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Cramér-Rao Bound for DOA Estimation Exploiting

Multiple Frequency Pairs
Yibao Liang, Wei Cui, Qing Shen, Wei Liu, Senior Member, IEEE, Hantian Wu

Abstract—The Cramér-Rao bound (CRB) for direction of
arrival (DOA) estimation exploiting both auto-correlation and
cross-correlation information within multiple frequencies of the
received array signals is derived. It provides a tighter bound
than the existing CRB for the dual-frequency scenario. For the
multiple frequencies, it is much lower than its dual-frequency
counterpart, and also exists for a greater number of sources,
thereby validating that exploiting multiple frequency pairs can
improve both estimation accuracy and target resolvability.

Index Terms—Direction-of-arrival (DOA) estimation, Cramér-
Rao bound (CRB), multiple frequencies, underdetermined.

I. INTRODUCTION

IN recent years, direction of arrival (DOA) estimation in

the underdetermined case, where the number of sources

is larger than that of physical sensors, has attracted a lot of

research interest. A variety of sparse array structures [1]–[9]

have been proposed to provide enhanced degrees of freedom

(DOFs), based on which high-resolution techniques [1], [10],

[11] can be implemented to solve the problem. The perfor-

mance of existing algorithms has been well-studied [12]–[16]

through analyzing the celebrated Cramér-Rao bound (CRB), a

lower bound on the variance of any unbiased estimator.

For signals embracing frequency diversity, multiple fre-

quency components can be utilized to improve target resolv-

ability and estimation accuracy, while simultaneously reducing

system complexity. Based on auto-correlation information

where the cross-correlation information across frequencies is

ignored, a number of underdetermined methods using sparse

arrays have been proposed [17]–[22], with the corresponding

CRB derived in our earlier work [23], [24]. Furthermore,

based on the ensured correlation property among different

frequencies, even more sources can be resolved by a uniform

linear array (ULA) [25]–[30]. The key idea lies in extending

the concept of physical sparse arrays to the joint spatio-spectral

domain.

To assess the performance of the derived algorithms em-

ploying two coprime frequencies [25], a CRB result was

presented in [31]; however, it relies on the a priori knowledge

that signals at the second frequency are phase-delayed versions

of those at the first frequency, at every time instant. In practice,
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this is not always true, and it is not utilized by algorithms

developed for this scenario, e.g., [25]–[28]; instead, group

sparsity is commonly employed to jointly estimate the DOAs.

Moreover, the frequency-dependent radar cross section (RCS)

fluctuations may also impair the validity of this assumption.

These factors imply that the CRB in [31] may not be tight

enough for the dual-frequency scenario. To the best of our

knowledge, the performance bound for underdetermined DOA

estimation exploiting multiple frequency pairs is still unknown.

The objective of this letter is to derive a general CRB

result for DOA estimation exploiting both auto-correlation

and cross-correlation information within multiple frequencies.

First, a practical multi-frequency signal model is introduced

involving time-variant phase differences among frequencies

and amplitude variations induced by RCS fluctuations. Then,

a closed-form CRB expression is derived for the DOA-related

block through the partitioned inverse of the Fisher information

matrix (FIM), where information across multiple frequencies is

exploited. This result fits both the spatio-temporal and spatio-

frequency domain data, regardless of the array geometry.

Compared to that in [31] for the dual-frequency scenario,

our CRB is tighter for assessing the performance of existing

methods [25]–[28]. Theoretical analyses and simulation results

are provided to illustrate the superior estimation accuracy and

target resolvability by utilizing multiple frequency pairs.

II. PRELIMINARIES

A. Signal Model

Consider an array of M omnidirectional sensors with iden-

tical responses. It receives L signals reflected by K far-field

targets located at K distinct directions θ = [θ1, . . . , θK ]T , with

(·)T denoting the transpose operator. Let fl with l = 1, . . . , L
denote the transmitted carrier frequencies, and then the echo

signals associated with frequency fl can be modeled as

x̆l (t) = ej2πflt
K
∑

k=1

s
(l)
k (t)al(θk) + n̆l (t), (1)

where s
(l)
k (t) is the k-th baseband source signal at frequency

fl, n̆l(t) is the additive noise, and al(θk) the steering vector.

