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Infection kinetics of Covid‑19 
and containment strategy
Amit K Chattopadhyay1*, Debajyoti Choudhury2, Goutam Ghosh3, Bidisha Kundu1,5 & 
Sujit Kumar Nath4

The devastating trail of Covid‑19 is characterized by one of the highest mortality‑to‑infected ratio 
for a pandemic. Restricted therapeutic and early‑stage vaccination still renders social exclusion 
through lockdown as the key containment mode.To understand the dynamics, we propose PHIRVD, 
a mechanistic infection propagation model that Machine Learns (Bayesian Markov Chain Monte 
Carlo) the evolution of six infection stages, namely healthy susceptible (H), predisposed comorbid 
susceptible (P), infected (I), recovered (R), herd immunized (V) and mortality (D), providing a 
highly reliable mortality prediction profile for 18 countries at varying stages of lockdown. Training 
data between 10 February to 29 June 2020, PHIRVD can accurately predict mortality profile up 
to November 2020, including the second wave kinetics. The model also suggests mortality‑to‑
infection ratio as a more dynamic pandemic descriptor, substituting reproduction number. PHIRVD 
establishes the importance of early and prolonged but strategic lockdown to contain future relapse, 
complementing futuristic vaccine impact.

Deadlier than most pandemics in the last 100 years, barring HIV and plague, Covid-19 rages on despite imposi-
tion of movement restrictions as well as clinical testing and community health  measures1,2. As of 4 August 2020, 
SARS-COV-2 has infected ca 18.5 million worldwide with ca 700,000 dead. Covid-19 containment has been a 
major strategic issue for governments worldwide, with particular emphasis on the correct lockdown timing and 
span. Alarming belated infection spurt have been registered in over-populated countries like India, Brazil and 
Iran with early and extensive lockdowns. While the low mortality rates exhibited by low-resourced yet densely 
populated Asian countries have been attributed to the relative youth of the  populations3, sparsely populated 
Sweden depicts an alarming dead-to-infected ratio in contrast to its European  neighbours4.

Quarantine has been advised as the best infection control  measure5,6. This has led to key questions as to the 
ideal start point and the absolute span of the ensuing lockdown. Major cases in support of lockdown are Viet-
nam and Cuba, that have claimed almost no  death7,8, although such claims have been  questioned9. In countries 
like Italy, the UK, the US, Sweden and Brazil, with strategic reluctance for early lockdown, comparatively softer 
prohibition lockdown protocols have admittedly transpired to worrisome statistics. On the other hand, European 
countries like Germany, the Netherlands, Belgium and France as also non-European countries like Australia, New 
Zealand and Korea who enforced early lockdowns initially registered remarkably low infection and mortality 
 rates10, with 1.0 < R0 < 2.0 during lockdown, that spiked later (www. world omete rs. info). Many suffered from 
re-infection  relapse11,12 with a sudden spurt in  infection13. Regions like India, Iran and New York State, with vari-
able quarantine measures, have all seen late infection surges. While India resorted to an early clampdown with 
an early withdrawal, New York State resorted to a late lockdown, but both with similar numerical implications, 
a feature attributed to inevitable movement of migrant  workers14.

Analyzes of the SARS epidemic of 2003 showed that case isolation and contact  tracing1,15, while highly effective if 
implemented at early stages, become ineffectual if the basic infection spread occurs before symptomatic  detection16,17. 
This finding was revisited in Covid-19 transmission  kinetics18 pointing to the importance of appropriate early (pre-
symptomatic) stage strategizing. Other studies stress the importance of combining  isolation19, social distancing with 
widespread  testing20 and contact  tracing2. Initial predictive  models14 used data from Wuhan and  Italy20. Both efforts 
suffer from a lack of robustness due to inaccurate future prediction that is reliant on sparse data, devoid of any inherent 
ML training protocol to emphasize on prediction rather than on data fitting.The first predictive study used a Bayesian 
inference structure on a simplistic SIRV  model21,22, using infection statistics from Germany. While a move in the right 
direction, it suffered from two key deficiencies: lack of a time evolving death rate as an independent dynamical variable 
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and over-reliance on infection statistics in predicting mortality rate.20addressed this, but it lacked the probabilistic kernel 
 of21. Another issue that has often been overlooked is the best possible containment strategy in coping with the disease. 
Standard approaches include social  distancing23, contact  tracing24, social seclusion between comorbid and healthy, self- 
quarantine of the infected (including asymptomatic). The target in all of these is to block the epidemic spread network 
so that the infection chain can be  broken25.

