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Effective Multilayer Hybrid Classification Approach for Automatic Bridge Health Assessment on
Large-scale Uncertain Data

Yun Yang,Fengtao Nan,Po Yang

• We design a bridge evaluation system for the classification of Bridges. This is conducive to timely maintenance of the

bridge to ensure people’s travel safety and reduce the economic losses caused by the bridge safety problems.

• By changing the previous form of manual classification and combining machine learning algorithm with bridge eval-

uation, automatic bridge status monitoring and evaluation are realized, and the labor cost is reduced.

• A new robust hybrid model based automatic bridge health assessment approach is proposed and development. In this

approach, we establish a supervised classifier under the condition of detecting uncertain labels and realize error label

correction. Compared to traditional classifiers, this classifier is more feasible to dealing with large-scale bridge data

with uncertain labels, where it performs good performance in bridge health evaluation with complex structures.

• A new penalty function analysis method is proposed and integrated in the proposed classifier to measure the final label

of the hybrid classification model. This function can iteratively determine the uncertain labels of the labeled data set

and evaluate the confidence of the uncertain labels, in which the high confidence data is expanded into the training set

and the low confidence data is corrected.

• In practical applications, a comprehensive experimental evaluation and discussion of the proposed method was carried

out. Experiments on benchmark data and actual bridge data sets show that the proposed method is superior to alternative

solutions and provides potential solutions for practical applications. The results show that when evaluating bridges with

complex structures and large-scale uncertain data, our method can greatly outperform other traditional methods.
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A B S T R A C T

The health level of the bridge is critical to the safety and maintainability of the bridge. However, with

the rapid increase of bridge data with complex information, manual evaluation of bridge health re-

quires high labor and time costs and a lot of related knowledge. Meanwhile, due to the error of sensors

and subjective judgment of experts, as well as the influence of the external environment of the bridge,

there is great uncertainty in the evaluation of the bridge data. Thence, how to use a large amount of

bridge data with large-scale uncertain labels to build a robust classification model for efficient and

high-quality bridge health assessment has become an urgent task. In order to better assess the health

of the bridge, we adopt a multi-layer hybrid method to iteratively determine the uncertain labels of

the target data set, evaluate the confidence of the large-scale uncertain labels, add high-confidence

data to the training set, and correct the low-confidence data. Finally, we get an effective classification

model with the optimized training data set. This paper studies the learning problem of classification

model on labeled data with large-scale uncertain labels, and proposes an effective hybrid classification

model (HCM), which can establish a supervised classifier under the condition of detecting uncertain

labels and realize error label correction. In order to measure the HCM label assignment problem,

we introduce a new penalty function, which can evaluate the label consistency problem of two basic

classifiers. Meanwhile, we apply the model to bridge data with uncertain labels for bridge health eval-

uation. Experiments conducted on synthetic data, benchmark data and real bridge data sets show that

the proposed method is superior to other methods and provides an effective and convenient solution

for bridge health assessment. At the same time, this method can also be used in other research fields

where there are large-scale uncertain labels.

1. Introduction

For industrial applications, how to objective quantify and

access the health condition of existing bridges has become an

important problem to maintain long-term safety and smooth

of traffic flow [31, 29, 27, 19, 36, 23]. The development of

industrial information integration promotes the transforma-

tion of the industry, and the provision of an automated bridge

assessment system has important practical significance for

highway traffic [9, 10, 38, 39]. Currently, bridge health eval-

uation and assessment strategies are mostly manually de-

signed, where experts will extract some key indicators of

bridges and further assess their health evaluation. These

manual strategies are laborious and time-consuming, espe-

cially towards bridges with large-scale and complex struc-

tures. Due to the error of sensors and subjective judgment of

experts, as well as the influence of the external environment

of the bridge, there is great uncertainty in the evaluation of

the bridge data.In the industrial applications, how to evalu-

ate the health condition of the existing bridges has become

an important problem to ensure the safety and smooth traffic

lines [2, 13, 20].

Bridge health evaluation is a complex decision-making

process involving multiple levels, indicators and factors
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[19, 36, 33, 18]. In the process of bridge health evalua-

tion, due to the subjectivity of qualitative evaluation and

the limitation of some statistical methods, as well as the in-

terference of many external factors that cannot be quantita-

tively described. The research of bridge health evaluation

theory mainly includes: vibration based identification [8],

structural fingerprint and variability [5], system identifica-

tion [14], optimization of detection points [17]. Now, the

technique of integrity assessment has been applied to some

simple structures, but it cannot be reliably applied to com-

plex structures. The main reasons that hinder the use of this

technology are as follows: [26, 25] 1) The influence of un-

certainty and non-structural factors in structure and environ-

ment. 2) The measurement information is incomplete. 3)

Insufficient measurement accuracy and measurement signal

noise. 4) Bridge structure has high redundancy and mea-

surement signal is not sensitive to local damage.

