

This is a repository copy of *The journey to monitoring ecosystem services: Are we there yet?*.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/175130/</u>

Version: Accepted Version

Article:

Vaz, AS, Selomane, O, Jones, L et al. (5 more authors) (2021) The journey to monitoring ecosystem services: Are we there yet? Ecosystem Services, 50. 101313. ISSN 2212-0416

https://doi.org/10.1016/j.ecoser.2021.101313

© 2021, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1 The journey to monitoring ecosystem services: Are we there yet? 2 3 Ana Sofia Vaz^{a,b,*}, Odirilwe Selomane^c, Laurence Jones^d, Arjan S. Gosal^e, Guy Ziv^e, Frank Edgar 4 Muller-Karger^f, Enrique Montes^f, Maria Vallejos^{g,h} 5 6 ^aInter-university Institute for Earth System Research in Andalusia (IISTA), Universidad de Granada, 7 Avda. Del Mediterráneo s/n, 18006 Granada, Spain; 8 ^bCentro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do 9 Porto, Rua Padre Armando Quintas, Campus de Vairão, Vila do Conde, Portugal; 10 ^cCentre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa; 11 ^dUK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, 12 UK; 13 ^eSchool of Geography, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; 14 ^fCollege of Marine Science, University of South Florida, St Petersburg, Florida 33701, USA; 15 ^gInstituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Ruta 50, Km 11, 16 Departamento de Colonia, Uruguay; 17 ^hCátedra de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad 18 de Buenos Aires, Buenos Aires, Argentina. 19 20 *Corresponding author 21 Email addresses: ASV: sofia.linovaz@gmail.com; OS: odirilwes@sun.ac.za; LJ: LJ@ceh.ac.uk; AG: 22 a.gosal@gmx.co.uk; GZ: G.Ziv@leeds.ac.uk; FEM-K: carib@usf.edu; EM: emontesh@mail.usf.edu; 23 MV: vallejos@agro.uba.ar 24 25 Abstract 26 The Group on Earth Observations Biodiversity Observation Network (GEO BON) was established to 27 promote and provide guidance toward a global observation network on biodiversity and ecosystems 28 for decision makers and the scientific community. Here we comment on three key challenges in the

29 development and implementation of monitoring schemes and indicators of ecosystem services (ES):

30 (1) combining ES observations, data and methods across scales; (2) identifying operational ES

1

- 31 metrics that consider the interactions between people and ecosystems; and (3) integrating the
- 32 diversity of socio-cultural values and knowledge into monitoring activities. We discuss these
- 33 challenges with the goal to stimulate the ES research community to help tackle these focus areas in
- 34 ES monitoring.
- 35

36 Keywords

- 37 Earth observations; Indicators; Local knowledge; Observation systems
- 38

39 1. Global monitoring of ecosystem services

- 40 The protection and sustainable use of ecosystem services (ES) are at the heart of human prosperity.
- 41 This is the focus of national and international initiatives, including the 2030 Agenda for Sustainable
- 42 Development, the Decade of Ocean Science for Sustainable Development, the Decade on Ecosystem
- 43 Restoration, and post-2020 action on the Convention on Biological Diversity (Geijzendorffer et al.
- 44 2017; Wood et al. 2018). For these initiatives to succeed, effective monitoring (*sensu* Chapman 2012)
- 45 is needed to assess condition and trends of biodiversity and ES in all their dimensions.
- 46
- 47 The Ecosystem Services group within the Group on Earth Observations Biodiversity Observation
- 48 Network (GEO BON ES) seeks to contribute to a standardised, interoperable indicator platform linking
- 49 databases and information resources to advance ES science and policy implementation.
- 50 Considerable conceptual progress has been made in designing monitoring schemes for ES (Karp et
- al. 2015; Tallis et al 2012; Cord et al. 2017). However, difficulties remain in developing the functional
- 52 indicators necessary to make this vision operational. In this commentary we outline three key
- 53 challenges to stimulate the ES research community to tackle those focus areas.
- 54

55 2. Monitoring ecosystem services: a challenge of three tales

56 2.1. Challenge 1 – Combining observations and data across scales

57 Advances in satellite sensors and computing power have improved our ability to quantify many

- aspects of ecosystem functioning at the global level (such as primary production on land and water;
- 59 Baccini et al. 2017). Nonetheless, there are disparities between satellite and model-derived data at
- 60 global scales and the ES experienced at local scale (Ramirez-Reyes et al. 2019). Management

actions are often made locally, and the resulting changes in ES are not easily assessed at larger scales. Some ES indicators (e.g., use of non-timber forest products) are only meaningful at specific scales, and depend on social information at those scales (see Challenge 2). Also, data are often collected with different protocols, lack minimum metadata requirements, or are not publicly available. It is therefore necessary to assess the temporal and spatial scales at which data are most useful for decision-making. Devising protocols that facilitate harmonised data collection is essential to achieve greater use of local data for benchmarking and validation of regional and global ES data products.