Vaccines have led the fight against COVID-1926. Multiple vaccines are now available for public use that use 
differential chemical pathways, e.g. mRNA replication  (Pfizer27,  Moderna28), viral vectors (Oxford-AstraZeneca29, 
Sputnik  V30), antibody formation through attachment to spike proteins  (Covaxin31,  Sinofarm32), double-stranded 
DNA cloning  (Janssen33), genetic engineering of the SARS-Cov-2 spike proteins  (Novavax34). The vaccine arsenal 
is fast getting reinforced with newer additions, all targeted to mitigate the viral load as also to provide long term 
immunity. While expected to be a major immunity booster going forward, given the expected timeframes of 
vaccine rollout and perceived mutation towards newer strains of the virus (e.g. Indian variant B.1.61735, South 
African B.1.35136) that have at times restricted the efficacy rates of  vaccines34–36, the major defence front will still 
rely on transmission mitigation through restricted movement, mask usage, sanitation codes and avoiding public 
gatherings, the collective impact of which could be enumerated from the PHIRVD model.

Results
Infection kinetics of healthy and comorbid susceptible. COVID-19 infection propagation epidemi-
ology clearly points to the need for analyzing the vastly different infection and mortality profiles of the healthy 
versus the comorbid susceptible groups. Our key target is to study this interactive infection propagation and 
then predict future mortality and infection profiles, emphasizing mortality as the key policy indicator. The pre-
sent article is to marry a robust Susceptible(S)-Infection(I)-Recovered(R)-Vaccinated(V) (SIRV) structure, esti-
mating the reproduction  number37, together with a Machine Learning (ML) prediction kernel, using a multi-lay-
ered error filtration structure, to generate a predictive model called PHIRVD (see “Methods” section). PHIRVD 
delivers three major successes at an unprecedented level of accuracy: prediction of the number of infected and 
dead over the next 30 days (validated using sparse data) for each of the 18 countries considered, a comparative 
analysis of the impact of lockdown using multiple withdrawal dates for 6 worst-hit countries with high ongo-
ing infection rates, and a detailed temporal profile of future reproduction numbers that can be (and have been) 
verified against real data. PHIRVD also establishes mortality-to-infection ratio as the key dynamic pandemic 
descriptor instead of reproduction number.

Mathematical model—PHIRVD. Our compartmentalised Covid-19 pandemic kinetics uses a 6-dimen-
sional dynamical system as in Eq. (1), combining SIR and SEIR  kernels38,39, schematically outlined in Fig. 1:

(1)

dH

dt
=− β1HI+ q1HR + q2HV − h2vH − γH ,

dP

dt
=− β2PI − (γ + δ)P+ q1PR + q2PV − p2vP,

dI

dt
=(β1H + β2P + β3R)I − (γ + ζ )I − wI ,

dR

dt
=wI − β3RI − γR − q1HR − q1PR,

dV

dt
=−(q2H + q2P)V − γV + h2vH + p2vP,

dD

dt
=γ (H + R + V)+ (γ + δ)P + (γ + ζ )I .

Figure 1.  Schematic diagram outlining the infection kinetic profile of our model PHIRVD: healthy susceptible 
(H); predisposed comorbid susceptible (P); infected (I); recovered (R); herd immunized (V) and dead (D).
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The parameters in this model, that we call PHIRVD, characterize the infection rate of healthy agents ( β1 ), 

infection rate of agents with pre-existing health conditions ( β2 ), relapse rate ( β3 ), conversion rates of recovered 
to healthy susceptible ( q1H ) and previously “immuned” to healthy susceptible ( q2H ), conversion rates of recov-
ered to pre-existing susceptible ( q1P ) and previously “immuned” to pre-existing susceptible ( q2P ), death rate 
due to non-Covid interference ( γ ), additional death rate due to agents with pre-existing conditions ( δ ) and that 
due to infected ( ζ ), recovery rate (w), rate at which healthy ( h2v ) and pre-existing susceptible ( p2v ) groups are 
quarantined. Our focus being Covid-19 infection and mortality statistics, we neglect death rate ( γ = 0 ) and 
additional death rate ( δ = 0 ) due to all non-Covid causes. Since death rate of healthy infected is a lot lower 
than that of the comorbid and elderly death rate (https:// www. cdc. gov/ coron avirus/ 2019- ncov/ need- extra- preca 
utions/ older- adults. html)40,41; hence we have added a practical constraint in our model to account for this effect 
that expresses in the form of β1 < β2 . Hence, the infection rate of H-group is considered to be a small fraction 
( � ) of the P-group, i.e. β1 = β2� . The death variable D thus acts like a “sink” of the dynamical system ensuring a 
population conservation inbuilt within the model ( H + P + I + R + V + D = constant). The PHIRVD model 
can be easily extended to incorporate the impact of upcoming and available vaccines. The impact points would 
be at the transitory phases between prolonged lockdown, characterized by low susceptible-infected coupling, to 
a lockdown withdrawal, typically leading to a surge in the infection/mortality traffic, a case of human reaction 
to maximize social expression.