Bridges are an important part of the transportation net-

work and require daily inspection and maintenance activi-

ties. Generally, bridge managers pay more attention to the

effective management of existing bridges and the develop-

ment of bridge management systems [24] to assist decision

makers in establishing effective repair and maintenance pro-

grams. [44] proposed a bridge damage diagnosis and pre-

diction reasoning system based on fuzzy rules, which aims

to provide bridge designers with valuable information about

the influence of design factors on bridge aging. [21] uses a

fuzzy method combining probability theory and fuzzy rea-
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Figure 1: Framework of bridge health evaluation system based on HCM

soning to evaluate the degree of bridge damage and ana-

lyze its causes. [32] used Markov model in the bridge man-

agement system. [3] describes the Finite Element (FE) and

experimental bases of a practical bridge management and

maintenance (BMM) system. [35] uses decision tree and

Markov process to select the maintenance strategy of the

in-service bridge, so that it has the smallest life cycle cost.

These systems are efficient and effective to deal with bridges

evaluation with simple structures and small-scale data, but

suffers from key limitations. Firstly, these methods only con-

sider a single factor in the health evaluation of the bridge.

Secondly, the biggest difficulty of the bridge data classifi-

cation task is that the data label is uncertain, and the single

classification algorithm has no label error correction ability.

The process of obtaining bridge behavior data from com-

plex bridge engineering, which is known to be faulty, is dif-

ficult and costly. In contrast, obtaining behavior data from

normally functioning bridges is much easier and cheaper,

since most bridges work normally for most of their lifetime.

In the process of practical evaluation, due to the subjectiv-

ity of qualitative evaluation (i.e., expert subjective experi-

ence) and the limitation of some statistical methods (i.e.,

data dimension is too large, data is presented in multimodal

form), as well as the interference of many external factors

(i.e., pressure and humidity around the bridge) that cannot

be quantitatively described, the evaluation of bridge health

has great ambiguity and uncertainty. Therefore, it is highly

demanding to explore new classification model based auto-

matic assessment system towards large-scale and uncertain

bridge health related data. Meanwhile, those fundamental

bridge health evaluation systems do not automatically eval-

uate bridge health, but are more like a data analysis platform

that requires people to participate. There is no maximized

reduction in intensity of people’s work and the automation

of systems is no maximize reduction. These systems do not

reduce the intensity of people’s work and are highly depen-

dent on people.

In order to solve the complexity of bridge data (i.e., un-

balanced, multimodal, noise, less) and improve the accuracy

and timeliness of bridge evaluation, this paper attempts to

investigate one feasibility of combining the classification al-

gorithm (supervised learning) and clustering algorithm (un-

supervised learning) as a hybrid classification model is to

solve the problem of classification task and training data la-

bel uncertainty. We propose a system for automatic and effi-

cient bridge health evaluation. The main work of the bridge

health system assessment is to evaluate (classify) the existing

bridge health status based on historical bridge data. In this

system, a classifier trained with labeled samples is used, and

then a class label is assigned to the existing bridge, and a cor-

responding maintenance plan is proposed for each evaluated

structure. In our implementation, we have designed a hybrid

classification model to solve the uncertainty of bridge label-

ing and successfully applied it to bridge health assessment

system. The purpose of this hybrid algorithm is to make it

capable of error label correction. Different from other meth-

ods to deal with uncertain labels, this hybrid classification

model is designed to make it capable of error label correc-

tion. The reason for this is the lack of bridge data, which

is very precious. This paper introduces a automatic bridge

health evaluation system to monitor the bridge health. Our

system has a series processes include data collection, data

process, etc. In the system, we combine the machine learn-

ing algorithm and bridge health evaluation system to build

the machine learning model in a data-driven way, so as to

minimize the dependence on people and make the system

more intelligent. In summary, the main contributions of our

work are summarized as follows:

Yun Yang et al.: Preprint submitted to Elsevier Page 2 of 15
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1. We designed a bridge evaluation system for the classi-

fication of Bridges. This is conducive to timely main-

tenance of the bridge to ensure people’s travel safety

and reduce the economic losses caused by the bridge

safety problems.

2. By changing the previous form of manual classifica-

tion and combining machine learning algorithm with

bridge evaluation, automatic bridge status monitoring

and evaluation are realized, and the labor cost is re-

duced.

3. A new robust hybrid model based automatic bridge

health assessment approach is proposed and develop-

ment. In this approach, we establish a supervised clas-

sifier under the condition of detecting uncertain labels

and realize error label correction. Compared to tra-

ditional classifiers, this classifier is more feasible to

dealing with large-scale bridge data with uncertain la-

bels, where it performs good performance in bridge

health evaluation with complex structures.

4. A new penalty function analysis method is proposed

and integrated in the proposed classifier to measure

the final label of the hybrid classification model. This

function can iteratively determine the uncertain labels

of the labeled data set and evaluate the confidence of

the uncertain labels, in which the high confidence data

is expanded into the training set and the low confi-

dence data is corrected.

5. In practical applications, a comprehensive experimen-

tal evaluation and discussion of the proposed method

was carried out. Experiments on benchmark data and

actual bridge datasets show that the proposed method

is superior to alternative solutions and provides po-

tential solutions for practical applications. The re-

sults show that when evaluating bridges with complex

structures and large-scale uncertain data, our method

can greatly outperform other traditional methods.