68

69 2.2. Challenge 2 – Identifying indicators that expand ecological considerations to include 70 people

71 ES have both ecological and social dimensions (Jones et al. 2016; Potschin-Young et al. 2018), which 72 broadly include: (1) ecosystem supply or provision, i.e., the capacity of ecosystems to provide ES; (2) 73 anthropogenic contribution to ES flows, including knowledge, time, capital, materials, and technology; 74 (3) human demand or needs for ES; and (4) the actual benefits and values of nature to people (see 75 Challenge 3). ES monitoring has typically taken a biophysical approach (i.e., focused on supply), and 76 efforts are needed to make the social dimension more prominent. Socio-economic and health data, 77 from population census or global observatories (e.g., those promoted by the World Bank), are 78 increasingly applied to guantify ES demand and use (e.g., Balbi et al. 2019). It is essential to raise 79 effort in identifying essential social metrics of ES and improve socio-ecological links (Olander et al., 80 2018). This requires harmonisation (and often anonymisation) of data through collection and reporting 81 procedures.

82

83 2.3. Challenge 3 – Integrating socio-cultural values and local knowledge to guide applications

Social and cultural values, including the preferences and principles that groups or individuals hold in relation to ecosystems are central to ES (Chan et al., 2018; Kenter et al. 2015). Indigenous and local knowledge, as the cumulative and place-based body of knowledge about nature tied to local communities and transmitted through generations, is increasingly prominent in the ES agenda (Lam et al. 2020; Díaz et al. 2018). However, reconciling socio-cultural values and local knowledge in a coherent framework that is useful for ES monitoring represents a challenge (Scholte et al. 2015). hard to upscale (Kenter et al. 2015; Lam et al. 2020). Driving interdisciplinary collaboration would
facilitate greater understanding of ES socio-cultural meanings and guide the collection of necessary
information at appropriate scales, to derive generalisable and scalable socio-cultural metrics for ES
monitoring.

95

3. Moving forward with a global monitoring platform for ecosystem services

97 The idea of a global monitoring platform for biodiversity and ecosystem services has long inspired 98 research efforts and initiatives (e.g., Global Biodiversity Information Facility/GBIF; Ocean Biodiversity 99 Information System/OBIS). Before this idea can become operational, we emphasise the need for: (1) 100 harmonising the plethora of ES initiatives, data and methods through tools, guidelines, and workflows 101 that improve interoperability across scales; (2) identifying essential metrics for ES that capture 102 biophysical and human dimensions and their links; and (3) including socio-cultural values in 103 monitoring activities through generalisable and scalable procedures. We call for the ES community to 104 develop guidelines and protocols to enable holistic, interoperable, and useful monitoring of ES as this 105 is needed to stimulate fair, efficient, and sustainable development.

106

107 Acknowledgements

108 This work contributes to the GEO BON Working Group on Ecosystem Services. The authors thank the 109 participants of the hands-on meeting on "Monitoring Ecosystem Services: From local to global" of the 110 GEO BON Open Science Conference 2020 who inspired the ideas in this manuscript. Funding: ASV 111 acknowledges support from Ministerio de Ciencia, Innovación y Universidades (Spain) through the 2018 112 Juan de la Cierva-Formación program [reference: FJC2018-038131-I] and from FCT - Foundation for Science and Technology through the program Stimulus for Scientific Employment -113 114 Individual Support (reference 2020.01175.CEECIND); FMK and EM acknowledge support of the 115 NASA Applied Sciences Office, Biodiversity & Ecological Forecasting Program [NASA Grant: 116 80NSSC20K0017], and of the NOAA US Integrated Ocean Observing System [IOOS; NOAA/ONR 117 Grant: NA19NOS0120199], to support for the Marine Biodiversity Observation Network (MBON). FMK 118 and EM also received support from the National Science Foundation (NSF Award No. 1728913) and 119 the Gulf of Mexico Coastal Ocean Observing System (GCOOS).