The echo signals are first converted to baseband and then

low-pass filtered, yielding

xl (t) =
K
∑

k=1

s
(l)
k (t)al(θk) + nl (t) = Alsl(t) + nl(t), (2)

where Al = [al(θ1), . . . ,al(θK)] is an M×K array manifold

matrix corresponding to fl (the dependence on θ is dropped

for simplicity), and sl(t) = [s
(l)
1 (t), . . . , s

(l)
K (t)]T .
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Stacking the data at L frequencies, we have x̄(t) =
[xT

1 (t), . . . ,x
T
L(t)]

T , Ā = blkdiag(A1, . . . ,AL), s̄(t) =
[sT1 (t), . . . , s

T
L(t)]

T , and n̄(t) = [nT
1 (t), . . . ,n

T
L(t)]

T , with

blkdiag(·) being the block diagonalizing operator. Thus,

x̄(t) = Ās̄(t) + n̄(t). (3)

In practice, frequency-dependent RCS fluctuations will in-

duce amplitude variations in the echo signals, leading to

s
(l)
k (t) = ρ

(l)
k (t)y

(l)
k (t), (4)

where ρ
(l)
k (t) is a real-valued positive amplituade variation

coefficient, and y
(l)
k (t) denotes the uncontaminated transmitted

signal at fl. Moreover, due to differences in propagation delay

and target reflectivity, an additional unknown phase difference

(probability time-variant) arises between the uncontaminated

signals at different frequencies [28]. Choosing f1 as the

reference, we can write

y
(l)
k (t) = ejφ

(l)
k

(t)y
(1)
k (t), (5)

where φ
(l)
k (t) denotes the phase difference w.r.t. f1, with

φ
(1)
k (t) = 0.

B. Second-Order Statistical Characteristics

The following assumptions are introduced regarding the

statistical properties of the data:

A1 The signals are random processes with zero mean, i.e.,

E[y
(l)
k (t)] = 0 and E[s

(l)
k (t)] = 0. For a fixed l,

{s
(l)
k (t)}Kk=1 are uncorrelated due to target motion or RCS

fluctuations (Swerling II [28], [32]).

A2 {nl(t)}
L
l=1 are spatially and temporally white, Gaussian

distributed with zero mean, mutually uncorrelated, inde-

pendent from the signals.

A3 {fl}
L
l=1 lie in the same RCS frequency region in general

[33], so that the fluctuating RCS values for a fixed k share

the same mean value and variance.

A4 {ρ
(l)
k (t)}Ll=1 and {φ

(l)
k (t)}Ll=1 are stationary, mutually

independent, random processes with finite means and

variances, also uncorrelated with the signals.

Define the covariance matrices of x̄(t), s̄(t), and n̄(t)
as R̄ , E[x̄(t)x̄H(t)], P̄ , E[s̄(t)s̄H(t)], and Q̄ ,

E[n̄(t)n̄H(t)], respectively, with E[·] denoting the expectation

operator and (·)H being the Hermitian transpose operator.

According to A1 and A2, it follows from (3) that

R̄ = ĀP̄ ĀH + Q̄, (6)

where the (i, l)-th (i, l = 1, . . . , L) block of R̄ is defined as

Ri,l , E[xi(t)x
H
l (t)] = AiPi,lA

H
l +Qi,l. (7)

Herein, Pi,l and Qi,l are respectively defined as

Pi,l , E[si(t)s
H
l (t)] = diag(pi,l),

Qi,l , E[ni(t)n
H
l (t)] =

{

σlIM , for i = l,
0, for i 6= l,

(8)

where diag(·) is a diagonal matrix whose diagonal entries are

given by the input vector, σl is the noise power at fl, pi,l =

[p
(i,l)
1 , . . . , p

(i,l)
K ]T , and IM is an M ×M identity matrix.

