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Abstract: Although lifestyle-based interventions are the most effective to prevent metabolic syndrome
(MetS), there is no definitive agreement on which nutritional approach is the best. The aim of the
present retrospective analysis was to identify a multivariate model linking energy and macronutrient
intake to the clinical features of MetS. Volunteers at risk of MetS (F = 77, M = 80) were recruited in
four European centres and finally eligible for analysis. For each subject, the daily energy and nutrient
intake was estimated using the EPIC questionnaire and a 24-h dietary recall, and it was compared
with the dietary reference values. Then we built a predictive model for a set of clinical outcomes
computing shifts from recommended intake thresholds. The use of the ridge regression, which
optimises prediction performances while retaining information about the role of all the nutritional
variables, allowed us to assess if a clinical outcome was manly dependent on a single nutritional
variable, or if its prediction was characterised by more complex interactions between the variables.
The model appeared suitable for shedding light on the complexity of nutritional variables, which
effects could be not evident with univariate analysis and must be considered in the framework of the
reciprocal influence of the other variables.

Keywords: metabolic syndrome; energy intake; macronutrient intake; penalised models; feature
shrinkage; prevention

1. Introduction

Metabolic syndrome (MetS) is a pathologic condition including a cluster of compo-
nents such as hypertension, dyslipidaemia, insulin resistance, hyperinsulinemia, glucose
intolerance, and obesity, in particular central obesity [1]. MetS represents an epidemic
clinical condition in countries where obesity and Western, unhealthy dietary patterns
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prevail, and its development is associated with both non-modifiable and modifiable risk
factors as low physical activity and a poor-quality diet [2].

Currently, lifestyle-based interventions aimed at normalising body weight (BW) and
controlling lipid levels, glucose sensitivity, and blood pressure are the most effective
preventive approaches to MetS. Although available evidence suggests certain nutrients,
foods, and dietary patterns have beneficial effects on MetS, there is no definitive agreement
on which nutritional strategy is the most effective [3,4]. The association between different
eating patterns and the MetS components has been evaluated in several studies [5,6];
in general, adherence to the Mediterranean or Nordic diets is associated with a lower
prevalence of MetS or reduction in its components [7], while a Western dietary pattern is
positively correlated with greater odds of MetS [8]. Conversely, the association between
the individual macronutrient intake and the components of the MetS has been analysed in
a few studies [9,10] and controversy still exists about the optimal amount and source of
dietary macronutrients and their relative proportions to counteract MetS risk.

Over the past decades, an impressive body of quantitative knowledge regarding how
dietary changes impact various aspects of BW and metabolism has been accumulated.
Integrating this knowledge to make quantitative predictions is a formidable task given
the multiple nonlinear interactions between various organ systems. Such an integrative
approach is required to better connect energy and nutrient intake to normal physiology as
well as to derangements that underlie conditions such as obesity, diabetes, and MetS.

To our knowledge, there are no available reports demonstrating the predictive role
of the energy/macronutrient intake gaps, as assessed by the difference with the dietary
reference values, on the clinical parameters related to MetS. In the present retrospective
study, we correlated energy and macronutrient intake to the clinical features of MetS,
with the final aim to provide an additional indication about the most important dietary
contributors to clinical abnormalities related to an increased risk of MetS.

To grasp the role of each nutritional variable in the general frame of MetS pathological
conditions, a model selection for various regression models between nutritional variables
and clinical outcomes was performed. The analysis was inherently multivariate and
allowed for the unveiling of how inadequate energy/macronutrient intake can predict
clinical alterations leading to the MetS onset in a group of subjects at risk of the disease.

2. Materials and Methods
2.1. Participants

The subjects involved in the study were men and women (age 18–80 years) at risk for
MetS enrolled in the randomised, double-blind, placebo-controlled, parallel intervention
trial performed in the framework of the EU project PATHWAY-27. Eligible volunteers had
two to four of the MetS diagnostic criteria [11], with at least one of them being elevated
fasting triglycerides (TG) or low high-density lipoprotein cholesterol (HDL-C). Exclusion
criteria are reported in Table S1. Volunteers were recruited in four European centres:
Human Nutrition Research Centre of Auvergne (Clermont-Ferrand, France), Max Rubner-
Institut (Karlsruhe, Germany), University of Leeds (Leeds, UK), and St. Orsola-Malpighi
Hospital (Bologna, Italy).

