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Cramér-Rao Bound Analysis of Underdetermined

Wideband DOA Estimation Under the Subband

Model via Frequency Decomposition
Yibao Liang, Wei Cui, Qing Shen, Wei Liu, Senior Member, IEEE, Siliang Wu

Abstract—A class of Cramér-Rao bounds (CRBs) for wideband
direction-of-arrival (DOA) estimation under the subband (or
frequency bin) model is studied for the underdetermined case,
where the number of sources is no less than that of physical
sensors. A unified framework is proposed to encompass the
closed-form CRB expressions for DOAs in four cases where the
sources are known a priori to 1) have flat spectra/cross spectra,
2) be spatially uncorrelated, 3) be spatially uncorrelated and
have proportional spectra up to unknown factors, 4) be spatially
uncorrelated and have flat spectra. The relationship between the
wideband CRBs and the subband ones is investigated, and the
order relationship among the derived CRBs are provided. The
asymptotic behavior of the CRBs with respect to the number of
snapshots and the signal-to-noise ratio (SNR) is discussed. Two
asymptotic expressions for sufficiently large SNR are derived in
both overdetermined and underdetermined cases. Existence of
the derived CRBs is examined through rank conditions of the
introduced matrices, which yields upper bounds on the resolution
capacities. Different from the narrowband scenario, underdeter-
mined wideband DOA estimation is feasible even if a sparse
array is not used given different a priori knowledge about the
source spectra. It is possible to resolve more wideband Gaussian
sources than the number of DOFs offered by the difference co-
array. Finally, further interpretations of the subband model are
provided, revealing the underlying connections with the multi-
frequency co-array augmentation concept and the non-coherent
subarray system.

Index Terms—Cramér-Rao bound, direction-of-arrival estima-
tion, wideband, subband model, underdetermined.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation is a fundamental

topic in array signal processing, which has been exten-

sively studied over the past decades. A plethora of methods

and algorithms have been developed for the narrowband DOA

estimation problem, and the Cramér-Rao bound (CRB) has

been systematically studied for both deterministic and stochas-

tic models [2]–[4].

Different from the narrowband scenario, mathematically

the array sampling process for wideband signals involves
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matrix convolution instead of direct multiplication [5], [6],

and various modeling schemes have been introduced, such

as the subband (or frequency bin) model [7], [8], the pole-

zero model [5], [9], the frequency-dependent model [10], the

harmonic source model [11], the spatial-only model [12], and

the spatio-temporal model [6].

In this paper, we focus on the subband model, where

the wideband problem is formulated in the spatio-frequency

domain. This model is usually established by dividing the

temporal observation interval into a group of nonoverlapping

subintervals and then applying the discrete Fourier transform

(DFT) or, more generally, a filter bank system. Therefore, the

processing bandwidth is decomposed into a set of subbands

that resemble narrowband settings under proper model as-

sumptions. Based on this subband model, the signal subspace

methods [7], [8], [13]–[20] and the maximum likelihood

(ML) methods [21]–[24] can be implemented to produce

high-resolution DOA estimates. To guarantee unique source

identifiability, these classical methods commonly assume that

the number of sources is smaller than that of sensors.

In recent years, sparse arrays, such as nested array [25], co-

prime array [26]–[28], and their extensions [29]–[33], have

attracted much research interest. Exploiting the enhanced

degrees of freedoms (DOFs) offered by the virtual co-array,

effective techniques such as the spatial smoothing (SS) based

methods [25], the compressive sensing (CS) based methods

[34], and the ML methods [35] can be applied to resolve

more sources than the number of physical sensors. This has

provided an incentive to develop underdetermined wideband

algorithms. The SS-based methods [36], [37] and the CS-

based methods [37]–[42] have been successfully extended to

the subband model, which can resolve many more sources than

classical algorithms.

To assess the performance of various algorithms developed

for the subband model, an appropriate statistical tool is nec-

essary. Since the Fourier coefficients at each subband share

similar statistical characteristics with the temporal samples in

narrowband settings, the narrowband CRB can be extended to

yield a “wideband CRB”. This CRB establishes the baseline

for the variance of any unbiased estimator using the covariance

matrix of the frequency domain samples, which is a sufficient

statistic for the wideband Gaussian problem under the condi-

tion that the frequency domain samples at different subbands

are uncorrelated [43]. Note that the wideband CRB derived in

this way corresponds to the subband model, and it is different

from the CRBs for other models, e.g., [5], [44].
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Since the deterministic CRB does not exist in the under-

determined case [45], we shall concentrate on the stochastic

CRB. Initially, this CRB was evaluated numerically from the

Fisher information matrix (FIM) [8], [46], [47]. In [21], a

closed-form expression for the small-error variance of the

deterministic ML estimator was derived, which serves as an

approximation to the stochastic CRB. Then, another approx-

imate CRB expression for two uncorrelated, closely-spaced

sources was reported in [48]. The closed-form expression

for the stochastic CRB associated with the DOAs was first

presented in [49]. Validity of this CRB expression indicates

that the number of resolvable sources is less than the number

of physical sensors under the general subband model. Through

numerical comparisons among the CRBs with different a

priori knowledge about the source spectra in the dual-source

case, Messer has found that the performance gain brought

by different a priori knowledge is potentially significant in

rather limited conditions, and in particular, an intermediate

CRB expression was derived [43]. The CRB analyses outlined

above are conducted in the overdetermined case only, and

underdetermined estimation is feasible only if some a priori

knowledge about the signals is available.

In literature, there are four types of a priori knowledge

considered for the wideband case by different researchers:

Pf: The spectra/cross spectra of the sources are flat at the

subbands of interest.

Pu: The sources are spatially uncorrelated.

Pup: The sources are spatially uncorrelated, and their spectra

are proportional up to unknown factors at the subbands

of interest.

Puf: The sources are spatially uncorrelated, and their spectra

are flat at the subbands of interest.

In practice, Pf is available when all the lagged data correlation

matrices have approximately the same information, such as

acoustic backscattered signals from an underwater target [50].

Pf has been introduced in some celebrated algorithms [44],

[51] and theoretical studies [43], [49]. Pu is available when

the propagation channel is unbounded [13], [43], and it is

adopted by most wideband underdetermined DOA estimation

algorithms [36]–[38], [40], [41], [52]. Pup is available in cases

such as a wireless communication system where all sources

use the same modulation format and pulse shaping functions

[53]. Recently, two underdetermined DOA estimation algo-

rithms using sparse arrays were developed based on Pup [54],

[55]. In addition, Puf has also attracted a lot of interest, with

a number of algorithms [12], [46] and theoretical studies [43],

[56] reported.

Due to the inherited overdetermined model assumption, ex-

isting results on the wideband stochastic CRB are not suitable

to assess the performance of underdetermined algorithms. To

bridge the gap between the CRB and existing algorithms

employing Pu, a closed-form CRB expression has been derived

in our conference paper [1], but closed-form CRB expressions

with other popular a priori knowledge are still unavailable. So

far, only Pu has found wide applications in underdetermined

DOA estimation methods. Most algorithms employing Pf are

not developed for the underdetermined case, even though such

an application is theoretically feasible [43], [49], [56]. The

emergence of a very recent wideband DOA estimation method

exploiting Pup [55] implies that popular a priori knowledge

will inspire more underdetermined DOA estimation techniques

in the future. In short, the potential for underdetermined DOA

estimation using different a priori knowledge has not been

well-understood and deserves further investigation.

Motivation: In contrast to the variety of algorithms based on

the subband model, existing results on the wideband stochastic

CRB are somewhat scanty and limited to the overdetermined

case. The first objective of this paper is to extend our previous

work in [1] and conduct a more comprehensive study on the

stochastic CRBs with different a priori knowledge. This will

provide useful tools to analyze the performance of existing

and future DOA estimation methods, especially in the under-

determined case. Moreover, as early CRB results offer limited

insights into the underdetermined problem, it is important

to study how the resolution capacity can be improved by

employing different a priori knowledge.

Organization and Contributions: The rest of this paper is

organized as follows. The stochastic Gaussian subband model

is introduced in Section II. The subsequent sections present

the main contributions as summarized below.

• The general formula for the wideband stochastic CRB is

reviewed, and a unified framework for the DOA-related

block of the CRB is directly derived. This framework

encompasses four closed-form CRB expressions in the

four cases with Pf, Pu, Pup, and Puf (Section III).

Compared with the existing wideband CRB results for

the overdetermined case [43], [49], our derived CRB

expressions are written in closed-forms and applicable

to the underdetermined case.

• The relationship between the wideband CRBs and the

subband ones is investigated, connecting our CRB with

the existing narrowband one [57]. Then, the order rela-

tionship among the CRBs are proved. The asymptotic

behavior of the CRBs with respect to the number of

snapshots and the signal-to-noise ratio (SNR) is inves-

tigated, with two asymptotic CRB expressions derived

for sufficiently large SNR. With the increase of SNR, the

wideband CRB approaches to zero in the overdetermined

case, while in contrast, it converges to a positive constant

in the underdetermined case. The conditions under which

our derived CRBs exist are demonstrated by the rank

conditions of the introduced matrices (Section IV).