The probability distributions of amplitude variations are

determined by those of the RCS fluctuations [34, p. 2.21].

According to A3, for a fixed k, we have

E[ρ
(i)
k (t)] = E[ρ

(l)
k (t)], var[ρ

(i)
k (t)] = var[ρ

(l)
k (t)], (9)

where var[·] denotes the variance of the input argument.

Using (9), for 1 ≤ i 6= l ≤ L, we have

E[(ρ
(i)
k )2(t)] = (E[ρ

(i)
k (t)])2 + var[ρ

(i)
k (t)]

=(E[ρ
(l)
k (t)])2 + var[ρ

(l)
k (t)] = E[(ρ

(l)
k )2(t)].

(10)

Using A4, (4), and (5), we can write E[s
(l)
k (t)] as

E[s
(l)
k (t)] = E[ρ

(l)
k (t)]E[ejφ

(l)
k

(t)]E[y
(1)
k (t)]. (11)

By (10) and (11), the following results are obtained:

p
(i,i)
k = E[(ρ

(i)
k )2(t)]E[y

(1)
k (t)(y

(1)
k )∗(t)] = p

(l,l)
k ,

p
(i,l)
k = E[ej(φ(i)

k
(t)−φ

(l)
k

(t))]E[ρ
(i)
k (t)ρ

(l)
k (t)]

· E[y
(1)
k (t)(y

(1)
k )∗(t)] = (p

(l,i)
k )

∗
, for 1 ≤ i 6= l ≤ L.

(12)

Extending (12) to all the K sources, we obtain

pi,i = pl,l, pi,l = p∗

l,i, for 1 ≤ i 6= l ≤ L. (13)

Note that entries in pi,l (i 6= l) are complex values,

and are useful for underdetermined DOA estimation in the

spatio-spectral domain [25]–[28]. Equation (13) is the basis

for subsequent derivations, and the derived CRB results are

valid as long as (13) holds. In particular, they can be easily

extended to cases where the source powers across frequencies

are proportional up to known coefficients (see [21]).

In active sensing, the transmitted signals for all targets are

often identical, i.e., y
(l)
k (t) is independent of k. The subscript

k is introduced to cover cases where the signals are emitted

by the targets directly. In such cases, the amplitude variation

caused by RCS fluctuations vanishes, and thus A3 should be

replaced by a new assumption that the signals emitted by the

same source share identical powers across frequencies.

III. CRAMÉR-RAO BOUND FOR DOA ESTIMATION

EXPLOITING MULTIPLE FREQUENCY PAIRS

A. Derivation of the CRB

The CRB depends on the probability distribution of the data.

Here x̄(t) is assumed to be jointly Gaussian distributed, since

the Gaussian distribution is commonly advocated in literature

due to its mathematical convenience [35, p. 363] and practical

value [36, p. 11]; moreover, for frequency-domain data, e.g.,

discrete Fourier transform results, it asymptotically follows

the Gaussian distribution when the observation time is long

enough [37, p. 94]. Hence, the Gaussian CRB fits not only

spatio-temporal domain data, but also spatio-frequency domain

data. In addition, it offers a starting point for further extension

to complex elliptical symmetric distributions [38], [39].

The CRB can be obtained from the inverse of FIM. Let

α collect all the real-valued unknown parameters. Under the

Gaussian distribution, a standard FIM formula for N i.i.d.

snapshots is given by [40]:

F = N
(

W ∂r̄
∂αT

)H (

W ∂r̄
∂αT

)

, (14)
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where W =
(

R̄T ⊗ R̄
)−1/2

and r̄ = vec(R̄). Here, ⊗
denotes the Kronecker product, ∂f(α)/∂α denotes the partial

derivative of f(α) w.r.t. α, and vec(·) is the vectorization

operator. The [L(L− 1)K +2K +L]× 1 unknown parameter

vector is given by

α =
[

θT ,βT
]T

=
[

θT ,pT
1,1,Re(p̄T ), Im(p̄T ),σT

]T
, (15)

where p̄ = [pT
1,2, . . . ,p

T
1,L,p

T
2,3, . . . ,p

T
L−1,L]

T and σ =

[σ1, . . . , σL]
T with Re(·) and Im(·) denoting the real and

imaginary parts of the input argument, respectively.