The study was performed in full accordance with the ethical principles stated in the
Declaration of Helsinki 1964, as revised in 2013 (Fortaleza, Brazil) [12]. Approval was
obtained from the relevant local research ethics committees and additional regulatory
bodies of the participating countries. All participants gave their written informed consent
freely. Personal data were treated as strictly confidential by all persons involved in the trial.
All data were collected and managed in a pseudonymised form, as previously reported [13].
Access to data was restricted to project partners, who receive only coded data for analysis.

At recruitment, blood pressure and anthropometric measurements (height, weight,
and waist circumference, WC) were taken by trained staff as described in Bub et al.
(2019) [13]. Blood was collected and analysed, as previously reported [14]. The present
study addressed the intake of energy and macronutrients at baseline as possible dietary
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predictors of the onset of MetS. Clinical results of the intervention trial, as well as the
possible predictive role of micronutrient intake, will be reported elsewhere.

2.2. Dietary Assessment

At recruitment, participants were asked to complete a validated semiquantitative
food frequency questionnaire (FFQ) that was developed in the European Prospective
Investigation into Cancer and Nutrition (EPIC) study [15], and a 24-h dietary recall (24hR),
which is designed to assess energy and nutrient intake. The FFQ (covering a 12-month
period) and the 24hR were administered by trained personnel.

Both FFQ and 24hR were completed by 281 participants (125 females and 156 males).
Of the 281 dietary assessments, 66 with missing clinical information were excluded from the
analysis and 215 subjects (94 females, aged 23–77 years, and 121 males, aged 24–78 years)
having a complete dataset of both dietary assessment and clinical parameters were con-
sidered. After misreporting evaluation (see Section 2.2.1), 157 subjects were included in
the analysis.

2.2.1. Energy and Nutrient Intake and Misreporting

Energy and nutrient intakes from all foods and beverages were calculated using
national and international databases and literature information. Dietary information by
24hR was used to corroborate energy and food intakes provided by the FFQ.

Daily energy intake was derived for each subject. Daily intake of total available carbo-
hydrates, sugars, total fat, saturated fat, and unsaturated fat was expressed as percentage
of daily energy intake (%EI). Intake of protein, dietary fibre, and alcohol was reported as g
per day.

Based on the protocol developed by the European Food Safety Authority (EFSA) [16],
energy misreporting was assessed as the ratio of reported energy intake (EI) to estimated
basal metabolic rate (EI:BMR) according to the Goldberg method [17] modified by Black [18].
The FFQs were used to estimate reported EI and BMR was calculated using the validated
sex- and age-specific Oxford equations suitable for use in populations with a range of
weight statuses [19]. A moderately-active physical activity level (PAL) of 1.6 was assumed
for all participants [20]. Misreporters of dietary intake were identified by EI:BMR ratios
<0.901 (underreporters) or >2.841 (overreporters). Fifty-eight participants were classified
as misreporters (17 females and 41 males), and further statistical analysis was performed
on a total of 157 subjects (77 females, aged 23–77 years, and 80 males, aged 25–76 years).

2.2.2. Comparison with Dietary Reference Values

In each subject, adequacy was assessed by comparing energy and nutrient intakes
with age-/sex-specific EFSA dietary reference values (DRVs) [21] or nutrient requirements
and dietary guidelines of WHO/FAO [22,23] if the former were not available. Specifically,
the following daily intakes were considered adequate:

• Energy ranging between EFSA DRVs for energy calculated according to age using PAL val-
ues of 1.4 and 1.8, which approximately reflect low active (sedentary) and active lifestyles
(6.8–10.1 MJ/day and 8.3–12.6 MJ/day ranges for females and males, respectively);