• The upper bounds on the resolution capacities in different

cases are derived based on the rank conditions. For linear

arrays, the possibility for underdetermined DOA estima-

tion is discussed through a detailed examination of the

existence of the CRBs. It is found that the subband model

itself can provide enhanced DOFs for underdetermined

DOA estimation, while the assistance of a sparse array

is not indispensable. Moreover, more wideband Gaussian

sources than narrowband ones can be resolved based

on a given linear array, either uniform or sparse. By

employing Pup or Puf, it is possible to resolve more

wideband Gaussian sources than the number of DOFs

offered by the difference co-array. Further interpretations
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of the subband model is presented, revealing connections

with the multi-frequency co-array argumentation concept

and the non-coherent subarray system (Section V).

Simulations are given in Section VI, and conclusions are

drawn in Section VII.

Notations: Matrices are represented by bold uppercase let-

ters, such as A and A. Fourier coefficients are also denoted

by bold uppercase letters, such as X , S, and N . Vectors are

represented by bold lowercase letters, such as a, r, and p.

Variables are denoted by non-bold letters, such as K and m.

The real set, positive real set, and complex set are denoted

by R, R+, and C, respectively. C
M×N is the space of M -

by-N complex-valued matrices. The cardinality of a set A

is denoted by |A|. For a matrix A, denote A∗, AT , and

AH as its conjugate, transpose, and Hermitian transpose,

respectively. The (i, j)-th element of A is 〈A〉i,j . The real

and imaginary parts of A are Re(A) and Im(A). The trace

of a square matrix A is tr(A). For a matrix A of full column

rank, the orthogonal projector onto the null space of AH is

Π
⊥
A = I − A

(

AHA
)−1

AH . IM is the M × M identity

matrix. Given L matrices A1, . . . ,AL, the block diagonalizing

operation is blkdiag (A1, . . . ,AL). The column vectorization

of A is vec(A). For two Hermitian matrices A and B, the

inequality A � B means that A−B is negative semidefinite.

⊗, ⊙, and ◦ stand for the Kronecker product, the Khatri-Rao

product, and the Hadamard product, respectively.

II. SUBBAND MODEL FOR THE WIDEBAND DOA

ESTIMATION PROBLEM

Consider an array of M (M > 1) omnidirectional sensors

with identical responses. The array receives signals emitted by

K (K ≥ 1) wideband co-channel sources located at distinct

directions θ = [θ1, . . . , θK ]T in the far field. The output signal

at the m-th sensor can be expressed as

xm (t) =
∑K

k=1
sk [t− τm(θk)] + nm (t),

m = 1, . . . ,M, k = 1, . . . ,K,
(1)

where sk(t) is the signal emitted by the k-th source, τm(θk)
is the time delay of the signal from angle θk arriving at the

m-th sensor, and nm (t) is the additive noise.

The observation time interval is sampled into N temporal

snapshots by a frequency fs and then divided into Q nonover-

lapping subintervals with a duration ∆t. Next, an L-point DFT

is applied to each subinterval. Suppose that ∆t is much longer

than the maximum value of τm(θk), so that the propagation

time delay approximately corresponds to a phase shift in the

Fourier coefficients [7]. This leads to

Xl,q = AlSl,q +Nl,q, l = 1, . . . , L, q = 1, . . . , Q, (2)

where l is the index of the subband frequency fl. Xl,q ∈
C

M×1, Sl,q ∈ C
K×1, and Nl,q ∈ C

M×1 hold the Fourier

coefficients of the array output signals, the source signals and

the noise, respectively, for the q-th subinterval. For the l-
th subband, {Xl,q}Qq=1 can be treated as frequency domain

samples. The array manifold matrix is Al = [al,1, . . . ,al,K ]
with al,k denoting the steering vector associated with the l-th

subband and the k-th source. Note that the dependence of Al

on the DOAs is dropped for simplicity.

We introduce the following standard assumptions [22], [43].

• The source signals are stationary, zero-mean, stochastic

Gaussian, possibly correlated processes, with unknown

cross-spectral density matrices (CSDMs) {Pl}Ll=1.

• The noise is a stationary, zero-mean, stochastic Gaussian,

spatially uncorrelated process, independent of the source

signals. Its spatial covariance matrix at the l-th subband

is σlIM , with σl ∈ R+ being the noise power.

• The number of sources, K, is known.

Most algorithms do not assume any specific probability

distribution for the source signals, but the Gaussian distribution

is commonly advocated in performance study mainly for

three reasons: 1) the probability density function of the data

has a convenient form under the Gaussian distribution, so

that the likelihood function and the FIM are mathematically

tractable; 2) under rather general conditions and in large

samples, the Gaussian CRB is larger than any other CRBs

associated with arbitrary congruous distributions [58], so it can

be attained with less difficulty and embraces more practical

value; 3) the estimation schemes derived from the stochastic

Gaussian model has been found to yield superior performance,

regardless of the actual distribution of emitter signals [59].

Nonetheless, the Gaussian assumption can be relaxed. Accord-

ing to the central limit theorem, the Fourier coefficients are

asymptotically independently Gaussian distributed when the

observation duration is sufficiently long [47], [60].

Let l1 and l2 represent two distinct subband indices. Let

Rl and Rl1,l2 denote the auto-covariance matrix of Xl and

the cross-covariance matrix of Xl1 and Xl2 , respectively. In

practice, they can be estimated by R̂l = 1/Q
∑Q

q=1 Xl,qX
H
l,q

and R̂l1,l2 = 1/Q
∑Q

q=1 Xl1,qX
H
l2,q

, and together serve as

sufficient statistics for the wideband Gaussian problem [43].

Although Rl1,l2 is useful for some algorithms [39], [41], [42],

most estimators are derived based on a consistent and unbiased

estimate of Rl [19]. The correlation among subbands, together

with the edge effect and spectral leakage might break the con-

sistency and lead to biased estimates [6]. To mitigate this, zero

padding or windows [61] could be used, but this would remove

the orthogonality of the noise component across frequency

[24]. This difficulty is often circumvented by introducing the

following assumption [7], [19], [21], [43]:

• ∆t is much larger than the correlation time of the

processes involved.

As such, Xl1,q and Xl2,q are asymptotically uncorrelated,

so that Rl approximately equals the CSDM [7]. Thus,

Rl = AlPlA
H
l + σlIM . (3)

The CRB derived under this assumption is an approximation

of the truth, but is of practical value since most algorithms

use R̂l as the actual measured data [43].

As the source number is assumed to be known, so is the

number of unknown DOAs, it reduces part of the modeling

uncertainty. The assumed uncorrelatedness among different

subbands not only eliminates the unknown parameters in

Rl1,l2 , but also alludes to a rough knowledge, i.e., smoothness,
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about the signal spectra. This knowledge implies that one only

needs to estimate a subset of subbands rather than all of them

[43], [49]. To avoid overparameterization, order selection rules

[58] could be applied simultaneously with DOA estimation

techniques, but this would be computationally intensive. The

unknown-order CRB could be calculated from the formula in

[62], but it also depends on a specific order selection rule.

However, most algorithms do not include an order selection

rule but still obtain high-resolution estimates using a subset of

subbands, as if the true model order for the signal spectra is

known and can be correctly characterized by these subbands,

while the other ones are ignored. To derive a practical CRB

that evaluates the statistical efficiency of such estimators, only

the subbands of interest shall be considered.

III. UNIFIED FRAMEWORK FOR THE DOA-RELATED

BLOCKS OF WIDEBAND STOCHASTIC CRBS

A. General Formula for the Wideband Stochastic CRB

Under the established stochastic Gaussian subband model,

Xl1,q and Xl2,q can be treated as asymptotically independent

due to the well-known equivalence between uncorrelatedness

and independence under joint Gaussian distribution. Redefine

L as the number of subbands of interest and l their indices.

Denote F l as the FIM at the l-th subband, and then the

wideband FIM can be expressed as

F̃ =
∑L

l=1
F l. (4)

Let α and B(α) denote the real-valued unknown parameter

vector and the CRB for α, respectively. Note that F̃ is nonneg-

ative definite by definition. Assume that F̃ is nonsingular, and

then B(α) = F̃−1. According to the Slepian-Bangs formula

[63], [64], the (i, j)-th element of B−1(α) is given by

〈B−1 (α)〉i,j = Q
∑L

l=1
tr
(

R−1
l

∂Rl

∂〈α〉
i

R−1
l

∂Rl

∂〈α〉
j

)

. (5)

Using the following identities [65],

tr(ABCD) = vec(BH)H(AT ⊗ C)vec(D),

vec(ABC) = (CT ⊗A)vec(B),
(6)

we can rewrite (5) as

〈B−1 (α)〉i,j = Q
∑L

l=1

(

Wl
∂rl

∂〈α〉
i

)H (

Wl
∂rl

∂〈α〉
j

)

, (7)

where

Wl = (RT
l ⊗Rl)

− 1

2 , rl = vec(Rl). (8)

Equation (5) is the extensively studied wideband stochastic

CRB formula [8], [43], [47], [49]. However, it does not offer

enough analytical insights, so that existing results are mainly

obtained through numerical analysis. In many applications,

only the DOA-related block is desired [3], while the other

unknowns are nuisance parameters.