The remainder of this paper, section II describes the

bridge health evaluation system, and section III proposed

robust hybrid classification model along with details of the

major techniques developed. Section IV reports the exper-

imental results for synthetic data, benchmark datasets and

verifies a practical bridge health evaluation model based on

our approach as well as the experimental results for bridge

datasets. Finally, section V presents the discussion and con-

clusions.

2. Framework of Bridge Health Evaluation

System Based on HCM

In this section, we focus on how our bridge health eval-

uation system works effectively in the presence of uncertain

label data. At the same time, we propose a hybrid classifica-

tion model (HCM) to deal with uncertain labeling of bridge

data. HCM is described in Section III. As illustrated in Fig.1,

we extend hybrid classification model (HCM) into a frame-

work of bridge health evaluation system. Meanwhile, the

real-time monitoring interface and output results of the sys-

tem are shown in Fig.2 and Fig.3.

Figure 2: The real-time monitoring interface. This system is
applied to a bridge company in Kunming, China, and the in-
terface contents are all in Chinese.The left-hand column of the
image is the name of each bridge.The right column is once for
bridge health assessment, maintenance program recommenda-
tion, special inspection and real-time monitoring functions.

Figure 3: Output of bridge health evaluation system. The
main interface is the evaluation result of the bridge, which is
shown as a class one bridge, and the maintenance scheme is
one.

The system is mainly used to achieve powerful perfor-

mance on bridge datasets with uncertain label sets. The en-

tire framework can be divided into three modules.

Data Processing: Data acquisition equipment and col-

lected data are shown in Fig.4 and Fig.5. The function of this

part is to convert the non-standard bridge data into standard

bridge data. The main operations include: 1) unstructured

data to structured data; 2) data dimension reduction; 3) data

normalization; 4) data balance processing

Algorithm Application: After the data processed in

the first step, we analyze the data. Bridge data features are

mainly composed of three parts, namely the bridge super-

structure, substructure and floor system. The representative

features are shown in Fig.6. This module trains our proposed

approach HCM on the preprocessed bridge data with both

normal and uncertain sets. According to the main evaluation

components of the bridge, we introduce multi-view learning

[37]. In fact, objects can often be described from different
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Figure 4: Data acquisition equipment

Figure 5: Original bridge data. The data contents are recorded
in Chinese, including structured data and unstructured data.

views. Usually, a bridge can be described by bridge super-

structure, bridge substructure and floor system. We consider

the superstructure, substructure, and bridge deck system as

auxiliary tasks and the reddest evaluation of the bridge state

as the main task. Three classifiers are used to train the pro-

cessed data obtained from the three components. Then the

training results of the three classifiers are used as the charac-

teristics of the main task to train the final bridge evaluation

classifier. At the same time, a hybrid classification model is

proposed to solve the problem of uncertain labeling in bridge

data.

Bridge Health Evaluation System Output: Trained-

learners perform classification tasks, where the cases repre-

sented by the data (such as bridges) are determined by tags

that determine membership in one of the predefined cate-

gories of various possible damage levels. Meanwhile, ac-

cording to the corresponding bridge evaluation grade, we

can give the corresponding maintenance plan. In the field of

bridge health evaluation, traditional methods mainly adopt

manual annotation, and manual analysis is needed for the

data collected by equipment, which results in labor cost. At

the same time, the analyst needs to have some knowledge

of the relevant field. In this case, how to combine machine

learning, the establishment of an intelligent system is partic-

ularly important. Our bridge health evaluation system can

intelligently assess the health status of the bridge without

human cost and provide corresponding maintenance plan at

the same time.

Figure 6: Representative features

3. Description of Hybrid Classification Model

In this section, we propose a hybrid classification model

(HCM) in order to solve the uncertain labels problem. Our

algorithm pseudocode is shown in Algorithm 1. Its first term

is completely unsupervised, using only unlabeled instances

to measure the difference between the cluster output and the

original uncertain label. We use consistent matching to ana-

lyze the initial label of the data. We use consistent matching

to analyze the initialization label of data. The main purpose

of initialization steps is divided into dataset L with normal

labels and dataset U with uncertain labels. The second item

represents the comparison between the output classification

and the clustering output among the monitoring processes.

We select the same label output (use the penalty function to

analyze the similarity) by the two classifiers as the normal

labels, and add the data to the data set L.

3.1. Initialization Procedure
In the beginning, we think that there are uncertain la-

bels in the data and no clear label mechanism is established.