In training our model, we find it useful to define an extra variable Ic(t) , which represents the cumulative 
number of those infected upto a given date. In other words, it includes not only those who are currently infected, 
but also those who have since recovered or died, i. e. dIcdt = (β1Hβ2P + β3R)I . Since we have considered relapse 
in our model, it is to be noted that Ic(t)  = I(t)+ R(t)+ D(t).

Data repositories. Identifying the infection kinetics of Covid-19 as an interactive evolution process involv-
ing six time evolving population density variables: healthy susceptible (H), susceptible with pre-existing con-
ditions or comorbidity (P), infected (I), recovered (R), naturally immuned (i.e. a clone for vaccinated V) and 
dead (D), the PHIRVD model uses statistics from the Johns Hopkins Covid-19  database42 to accurately pre-
dict mortality and infection statistics of 18 Asian, European and American countries. Data threshold was set 
beyond the first 19 days of low (or no) infection, followed by data training between 10 February 2020 to 29 June 
2020. Results were later cross-verified from other databases e.g. US: https:// usafa cts. org; EU: https:// data. europa. 
eu/; UK: https:// coron avirus. data. gov. uk/; India: https:// www. covid 19ind ia. org/. The Bayesian Markov Chain 
Monte Carlo (MCMC)43 infrastructure in PHIRVD trains the repository data to probabilistically predict the 17 
parameters of the infection kinetic model (see “Methods” section). Unlike previous predictive Machine Learning 
 models14,19–22, this structure allows more dynamic adaptive control of the infection kinetic estimation resulting 
in a highly accurate predictive module.

Mortality and infection: prediction against reality. The 18 countries or regions under study were 
divided into 4 infection classes, the first three based on decreasing mortality-to-infection ratio for countries 
past their infection peak: UK, Netherlands, Sweden, New York State (Class A); Germany, Korea, Australia, 
Russia, Vietnam (Class B); and Italy, Spain, Hubei (Class C). Class Class D comprises India, Poland, Iran, 
France, Portugal and Brazil, with ongoing infection regimes. We deliberately chose New York State instead of 
the entire United States due to its high population density and tourist/ worker traffic that is quite different from 
the national average.

With the number of reported cases being highly dependent on the number of daily testings, not necessarily 
in agreement with the actual disease propagation dynamics, we observe some deviations between the simulated 
I(t) and the actual number of reported cases. On the other hand, D(t) is less affected by the testing rate. Since 
we are using mortality statistics with the same weightage as the infected data, we prioritize mortality prediction. 
We note that daily training of any epidemiological model will invariably achieve better data match, as many 
studies have shown. However, our ML embedded propagation kinetic model thrives on long term predictions, 
as much as possible.

Comparative statistics for our Class A representative, the UK, is shown in Fig. 2. The blue region marks the 
training zone that fixes the parameters. Based on the highest mortality to infection ratio in each group, the rep-
resentative countries for the other 3 classes are Germany (Class B), Italy (Class C), India (Class D). Figures 3, 4 
and 5 represent infection statistics for Class B (Germany), C (Italy) and D (India) respectively (other plots in 
Appendix II). Chi-square tested (see “Methods” section for Chi-squared statistic used) accuracy chart in Table 1 
clearly points to the veracity of the accuracy claim made. On the other hand, Vietnam presents an interesting 
case. With a reported zero mortality rate notwithstanding high population density, it has been repeatedly cited 
as an example of early quarantine success. The model tracks even such an exceptional case to a moderate level of 
accuracy (in Appendix II). The outsets and insets respectively outline the cumulative versus the daily infection 
traffic. Details for other countries, for 4 infection classes, are provided in Appendix II.