B. Derivation of the Unified CRB Framework

Starting from (7), we aim to derive a closed-form CRB ex-

pression for the DOA-related block. The key step is calculating

∂rl/∂α
T , and we shall investigate four cases where Pf, Pu,

Pup, and Puf are employed, respectively.

Let the column vector pl collect all the real-valued unknown

entries that determine Pl. In general, the sources are possibly

correlated, and thus Pl is determined by K2 real-valued

unknowns associated with the upper triangular entries, yielding

pl = [〈Pl〉1,1,Re(〈Pl〉1,2), Im(〈Pl〉1,2), . . . , 〈Pl〉K,K ]T . (9)

It follows from (3) and (6) that rl can be expressed as

rl = ClΨpl + σli, (10)

where Cl = A∗
l ⊗Al, i = vec (IM ), and Ψ ∈ R

K2×K2

is a

nonsingular matrix satisfying [66]

vec(Pl) = Ψpl. (11)

If the sources are known to be uncorrelated (Pu), then Pl

is a real-valued diagonal matrix, leading to

pl = [〈Pl〉1,1, . . . , 〈Pl〉K,K ]
T
. (12)

Different from (10), rl will take another form such that

rl = Dlpl + σli, (13)

where

Dl = A∗
l ⊙Al. (14)

Remark 1: Equations (10) and (13) resemble two single-

snapshot deterministic signal representations, where ClΨ and

Dl behave as distinct array manifold matrices. In particular,

Dl is associated with the difference co-array consisting of

many more virtual sensors than the physical array. Therefore,

most existing underdetermined DOA estimation methods em-

ploy Pu and exploit the difference co-array to achieve strong

source resolvability.

For the unknown parameter vector α, in general, it consists

of DOAs, noise powers, and the real-valued parameters asso-

ciated with the source covariance matrices, which vary with

different a priori knowledge.

If Pf is employed, we can write {Pl}Ll=1 = P1 by choosing

the first subband as the reference. Using (9), we have

α = [θ1, . . . , θK , 〈P1〉1,1,Re(〈P1〉1,2), Im(〈P1〉1,2),
. . . , 〈P1〉K,K , σ1, . . . , σK ]T .

(15)

If Pu is employed, it follows from (12) that

α = [θ1, . . . , θK , 〈P1〉1,1, . . . , 〈P1〉K,K , . . . ,

〈PL〉1,1, . . . , 〈PL〉K,K , σ1, . . . , σK ]T .
(16)

If Pup is employed, {Pl}Ll=1 are proportional and diagonal.

Choose the first subband as the reference and let l′ = 2, · · · , L.

Then, we can write {Pl′}Ll′=2 = ξl′P1 with ξl′ ∈ R+ being

an unknown proportional factor. In this case,

α = [θ1, . . . , θK , 〈P1〉1,1 . . . , 〈P1〉K,K ,

ξ2, . . . , ξL, σ1, . . . , σK ]T .
(17)
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If Puf is employed, {Pl}Ll=1 are identical and diagonal.

Removing the off-diagonal entries in (15), we obtain

α = [θ1, . . . , θK , 〈P1〉1,1 . . . , 〈P1〉K,K , σ1, . . . , σK ]T . (18)

With the above results, we can calculate ∂rl/∂α
T and

substitute it into (7). Although the derivation of a closed-form

CRB for each case varies, the final results share a similar form.

In the following Theorem 1, we provide a unified framework

for the closed-form CRB expressions in four cases.

Theorem 1: Let B(θ) denote the DOA-related block of

the wideband stochastic CRB. Assume the wideband FIM is

nonsingular, and then the unified framework for B(θ) is

B(θ) = 1
Q

(

GH
Π

⊥
∆G

)−1
, (19)

where G is associated with the DOAs, while ∆ is related to

the nuisance parameters. According to the employed a priori

knowledge, G and ∆ take the following different forms:

If Pf is employed, then

G =

[

W1C̄1

...
WLC̄L

]

,∆ =

[

W1C1Ψ W1i

...
. . .

WLCLΨ WLi

]

. (20)

If Pu is employed, then

G =

[

W1D̄1P1

...
WLD̄LPL

]

,∆ =

[

W1D1 W1i

. . .
. . .

WLDL WLi

]

.

(21)

If Pup is employed, then

G =







W1D̄1P1

ξ2W2D̄2P1

...
ξLWLD̄LP1






,

∆ =





W1D1 0 ··· 0 W1i
ξ2W2D2 W2D2p1 W2i

...
. . .

. . .
ξLWLDL WLDLp1 WLi



 ,

(22)

with p1 = [〈P1〉1,1 . . . , 〈P1〉K,K ]T .

If Puf is employed, then

G =

[

W1D̄1P1

...
WLD̄LP1

]

,∆ =

[

W1D1 W1i

...
. . .

WLDL WLi

]

. (23)

The notations C̄l and D̄l are respectively defined as

C̄l = (A∗
l ⊗ Āl)[vec(e1e

T
1 P1), . . . , vec(eKeTKP1)]

+ (Ā∗
l ⊗Al)[vec(P1e1e

T
1 ), . . . , vec(P1eKeTK)],

D̄l = A∗
l ⊙ Āl + Ā∗

l ⊙Al,

(24)

where

Āl = [āl,1, . . . , āl,K ] , āl,k =
∂al,k

∂θk
, (25)

and ek ∈ R
K×1 contains one at the k-th position and zeros

elsewhere.

Proof: The derivation can be found in Appendix A. �

Compared with the general formula in (7) and the inter-

mediate CRB expression in [43, Eq. 15] for two sources only,

(19) is more compact and convenient for computing the CRBs

for multiple sources in different cases. Different from the

CRB expression in [49, Eq. 2.24], which is valid only in the

overdetermined case, (19) is applicable to both overdetermined

and underdetermined cases, thereby suitable for assessing the

performance of underdetermined wideband DOA estimation

methods developed under the subband model, [36]–[38], [40],

[46], [52], [54], [55].

IV. ANALYSES OF WIDEBAND STOCHASTIC CRBS

A. Relationship Between Wideband and Subband CRBs

It would be meaningful to compare the wideband underde-

termined stochastic CRB with the narrowband one [45], [57],

[67]. Such a comparison is valid in a statistical sense, because

the CRB depends on the probability distribution of the data

samples, regardless of which domain they belong to. Since the

Fourier coefficients at each subband share a similar Gaussian

distribution with the temporal samples in narrowband settings,

we can apply the narrowband CRB expression to a single

subband and study its relationship with the wideband CRBs.

Corollary 1: Consider the case with Pu. Let B(θ, l) denote

the DOA-related block of the CRB for the l-th subband.

Assume that the wideband and subband CRBs, i.e., B(θ) and

{B(θ, l)}Ll=1, all exist. Then,

B−1(θ) =
∑L

l=1
B−1(θ, l). (26)

Proof: See Appendix B. �

Remark 2: In fact, (26) reveals another relationship between

the wideband and subband FIMs when Pu is employed, i.e.,

〈F̃−1〉−1
θ =

∑L

l=1
〈F−1

l 〉−1
θ , (27)

where 〈·〉θ denotes the DOA-related block of the input argu-

ment. According to (4), a generic relationship is given by

〈F̃−1〉−1
θ =

〈(

∑L

l=1
F l

)−1〉−1

θ
. (28)

Compared with (28), in (27), the summation operator is

interchangeable with the inverse operator and 〈·〉θ , assuming

all the subband FIMs are nonsingular. This implies the DOA

parameters are decoupled with the nuisance parameters at each

subband in the wideband FIM, so that the CRB for DOAs is

independent of the nuisance blocks in the subband FIMs.

The relationship in Corollary 1 provides an alternative

formula for computing the wideband CRB with Pu. It implies

that in this case, the CRB for DOAs obtained by jointly

processing all subbands of interest can be interpreted as a

combination of those at each subband, if all the subband CRBs

exist. However, this is true only if all the subband FIMs are

nonsingular. It could happen that when the number of sources

is relatively large, the FIM at each subband is singular, whereas

the wideband FIM is nonsingular. This explains why more

sources can be identified by processing multiple subbands, as

advocated by most existing methods [36]–[38], [40], [41], [52].

In the other three cases with Pf, Pup, and Puf, the relation-

ship in Corollary 1 does not hold, because the corresponding

matrix ∆ is not block diagonal. Hence, when developing

algorithms that employ any one of Pf, Pup, and Puf, one should

jointly process all subbands of interest.
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B. Order Relationship Among the Derived CRBs

In this subsection, we present the pairwise orders among the

derived CRBs. For simplicity, we denote the CRB for DOAs

in the four cases with Pf, Pu, Pup, and Puf as Bf, Bu, Bup,

and Buf, respectively. The following lemma will be used.