We performed cluster analysis on the uncertain label data

through unsupervised clustering and use the corresponding

matching to measure the clustering results and the original

data labels. In order to get the label of each cluster, the data

in each cluster is matched consistently with the data in the

original data class. That is, the original data and cluster-

ing results are intersected, and then normalized to obtain the

Yun Yang et al.: Preprint submitted to Elsevier Page 4 of 15
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Algorithm 1 A robust hybrid classification model with un-

certain labels

Input: D = {(xi, yi)}
k
i=1

B_Cluster and B_Classifier

Output: L

Initialize: L = ∅;U = ∅

1: f (xi) ← B_Cluster(D)

2: if f (xi) == yi then

3: Add (xi, yi) to L
U = D − L

4: while L is changed do

5: if f (xi) ≠ yi then

6: f (x) =
∑K

k=1
p(K = yk)p(x|K = yk)

7: f (x) =
∑k

i=1

∑K

j=1
p(C = yl|K = yk)p(x|K = yk)

8: f (x) =
∑k

i=1

∑K

j=1
wlkΠkp(x|K = yk)

9: if P (f (xi), yi) == 1 then

10: Add (xi, yi) to L

11: else

12: Add (xi, f (xi)) to L

13: U:U remove (xi, yi)

14: L:L add (xi, yiorf (xi))

15: return result

consistency matrix H.

H =

⎡⎢⎢⎢⎢⎢⎣

Q1∩O1

Q1

,
Q1∩O2

Q1

, ...,
Q1∩On

Q1
Q2∩O1

Q2

,
Q2∩O2

Q2

, ...,
Q2∩On

Q2

..., ..., ..., ...
Qn∩O1

Qn

,
Qn∩O2

Qn

, ...,
Qn∩On

Qn

⎤⎥⎥⎥⎥⎥⎦

(1)

where Qi denotes the i-th cluster and Oi denotes the i-th

class. In consistency matrix H, we choose the largest value

in each row to measure the category of clustering results.

The corresponding matching is presented in Fig.7 and Fig.8.

In Fig.7, there are 3 clusters corresponding to 3 classes. K-

means (Fig.8) is able to deliver a good decision boundary.

By our calculations, we obtain the consistency matrix H .

From the matrix (2), we can clearly get the similarity be-

tween the original data and the clustering results, and we

can also assign a label to the unsupervised clustering.

H =

⎡
⎢⎢⎣

0 0.976 0.024

0.01 0.005 0.985

0.979 0 0.021

⎤
⎥⎥⎦

(2)

3.2. Estimation Procedure
Through the initialization step, we divide the original

data set into the normal label data set and the uncertain label

data set. In the estimation procedure, we think that as long as

the given labels in the two evaluation methods are consistent,

the uncertain label data can be transformed into the normal

label data. In the case that there are differences among the

two evaluation criteria, we select the same result (use the

penalty function to measure the similarity of the results.) of

Figure 7: Original data distribution

Figure 8: Cluster by K-means

clustering result And classification result as the new label of

the uncertain label data and add it to the uncertain data set

again. In this way, our algorithm has error correction ability

to a certain extent. At the same time, the normal label data

is added to the training set to expand the training data and

improve the generalization ability of the model.

Hybrid Classification Model (HCM): We start with the

unsupervised clustering where we initially went to a small

number of samples that had certain labels. Following the

notations in previous section (Initialization Procedure), let

D = {(x1, y1), (x2, y2), ..., (xk, yk)} denote all the provided

data, we use L = {(x1, y1), (x2, y2), ..., (xl, yl)} and U =

{(xl+1, yl+1), (xl+2, yl+2, ..., (xk, yk)} to denote the certain

labeled data and the uncertain labeled data.

We define a hybrid model, which consists of two

parts: an unsupervised cluster structure K , which con-

tains K = (1, 2, ..., k) clusters, and a supervised struc-

ture C , which contains C classes. According to the tra-

ditional hybrid model structure, we assume that the data

D = {(x1, y1), (x2, y2),… ,

(xk, yk)} are independent realizations of a random vector

Yun Yang et al.: Preprint submitted to Elsevier Page 5 of 15
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X ∈ ℝ with density function:

f (x) =

K∑
k=1

p(K = yk)p(x|K = yk) (3)

where p(K = yk)is the prior probability of the k-th cluster

and p(x|K = yk) is the corresponding conditional density.

Next, we introduce the supervision information carried

by the learning data. Since
∑K

i=1
p(K = yl|C = yk) = 1 for

all k = 1, 2, ..., K ,combining formula (3) and
∑K

i=1
p(K =

yl|C = yk) = 1, we get formula (4).

f (x) =

k∑
i=1

K∑
j=1

p(C = yl|K = yk)p(x|K = yk) (4)

where p(C = yi)|K = yk can be interpreted as the probabil-

ity that the k-th cluster belongs to the i-th cluster, so the con-

sistency between the cluster and the cluster can be measured.

Using the classic symbol of the parametric mixed model and

introducing the symbol wlk = p(C = yk|K = yk), we can

reconstruct formula (4) as:

f (x) =

k∑
i=1

K∑
j=1

wlkΠkp(x|K = yk) (5)

where Πk = p(K = yk). Therefore, (5) shows both the

modeling part of our hybrid model-based approach and the

monitoring part through parameters. Since the modeling de-

scribed in this section is based on a mixed model, we can use

any conditional density to model each cluster.