Table 2 presents a comparative chart of the PHIRVD model predictions versus real data, separately for the 
numbers of infected and dead, for countries representing the 4 classes with data trained between 10 February 
to 29 June: Class A (UK), Class B (Germany), Class C (Italy) and Class D (India). Futuristic prediction is shown 
until 12 July. For other countries in each individual class, with data training between 10 February to 10 May, 30 
days’ prediction until 9 June establishes the predictive strength of this model (see Tables S2–S5, Appendix III), 
error validated as shown in Table S1 (see Appendix I).

Table 3 compares second wave mortality prediction obtained from PHIRVD against real data, based on data 
training until 29 June 2020. The result can be substantially improved if data is trained within a month of the 

https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/older-adults.html
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/older-adults.html
https://usafacts.org
https://data.europa.eu/
https://data.europa.eu/
https://coronavirus.data.gov.uk/
https://www.covid19india.org/
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resurgent wave, as in November 2020. But the reliability of prediction stretching up to 150 days beyond last data 
training is unprecedented to our knowledge and affirms the robustness of the model.

The expected number of secondary cases produced from each infected individual is traditionally defined as the 
basic reproduction number. The detailed calculation of Re is provided in the “Methods” section. Figure 6 depicts 
the time evolution of basic reproduction number that indirectly reflects the emerging infection (and fatality) 
rate for the 4 representative countries from infection classes A-D, represented by the basic reproduction number 
R0

44–46 (see “Methods” section). R0 kinetics of all other countries are provided in Appendix I. Class A countries 
consistently show the sharpest drop in R0 and the flattest stability period, followed by progressive R0 decay and 
waiting time, often the ‘gestation time’, reflected by the plateau regions of the respective plots for classes B, C and 
D respectively. The point of note here is that while Germany and Italy show higher levels of infection than the 
UK, the gestation period for the UK is a lot larger than both. India shows a similar trend although the absolute 
numbers for India are a lot lower than the other three, indicating a complicated relationship between Full Width 
at Half Maximum (FWHM) and gestation period.

Figure 2.  Infection (a) and mortality (b) epidemiology for the UK (Class A). Outsets represent cumulative 
statistics while the insets are for daily updates in the number of infected and death respectively. Here “0” marks 
22 January 2020; data training between 10 February to 29 June 2020.

Figure 3.  Infection (a) and mortality (b) epidemiology for Germany (Class B). Outsets represent cumulative 
statistics while the insets are for daily updates in the number of infected and death respectively. Here “0” marks 
22 January 2020; data training between 10 February to 29 June 2020.
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Figure 4.  Infection (a) and mortality (b) epidemiology for Italy (Class C). Outsets represent cumulative 
statistics while the insets are for daily updates in the number of infected and death respectively. Here “0” marks 
22 January 2020; data training between 10 February to 29 June 2020.

Figure 5.  Infection (a) and mortality (b) epidemiology for India (Class D). Outsets represent cumulative 
statistics while the insets are for daily updates in the number of infected and death respectively. Here “0” marks 
22 January 2020; data training between 10 February to 29 June 2020.

Table 1.  p Values for daily new infected and dead for Class A–D representative countries between 11 Feb to 16 
June 2020.

 Country

Daily new 
infected

Daily new 
death

ǫ p value ǫ p value

UK 0.26 0.23 0.36 0.14

Germany 0.42 0.18 0.45 0.25

Italy 0.32 0.22 0.3 0.28

India 0.52 0.25 0.52 0.38
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Discussion
Combining conventional infection kinetic modeling with a predictive Bayesian MCMC, PHIRVD quantifies 
the impact of lockdown as a containment tool. It estimates mortality statistics with high significance for 18 
countries, accurate upto the next 30 days, beyond the last date of data training. Ideal lockdown imposition and 
withdrawal times have been predicted and validated, including for ongoing regimen e.g. India. PHIRVD also 
predicts secondary relapse timings and establishes mortality-to-infection ratio as the key pandemic predictive 
descriptor instead of reproduction number. PHIRVD is also capable of analyzing the impact of migration, an 

Table 2.  Validation of daily new infected and death: UK (Class A), Germany (Class B), Italy (Class C), India 
(Class D).