• Total carbohydrates ranging from 45 to 60% energy (%EI);
• Sugars (monosaccharides and disaccharides) <10%EI based on the WHO/FAO dietary

recommendations;
• Dietary fibre intake ≥25 g/day;
• Protein between the average requirement (AR) and the population reference intake

(PRI) of EFSA DRVs;
• Total fat ranging from 20 to 35%EI;
• Saturated fatty acid (SFAs) <10%EI according to FAO;
• Total unsaturated fatty acids (UFAs), i.e., monounsaturated fatty acids (MUFAs) plus

polyunsaturated fatty acids (PUFAs) ranging from 15 to 20%EI, as calculated by
difference according to FAO;
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• PUFAs ranging from 6 to 11%EI according to FAO.

In addition, a moderate alcohol consumption (up to one serving per day for women
and up to two servings per day for men) [24] was considered acceptable.

Differences between current intake and corresponding recommended intake (mean
value of recommended range for energy, total carbohydrates, protein, total fat, and total
UFAs and PUFAs; limit of adequate intake for sugars, dietary fibre, SFAs, and alcohol)
were calculated. The resulting delta values were then used for elaborating on the predic-
tive model.

2.3. Statistical Analysis

Data were stratified by gender. All clinical parameters were classified as normal (1)
or abnormal (2) according to their overlap with the recognised normal ranges (Table S2).
The distribution of clinical parameters was evaluated using the D’Agostino–Pearson test.
Student’s t-test for normally distributed data and Mann–Whitney U test for non-normally
distributed data were used to compare the general characteristics of the study population
grouped by gender.

All statistical analyses were conducted using the Python programming language,
using custom scripts and the sklearn package [25]. A predictive model for each clinical
parameter was computed using all dietary variables via a ridge regression framework [26].

To simultaneously reach the best prediction performances while learning which sets
of dietary macronutrient intakes (variables) were the most important for each predicted
clinical outcome (target), a multivariate model was applied. To this end, a model selection
was performed in order to find the best regression model. Since no univariate effect of a
single nutritional variable on the clinical targets emerged (data not shown), we assumed
that multivariate techniques were the most promising methods as they are capable of
simultaneously reaching the best prediction performances while learning which sets of
variables are the most important for each prediction task. Indeed, penalised maximum
likelihood methods (LASSO regression, ridge regression) outperformed other classes of
regression models as previously shown in other nutritional studies [27,28]. In particular,
the ridge regression yielded the best fit on the data under study. The ridge regression
belongs to the wider class of penalised linear regressions. These types of models allow
computing a regression while shrinking the coefficients of uninformative variables. The
linear ridge regression minimises the function:

n

∑
i=1

(yi − β0 −
p

∑
j=1

β jxij)
2 + α

p

∑
j=1

β2
j = RSS + α

p

∑
j=1

β2
j (1)

RSS = residual sum of squares, with i = index of summation for observations, n = number
of observations (1 to 77 for women, 1 to 80 for men), j = index of summation for variables,
p = number of variables (1 to 10).

The penalty coefficient α can be tuned to optimise the bias-variance trade-off of the
model, leading to a maximisation of the predictive performance as a function of the smallest
set of the descriptive variables necessary to achieve said performance. The penalty term
introduced by the ridge regression is useful to deal with multicollinearity and prevent
overfitting; for the present case, it translated to the shrinkage of coefficients of dietary
variables strongly correlated among themselves and weakly correlated to a given clinical
marker. The absolute value of the regression coefficients β is related to the univariate effect
of a given dietary variable (x)j on a given clinical marker (y), while the sign of coefficients
is not directly interpretable as it would have been in a normal ordinary least squares
(OLS) solution.

Before regression, data were standard scaled. All the ridge models computed were
cross-validated to optimise the parameter α through 5-fold cross-validation. Train and test
subsets were extracted to maintain the proportion between recruiting centres to minimise
the possible confusion factor tied to dietary habits of the country of origin.
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To represent the statistical dependence between the rankings of dietary variables
and clinical outcomes, correlation heatmaps were also computed using the Spearman
rank correlation coefficient [29], which measures how well the relationship between two
variables or targets can be described using a monotonic function. The Spearman rank
correlation coefficient allows for nonlinear relationships to be detected, providing a good
description of the relationships between features and targets.