Penalty Function Analysis: According to the labels ob-

tained from the robust HCM, the similarity calculation is

carried out between the original labels and HCM labels to

determine the confidence of the final labels. Penalty func-

tion, presented in (6), measures the similarity between qn
and qk. The penalty function uses a similarity measure,

r(., .)and s(., .) are calculated as in formulas (7) (8). Then

map them to penalty factors in the regular term. The prod-

uct r(qn, qk) × (qn, qk) is normalized in [0,1].

P (qn, qk) = sign(
r(qn, qk) + s(qn.qk)

2
) (6)

In this paper, we choose the Pearson correlation coeffi-

cient [22] and the Cosine similarity [1] between the probabil-

ity vectors qn and qk. Using Euclidean distance alone may

not capture all the information between two vectors. For-

mally, (8) shows the similarity concerning the correlation

r(qn, qk) =

∑K

i=1
(qni − q̄n)(qnj − q̄k)√∑K

i=1
(qni − q̄n)

2

√∑K

i=1
(qki − q̄k)

2

(7)

s(qk, qn) = 1 −
qk ⋅ qn

||qk||2||qn||2 (8)

where q̄n is the mean of the vector qn and q̄k is the mean of the

vector qk. For the second similarity measure, we compute all

the pairwise Cosine similarity (8) between the probability

vectors and normalize them in [0, 1].Therefore, similar ex-

amples should be close to each other and highly correlated.

Since we intend to use the structure generated by the clus-

tering algorithm and the classification algorithm to calculate

the similarity in uncertain terms. If the result calculated by

Penalty Function Analysis is greater than 0.5, the label of

the HCM is consistent with the original label; otherwise, the

label is inconsistent. In the case of inconsistency, we select

the label result of the HCM as the correct result, while the

original label is the sample of the uncertain label. This is a

simple explanation of our label correction.

3.3. Optimization
The probability of the occurrence of uncertain label data

is introduced into the optimization objective, and it is impos-

sible to estimate the model parameters through theoretical

analysis similar to maximum likelihood estimation. In fact,

if you take the partial derivative of both sides, you find that

the parameters on both sides cancel out. The classification

of uncertain label data in the training set can misjudge the

hidden value, and (6) is called the estimation problem under

incomplete data set. At present, EM algorithm [11] is the

classical and mainstream algorithm for estimation problems

under incomplete data sets.

4. Experiment Results

In order to verify our method, as described in Sections 2

and 3, we conducted a series of basic experiments and prac-

tical applications in this section to demonstrate our HCM

method in a more rigorous and fair manner, and recorded de-

tailed experimental results. In the experiment, three groups

of representative experiments were conducted. 1) to test the

sufficiency of the basic concepts introduced by our method,

we propose a robust supervised classification model for

uncertain label data, which was initially applied to 2-D-

synthetic data sets with different characteristics; 2) to check

the effectiveness of our method, the proposed HCM for data

with uncertain labels was initially applied to UCI datasets

with different characteristics; 3) on this basis, by collecting

sufficient and complex bridge data sets, further experimental

verification is carried out to compare the test with the exist-

ing technology. Finally, we verify the effectiveness of the

bridge health assessment system and demonstrate its effec-

tiveness in practical application.

In the process of experimental simulation and verifica-

tion, the 10-fold cross-validation method was used for ver-

ification, and the classifications Accuracy, F-Measure and

Recall were recorded respectively. Accuracy [12, 42] is the

evaluation standard used by most machine learning algo-

rithms or deep learning algorithms, and is an important indi-

cator to measure the quality of an algorithm [40]. Substan-

tially, precision correlated samples indicates the percentage

occupied in the retrieved sample, recall represents the cor-

related samples are retrieved relevant percentage of the total

samples. The Precision, Recall and Accuracy[41] are de-

Yun Yang et al.: Preprint submitted to Elsevier Page 6 of 15
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Figure 9: Input data distribution Figure 10: Classification prtfromance
on 2-D-synthetic data set with SVM

Figure 11: Classification perfromance
on 2-D-synthetic data set with
our approach

fined as (9), (10) and (11).

ACCURACY =
TP + TN

TP + FP + TN + FN
(9)

PRECISION =
TP

TP + FP
(10)

RECALL =
TP

TP + FN
(11)

where TP is the value assigned to the class correctly, FP

is the value assigned to the class incorrectly, and FN is the

value that should belong to that class but not assigned to the

class. In addition, F − measure combines the accuracy and

recall of the two indicators and evaluates the overall perfor-

mance of the classifier. The most commonly used one is

F − measure, which is defined as (12).