In general, only the CRB for DOAs is of interest. A closed-

form CRB expression for the DOA-related block allows com-

parison with the asymptotic covariance matrix of estimation

errors, and provides physical insights into the underlying

problem. To this end, we introduce the following matrices:

G = W ∂r̄
∂θT , ∆ = W ∂r̄

∂βT . (16)

The dimensions of G and ∆ are L2M2 × K and L2M2 ×
[L(L − 1)K + K + L], respectively. As such, (14) can be

rewritten as F = N [G,∆]H [G,∆]. Assume that F is

positive definite, and then the DOA-related block of the CRB

can be obtained from the Schur complement of ∆H∆ [35]:

B = 1
N

(

GH
Π

⊥

∆G
)−1

, (17)

where Π
⊥

∆ = IL2M2 − ∆(∆H∆)−1∆H stands for the

orthogonal projector onto the null space of ∆H .

Introducing the column-blockwise vectorization operator,

vecb(·) [41, Eq. (2)], we can write r̄ as

r̄ = Jvecb(R̄) = J

L
∑

i=1

L
∑

l=1

(ui,l ⊗ ri,l) , (18)

where J = IL ⊗ Ω−1 ⊗ IM and ui,l = vec(Ui,l). Herein,

J is a permutation matrix. Ω is an LM × LM commutation

matrix defined in [42, p. 115]. Ui,l is an L×L matrix having

a unit element at the (i, l)-th position and zeros elsewhere. In

addition, ri,l is expressed as

ri,l = vec(Ri,l) =

{

Dl,lpl,l + σliM2 , for i = l,
Di,lpi,l, for i 6= l,

(19)

where Di,l = A∗

l ⊙Ai and iM2 = vec(IM ), with ⊙ denoting

the Khatri-Rao product. According to (13), (18), and (19), the

derivative of r̄ w.r.t. αT can be deduced as below:

∂r̄
∂θT = J

L
∑

i=1

L
∑

l=1

(

ui,l ⊗ Ḋi,lPi,l

)

,

∂r̄
∂pT

1,1
= J

L
∑

l=1

(ul,l ⊗Dl,l) ,
∂r̄
∂σl

= J (ul,l ⊗ iM2) ,

∂r̄
∂Re(pT

i,l
)
= J(ui,l ⊗Di,l + ul,i ⊗Dl,i), for i 6= l,

∂r̄
∂Im(pT

i,l
)
= jJ(ui,l ⊗Di,l − ul,i ⊗Dl,i), for i 6= l,

(20)

where Ḋi,l = Ȧ∗

l ⊙ Ai + A∗

l ⊙ Ȧi and Ȧl =
[∂al(θ1)/∂θ1, . . . , ∂al(θK)/∂θK ].

Remark 1: For linear arrays, Di,l can be expressed as

Di,l = Ψi,lA
(i,l)
d , (21)

where Ψi,l is an M2 × Di,l binary matrix of full column

rank [12] with Di,l denoting the number of virtual sensors

in the difference co-array constructed by the frequency pair

(fi, fl), and A
(i,l)
d is the difference co-array manifold matrix

[28]. Substituting (21) into (20), we know that the row rank of

∂r̄/∂αT is
∑L

i=1

∑L
l=1 Di,l, while the column rank is L(L−

1)K + 2K +L. By the information-regularity condition [43],

ensuring parameter identifiability requires ∂r̄/∂αT to have

full column rank, which yields an upper bound on the number

of resolvable targets: K ≤ (
∑L

i=1

∑L
l=1 Di,l−L)/(L2−L+2).