Lemma 1: Employing the a priori knowledge that removes

part of the nuisance parameters yields a lower CRB for DOAs.

Proof: See Appendix C. �

By Lemma 1, the order relationship among the derived

CRBs can be obtained as follows:

Buf � Bup � Bu, Buf � Bf. (29)

These inequalities indicate that using more available knowl-

edge about the source spectra and the noise will improve

the estimation accuracy. When developing DOA estimation

methods aimed at special situations, one should utilize as much

a priori knowledge as possible.

C. Asymptotic Behavior with Respect to the Number of Snap-

shots

By (19), the CRB is inversely proportional to the number

of frequency domain snapshots, Q, leading to

lim
Q→∞

Bf = lim
Q→∞

Bu = lim
Q→∞

Bup = lim
Q→∞

Buf = 0. (30)

Equation (30) illustrates the asymptotic behavior of the

derived CRBs with respect to the number of snapshots under

the condition that the duration of each subinterval ∆t is

constant. Given a fixed sampling frequency fs, the duration

of the observation interval Q∆t increases monotonically with

the increase of the number of temporal snapshots N . To avoid

an unbounded growth in the number of nuisance parameters,

∆t should be constant [21]. On the other hand, for a fixed N ,

increasing Q causes decrease of ∆t, which further broadens

the bandwidth of each subband. This will reduce the number of

effective subbands and in turn balance the influence imposed

by the increase of Q on the CRB, which can be observed

from (5). This agrees with the fact that once the observation

interval is fixed, so is the amount of information contained in

the data samples, even after these samples are transformed to

the frequency domain.

D. Asymptotic Behavior with Respect to SNR

We then investigate the asymptotic behavior of the wideband

CRB with respect to SNR, especially in the case where Puf is

employed. Notice that Puf comprises Pf and Pu, and it can be

treated as a special case of Pup with the proportional factors

{ξl′}Ll′=2 being known. Thus, the asymptotic behavior of Buf

can reflect that of Bf, Bu, and Bup.

Suppose that the sources are well separated, and the K
sources have equal powers. By employing Puf, we assume

{Pl}Ll=1 = pIK with p ∈ R+. The noise power is also

assumed to be identical across subbands, i.e., {σl}Ll=1 = 1.

Here, p represents not only the source power but also the

SNR, which is sufficiently large.

Theorem 2: Consider the case where Puf is employed. Let

B
asy
uf denote the DOA-related block of the asymptotic wide-

band stochastic CRB for sufficiently large SNR. According to

the quantitative relationship between K and M , B
asy
uf takes

the following different forms:

If M ≤ K, then

B
asy
uf =

1

Q

{

D̃H

[

Γ1 − Γ1[D̂, î]

·
(

[

D̂H

îH

]

Γ1[D̂, î]
)−1

[

D̂H

îH

]

Γ1

]

D̃

}−1

.

(31)

If M > K, then

B
asy
uf = 1

pQ

[

D̃H(Γ2 − L−1Γ3JΓ3)D̃
]−1

. (32)

The involved notations are defined as follows:

D̃ = [D̄T
1 , . . . , D̄

T
L ]

T , D̂ = [DT
1 , . . . ,D

T
L ]

T ,

J = Γ4D̂D̂HΓ4 − (M −K)−1Γ5îî
HΓ5,

î = 1L ⊗ i,

(33)

where {Γw}5w=1 denotes a group of block diagonal matrices

(the definitions can be found in (D.6) and (D.11), Appendix

D) , and 1L ∈ R+
L×1 is an all-one vector.

Proof: See Appendix D. �

From Theorem 2, we can see that in the overdetermined

case, the asymptotic CRB decreases monotonically with the

increase of SNR, and thus limp→∞Buf = 0. In contrast, in the

underdetermined case, the asymptotic CRB does not depend

on the SNR. Hence, it can be inferred that the underdetermined

wideband CRB will remain a finite, constant value when

the SNR attains a certain threshold, hereafter, increasing the

SNR brings limited performance gain. It is worth noting that

Theorem 2 provides theoretical explanations for the numerical

results in [46], where Puf is studied.

E. Rank Conditions for the Existence of the Derived CRBs

The previous derivation is based on the assumption that

the wideband FIM is nonsingular. This condition can be

interpreted as a specific rank condition on a certain matrix,

which determines the existence of CRB [45], [67]. The rank

conditions for the derived CRBs are shown below.

Theorem 3: Define the following matrices:

Σf ,







C̄1 C1Ψ i
...

...
. . .

C̄L CLΨ i






,

Σu ,







D̄1P1 D1 i
...

. . .
. . .

D̄LPL DL i






,

Σup ,











D̄1P1 D1 0 · · · 0 i

ξ2D̄2P1 ξ2D2 D2P1 i
...

...
. . .

. . .

ξLD̄LP1 ξLDL DLP1 i











,

Σuf ,







D̄1P1 D1 i
...

...
. . .

D̄LP1 DL i






.

(34)
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Then, the wideband stochastic CRBs, i.e., Bf, Bu, Bup, and

Buf exist if and only if Σf, Σu, Σup, and Σuf have full column

rank, respectively.

Proof: The rank condition for Σu has been proved in our

earlier work, see Theorem 1 in [1]. Since the four wideband

CRBs share a common framework, the proofs of the other

rank conditions can be carried out in a similar way. �

V. SOURCE RESOLVABILITY AND LINEAR ARRAYS

This section is devoted to a detailed study on source

resolvability. We will show that the subband model itself can

provide enhanced DOFs, which is the same goal achieved by

the virtual co-array concept in most underdetermined methods.

Based on a specific linear array, the subband model possesses

superior resolvability and flexibility to the narrowband one.

Furthermore, when certain a priori knowledge is available,

the subband model shares similar features with the multi-

frequency co-array augmentation concept and the non-coherent

subarray system, both of which are effective solutions to the

narrowband problem in the underdetermined case.

A. Upper Bounds on Resolution Capacities

For the Gaussian distribution, nonsingularity of the FIM

guarantees local identifiability of the unknown parameters

[68]. Hence, the rank conditions in Theorem 3 lead to sev-

eral upper bounds on the resolution capacities (numbers of

resolvable sources), which are shown below.

Proposition 1: Let Kf, Ku, Kup, and Kuf denote the reso-

lution capacities based on an M -sensor array when Pf, Pu,

Pup, and Puf are employed, respectively. Then, the respective

upper bounds on Kf, Ku, Kup, and Kuf are given by

Kf ≤
√

L(M2 − 1), Ku ≤ L
L+1 (M

2 − 1),

Kup ≤ L
2 (M

2 − 2) + 1
2 , Kuf ≤ L

2 (M
2 − 1).

(35)

Proof: To guarantee that the matrices in (34) have full

column rank, the number of columns in these matrices should

be no larger than the number of rows, which yields a group

of quadratic inequalities whose solutions are given by

Kf ≤
√

L(M2 − 1) + 1
4 − 1

2 , Ku ≤ L
L+1 (M

2 − 1),

Kup ≤ L
2 (M

2 − 2) + 1
2 , Kuf ≤ L

2 (M
2 − 1).

(36)

Notice that the involved variables are positive integers. In the

first inequality,
√

L(M2 − 1) − 1 <
√

L(M2 − 1) + 1/4 −
1/2 <

√

L(M2 − 1), and thus Kf ≤
√

L(M2 − 1). The proof

is complete. �

From Proposition 1, we can see that the upper bounds

on Kf, Kup, and Kuf would be lifted with the increase of

L. It appears that in these cases, one can resolve as many

sources as possible with a sufficiently large L, which is not

realistic. A large L will generate O(K2L + L) nuisance

parameters in the general subband model, possibly resulting in

overparameterization that arises before Pf reduces the number

of nuisance parameters. When this happens, the wideband

FIM might be very close to singular, and the CRB should

be calculated by the Moore–Penrose pseudo inverse of the

FIM [69]. The price paid for model order mismatch is a large

estimation variance. Therefore, it is not always desirable to

process all subbands, as mentioned in Section II. In fact, the

nature of the physical array imposes an effective resolution

capacity, which is only improved by an additive factor of

o(lnL) beyond M − 1 as L increases [49].

On the other hand, Ku is primarily restricted to M2 − 1.

This indicates that up to O(M2) sources can be resolved by

an M -sensor array, which coincides with the number of DOFs

provided by typical sparse arrays, see, e.g., [25]. This means

that the subband model itself plays a role as important as

sparse arrays in underdetermined DOA estimation, and we

shall discuss this property in detail in Section V-B.

The upper bounds in (35) are, in general, ideal. However,

they still offer valuable guidance on developing underdeter-

mined techniques. To improve the resolvability of spatially

uncorrelated sources, one should use more physical sensors

rather than processing more subbands. On the other hand,

when the source spectra is known to be flat or proportional, one

could exploit more subbands to reach the effective resolution

capacity while reducing hardware complexity or dealing with

physical size constraints.