F −Measure = 2 ∗
PERCISION ∗ RECALL

PERCISION + RECALL
(12)

Uncertain labeling is a pain point in the industrial field,

which has a great impact on data-driven models. In the field

of machine learning, there are three main strategies for pro-

cessing uncertain labels: cleaning the data, using robust esti-

mations of model parameters and finally modelling the label

noise [6, 15]. Data cleaning methods: The removal of data

noise can be understood as errors or data deviations from

the expected value in the data, that is, the deviation or error

of the measured value relative to the real value in the mea-

surement process [34, 7]. However, removing noise samples

can reduce the classification bias, but it will also increase

the classification variance. Because the cleaned data set is

smaller than the original data set, which can easily lead to

small samples problems and over-fitting; Robust estimation

of model parameters: Therefore, other researchers recom-

mend not deleting any learning instances, but building ro-

bust supervised classifiers to label noise [4]. However, ro-

bust estimation of model parameters generally requires many

parameters, and it is difficult to grasp the value of parame-

ters. Although model parameter estimation can solve noise

data to a certain extent, it also has complex computational

complexity; Noise modelling: Noise model is the focus of

industrial research in recent years, because the collection

of actual data is accompanied by the production of a large

number of noise data [6, 28, 30]. Following that, we se-

lected several representative algorithms for uncertain label

processing. The idea of Robust Mixture Discriminant Anal-

ysis (RMDA) [6] is to use the supervised information carried

by the learning data label to assist the modeling of the un-

supervised information of the data. This method can build

a robust classifier based on the detected label inconsistency.

Rank Pruning (RP) [28] obtained consistent noise estimates

and equivalent expected risks in learning with undamaged

tags under ideal conditions and closed solutions under non-

ideal conditions. Probabilistic method (PA) [30] is a super-

vised learning probabilistic framework with multiple anno-

tators providing labels, but no absolute gold standard. PA

iteratively establishes a specific gold standard under which

the annotator performance is measured and then the annota-

tor performance is improved. But, there are two strong as-

sumptions that underlie PA. These three methods (RMDA,

PA, RP) adopt the idea of eliminating uncertain tags. If the

amount of data is insufficient, the ability of these three algo-

rithms is limited.
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Table 1
Summary of Parameter Setting

Parameter SVM Our approach
GAMMA 2 same

C 1 same
DEGREE 3 same

MAX_ITER -1 same

4.1. Experiments with Synthetic Datasets
In order to facilitate the understanding how our ap-

proach works, we design a synthetic data set of two classes,

named noisy ONE-S, where two fundamental classification

approaches hold. The training set shown in Fig.9 (a) con-

sists of 600 labeled examples marked with triangle and cir-

cular. As depicted in Fig.9 (a), this data set contains one

structures separated by a low data density region. For com-

parison purposes, we apply SVM (kernel is RBF) algorithm

on the whole data set. In other words, our approach applies

SVM as a base learner on the original data set. For SVM and

our approach, parameter settings are shown in Table 1.

In the first experiment, we verify on the synthetic data

set, our approach (base learner is SVM, kernel of RBF func-

tion) and SVM (kernel of RBF function). As shown in Fig.9

(a), the noisy rate is 0. Compared with Fig.3.3 (a) and Fig.11

(a), the two algorithms are the same in accuracy, but our al-

gorithm consumes a little more time. With the addition of

more and more noise(Fig.9 (a)-Fig.9 (d)), the performance

of our algorithm (Fig.11 (a)-Fig.11 (d)) is very stable, the

classification accuracy is only from 99% to 96%, reduced by

3%. However, the classification accuracy of SVM algorithm

is reduced from 99% to 65%(Fig.3.3(a)-Fig.3.3 (d)), which

is reduced by 30%. As shown in Fig.3.3 (d) and Fig.11 (d),

the time cost of our algorithm is not only higher than that

of SVM algorithm, but the classification accuracy of our

algorithm is 99 percent, and the classification accuracy of

SVM algorithm is 65 percent which is 30 percent higher than

that of SVM algorithm. Compare the performance of our

method and SVM under different uncertain performance ra-

tios. Compare the performance of our method and the SVM

on the ONE-S simulation data set with different uncertain la-

bel ratios. As expected, our method and SVM give a similar

decision boundary without label noise. This experimental

result confirms that there is a hidden relationship between

the two methods. With the increase in the ratio of uncertain

labels, the decision boundary displayed by the support vector

machine is very unstable, and our method shows good clas-

sification results, with stable decision boundary and good

performance, which proves the robustness of our algorithm.

Meanwhile, our algorithm has certain error correction abil-

ity, which is another reason why our algorithm is better than

SVM.

4.2. Experiments with Benchmark Datasets
In the first stage of the simulation experiment, the gen-

eral classification task is used to evaluate the classifica-

tion performance of the proposed method. Our benchmark

datasets is shown in Table I. The benchmark datasets con-

sist of 13 baseline datasets collected from the UCI database.

Table 2 range in size from 106 to 245,057 instances and in di-

mension from 3 to more than 241 features. Since the bench-

mark datasets are originally composed of the training set and

the test set of the classification task, in order to facilitate us

to divide the training set and the test set in the simulation

experiment, we combine the two sets into a whole.

Initially, we compare our approach with three classifica-

tion approaches, including RP, PA and RMDA. Since there is

no common implementation code available for the base clas-

sification methods, we implement these methods through

Python simulations and report average simulation results for

a fair comparison with our methods. In terms of experimen-

tal parameter setting, these methods adopt Linear Discrim-

inant Analysis (LDA) [16] classifier, and the parameter set-

ting is the default parameter of the LDA algorithm in the

SKLEARN package.