3. Results and Discussion

Table 1 summarises the characteristics of volunteers included in the study. As expected,
a significant heterogeneity was evidenced between men and women, possibly due to
different hormonal profiles and body fat distribution [30,31].

Table 1. General characteristics of the study population grouped by gender (medians and interquartile ranges, IQR).

Women Men

Median (IQR) † Median (IQR) † p ‡

Subjects (n; %) 77; 49.0% 80; 51.0% –
Age (years) 58 (50–66) 54 (46–63) 0.0631

BMI (kg/m2) 31.6 (27.5–35.5) 29.0 (26.1–33.0) 0.0187
WC (cm) 100.5 (93.0–111.0) 104.5 (99.0–113.5) 0.0489

TG (mg/dL) 160.5 (125.1–192.6) 188.9 (153.1–239.1) 0.0006
Total cholesterol (mg/dL) 232.6 (201.4–254.2) 202.7 (188.6–230.1) <0.0001

HDL-C (mg/dL) 48.2 (41.7–56.6) 39.2 (35.2–42.6) <0.0001
LDL-C (mg/dL) 164.5 (138.0–180.7) 136.0 (112.2–154.8) <0.0001

Fasting glucose (mg/dL) 96.1 (87.4–100.8) 97.0 (89.2–102.6) 0.3454
Fasting insulin (µIU/mL) 12.4 (7.9–18.4) 12.9 (9.7–18.5) 0.5382

HbA1c (%) 5.6 (5.3–5.8) 5.3 (5.1–5.6) 0.0022
SBP (mmHg) 130.0 (120.0–145.0) 130.0 (125.0–141.5) 0.2527
DBP (mmHg) 81.0 (76.0–89.0) 85.0 (80.0–91.0) 0.0057

Abbreviations: BMI: body mass index; DBP: diastolic blood pressure; HbA1c: glycated haemoglobin; HDL-C: high-density lipoprotein
(HDL) cholesterol; IQR: interquartile ranges; IU: international units; LDL-C: low-density lipoprotein (LDL) cholesterol; SBP: systolic blood
pressure; TG: triglycerides; WC: waist circumference. † Median (IQR) for all parameters, except subjects (n; %). ‡ p values from Student’s
t-test for normally distributed variables (WC, total cholesterol, LDL-C, DBP) and Mann–Whitney U test for non-normally distributed
variables (age, BMI, TG, HDL-C, fasting glucose, fasting insulin, HbA1c, SBP).

Ridge-type penalisation was obtained retaining all predictors and minimising collinear-
ity amongst variables; it performed better than LASSO probably due to the complexity of
interactions of all the dietary variables in defining the overall clinical picture in the subjects
at risk of MetS. Indeed, ridge regression performs better when many predictors have
coefficients of roughly equal size [32]. The Pearson correlation coefficients of determination
(R2) for the clinical outcomes according to the ridge regression are reported in Table 2.

Table 2. Pearson correlation coefficients of determination (R2) for the clinical outcomes according to
the ridge regression. R2 > 0.4 are in bold.

Women Men

R2 † R2 †

BMI 0.43 0.78
WC 0.39 0.79
TG 0.46 0.22

Total cholesterol 0.35 0.25
HDL-C 0.44 0.34
LDL-C 0.42 0.22

Fasting glucose 0.33 0.44
Fasting insulin 0.26 0.49

HbA1c 0.27 0.52
SBP 0.36 0.52
DBP 0.27 0.40

† The Pearson correlation coefficient of determination (R2) of each clinical outcome is the average of the results of
each validation fold.
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To visualize the overall complexity of the relationships between clinical parameters and
nutritional variables, we computed the heatmap of correlations between them (Figure 1).
The topology of the heatmaps for male and female study participants was slightly different,
highlighting the gender-related differences in clinical and nutritional characteristics associated
with MetS. Within these premises, the linear ridge regression has been chosen as the best
trade-off between predictive performances and interpretability of results.
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Based on the results of the predictive model (Table 2 and Figure 1), we focused on
clinical features that were better estimated by the adequacy/inadequacy of dietary intakes
(R2 > 0.4, as a generally accepted standard [33]), highlighting the variables characterising
the prediction. To this aim, ridge regression performance (Figure S1) and the magnitude of
regression coefficients (Figure S2) were plotted per individual clinical outcome.

