (31), which

is attained close to the iteration number n∗ = 1 given by the discrepancy principle (30),

as illustrated in Figure 3(a). The corresponding reconstructions of the unknown boundary

displacement ψ(t) obtained at the stopping iteration number n∗ = 1 are presented in Figure

4 in comparison with the exact solution (36). From this figure it can be seen that the

numerical results obtained for p = 1% noise are accurate and stable, but for the higher

amount of p = 10% noise some mild oscillations start to become visible.

4.2 Example 2

We take the input data

a(x, t) = 1, u(x, 0) = u0(x) = 0, ut(x, 0) = v0(x) = π cos(πx), f(x, t) = 0, (37)

−a(0, t)ux(0, t) = ϕ(t) = 0, (38)

and consider the boundary displacement

u(0, t) = η(t) = sin(πt). (39)

It can be verified by direct substitution that the analytical solution of the inverse problem

given by equations (2)-(4) and (6) is

u(x, t) = sin(πt) cos(πx), u(1, t) = ψ(t) = − sin(πt). (40)

We take the initial guess ψ0(t) = 0 and run the CGM described in Section 3.3 with ∆t =

∆x = 0.025 for 10 iterations. Figures 5(a) and (b) show the monotonic decreasing convergence

of the objective functional J(ψn) and the accuracy error functional E(ψn), respectively, as

functions of the number of iterations n, for exact data, i.e. p = 0. Figure 6 illustrates the

very good agreement between the numerical solution for the boundary displacement ψ(t) for

t ∈ [0, 1], in comparison with the exact solution (40).

Next, we consider noisy input data with p ∈ {1, 20}% noise. The monotonic decreasing

convergence of the objective functional J(ψn) and the accuracy error functional E(ψn), as

functions of the number of iterations n, are presented in Figures 7(a) and (b), respectively.

As for Example 1, it can be seen that there is a close correlation between the minimum of

the error curves (obtained after 2 iterations), as illustrated in Figure 7(b), and the stopping

iteration numbers n∗ ∈ {2, 1} for p ∈ {1, 20}%, respectively, as illustrated in Figure 7(a).

The corresponding reconstructions of the unknown boundary displacement ψ(t) obtained at

these stopping iteration numbers of n∗ ∈ {2, 1} for p ∈ {1, 20}%, respectively, are presented

in Figure 8 in comparison with the exact solution (40). As for Example 1, it can be seen that

the numerical results obtained for p = 1% noise are accurate and stable, but for the higher

amount of p = 20% noise some mild oscillations start to manifest.

5. Conclusions

In the present paper, a Cauchy problem associated with the wave equation has been solved
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by using the CGM. This linear but ill-posed inverse problem, reformulated as a least-squares

minimization problem, consists of finding the displacement on a hostile and inaccessible part

of the medium boundary from measurements of the Cauchy data on the remaining friendly

and accessible part of the boundary. For a one-dimensional vibrating string of unit length,

the uniqueness of the boundary displacement at x = 1 holds only over the restricted time

interval t ∈ (0, T − 1), where T > 1. The solution u(1, t) is not unique for t ∈ [T − 1, T ] and

the numerically obtained results confirm this feature of the ill-posed Cauchy problem for the

wave equation.

The associated least-squares objective functional has been proved to be Fréchet differen-

tiable and a formula for its gradient has been derived. A minimization procedure based

on the CGM has been proposed and applied for the iterative minimization of the objective

functional with the discrepancy principle employed for obtaining stable solutions. The well-

posed problems: the direct, adjoint and sensitivity problems present in the CGM have been

discretized by using a FDM. To verify the accuracy and stability of the proposed inversion

method, numerical results for two benchmark examples have been thoroughly presented and

discussed. These results illustrate the very fast convergence of the CGM in less than 10 iter-

ations for exact data. Furthermore, the iterative method is proved to be remarkably stable if

stopped according to the discrepancy principle, even when high amounts of 10%− 20% noisy

data are inverted.

When the initial conditions (3) are not prescribed, the solution of the wave equation utt −

uxx = 0 in QT subject to the Cauchy data u(0, t) = η(t) and −ux(0, t) = ϕ(t) for t ∈ (0, T ) is

unique only in the restricted subset RT = {(x, t) ∈ QT |0 < x < 1, x < t < T − x} ⊂ R0
T for

T > 2, see [12]. However, even for this more ill-posed Cauchy problem for the hyperbolic wave

equation without initial conditions the CGM can still be applied by extending the analyses

of [3, 38] for the parabolic heat equation without initial data.

The proposed CGM of this study is also applicable to other kinds of applied inverse prob-

lems for hyperbolic equations such as source estimation in the non-Fourier regime of heat

transfer in biological bodies.
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Figure 1: (a) The objective functional J(ψn) and (b) the accuracy error functional E(ψn),

with p = 0, for Example 1, starting from the initial guesses ψ0
1(t) and ψ0

2(t).
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Figure 2: The analytical (36) and numerical boundary displacement ψ(t) for (a) t ∈ [0, 2]

and (b) t ∈ [0, 1], starting from the initial guess ψ0
1(t), with p = 0, for Example 1. Similar

results to (a) and (b) are presented in (c) and (d), but starting from the initial guess ψ0
2(t).

Results in (c) and (d) are very accurate for t ∈ [0, 1], whilst the results in (a) and (b) starting

from the initial guess ψ0
1(t) manifest some instabilities.
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Figure 3: (a) The objective functional J(ψn) along with the horizontal lines y = ǭ, and (b)

the accuracy error functional E(ψn), with p ∈ {1, 10}% noise, for Example 1, starting from

the initial guess ψ0
2(t).
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Figure 4: The analytical (36) and numerical boundary displacement ψ(t) for (a) t ∈ [0, 2]

and (b) t ∈ [0, 1], with p ∈ {1, 10}% noise, for Example 1, starting from the initial guess

ψ0
2(t). The results are accurate and reasonably stable for t ∈ [0, 1].
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Figure 5: (a) The objective functional J(ψn) and (b) the accuracy error functional E(ψn),

with p = 0, for Example 2.
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Figure 6: The analytical (40) and numerical boundary displacement ψ(t) for (a) t ∈ [0, 2]

and (b) t ∈ [0, 1], with p = 0, for Example 2.
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Figure 7: (a) The objective functional J(ψn) along with the horizontal lines y = ǭ and (b)

the accuracy error functional E(ψn), with p ∈ {1, 20}% noise, for Example 2.
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Figure 8: The analytical (40) and numerical boundary displacement ψ(t) for (a) t ∈ [0, 2]

and (b) t ∈ [0, 1], with p ∈ {1, 20}% noise, for Example 2.
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