 Days

Country

UK Germany Italy India

Infected Death Infected Death Infected Death Infected Death

Data Simulation Data Simulation Data Simulation Data Simulation Data Simulation Data Simulation Data Simulation Data Simulation

30/06/20 403 472 155 91 376 126 14 12 142 121 23 23 18641 17298 507 570

01/07/20 60 455 176 88 475 121 5 11 182 116 21 22 19160 17471 434 579

02/07/20 4 439 89 84 477 117 11 11 201 110 30 21 20903 17628 379 588

03/07/20 502 424 136 81 410 112 4 11 223 106 15 20 22771 17767 442 596

04/07/20 624 408 67 79 418 108 10 10 235 101 21 19 24850 17889 613 604

05/07/20 516 394 22 76 325 104 3 10 192 96 7 18 24248 17992 425 612

06/07/20 352 380 16 73 541 100 0 9 208 92 8 17 22251 18078 466 618

07/07/20 581 366 155 70 279 96 10 9 137 88 30 17 22753 18145 483 625

08/07/20 630 353 126 68 356 92 14 9 193 84 15 16 24879 18194 487 631

09/07/20 642 341 85 66 302 89 11 8 214 81 12 15 26506 18224 475 636

10/07/20 512 329 48 63 331 85 6 8 276 77 12 14 27114 18236 519 640

11/07/20 820 317 148 61 377 82 7 8 188 74 7 14 28606 18230 550 645

12/07/20 650 306 21 59 210 79 1 7 234 70 9 13 28732 18206 501 648

Table 3.  UK second-wave validation for mortality data.

UK validation-death profile

Date Real data PHIRVD prediction

10/11/20 595 457

11/11/20 563 448

12/11/20 376 439

13/11/20 462 430

14/11/20 168 420

15/11/20 213 411

16/11/20 598 401

17/11/20 529 392

Figure 6.  Daily temporal evolution of the basic reproduction rate for countries from Class A (UK), Class B 
(Germany), Class C (Italy) and Class D (India). The dotted line sets the pandemic threshold; count “0” starts at 
14 February 2020, excluding data for the first 19 days (statistics recorded 22 January 2020 onwards) due to low 
infection, and additional 4 days of generation time. MCMC training between 10 February 2020 to 29 June 2020.
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ongoing project. Our findings clearly suggest that phased lockdown is a potent containment tool but needs to 
be strategically imposed, where the correct implementation and withdrawal times are paramount. Secondary 
infection and mortality prediction will be key to future strategic quarantine imposition and analyzing impact 
of future therapeutics.

PHIRVD leads to three key outcomes. First, we present highly accurate probabilistic predictions for the 
numbers of infected and dead for each country for a total of 18 countries, typically 3 weeks beyond the last date 
of (Machine Learned) data training. Our PHIRVD model depicts a high degree of reliability between model 
prediction against real data validation across the range of countries considered.

Our model can also be used to identify a better strategy for lockdown imposition, to minimize the fatality. 
The full simulations plots (in Appendix II) clearly outlines how an increasing infection profile initially matches 
with decreasing numbers of pre-existing susceptible and increasing statistics for the recovered, that then slows 
down as the infection peak arrives, eventually to tail off in to a no-infection landscape. While the qualitative 
trends are similar for all classes (A, B, C, D) of countries, the impact of lockdown on the first peak, and then a 
second (relapse) peak, hint at the internal health versus econometrics of the countries concerned. To prove this 
point, we compare infection (and mortality) propagation kinetics of 2 chosen countries for two different dates, 
one on the recess (UK: Fig. 7), the other with uprising infection level (India: Fig. 8). As opposed to the recent 
furore about school children being exposed to the Covid-19 menace as a result of early lockdown withdrawal, 
our result clearly shows that there is practically no difference in mortality between a withdrawal on June 1, 2020 
as against a later withdrawal e.g. July 1, 2020 (although a withdrawal on May 1 would have been disastrous). The 
1 June (almost equally safe) withdrawal would, of course, be favoured on economic and social grounds.

The third key outcome of our analysis is the establishment of mortality:infection ratio as the key descrip-
tor of pandemic over and above reproduction number, that has conventionally been used for the purpose. The 
proof of this is in the accurate prediction of the secondary infection relapse time that the reproductive number 
fails to predict. As can be seen from Fig. 7a,b, this relapse time period could be deferred with a late lockdown 
withdrawal on July 1 (as compared to June 1) although the peak mortality rates are not hugely different (ca 200 
at 1 July compared to ca 400 at 1 June). Using 1 July 2020 as the UK lockdown withdrawal date, there is a clear 
signature of secondary relapse in the first week of September (identified as the second peak in Fig. 7). The Indian 
situation is clearly more challenging, though, as shown in Fig. 8. While perhaps economically unsustainable, 
India could benefit with a lockdown even beyond 31 July, 2020. For other nations like Iran, Portugal, France 
and Poland, our predictions of non-trivial secondary relapses (all in late June) match almost perfectly with data, 
both infected and dead. As the second wave data is now available for the UK, we simulated it using our PHIRVD 
model. Results shown in Fig. 9 demonstrate excellent agreement with real statistics (data trained only up to 29 
June 2020), that reaffirms the strength of the model.