According to the ridge regression results, inadequate dietary intakes better predicted
BMI in males (R = 0.78) than in females (R = 0.43). In both genders, exceeding energy
intake was the key predictor of a high BMI, especially for obese subjects, confirming that
BW changes are associated with an imbalance between energy intake and expenditure [23].
Based on our predictive model, overweight and obesity were also predicted by elevated
intake of total fat (>35%EI) in males and of SFAs (>10%EI) in both genders. This is in
accordance with outcomes from epidemiologic studies and clinical trials, which suggest
that total fat [34] and SFA intake [35] are strongly linked to BW. Excessive intake of SFAs
was also a characterising predictor variable of high WC, which was well estimated by
inadequate dietary intakes in males (R = 0.79). In males, low consumption of protein was a
good indicator of both elevated BMI and WC.

Our results suggest that consumption of high-energy, low-protein, and high-fat diets,
particularly when including excessive SFAs, strongly relates to the development of obesity
in men and to a lesser extent in women. This gender-related difference confirms results
from long-term prospective studies evidencing a significant positive connection between
weight gain and dietary fat in a cohort including males and females [36], while energy
content from fat was weakly correlated with weight gain in The Nurses’ Health Study,
including only women [37].

Interestingly, neither total carbohydrate nor sugar intake were predictors of over-
weight/obesity. Epidemiological evidence and results from diet intervention trials suggest
that protein and carbohydrate intakes are inversely related to BMI, while excessive intake
of sugars contributes to obesity [38]. Although the plausibility of the mechanisms provides
support for a role of sugar consumption in the epidemics of overweight/obesity, definitive
studies are missing [39]. In our group of subjects at risk of MetS, the predictivity of sugar
intake on BMI was low and supported the conclusion that there is no clear or convincing
evidence that any dietary or added sugars have a unique or detrimental impact relative to
any other source of calories on the development of obesity [40].

Results from the ridge regression indicated that blood TG were better predicted by
the dietary variables in women (R = 0.46) than in men (R = 0.22). In the female subjects,
correct (6–11%E) or slightly low PUFA intake and correct fibre intake (25 g/day) had a
good predictive value of normal TG level, confirming the importance of dietary fibre in the
maintenance of normal blood TG [41]. Although the total PUFA intake must be considered
first when examining dietary habits affecting lipemia [42], it is documented that high n-3
PUFA intake favourably impacts on blood TG [43], while excessive consumption of n-6
PUFAs may lead to negative effects [44]. In this study, it was not possible to accurately
discriminate between n-6 and n-3 PUFA intake and it could explain why high PUFA intake
did not predict normal TG level.

In females, inadequate dietary intakes, mainly high consumption of available carbo-
hydrates and fats, predicted high LDL-C, and adequate total PUFA intake was a predictive
variable of normal LDL-C (R = 0.42). In women, low HDL-C was well predicted by in-
adequate intakes (R = 0.44), mainly excessive energy, SFA, and available carbohydrates.
Although the magnitude scale of the ridge coefficient was generally low for HDL-C predic-
tion (Figure S2), denoting a prediction characterised by the combined effect of nutrients
rather than a single dietary variable, overall, our data confirmed evidence in the literature
about the negative effect of excessive carbohydrate intake on dyslipidaemia [45,46]. Total
cholesterol was not well predicted by any dietary intake both in females (R = 0.35) and
males (R = 0.25).

Clinical features related to glucose metabolism and insulin sensitivity were better
predicted in men than in women. In males, fasting glucose was well predicted (R = 0.44),
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and elevated total fat and SFA intakes were slightly associated with moderate fasting
hyperglycaemia. These results are consistent with evidence demonstrating that excessive
consumption of total fat [47] and SFAs [48,49] favour the onset of insulin resistance. Al-
though no univariate effect of any specific dietary variable was evidenced, fasting insulin
and glycated haemoglobin (HbA1c) were moderately predicted by the combined effect of
all dietary nutrients in the male group (R = 0.49 and R = 0.52, respectively).