B. Possibility for Underdetermined DOA Estimation Based on

Linear Arrays

The results above apply to various array geometries as long

as there is only one unknown angular parameter for each

source. In this subsection, we focus on linear arrays and

explore the possibility for underdetermined DOA estimation

in different cases. Starting from the case with Pu, a concise

review of the difference co-array concept is first presented.

Consider a linear array consisting of M sensors and let d
denote the unit inter-sensor spacing. The position of the m-th

sensor can be expressed as zmd, zm ∈ R. Then, the array

structure can be represented by a real set A = {z1, . . . , zM}.

Introduce the difference set such that

Adiff = {zm1
− zm2

zm1
, zm2

∈ A;m1,m2 = 1, . . . ,M}.
(37)

Let D collect all unique elements of Adiff in ascending order,

and then D represents the corresponding difference co-array.

For the l-th subband, the (m, k)-th element of the array

manifold matrix for the linear array A can be written as

〈Al〉m,k = e
−j2π d

λl
zmsin θk , (38)

where λl = c/fl with c representing the wave speed, and

j =
√
−1 is the imaginary unit. Substituting (38) into (14),

we can write the (m̄, k)-th element of Dl as

〈Dl〉m̄,k = e
−j2π d

λl
(zm1

−zm2
)sin θk ,

m̄ = (m2 − 1)M +m1.
(39)

Clearly, Dl is associated with Adiff, and the number of unique

rows in Dl equals |D|, i.e., the number of DOFs.

The possibility for resolving more wideband Gaussian

sources than the number of physical sensors is shown below.
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Proposition 2: Based on a linear array consisting of M
sensors, it is possible to resolve the following numbers of

sources when Pf, Pu, Pup, and Puf are employed, respectively.

Kf ≥ M, Ku > |D|−1
2 , Kup ≥ |D| > M, Kuf ≥ |D| > M.

(40)

Compared to the upper bound on Ku in (36), a tighter bound

is given by

Ku ≤ L
L+1 (|D| − 1). (41)

Proof: See Appendix E. �

For a uniform linear array (ULA) whose first sensor is

located at 0d, we have |D| = 2M − 1. Then, the resolution

capacity with Pu satisfies M − 1 < Ku < 2M − 1, violating

the overdetermined limitation. The upper bound in (41) is a

special case for linear arrays, and it is always tighter than the

general one in (35), because |D| < M2, ∀M > 1. Thus, when

a linear array is employed, the resolution capacity employing

Pu is essentially determined by the number of DOFs provided

by the difference co-array.

To conduct underdetermined DOA estimation for narrow-

band signals, a sparse array is indispensable, because the

number of resolvable narrowband sources (known a priori

to be spatially uncorrelated), denoted by Knarrow
u , is upper

bounded by Knarrow
u ≤ (|D| − 1)/2 [45], [67], which becomes

Knarrow
u ≤ M − 1 for a ULA. In contrast, underdetermined

DOA estimation for wideband signals is feasible as long

as certain a priori knowledge about the source spectra is

employed, whereas a sparse linear array is not needed, as

shown in (40). Moreover, more wideband Gaussian sources

than narrowband ones can be resolved based on a given linear

array, either uniform or sparse.

Furthermore, (40) implies that resolving more wideband

Gaussian sources than the number of DOFs provided by the

difference co-array is possible with the assistance of Pup or

Puf. This property will be verified later in Section VI.

C. Further Interpretation of the Subband Model

In this subsection, we seek to find the connection between

the subband model and other scenarios that are also suitable

for underdetermined DOA estimation in the narrowband case.

Choose a reference frequency f0 and denote the correspond-

ing wavelength as λ0 = c/f0. Then, λl can be expressed as

λl = νlλ0 with νl ∈ R+ being a positive coefficient. We can

rewrite (38) as

〈Al〉m,k = e
−j2π d

λ0
z̄l,msin θk , (42)

where z̄l,m = zm/νl. Hence, Al is equivalent to the array

manifold matrix of a scaled array operating at f0, whose sensor

positions are given by Al = {z̄l,1, . . . , z̄l,M} in unit of d.

As such, Xl,q in (2) can be treated as the measurement of

the l-th scaled array output in the spatio-frequency domain. In

(2), Sl,q varies with l, and consequently, {Xl,q}Ll=1 cannot

be regarded as the output signal of an augmented virtual

array consisting of all scaled subarrays. This feature makes

the signal representation under the subband model differ from

that under the narrowband co-array model [25]–[28], where

the signal waveforms received by all the sensors are identical.

Alternatively, (2) can be interpreted as follows.

There exist L subarrays receiving frequency domain signals

emitted by K narrowband sources, corrupted by additive

Gaussian white noise. All subarrays consist of M sensors,

but with distinct sensor positions. The source spectra and the

noise spectra vary from one subarray to another, and the signal

waveforms received at different subarrays are uncorrelated.

Moreover, when different a priori knowledge is employed,

the corresponding interpretations are given as follows.

• With Pf, the auto-covariance matrices of the source sig-

nals are known a priori to be identical across subarrays.

• With Pu, the sources are known a priori to be spatially

uncorrelated.

• With Pup, the sources are known a priori to be spatially

uncorrelated and have proportional powers across subar-

rays.

• With Puf, the sources are known a priori to be spatially

uncorrelated and have identical powers across subarrays.

With Pup, the interpreted model shares the same settings

as the multi-frequency co-array augmentation concept [54],

where the frequency diversity of uncorrelated sources with

proportional powers can generate different virtual subarrays

to fill the holes in the augmented difference co-array, thus

offering enhanced DOFs based on a physical ULA. With Pf,

the interpreted model is a special case of the non-coherent

subarray system, where the number of sensors in all subarrays

are identical. Recently, it has been shown that this system can

resolve more sources than those by each subarray [70].

These close connections imply that the wideband CRB

framework in (19) can be used to compute the CRBs in the

two aforementioned scenarios. Conversely, the optimization

schemes in these two scenarios, such as the frequency selec-

tion strategies for multi-frequency sources and the subarray

design techniques for the non-coherent subarray system, can

be extended to the wideband scenario to improve source

resolvability and estimation accuracy. An example that invokes

this idea can be found in our previous paper [39] and a very

recent one [42], where a novel design for the inter-sensor

spacing of a physical ULA and the corresponding group-

sparsity based method are proposed, which can resolve many

more linear frequency modulated continuous waveform signals

than the number of sensors in the ULA.

VI. SIMULATIONS

In this section, simulations are conducted using the Mul-

tiprecision Computing Toolbox for MATLAB with a default

precision of 34 decimal digits. Throughout this section, we set

the sources to be spatially uncorrelated with flat spectra; how-

ever, not all the information is known a priori. The K sources

are uniformly located in [−60◦, 60◦] with equal powers at each

subband. The number of DFT points is L0 = 64. The central

frequency of the l-th subband is fl = (l − 1)fs/L0. The unit

inter-sensor spacing is d = c/fs. The following linear array

structures will be used, including a 7-sensor ULA, a 10-sensor
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Fig. 1. Wideband CRBs versus the number of snapshots (a) in the overde-
termined case, and (b) in the underdetermined case.

ULA, a (2,3) co-prime array [26], and a (3,3) two-level nested

array [25]. Their sensor positions are respectively denoted by

AULA(7) = {0, 1, 2, 3, 4, 5, 6},
AULA(10) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},

Aco-prime(2,3) = {0, 2, 3, 4, 6, 9},
Anested(3,3) = {1, 2, 3, 4, 8, 12}.

(43)

In each experiment, the averaged CRB for all DOAs is

recorded.

A. Wideband CRBs versus the Number of Snapshots

In the first set of simulations, we investigate the four derived

wideband CRBs, i.e., Bf, Bu, Bup, and Buf, versus the number

of snapshots Q. For comparison, the wideband CRB for the

general case without a priori knowledge [49], denoted by Bg,

is also considered. We use the nested array Anested(3,3) with

M = 6 and set SNR = 10 dB. There are L = 16 subbands of

interest in total with indexes from 17 to 32.

We set K = 5 and K = 10 for the overdetermined case

and the underdetermined case, respectively. The CRB results

are shown in Fig. 1. It can be observed from Fig. 1(a) and

Fig. 1(b) that all the CRB curves are inversely proportional

to the number of snapshots. In the overdetermined case, Bg

is the largest, while the curves of Bf, Bu, Bup, and Buf stay

very close to each other. In the underdetermined case, Bg is

excluded since it becomes invalid, and the differences among

Bf, Bu, Bup, and Buf become more noticeable. Through the

relative positions of the CRB curves, the order relationship in

(29) can be clearly verified in either Fig. 1(a) or Fig. 1(b).

B. Wideband CRBs versus SNR

The second set of simulations examines the four derived

CRBs versus SNR with the number of snapshots Q = 500.