A real point of contention amongst politicians, health professionals and medical scientists has, for long, been 
the correct lockdown implementation and withdrawal times. In statistical parlance, this effectively amounts to 
an estimation of the FWHM as has been estimated for Wuhan at 2.6 weeks from initial  infection47. To analyze 
these counterclaims, we incorporate the effects of withdrawal of lockdown as a country specific, dynamically 
evolving quantity.

The availability of the awaited  vaccines26, and of late, the therapeutic  range48,49, have provided major immunity 
tools in the Covid firefight. The impacts of these vaccines are most likely to be futuristic antibody switch though, 

Figure 7.  Infection kinetics compared for the UK for different lockdown withdrawal dates. Analysis is based on 
daily mortality statistics. The vertical dotted line represents lockdown withdrawal date t0 in the function L(t) (see 
“Lockdown Dynamics” in “Methods” section). For the left and right panels t0 is set to be 1 June 2020 and 1 July 
2020, respectively. k = 20 and α = 2.4 are used in the function L(t) for simulating red dashed curves in both the 
plots. Here “0” marks 22 January 2020.
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as is clearly evidenced by the huge second/third phase outbreaks in countries like India, Bangladesh and Russia 
that survived the initial onslaught well. With growing mortality profile, sometimes attributed to newer viral 
strains, the impact of quarantine measures, namely what and how to choose and when to implement or withdraw, 
has now assumed crucial importance, for which our model can serve as a future benchmark.

Methods
Motivation of the PHIRVD model. PHIRVD uniquely combines a dynamically evolving infection propa-
gation model that tracks the phenomenology of infection kinetics with a probabilistic predictive algorithm, the 
latter chosen as a Bayesian Markov Chain Monte Carlo (MCMC) kernel. The Bayesian MCMC is used to train 
past data to predict time independent generic parameters that can predict the future statistics. The choice is 
guided by the strength of Bayesian MCMC in a range of dynamical modeling studies in complementary  fields50,51.

Figure 8.  Infection kinetics compared for India for different lockdown withdrawal dates. Analysis is based on 
daily mortality statistics. The vertical dotted line represents lockdown withdrawal date t0 in the function L(t) 
(see “Lockdown Dynamics” in “Methods” section). For the left and right panels t0 is set to be 31 July 2020 and 31 
August 2020, respectively. k = 20 and α = 1.9 are used in the function L(t) for simulating red dashed curves in 
both the plots. Here “0” marks 22 January 2020.

Figure 9.  Prediction of infection resurgence (second wave) in the UK from PHIRVD. Count “0” starts at 22 
January 2020. MCMC training performed between 10 February 2020 to 29 June 2020, excluding data for the 
first 19 days (statistics recorded 22 January 2020 onwards) due to low infection. The second wave is simulated by 
setting t0 = 22 September 2020 (marked by the vertical dotted line), k = 450 , and α = 35 , in the function L(t) 
(see “Lockdown Dynamics” in “Methods” section).
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Reproduction number R
e
 at fixed point. For γ = 0, δ = 0 , from Eq. (1) the disease free equilibrium 

(DFE) or fixed point is given by P∗ = H∗ h2vq2P
p2vq2H

 , I∗ = 0,R∗ = 0 , V∗ = H∗ h2v
q2H

 . To evaluate the reproduction 

number Re , we have to break the equation of dIdt into two parts F ,V , i.e.,

where F = (β1H + β2P + β3R)I  and V = (ζ + w)I  .  Now, F = ∂F
∂I |DFE  and � = ∂V

∂I |DFE  .  Then 

Re =
F
�

=
H∗

(

β2h2vq2P
p2vq2H

+β1

)

ζ+ω
.