Using (20), (16), and (17), we can obtain the closed-form

CRB expression for a specific L. For example, if L = 2, then

G|L=2 = WJ [P T
1,1Ḋ

T
1,1,P

T
2,1Ḋ

T
2,1,P

T
1,2Ḋ

T
1,2,P

T
2,2Ḋ

T
2,2]

T ,

∆|L=2 = WJ









D1,1 0 0 iM2 0

0 D2,1 −jD2,1 0 0

0 D1,2 jD1,2 0 0

D2,2 0 0 0 iM2









.
(22)

Substituting (22) into (17), we can obtain the closed-form

CRB expression for the dual-frequency case. The results for

different values of L follow the same way.

Compared to the general CRB formula in [35, Eq. B.3.3],

our developed CRB expression is more convenient for cal-

culating the CRB for DOA estimation. It also reveals the

role of difference co-arrays, thereby suitable for further CRB

analyses, including the existence condition [12], [15], [24],

the asymptotic behavior w.r.t. signal-to-noise ratio (SNR) [12],

[13], and comparisons with mean squared errors [13], [44].

B. Comparison with the Existing CRB for Two Frequencies

In [31], the CRB for a single pair of co-prime frequencies

is presented, and the authors consider an ideal signal model

with time-invariant phase differences (denoted by φ′

k, k =
1, . . . ,K) and without amplitude variations. The following a

priori knowledge is introduced:

s2(t) = Φs1(t), (23)

where Φ = diag([ejφ′

1 , . . . , ejφ′

K ]) is the additional phase

matrix. The overall data vector is given by [31] x̄′(t) =
Ā′s1(t) + n̄(t), where Ā′ = [AT

1 , (A2Φ)T ]T . Thus, the

covariance matrix R̄ and the unknown parameter vector α

respectively change to

R̄′ = Ā′P1,1Ā′
H
+ Q̄,

α′ = [θT ,pT
1,1,φ

′T , σ1, σ2]
T ,

(24)

with φ′ = [φ′

1, . . . , φ
′

K ]T . The CRB can be obtained by

substituting (24) into (14) and then taking the inverse.

Comparing α|L=2 in (15) with α′, we find that the 2K
unknowns in p̄ are reduced to the K ones in φ′, while the

others remain the same. In general, less nuisance parameters

implies less estimation uncertainty and yields a lower CRB

[24, Theorem 1]. Moreover, all the existing methods actually

regard p̄ as the unknown vector instead of φ′. Whether (23)

holds or not, the phase information is ignored, and group

sparsity is employed to jointly recover the DOAs [25]–[28].

Consequently, the CRB derived under (23) would be over-

optimistic, as also evidenced by a large gap between this CRB
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and the empirical root mean square error (RMSE) shown in

[31, Fig. 2], where the CRB is O(10−6) but the RMSE is

O(10−3) at 20 dB SNR. In cases where (23) does not hold

due to frequent-dependent RCS fluctuations [26], [27], existing

algorithms are applicable, whereas the CRB in [31] is not.

Instead, our CRB provides a moderate performance benchmark

for such cases.

IV. SIMULATION RESULTS

Consider a 4-sensor ULA with inter-sensor spacing d.

The steering vector for the k-th target at fl is al(θk) =
[1, ej2πdsin(θk)/λl , ej4πdsin(θk)/λl , ej6πdsin(θk)/λl ]T , where λl =
fl/c with c being the propagation velocity.

The l-th frequency is set as fl = ξlf0, where ξl is a positive

integer, and f0 is a common frequency divisor. We choose

d = λ0/2 and λ0 = f0/c. The powers of the uncontaminated

signals {y
(l)
k (t)}Kk=1 are assumed to be identical. The noise

powers {σl}
L
l=1 are also identical.