We use the ULA AULA(10) with M = 10 and consider L = 16
subbands whose indexes cover from 17 to 32.

In the overdetermined case, we set the number of sources as

K = 8. Fig. 2(a) shows that all the five CRB curves decrease

monotonically with the increase of SNR, and they show strong

inverse logarithmic dependence on the SNR when it exceeds

0 dB. When the SNR is lower than 0 dB, the distances among

the five CRBs are visibly larger, implying that the potential
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Fig. 2. Wideband CRBs versus SNR (a) in the overdetermined case, and (b)
in the underdetermined case.

performance gain brought by employing a priori knowledge

is more significant only in the low-SNR region. Moreover,

the four CRBs with different a priori knowledge are always

lower than the general one, and their differences are hardly

noticeable in the whole SNR region, which means that only

one type of a priori knowledge is enough to bring satisfactory

performance gain. These observations coincide and extend the

numerical results in [43] for the dual-source case.

In the underdetermined case, we set K = 12. Fig. 2(b)

shows that the dependence of the four CRB curves on the SNR

becomes more and more negligible as SNR increases. Note

that the four CRBs exist in the underdetermined case even if

a ULA is employed here. Moreover, there is little difference

among Bu, Bup, and Buf in the whole SNR region, whereas

the distance from Bf to the other three is more significant.

This means that employing Pu brings more performance gain

than Pf. In addition, the order relationship in (29) can also be

verified in either Fig. 2(a) or Fig. 2(b).

C. Relationship Between Wideband and Subband CRBs

The third set of simulations examines the relationship be-

tween the wideband CRB and the subband ones, as presented

in Corollary 1. L = 16 subbands are considered with indexes

from 17 to 32. The number of snapshots is Q = 500.

In the overdetermined case, we adopt the ULA AULA(10)

with M = 10 and set K = 2, 9. In the underdetermined case,

we use the co-prime array Aco-prime(2,3) with M = 6 and set

K = 8, 10. In Fig. 3, the CRB results computed from the left-

hand side and right-hand side of (26) are denoted by Bwide
u

and Bsub
u , respectively. It can be observed that both results are

consistent, which verifies Corollary 1.

D. Asymptotic CRB Expressions for Sufficiently Large SNR

In the fourth set of simulations, we examine the asymptotic

CRB expressions proposed in Theorem 2. The co-prime array

Aco-prime(2,3) is used with M = 6 and Q = 500. L = 16
subbands are of interest with indexes from 17 to 32.

In the overdetermined case, set K = 1, 5. Fig. 4(a) shows

that B
asy
uf is inversely logarithmic proportional to the SNR.

In the underdetermined case, set K = 6, 7. Fig. 4(b) shows

that B
asy
uf is a positive constant, independent from the SNR.

Obviously, the true CRB values (solid lines) indeed converge
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Fig. 3. Results for the wideband CRB employing Pu computed from
both sides of Eq. (26), (a) in the overdetermined case, and (b) in the
underdetermined case.
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Fig. 4. Asymptotic CRBs for sufficiently large SNR (a) in the overdetermined
case, and (b) in the underdetermined case.

to the asymptotic ones (dashed lines) when the SNR exceeds

20 dB in Fig. 4(a) and 40 dB in Fig. 4(b), respectively.

E. Wideband CRBs versus the Number of Sources

In the fifth simulation, Bf, Bu, Bup, and Buf are examined

versus a varying number of sources K, with Q = 500 and

SNR = 10 dB. We use L = 63 subbands whose indexes cover

from 2 to 64. For comparison, we also include the wideband

CRB for the general case, Bg, and apply the narrowband CRB

with Pu [57], [67] to the 56th subband, denoted by B56th sub.

As stated in Section IV-A, such a comparison is valid in a

statistical sense, and the existence of wideband and subband

CRBs will show the difference between the resolution capaci-

ties in the wideband and narrowband scenarios. We use the co-

prime array Aco-prime(2,3) with M = 6, and the corresponding

difference co-array is Dco-prime(2,3) = {−9,−7, . . . , 7, 9} with

the number of DOFs |Dco-prime(2,3)| = 17.

In general, as K increases, the FIM tends to be singular,

and the CRB grows larger. If K reaches the value where the

FIM turns out to be singular, a breakpoint (or a divergent point

towards infinity) will occur in the CRB curve. The value of K
associated with the breakpoint links to the resolution capacity,

i.e., K − 1. The breakpoints of the curves in Fig. 5 indicate

that the ranges where Bg, Bf, Bu, Bup, and Buf exist are

1 ≤ Kg ≤ 5, 1 ≤ Kf ≤ 18, 1 ≤ Ku ≤ 14, 1 ≤ Kup ≤ 23 ,

and 1 ≤ Kuf ≤ 23, respectively. These results coincide with

the inequalities proposed in (35), (40), and (41). Except for
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10
10

0 2 4 6

4

6

8

10
-5

Fig. 5. Wideband CRBs and the CRB for the 56th subband versus the number
of sources.

Bg, all the other CRBs exist when K ≥ 6, which implies

the existence of unbiased underdetermined DOA estimators

in the corresponding cases. In particular, Kup and Kuf can

be larger than |Dco-prime(2,3)|, implying that the number of

resolvable wideband sources can even exceed the number of

DOFs provided by the difference co-array.

When K > 8, the subband CRB B56th sub becomes invalid,

which is consistent with the resolution capacity for uncorre-

lated narrowband sources, i.e., Knarrow
u ≤ (|Dco-prime(2,3)|−1)/2.

In contrast, the wideband FIMs with different a priori knowl-

edge remain nonsingular as K increases. This indicates that

more wideband Gaussian sources can be resolved than the

narrowband ones based on the same array.

Moreover, a part of the subband FIMs becomes singular

when K > 8, so that the wideband FIM tends to be sin-

gular as K increases, leading to sharp growth of the CRB

values. We can see from the curves of Bf, Bup, and Buf

that the CRBs will be significantly large when K exceeds

certain values. This means that achieving superior resolvability

will greatly sacrifice the estimation accuracy. According to

the asymptotic behavior of the CRBs with respect to Q, a

sufficiently large number of snapshots of the same quantity

level should be exploited to mitigate the loss of estimation

accuracy. Intriguingly, Bup and Buf almost coincide, meaning

that employing Pup or Puf brings almost the same performance

improvement. In addition, the effective resolution capacity can

be approximately determined by specifying K when the CRB

exceeds a certain value.

F. Performance Analyses Using the Derived CRBs

The sixth set of simulations is aimed at illustrating the

practical value of derived CRBs. We shall evaluate the perfor-

mance of some existing wideband DOA estimation methods

developed for the underdetermined case, such as the SS-

MUSIC [36], the SS-CSSM [71] (the conventional CSSM

followed by a SS process), and the CS-based method [41], all

of them employ Pu. Since the CRB values and the resolution

capacities with Pup and Puf are almost the same, (as shown

in Figs. 1, 2, and 5), we shall focus on a modified CS-

based method employing Puf. At present, it seems immature to

analyze the performance of underdetermined DOA estimation

methods employing Pf only, because such methods have not

been reported, to the best of our knowledge. In what follows,

DOA estimation is performed based on a search grid from
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Fig. 6. DOA estimation results using two SS-based methods. (a) Estimated
normalized spectrum by the SS-MUSIC. (b) Estimated normalized spectrum
by the SS-CSSM. (c) RMSEs and root CRB versus SNR.

−90◦ to 90◦ with a step size of 0.1◦, and Q = 500. The root

mean squared errors (RMSEs) of all the algorithms considered

are obtained through 200 Monte Carlo trials.

First, we adopt the nested array Anested(3,3) with M = 6 and

K = 11. L = 63 subbands are of interest with indexes from

2 to 64. DOA estimation results of the SS-MUSIC and the

SS-CSSM with SNR = 10 dB are presented in Figs. 6(a) and

(b), respectively, where the blue lines represent the estimated

normalized spectrum, and the red dashed lines are the true

DOAs. We can see that all the 11 sources are correctly resolved

by both methods. The RMSEs and the root CRB are plotted

in Fig. 6(c) with respect to SNR. The CRB curve is always

lower than the two RMSE curves, which means that Bu indeed

provides an appropriate performance benchmark for the two

SS-based methods. It is shown that the performance of the SS-

CSSM is near optimal when the SNR exceeds 10 dB, whereas

it degenerates rapidly in the low SNR region. In contrast, the

SS-MUSIC performs better when the SNR is low, while its

performance in the high-SNR region can be improved.

We then use the ULA AULA(7) with M = 7 and K = 9.

L = 17 subbands whose indexes cover from 48 to 64 are

of interest. The CS-based method [41] is employed, and the

results with SNR = 10 dB is plotted in Fig. 7(a). Clearly,

all the 9 sources are successfully identified by the method,

indicating that it is feasible to perform underdetermined DOA

estimation for wideband sources based on a ULA. The RMSE

and root CRB versus SNR are presented in Fig. 7(b), showing

that Bu is a suitable performance bound for the CS-based

method. In addition, the estimation accuracy of the CS-based

method is not far from optimal.
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Fig. 7. DOA estimation results using the CS-based method. (a) Estimated
normalized spectrum. (b) RMSE and root CRB versus SNR.