Lockdown dynamics. During the time period, over which we trained our model, most of the countries 
(except Sweden), of our interest, were under lockdown. Therefore, we studied the effects of withdrawal/relaxa-
tion of lockdown for some countries by introducing a time varying parameter L(t) in the model in Eq. (1) substi-
tuting β1,2,3 with β1,2,3 L(t) respectively, where L(t) = 1 for t ≤ t0, and α for t ≥ t0 + k . For t0 < t < t0 + k , 
L(t) = 1

k [α(t − t0)+ (t0 + k − t)] . Here t0 marks the lockdown withdrawal time point, k is the approximate 
time duration during which the susceptible and infected population mixes well (e.g. within one week or one 
month etc.), where α is the parameter quantifying the intensity of mixing between susceptible and infected 
population. A larger α value implies a higher mixing rate among susceptible and infected individuals. The func-
tion L(t) is such that before lockdown withdrawal, it does not alter the contact probability while after withdrawal, 
it linearly increases from the value 1 to α over a time interval of k days, ensuring that the contact probability 
between susceptible and infected increases from a low to a high value within this time period.

Parameter estimation. The Bayesian MCMC data training leading to supervised learning is itself con-
ducted in two steps using a double-filtration process. First, infection data alone are used to arrive at a prelimi-
nary set of values, characterizing each country. The said values are then filtered through combined infected and 
mortality statistics for a second training to sequentially converge to a preset upper limit. The training schedule 
is repeated multiply to ensure accurate predictions of the training dataset. Estimation of the equilibrium repro-
duction number is strategically used to reduce the effective parameter space from 13 to 8 parameters, perfectly 
conforming with the Bayesian MCMC prediction which shows that value fluctuations with other parameters 
do not contribute much to the infection kinetics. The model clearly separates the H and P infection classes to 
reflect their differential levels of infection and mortality. Another constituent is the death rate kinetics embed-
ded in the central structure. The infection propagation model outlined in Eq. (1) is a multi-parameter model 
whose parameters are evaluated using predictive data modeling within the Bayesian MCMC construct. Similar 
structures have been selectively used  in21,22 albeit for single-country specific models without any explicit mortal-
ity dynamics. Over-reliance on infection statistics has often led to incorrect estimation for mortality statistics, 
whose accurate prediction is our first key target, an aim that is remarkably well served by our ML-embedded 
compartmentalised model. We present both the cumulative and daily (inset plots) statistics of infected popula-
tion over 400 days, data trained between 10 February 2020 to 29 June 2020 (140 days) and then predicted up to 
the next 8 weeks (shown up to 12 July 2020 in Table 1).

The Bayesian Markov chain Monte Carlo (MCMC) algorithm. To understand how the algorithm 
uses the data to determine the parameters, it is useful to recall some elements of Bayesian  statistics50,51. Let 
D = (D1,D2, . . . ,Dn) represent the full data vector that is being used to train the algorithm. For our case, the 
subscripts run over both the time intervals (daily) as well as the data types, such as Ic(ti) and D(ti) . Similarly, let 
� = (θ1, θ2, . . . , θα) represent the vector of parameters. A key ingredient is the prior probabibility distribution 
(Bayesian priors) for each θi . While the absence of any knowledge of the system would call for a prior that is 
flat in the physically allowed region, the incorporation of such knowledge (which, in the present context, could 
be divined from the analysis of, say even part of the data for a single country in a given class) quickly gives the 
prior a somewhat peaked structure. In other words, one could as well start with a normal-distributed prior, viz., 
� ∼ N(�0, σ ) , where the vector �0 represents the mean of the parameters and σ = (σ1, σ2, . . . , σα) the stand-
ard deviation. As it turns out, the dependence of the final result on the prior is quite insignificant.Given a � , it is 
straightforward to calculate the conditional probability P (D|�) of obtaining a realization D for the data. Using 
Bayes’ theorem, the posterior probability for � given the data is expressed as

where P (D) =
∫
�
P(D|�)P (�)d� , with � denoting the whole parameter space. This, immediately leads us 

to the likelihood ratio of two parameter vectors �1 and �2 , namely

(2)
dI

dt
= F − V

(3)P (�|D) =
P (D|�)P (�)

P (D)
,
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We now resort to a 3-step algorithm: 

1. Choose parameters (including initial conditions) through a random walk in the parameter space. The nature 
of the random walk is determined by the prior probability distributions for the parameters, including initial 
conditions.

2. Calculate the likelihood ratio function for the parameters, given the data.
3. Decide whether to accept the suggested parameter set or not.

Step 1:
Let Si = (Si1, Si2, . . . , Sin) be the simulated vector at the ith step for parameter values �i = (θi1, θi2, . . . , θiα) . 