DBP was not well predicted by the examined dietary variables either in women
(R = 0.27) or men (R = 0.40). Conversely, inadequate dietary intakes well predicted high
SBP in males (R = 0.52), and excessive total fat intake concomitant to low PUFA intake
was a good predictor of moderate hypertension (140–159 mmHg) (Figure S1). Again, our
results confirmed evidence from observational and epidemiological studies [50–52].

Although several studies found an association between alcohol drinking and the
prevalence of MetS and most of its components, in our study, alcohol consumption was
not predictive of any clinical outcome. We speculate that this was related to the very
low percentage of enrolled volunteers exceeding the acceptable consumption of alcoholic
beverages (6.5% of females and 16.5% of males), which did not allow any stratification
based on alcohol intake.

In summary, in the herein reported retrospective analysis, we focused on the predictive
effect of energy/macronutrient intake on the clinical features related to the risk of MetS.
We did not focus on food intake and/or dietary pattern, of which their contribution to the
risk of MetS has already been addressed by several studies (see [53] for a comprehensive
review). Although this approach has limitations since components other than energy
and macronutrients are provided by food/diet, our results suggest that predictivity of
inadequate intake of energy/macronutrients is independent of dietary patterns. Indeed, we
evaluated four different cohorts with different dietary habits tied to the geographical origins
of the volunteers, and train and test batches of the cross-validation were stratified with
respect to the nationality of each subject to avoid biases derived from different eating habits.

Overall, energy/macronutrient intake had a strong predictivity. We speculate that
this relies on the intimate relationship between MetS and obesity, which is in turn strongly
dependent on the unbalance of energy/macronutrients in the diet. Of note, not all clinical
outcomes were predicted with the same accuracy, and the predictivity was overall higher in
men than in women. Furthermore, inadequate intake of specific nutrients was associated to
abnormality of specific clinical parameters. Most of the observed intake/clinical outcome
associations were consistent with previous evidence. This does not mean that our results are
trivial and simply confirmatory, but rather it confirms that the proposed model is suitable
for shedding light on the complexity of nutritional variables that, although responsible for
impacting on clinical outcomes and, therefore, for influencing the pathological condition,
have an effect that is not evident with univariate analysis and must be considered in the
framework of the reciprocal influence of the other variables.

The impact of physical activity and smoking was not considered in our model, and
this is a limitation since they are both included among lifestyle factors predictive for
MetS [54]. Of note, none of the enrolled volunteers was a heavy smoker (≥5 cigarettes per
day); this minimising the confounding effect and making a stratification based on these
lifestyle characteristics impossible. As well, based on exclusion criteria, none of enrolled
subjects had a high level of physical activity (≥5 h of physical activity per week). Specific
information on physical activity was collected using the international physical activity
questionnaire (IPAQ) only for volunteers who accepted to participate in the sub-study of
the trial, so we could not use those data in the regression model. Anyway, collected IPAQ
confirmed that physical activity was low-moderate.

4. Conclusions

In this retrospective study, the energy and macronutrient intake of 157 (80 males and
77 females) adult volunteers at risk of MetS from four different countries was evaluated
using a validated standardised protocol to measure dietary intakes. The use of the ridge
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regression, which optimises prediction performances while retaining information about
the role of all the nutritional variables, allowed us to assess if a clinical outcome is strongly
dependent on a single nutritional variable, or if its prediction is characterised by more
complex interactions between the variables. The approach appeared robust, and although
our results cannot be applied to the general population, they allowed for the linking of
energy/macronutrient intake to the clinical features of MetS, thus providing additional
indications about the most important dietary contributors to the risk of the disease.

Methods in prediction modelling have been recently growing and are becoming more
relevant in the nutrition field [55]. In the near future, they could be useful to healthcare
professionals and policymakers to effectively counteract the risk of MetS and other diet-
related diseases.
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