Finally, we propose a modified CS-based method utilizing

Puf. The modification is carried out as follows. The CS-based

method combines the equivalent signal representations in (13)

at all subbands of interest, and then formulates a convex

optimization problem based on the group sparsity concept. In

the original formulation [41, Eq. 23], the equivalent steering

matrices {Dl}Ll=1 are collected by a block diagonal matrix,

and the unknown parameters in the source spectra {pl}Ll=1

are held by a column vector. Incorporating the effect of Pf,

{Dl}Ll=1 should be concatenated following the column direc-

tion, and {pl}Ll=1 turn out to be independent of l. Therefore,

the difference co-arrays at all subbands of interest jointly

behave as an augmented virtual array, and the new formulation

fits the narrowband convex optimization problem [41, Eq. 10].

We use the co-prime array Aco-prime(2,3) with M = 6 and

K = 18. L = 63 subbands are of interest with indexes from 2

to 64. As predicted by Fig. 5, the original CS-based method

employing Pu cannot resolve all the 18 sources, whereas the

modified one employing Puf can. The DOA estimation results

using the original method with SNR = 10 dB is presented in

Fig 8(a), where several false peaks occur and not all the 18

sources can be resolved. On the other hand, Fig 8(b) shows

the results produced by the modified method with SNR = 10
dB, where all the sources are correctly identified, indicating

that resolving more sources than the number of DOFs offered

by the difference co-array is indeed feasible by employing

Puf. Furthermore, the RMSE of the modified method and the

root CRB are presented in Fig. 8(c), showing that Buf offers a

proper performance bound for the modified CS-based method.

Although the modified method has strong source resolvability,

its estimation accuracy can still be improved.

VII. CONCLUSION

In this paper, the wideband stochastic CRBs with different a

priori knowledge have been studied under the subband model

via frequency decomposition. A unified CRB framework for

the DOA related-blocks has been derived, which encompasses

a class of closed-form expressions when four types of popular

a priori knowledge are employed, respectively. These CRB

expressions are applicable to the underdetermined case where

existing wideband CRB results become invalid, providing

performance assessment tools for existing and future under-

determined wideband DOA estimation algorithms.



12

-70 -50 -30 -10 10 30 50 70
Incident Angle (deg)

0

0.2

0.4

0.6

0.8

1

N
o
rm

al
iz

ed
 S

p
ec

tr
u
m

(a)

0

0.2

0.4

0.6

0.8

1

N
o
rm

al
iz

ed
 S

p
ec

tr
u
m

-70 -50 -30 -10 10 30 50 70
Incident Angle (deg)

(b)

-10 0 10 20 30 40

0.6

0.8

1

1.2

(c)

Fig. 8. DOA estimation results using two CS-based methods. (a) Estimated
normalized spectrum by the original CS-based method employing Pu. (b)
Estimated normalized spectrum by the modified CS-based method employing
Puf. (c) RMSE of the modified CS-based method and root CRB versus SNR.

The relationship between the wideband CRB and the sub-

band ones were investigated. Particularly, in the case with

Pu, the wideband CRB can be interpreted by the subband

ones. Through order comparison among the derived CRBs,

it was proved that more a priori knowledge will reduce

the CRB for DOAs. Their asymptotic behavior with respect

to the number of snapshots and SNR has been examined,

with two asymptotic expressions derived for sufficiently large

SNR. With the increase of SNR, the CRB approaches to

zero in the overdetermined case, while it converges to a

positive constant in the underdetermined case, indicating that

increasing the input SNR would not bring much performance

gain for underdetermined DOA estimation.

Existence of the derived CRBs was examined through rank

conditions of the introduced matrices, yielding several upper

bounds on resolution capacities. As discussed, the subband

model itself can offer enhanced DOFs to achieve underde-

termined estimation without the aid of sparse arrays. Based

on a given linear array (uniform or sparse), one can resolve

more wideband Gaussian sources than narrowband ones. By

employing Pup or Puf, the number of resolvable wideband

sources can even exceed the number of DOFs offered by

the difference co-array. Further interpretations of the subband

model established the underlying connections with the multi-

frequency co-array augmentation concept and the non-coherent

subarray system, implying potential extensions of optimization

techniques among these scenarios.

APPENDIX A

PROOF OF THEOREM 1

First, we calculate ∂rl/∂α
T in different cases.

If Pf is employed, (10) and (15) should be used, yielding

∂rl

∂αT =
[

C̄lP1,ClΨ ,fl ⊗ i
]

, (A.1)

where fl ∈ R
1×L contains one at the l-th position and zeros

elsewhere.

If Pu is employed, (13) and (16) should be used, yielding

∂rl

∂αT =
[

D̄lPl,fl ⊗Dl,fl ⊗ i
]

. (A.2)

If Pup is employed, (13) and (17) should be used, yielding

∂rl

∂αT =

{ [

D̄1P1,D1,0M2×(L−1),f1 ⊗ i
]

, l = 1.
[

ξlD̄lP1, ξlDl,fl ⊗ (DlP1),fl ⊗ i
]

, l = 2, . . . , L.
(A.3)

If Puf is employed, (13) and (18) should be used, yielding

∂rl

∂αT =
[

D̄lP1,Dl,fl ⊗ i
]

. (A.4)

Substituting (A.1), (A.2), (A.3), and (A.4), respectively, into

(7) yields the inverse of four CRB matrices which all fit into

the following framework:

B−1(α) = Q

[

GH

∆H

]

[G,∆]. (A.5)

Explicit expressions of G and ∆ can be found in (20), (21),

(22), and (23). Then, using the standard result on the inversion

of a partitioned matrix [58, Section A.7], we can obtain (19),

which completes the proof.

APPENDIX B

PROOF OF COROLLARY 1

By (21), ∆ is block diagonal, so that the orthogonal

projector Π
⊥
∆ is also block diagonal. As a result, (19) can

be rewritten as

B(θ) =

(

Q
∑L

l=1
GH

l Π
⊥
∆l

Gl

)−1

, (B.1)

where

Gl = WlD̄lPl, ∆l = [WlDl,Wli]. (B.2)

Applying the narrowband stochastic CRB employing Pu

[57] to the l-th subband leads to

B (θ, l) =
(

QGH
l Π

⊥
∆l

Gl

)−1
. (B.3)

Substituting (B.3) into (26) and taking the inverse yields (B.1),

which completes the proof.

APPENDIX C

PROOF OF COROLLARY 2

We introduce the following lemma [3] to carry out the proof.

Lemma 2: Consider a positive definite matrix A ∈ C
u×u

partitioned as A =

[

A1 A2

A
H
2 A3

]

, where A1 ∈ C
v×v . Let S ∈

C
u×w be another partitioned matrix such that S = [ST

1 ,S
T
2 ]

T

with S1 ∈ C
v×w. Then, S

H
1 A

−1
1 S1 � S

H
A

−1
S. The

equality holds if and only if AH
2 A

−1
S1 = S2.
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Let ǫ0 denote the nuisance parameter vector in the original

parametric model. Employing a priori knowledge will remove

part of the nuisance parameters collected by ǫ2, while the left

ones are held by ǫ1. Introduce the notation ∆β = ∂rl/ǫ
T
β ,

β = 0, 1, 2, and then we can write

∆0Ω = [∆1,∆2], (C.1)

where Ω is a permutation matrix satisfying [72]

Ω−1 = ΩT . (C.2)

Since a priori knowledge does not affect the DOA-related

matrix G, it suffices to prove Π
⊥
∆0

� Π
⊥
∆1

. Using Lemma 2,

(C.1) and (C.2), we have

Π
⊥
∆0Ω

= Π
⊥
∆0

= I − [∆1,∆2]

[

∆H
1 ∆1 ∆H

1 ∆2

∆H
2 ∆1 ∆H

2 ∆2

]−1 [
∆H

1

∆H
2

]

� I −∆1

(

∆H
1 ∆1

)−1
∆H

1 = Π
⊥
∆1

. (C.3)

The equality holds true if and only if ∆H
2 Π

⊥
∆1

= 0. The proof

is complete.

APPENDIX D

PROOF OF THEOREM 2

Following the settings at the beginning of Section IV-D, we

can write Rl as

Rl = pAlA
H
l + IM . (D.1)

In the following derivation, we shall evaluate R−1
l for a

sufficiently large p. Since the result depends on the singularity

of AlA
H
l , we shall consider two different cases, i.e., M ≤ K

and M > K.