The group sparsity based DOA estimation algorithm [20] is

adopted, which is applicable to both dual-frequency and multi-

frequency scenarios. The search grid ranges from −90◦ to 90◦

with a step size of 0.01◦. Consider K = 8 targets located

at θ = [−58.60◦, −40.85◦, −26.00◦, −7.65◦, 8.95◦, 26.75◦,

44.00◦, 59.05◦]T . The allowable error bound is chosen to give

the best estimation results through the trial-and-error approach

in every experiment. The empirical RMSE is computed from

100 Monte-Carlo simulations and compared with the averaged

CRB for all DOAs, with a varying input SNR from −20 dB

to 40 dB and a fixed number of snapshots N = 2000.

A. Ideal Case with Two Frequencies

First, our CRB (denoted by B1) is compared with that in

[31] (denoted by B2) for the ideal case where (23) holds true.

Let ξ1 = 3 and ξ2 = 4, which form a coprime pair. The phase

difference is set as φk = 2π(k − 1)/K.

In Fig. 1(a), B1, B2 and the RMSE have converged to

different constants, which implies that increasing SNR will

not improve the estimation accuracy when the SNR exceeds

certain threshold values. In particular, B2 is clearly lower than

B1, indicating that our CRB is tighter. This also coincides

with the phenomenon that B2 is much lower than the RMSE

curve in [31, Fig. 2]. As explained in Sec. III-B, the phase

information is not utilized by existing algorithms, even though

(23) holds. During derivation, we regard p̄ as the unknown pa-

rameter vector instead of φ′, which matches the algorithm and

also the general model with frequency-dependent fluctuating

RCS, so that our CRB is closer to the RMSE.

B. Practical Case with Multiple Frequencies

Now consider a practical model as described in Sec. II-A

with L = 4 frequencies and ξ1 = 3, ξ2 = 4, ξ3 = 5, and ξ4 =
7, yielding 6 coprime pairs in total. Assume that the amplitude

variations follow the Rayleigh distribution [32], whose mean

and variance are respectively set as
√

π/4 and 1 − π/4, so

that E[(ρ
(l)
k )2(t)] = 1. The phase difference is set to be time-

variant, satisfying φk(t) = 2π(k − 1)t/K. In this case, (23)

does not hold, so that B2 becomes invalid.
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Fig. 2. CRB versus the number of targets.

We compare the CRBs and RMSEs exploiting dual fre-

quencies (f1, f2) and all 6 frequency pairs, respectively. As

shown in Fig. 1(b), our CRB provides a moderate performance

benchmark for the practical case considered here. Clearly,

the multi-frequency CRB and RMSE are lower than their

dual-frequency counterparts, indicating that using multiple

frequencies can significantly improve the estimation accuracy.

C. CRB versus the Number of Targets

Set SNR = 20 dB and N = 2000, and the dual-frequency

and multi-frequency CRBs versus the number of targets (uni-

formly located in [−60◦,−60◦]) are examined next. The phase

differences and amplitude variations are the same as those in

the second experiment. Fig. 2 shows that the dual-frequency

and multi-frequency CRBs diverge to infinity when K exceeds

11 and 15, respectively. Examining all frequency pairs, we

have {Dl,l}
L
l=1 = 7, D1,2 = D2,1 = 19, D1,3 = D3,1 = 23,

D2,3 = D3,2 = 25, D1,4 = D4,1 = D2,4 = D4,2 = D3,4 =
D4,3 = 31. According to Remark 1, the number of resolvable

targets cannot exceed 12 and 24 when L = 2 and L = 4,

respectively, which agrees with Fig. 2. In addition, the multi-

frequency CRB is always lower than the dual-frequency one,

and their distance generally grows larger as K increases.

V. CONCLUSION

The CRB for DOA estimation exploiting multiple frequency

pairs has been derived based on both auto-correlation and

cross-correlation information among frequencies. Compared

with the existing dual-frequency result, we considered a

practical model involving time-variant phase differences and

frequency-dependent amplitude variations. The derived CRB

provides not only a tighter performance baseline for existing

algorithms exploiting two frequencies, but also a benchmark

for the first time for the multi-frequency scenario. As demon-

strated by simulations, using more frequency pairs has yielded

a lower CRB while simultaneously resolving more targets.
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