120

121 **References**

- 122 Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D. and Houghton, R.A., 2017.
- 123 Tropical forests are a net carbon source based on aboveground measurements of gain and loss.
- 124 Science, 358, 230-234. https://doi.org/10.1126/science.aam5962
- 125 Balbi, S., Selomane, O., Sitas, N., Blanchard, R., Kotzee, I., O'Farrell, P. and Villa, F., 2019. Human
- dependence on natural resources in rapidly urbanising South African regions. Environmental
- 127 Research Letters, 14, 044008. https://doi.org/10.1088/1748-9326/aafe43
- 128 Chan, K.M., Gould, R.K. and Pascual, U., 2018. Relational values: what are they, and what's the fuss
- about? Current Opinion in Environmental Sustainability, 35, A1-A7.
- 130 <u>https://doi.org/10.1016/j.cosust.2018.11.003</u>
- 131 Chapman, P.M., 2012. Adaptive monitoring based on ecosystem services. Science of the Total
- 132 Environment, 415, 56-60. <u>https://doi.org/10.1016/j.scitotenv.2011.03.036</u>
- 133 Cord, A.F., Brauman, K.A., Chaplin-Kramer, R., Huth, A., Ziv, G. and Seppelt, R., 2017. Priorities to
- advance monitoring of ecosystem services using earth observation. Trends in ecology & evolution,
- 135 32, 416-428. <u>http://dx.doi.org/10.1016/j.tree.2017.03.003</u>
- 136 Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R.T., Molnár, Z., Hill, R., Chan, K.M.,
- 137 Baste, I.A., Brauman, K.A. and Polasky, S., 2018. Assessing nature's contributions to people.
- 138 Science, 359, 270-272. DOI: 10.1126/science.aap8826
- 139 Geijzendorffer, I.R., Cohen-Shacham, E., Cord, A.F., Cramer, W., Guerra, C. and Martín-López, B.,
- 140 2017. Ecosystem services in global sustainability policies. Environmental Science & Policy, 74, 40-48.
- 141 <u>http://dx.doi.org/10.1016/j.envsci.2017.04.017</u>
- Jones L., Norton L., Austin, Z., Browne, A.L., Donovan, D., Emmett, B.A., Grabowski, Z.J., Howard
- 143 D.C., Jones, J.P.G., Kenter, J.O., Manley, W., Morris C., Robinson, D.A., Short C., Siriwardena, G.M.,
- 144 Stevens C.J., Storkey, J., Waters, R.D., Willis, G.F. (2016). Stocks and flows of natural and human-
- derived capital in ecosystem services. Land Use Policy 52, 151–162.
- 146 doi:10.1016/j.landusepol.2015.12.014
- 147 Karp, D.S., Tallis, H., Sachse, R., Halpern, B., Thonicke, K., Cramer, W., Mooney, H., Polasky, S.,
- 148 Tietjen, B., Waha, K. and Walz, A., 2015. National indicators for observing ecosystem service change.
- 149 Global Environmental Change, 35, 12-21. <u>https://doi.org/10.1016/j.gloenvcha.2015.07.014</u>

- 150 Kenter, J.O., O'Brien, L., Hockley, N., Ravenscroft, N., Fazey, I., Irvine, K.N., Reed, M.S., Christie, M.,
- 151 Brady, E., Bryce, R., Church, A., 2015. What are shared and social values of ecosystems?. Ecological
- 152 Economics, 111, 86-99. <u>https://doi.org/10.1016/j.ecolecon.2015.01.006</u>
- Lam, D., E. Hinz, D. Lang, M. Tengö, H. von Wehrden, and B. Martín-López. 2020. Indigenous and
- 154 local knowledge in sustainability transformations research: a literature review. Ecology and Society,
- 155 25 pp. 3. <u>https://doi.org/10.5751/ES-11305-250103</u>
- 156 Olander, L.P., Johnston, R.J., Tallis, H., Kagan, J., Maguire, L.A., Polasky, S., Urban, D., Boyd, J.,
- 157 Wainger, L., Palmer, M., 2018. Benefit relevant indicators: Ecosystem services measures that link
- ecological and social outcomes. Ecological Indicators, 85, 1262-
- 159 1272.<u>https://doi.org/10.1016/j.ecolind.2017.12.001</u>
- 160 Potschin-Young, M., Haines-Young, R., Görg, C., Heink, U., Jax, K., Schleyer, C., 2018.
- 161 Understanding the role of conceptual frameworks: Reading the ecosystem service cascade.
- 162 Ecosystem Services, 29, 428-440. <u>https://doi.org/10.1016/j.ecoser.2017.05.015</u>
- 163 Ramirez-Reyes, C., Brauman, K.A., Chaplin-Kramer, R., Galford, G.L., Adamo, S.B., Anderson, C.B.,
- 164 Anderson, C., Allington, G.R., Bagstad, K.J., Coe, M.T. and Cord, A.F., 2019. Reimagining the
- 165 potential of Earth observations for ecosystem service assessments. Science of the Total
- 166 Environment, 665, 1053-1063. https://doi.org/10.1016/j.scitotenv.2019.02.150
- 167 Scholte S.S., Van Teeffelen A.J., Verburg P.H., 2015. Integrating socio-cultural perspectives into
- 168 ecosystem service valuation: a review of concepts and methods. Ecological Wconomics. 114, 67-78.
- 169 https://doi.org/10.1016/j.ecolecon.2015.03.007
- 170 Tallis, H., Mooney, H., Andelman, S., Balvanera, P., Cramer, W., Karp, D., Polasky, S., Reyers, B.,
- 171 Ricketts, T., Running, S. and Thonicke, K., 2012. A global system for monitoring ecosystem service
- 172 change. Bioscience, 62, 977-986. <u>https://doi.org/10.1525/bio.2012.62.11.7</u>
- 173 Wood, S.L., Jones, S.K., Johnson, J.A., Brauman, K.A., Chaplin-Kramer, R., Fremier, A., Girvetz, E.,
- 174 Gordon, L.J., Kappel, C.V., Mandle, L., Mulligan, M., 2018. Distilling the role of ecosystem services in
- the Sustainable Development Goals. Ecosystem services, 29, 70-82.
- 176 <u>https://doi.org/10.1016/j.ecoser.2017.10.010</u>