If M ≤ K, then AlA
H
l is nonsingular. For a sufficiently

large p, we can obtain the following asymptotic results by

ignoring the noise-related term:

Rl = pAlA
H
l , R−1

l = p−1(AlA
H
l )−1. (D.2)

Substituting (D.2) into (8) gives

WH
l Wl = p−2O1,l, Wl = p−1O

1

2

1,l, (D.3)

where

O1,l = (A∗
lA

T
l ⊗AlA

H
l )−1. (D.4)

Using (D.3), we can rewrite G and ∆ in (23) as

G = Γ1D̃, ∆ = p−1Γ1[D̂, î], (D.5)

where

Γ1 = blkdiag(O1,1, . . . ,O1,L). (D.6)

Substituting (D.5) into (19) yields (31), which completes the

proof for this case.

If M > K, AlA
H
l is singular. We write Rl in the eigen-

decomposition form such that [67], [73]

Rl = Ul(pΛl + IK)UH
l + VlV

H
l , (D.7)

where Ul ∈ C
M×K and Vl ∈ C

M×(M−K) consist of

normalized eigenvectors, and Ul is orthogonal to Vl. The

diagonal matrix Λl ∈ C
K×K contains the eigenvalues.

Since p is sufficiently large, IK in (D.7) can be ignored,

and thus

R−1
l = p−1UlΛ

−1
l UH

l + VlV
H
l . (D.8)

Substituting (D.8) into (8), we obtain

WH
l Wl = p−1O2,l + p−2∆4,l +O6,l,

Wl = p−
1
2O3,l + p−1∆5,l +O6,l,

(D.9)

where

O2,l = U∗
l Λ

−1
l UT

l ⊗ VlV
H
l + V ∗

l V T
l ⊗UlΛ

−1
l UH

l ,

O3,l = U∗
l Λ

−
1
2

l UT
l ⊗ VlV

H
l + V ∗

l V T
l ⊗UlΛ

−
1
2

l UH
l ,

O4,l = U∗
l Λ

−1
l UT

l ⊗UlΛ
−1
l UH

l , (D.10)

O5,l = U∗
l Λ

−
1
2

l UT
l ⊗UlΛ

−
1
2

l UH
l ,

O6,l = V ∗
l V T

l ⊗ VlV
H
l .

Similar to (D.6), we introduce a group of block diagonal

matrices to encompass the L subbands:

Γw = blkdiag(Ow,1, . . . ,Ow,L), w = 2, 3, 4, 5, 6. (D.11)

Next, we present some useful results which can be verified

through straightforward calculations:

DH
l Ow,l = Ow,lDl = 0, w = 2, 3, 6,

[Dl, i]
HO2,l[Dl, i] = 0,

DH
l O4,lDl = IK ,

O6,lD̄l = 0,

[Dl, i]
HO6,l[Dl, i] =

[

0 0

0 M −K

]

.

(D.12)

Since the FIM is assumed to be nonsingular, ∆H∆ and

GH
Π

⊥
∆G are both positive definite and nonsingular. Using

(D.11) and (D.12) , we can express ∆H∆ as

∆H∆ = p−2

[

LIK D̂HΓ4î

îHΓ4D̂ γ

]

, (D.13)

where γ = p2L (M −K) + îHΓ4î.

Let Y and y denote the Schur complements of γ and LIK
in (D.13), and then Y and y are respectively given by

Y = LIK − γ−1D̂HΓ4îî
HΓ4D̂,

y = γ − L−1îHΓ4D̂D̂HΓ4î.
(D.14)

Then, the inverse of (D.13) can be expressed as [74]

(∆H∆)−1 = p2
[

Y −1 −γ−1Y −1D̂HΓ4î

−y−1L−1îHΓ4D̂ y−1

]

.

(D.15)

Using (D.13) and (D.15), we can calculate Π
⊥
∆, and thus

GH
Π

⊥
∆G = Θ1 +Θ2 +Θ3 +Θ4, (D.16)

where

Θ1 = Γ5D̂Y −1D̂HΓ5,

Θ2 = −y−1L−1(pΓ1 + Γ5)îî
HΓ4D̂D̂HΓ5,

Θ3 = −γ−1Γ5D̂Y −1D̂HΓ4îî
H(pΓ6 + Γ5),

Θ4 = y−1(pΓ6 + Γ5)îî
H(pΓ6 + Γ5).

(D.17)
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Substituting (D.16) into (19) and using (D.12), we obtain

B
asy
uf =

[

QD̃H(pΓ2 + Γ4 −Ξ1 −Ξ2 −Ξ3 −Ξ4)D̃
]−1

,

(D.18)

where

Ξw = (p
1

2Γ3 + Γ5)Θw(p
1

2Γ3 + Γ5), w = 1, 2, 3, 4.

Since p is sufficiently large, {Ξw}4w=1 respectively ap-

proach the following:

Ξ1 = pL−1Γ3Γ5D̂D̂HΓ5Γ3,

Ξ2 = −L−2(M −K)−1Γ3Γ6îî
HΓ4D̂D̂HΓ5Γ3,

Ξ3 = −L−2(M −K)−1Γ3Γ5D̂D̂HΓ4îî
HΓ6Γ3,

Ξ4 = pL−1(M −K)−1Γ3Γ6îî
HΓ6Γ3.

(D.19)

Finally, (32) can be obtained through the combination of

(D.18) and (D.19). The proof is complete.

APPENDIX E

PROOF OF PROPOSITION 2

We first present the proof of the asserted proposition for

the case with Pu. The proofs for the other three cases with

Pf, Pup, and Puf, respectively, follow the same idea.

For the l-th subband, we define a matrix such that Σu,l ,

[D̄lPl,Dl, i] ∈ C
2K+1. Note that there are |D| distinct rows in

Σu,l [45]. A necessary condition for Σu,l to have full column

rank is K ≤ (|D| − 1)/2, which is exactly the upper bound on

the resolution capacity in the narrowband scenario [45], [67].

This property is obviously inherited by each subband.

Let ζl(k) and δl(k) denote the k-th column in D̄lPl and

Dl, respectively. The steering vectors constructed by the

nonnegative elements in D are linearly independent for an

arbitrary set of distinct DOAs, provided that K < (|D|+ 1)/2
[75], which is equivalent to K ≤ (|D| − 1)/2 for integers.

This property can be generalized to the steering vectors

constructed by all the elements in D, under the condition that

K ≤ |D| − 1. Therefore, it is straightforward that {ζl(k)}Kk=1

and {δl(k)}Kk=1 are linearly independent by themselves. The

same is true for the submatrices in Σu.

If (|D| − 1)/2 < K ≤ |D| − 1, linear dependence will arise

among the mixture of {δl(k)}Kk=1 and {ζl(k)}Kk=1. Suppose

that there exist ul non-zero scalars h1(l), . . . , hul
(l) and vl

non-zero scalars h̄1(l), . . . , h̄vl(l) satisfying

h1(l)δl[k1(l)] + · · ·+ hul
(l)δl[kul

(l)]+

h̄1(l)ζl[k
′

1(l)] + · · ·+ h̄vl(l)ζl[k
′

vl
(l)] = 0,

(E.1)

where 1 ≤ k1(l), . . . , kul
(l), k

′

1(l), . . . , k
′

vl
(l) ≤ K are col-

umn indices.

Notice that Σu holds {Dl}Ll=1 in a diagonal block, whereas

{D̄lPl}Ll=1 are concatenated following the column direction.

From (E.1), it can be deduced that linear dependence

arises among the columns in Σu if and only if the

following factors, {ul}Ll=1, {vl}Ll=1, {h1(l), . . . , hul
(l)}Ll=1,

{h̄1(l), . . . , h̄vl(l)}Ll=1, {k1(l), . . . , kul
(l)}Ll=1, and

{k′

1(l), . . . , k
′

vl
(l)}Ll=1, are all independent of l. This condition

is too restrictive to be satisfied for an arbitrary subband

division scheme, which means the original linear dependence

among the mixture of {δl(k)}Kk=1 and {ζl(k)}Kk=1 can be

eliminated when they are combined in Σu. Therefore, Σu can

also have full column rank when (|D| − 1)/2 < K ≤ |D| − 1,

which violates the narrowband limitation inherited by each

subband. Furthermore, it can be verified that there are |D|L
distinct rows in Σu. Hence, a necessary condition for Σu

to have full column rank is K ≤ L(|D| − 1)/(L+ 1). The

proof for the case with Pu is complete.

For the case with Pf, if K ≥ M , linear dependence will

arise among the columns in ClΨ . Similar to the previous

proof, it can be demonstrated that the linear dependence

among {ClΨ}Ll=1 can be eliminated when {ClΨ}Ll=1 are

concatenated together following the column direction in Σf.

Consequently, Σf can still have full column rank when K ≥
M , which offers the possibility for resolving K ≥ M sources.

For the case with Pup or Puf, if K ≥ |D|, linear dependence

will arise among {δl(k)}Kk=1. Notice that {ξl′Dl′}Ll′=2 and

{Dl}Ll=1 are concatenated following the column direction

in Σup and Σuf, respectively, thereby eliminating the linear

dependence. As a result, Σup and Σuf can still have full

column rank when K ≥ |D|, providing enhanced resolvability.

The whole proof is complete.
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