Compared to the total population, the data Ic(t),D(t) etc. are quasi-continuous and can be assumed to be 
drawn from a Normal distribution with respective standard deviations Ŵ = (γ1, γ2, . . . , γn) and means 
Si = (Si1, Si2, . . . , Sin) . Therefore, the posterior probability (or likelihood, in case of continuous probability 
density) of the parameter vector �i is,

Next, we execute a random walk in �-space with distribution N(�i, σ ) to find �i+1 , and calculate again the 
posterior likelihood function, with the simulated data vector Si+1 , corresponding to the parameter vector �i+1 as

Step 2:

The likelihood ratio is now calculated to be P (�i+1|D)/P (�i|D).
Step 3:
Next, we generate a uniform random number r ∼ U[0, 1] . If r < P (�i+1|D)/P (�i|D) , we accept �i+1 , 

otherwise we go back to Step 1 and repeat the procedure.
We have used cumulative infected and dead data as the vector D and we normalize (as described above) 

the data vector D , as well as the simulated vector Si at every step, before calculating the likelihood ratio in Step 
2 above. We have used σ = (σP , σIC) , where σP = (0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01) 
only for parameters part, σIC = (0.1, 0.1, 0.001, 0.0, 0.0, 0.0) for initial data part, and Ŵ = (γ1, γ2, . . . , γn) , where 
γj = (0.1− 0.05)(j − 1)/(n− 1)+ 0.05 . The initial days (where the numbers are low) in the data are given 
relatively smaller weightage than the later days for fitting, as the noise level is higher initially, than the signal.

Estimation of the reproduction number kinetics. Understandably, the basic reproduction number R0 
is no longer a constant. Defining R0(t) as the average number of secondary infections from a primary case at a 
given epoch t, and similarly Id(t) as the number of daily new cases, we have

where g(τ ) is the probability density function of the generation time τ , defined as the time required for a 
new secondary infection to be generated from a primary infection. In other words, τ is the time interval 
between the onset of a primary case to the onset of a secondary case, generated from this primary case. As is 
 reported37, the mean generation time is approximately 6.5 days, we assume g(τ ) has a Gamma distribution with 
g(τ ) = Gamma(6.5, 0.62) . We represent R0(t) as a function of time as

We approximate the denominator of Eq. (8) directly from our simulated data, by a discrete sum, and evaluate 
R0 at nth day as

(4)
P (�2|D)

P (�1|D)
=

P (D|�2)P (�2)

P (D|�1)P (�1)
.

(5)

P (�i|D) =
P (D|�i)P (�i)

P (D)
= (2π)−(n+α)/2





n
�

j=1

γj

α
�

β=1

σβP (D)





−1

exp





−1

2

n
�

j=1

�

Sij − Dj

γj

�2


.

(6)

P (�i+1|D) =
P (D|�i+1)P (�i+1)

P (D)

=(2π)−(n+α)/2





n
�

j=1

γj

α
�

β=1

σβP (D)





−1

exp



−
1

2

n
�

j=1

�

S(i+1)j − Dj

γj

�2

−
1

2

α
�

β=1

�

θ(i+1)β − θiβ

σβ

�2


 .

(7)Id(t) =

∫ ∞

0
R0(t) Id(t − τ) g(τ ) dτ ,

(8)R0(t) =
Id(t)

∫∞

0 Id(t − τ) g(τ ) dτ
.
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Statistical error estimation and p‑values. Using the Chi-square statistic as χ2 ≡
∑n

i=1

(

Di−Si
ǫSi+1

)2
 

( 0 < ǫ < 1 ), where Di are observed data and Si the simulated data for the i th day, we quantify the accuracy of 
our model fitting with the real data. Understandably, the data for daily new infections and daily new deaths are 
contaminated by noise, more severely than the corresponding cumulative data. Hence, a Chi-square test applied 
on cumulative data will always give a high p-value. However, to test the power of our predictive machine learning 
algorithm, we calculated the p-values on daily new data of deaths and infected. Assuming the real data are drawn 
from a normal distribution with mean value same as the simulated data, and with a standard deviation equal to 
some fraction of the simulated data, we derive our Chi-square statistic. Although, the real data of infected and 
dead are always positive, as the infection increases, this assumption is very well valid, except for a very small time 
interval at the starting of infection in a population.

Data availability
Data from the Johns Hopkins repository (https:// github. com/ CSSEG ISand Data/ Covid- 19) were used, together 
with country specific repositories, e.g. US: https:// usafa cts. org; EU: https:// data. europa. eu/; UK: https:// coron 
avirus. data. gov. uk/; India: https:// www. covid 19ind ia. org/. All the epidemiological information we used is docu-
mented in the Extended Data and Supplementary Tables. The codes and relevant files are made available through 
the Aston Data Repository.
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