Table 3 shows the mean and standard deviation of classi-

fication accuracy of all datasets with 0.3 nosiy rate, respec-

tively. Tabel II shows that our approach performs highly

competitive with RP. Specifically, RP significantly outper-

forms LDA on 4 of the 13 cases; while HCM&LDA signif-

icantly outperforms LDA on 11 cases. Comparing PA al-

gorithm with LDA algorithm, PA wins 9 of 13 case,while

HCM&LDA wins 3 more times than the PA algorithm.

Meanwhile, we can see that RMDA wins 8 of the 13 cases

compared with LDA algorithm, while our algorithm also

wins 11 of the 13 cases compared with LDA algorithm.

Table 3 shows the highly competitive performance of RP,

PA and RMDA compared with HCM&LDA. Specifically, in

terms of wins HCM&LDA outperforms RP approach on 92

percent (12/13) of the cases; And HCM&LDA outperforms

RMDA on 70 percent (9/13) of the case; While HCM&LDA

outperfroms PA on 77 percent (10/13), respectively. Table

II also shows that the performance of our approach may vary

when different classification algorithms are used as the com-

bining function. In the experiment, we selected four differ-

ent classifiers as the basic classifiers, including LDA, CART,

KNN and SVM. Specifically, HCM&LDA is significantly

superior to LDA in 11 out of 13 patients; HCM&CART sig-

nificantly outperforms LDA on 9 of the 13 cases; HCM&K

NN was significantly superior to LDA in 11 out of 13

cases HCM&SVM significantly outperforms LDA on 13 of

the 13 cases; Among these four different basic classifica-

tions, the average classification accuracy demonstrates that

SVM has better average performance than other candidates.

HCM&LDA, HCM&CART, HCM&SVM, HCM&KNN are

more accurate than the others. The main reason is that our

algorithm adopts a kind of error correction mechanism in un-

certain label problem. As a result, we can conclude that the

selection of classification algorithm essentially determines

the performance of the proposed methods. Finally, Fig.12

shows the CPU time of the RP, PA, RMDA, and our meth-

ods (HCM&LDA) on the UCI datasets. In general, RP is al-

ways faster than other methods, and PA is always the slowest.

However, the CPU time of running our approach is relatively
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Table 2
Benchmark Datasets Information

No Datasets Attributes
Instances

Positive Negative Total
1 Australian 14 307 382 689
2 bupa 6 144 200 344
3 cleve 13 136 160 296
4 heart 13 150 120 270
5 appendicitis 7 21 85 106
6 Housevotes 16 123 109 232
7 SkinNonSkin 3 50859 194198 245057
8 mammographic 5 403 427 830
9 Heartstatlog 13 120 150 270
10 Digital1 241 734 766 1500
11 tic-tac-toe 9 625 333 958
12 SPECT 22 110 153 267
13 diabetes 8 268 500 768

Table 3
Mean and standard deviation (%) of 10-fold cross-validation error at 5% of labeled data. ∙/ ◦ Indicates whether classification
is statistically superior/ inferior to the compared method (Decision Tree).Win/ Tie/ Loss denotes the number of datasets
where classification is significantly superior/ equal/ inferior to the compared algorithms

Datasets LDA RP PA RMDA
Our Approach

HCM&LDA HCM&CART HCM&KNN HCM&SVM

Australian 73.88±3.94 79.09±5.43∙ 76.78±4.37∙ 72.28±4.05◦ 78.03±3.61∙ 71.12±5.91◦ 78.61±3.37∙ 82.44±3.87∙
bupa 55.11±6.82 55.80±4.15 62.83±7.22∙ 52.31±7.39◦ 60.17±3.97∙ 63.18±7.39∙ 54.33±8.68◦ 57.54±9.34∙
cleve 60.42±4.50 62.57±7.98∙ 68.47±8.48∙ 64.41±5.77∙ 71.19±4.29∙ 71.75±5.71∙ 74.58±2.84∙ 74.58±4.55∙
heart 70.23±7.08 69.12±7.94◦ 72.82±8.42∙ 70.62±6.81 78.43±6.08∙ 72.11±4.02∙ 78.07±5.14∙ 78.42±6.65∙

appendicitis 75.38±10.04 58.09±16.03◦ 73.05±11.26◦ 70.48±10.63◦ 86.32±7.07∙ 87.19±10.06∙ 89.19±9.07∙ 90.01±7.09∙
housevotes 76.57±6.45 65.84±6.18◦ 75.77±4.10◦ 84.84±8.26∙ 85.27±9.87∙ 81.78±13.04∙ 88.75±9.04∙ 90.49±6.06∙

SkinNonSkin 76.86±8.43 64.13±10.02◦ 76.92±8.51 88.61±5.77∙ 88.82±6.74∙ 88.51±7.09∙ 89.91±4.59∙ 90.31±4.06∙
mammographic 66.51±5.02 69.37±4.68∙ 70.72±4.39∙ 67.22±3.33∙ 79.35±3.45∙ 74.96±7.83∙ 74.78±4.22∙ 77.32±2.45∙
Heartstatlog 70.99±3.96 66.16±10.29◦ 75.84±3.52∙ 66.55±5.02◦ 79.55±3.01∙ 69.92±5.55◦ 77.69±4.22∙ 79.17±3.18∙

Digital1 86.86±1.71 86.06±11.46 70.17±1.46◦ 90.33±1.02∙ 90.46±1.81∙ 75.19±7.37◦ 88.59±4.55∙ 88.66±3.94∙
tic-tac-toe 43.97±19.06 45.86±17.66∙ 46.57±21.58∙ 46.86±22.93∙ 53.71±14.97∙ 52.15±17.46∙ 53.93±16.3∙ 54.23±12.77∙
SPECT 52.99±7.53 49.57±12.47◦ 58.28±4.73∙ 58.26±13.05∙ 51.84±15.43◦ 55.26±3.74∙ 54.13±8.43∙ 57.91±12.08∙
diabetes 58.58±7.52 56.75±9.28◦ 64.84±5.19∙ 60.55±4.34∙ 58.84±10.85◦ 55.46±9.58◦ 56.11±9.65◦ 60.91±10.36∙

Win/Tie/Loss Against LDA 4/2/7 9/1/3 8/1/4 11/0/2 9/0/4 11/0/2 13/0/0

similar to the RMDA at the middle level of all compared ap-

proaches.

Fig.13 shows the performance of RP, PA RMDA and our

approach (HCM&LDA) under different ratio of noise data.

What can be seen from Fig.3 is highly competitive with RP,

PA, RMDA and HCM&LDA for each ratio of noise data

(random extend data with uncertain labels). From Fig.13

(a),13 (c), 13 (e), 13 (f) and 13 (g), it can be clearly seen

that with the continuous increase of the noise, the classi-

fication accuracy of our algorithm is better than the other

three algorithms. From Fig.13 (b), 13 (d) and 13 (h), when

the noise rate is between 0 and 30%, the classification accu-

racy of our algorithm is basically the same as that of RP and

PA. However, when the noise reaches 40%, our algorithm

is obviously better than the other three algorithms. This is

because there is an error correction mechanism in our algo-

rithm. When the noise increases from 30% to 50%, the error

correction effect is particularly obvious. Finally, we studied

the running time of our algorithm (HCM&LDA) and com-

parison algorithms (RP, PA, and RMDA) on UCI datasets.

This experiment was done by performing the settings on a

PC running 32 GB of RAM and Windows 10, 4.0GHz In-

ter(R) Core(TM) i9-9990XE. Fig.12 shows the CPU time

of RP, PA, RMDA and our approach (HCM&LDA) on UCI

datasets. In general, RP is always faster than other methods,

and PA is always the slowest one. However, the CPU time to

run our method is relatively similar to the intermediate level

RMDA of all the compared methods.

In short, we can get from the Table 3 and Fig. 13,

our method usually has higher mean value and lower stan-

dard deviation of classification accuracy than other meth-

ods, which fully proves that our method has good accuracy
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Figure 12: Cpu time (in seconds) of RP, PA, RMDA and
HCM&LDA on UCI datasets

and stability. This is because our proposed method can ef-

fectively select the most reliable uncertain label data to im-

prove the learning output. As a matter of fact, our approach

provides a general framework to solve uncertain label prob-

lem, where any conventional classification algorithms can

be used as the final stage. The two classification algorithms

are just used for demonstration purposes.

4.3. Application to Bridge Health Evaluation

System
At present, we have successfully developed the bridge

maintenance management platform, and successfully ap-

plied our algorithm to the platform. The bridge health evalu-

ation and decision system is mainly a GIS-based bridge en-

gineering data information query system, which solves the

visualization management of maintenance data based on ge-

ographical rules and can check the information of Bridges,

tunnels and other important structures of each highway at

any time.

In the bridge health assessment system, sensor equip-

ment can be used to collect a large amount of bridge data,

laying a solid foundation for the data-driven decision support

function. The above-mentioned decision support system

learns bridge knowledge from the collected data and simu-

lates the decision of experts to provide reliable bridge man-

agement and protection methods. According to the Code for

Inspection and Test of Highway Bridges and Culverts and

Code for Evaluation of Highway Bridges and Culverts, the

threshold values of the bridge health evaluation indicators

were obtained. Specific bridge health evaluation grades are

shown in Table 4. In practice, the third, fourth, and fifth

types of bridges are almost non-existent.

4.3.1. Bridge Data

The bridge health evaluation data established in this pa-

per came from a bridge company in Kunming, China. There

are a lot of uncertain label data in the original data, and

the data structure is very complex. According to the bridge

maintenance standards, the bridge is divided into five lev-

els, but in the actual collection of bridge data there are only

Type-1 bridge and Type-2 bridge. Moreover, the two cate-

gories of the bridge data are very unbalanced. As shown in

Table 5 above, the dataset contains 1640 bridges with a total

of 64 attributes, including 1320 instances of Type-1 bridge

and 320 cases of Type-2 bridge.

4.3.2. Bridge Health Evaluation Model Based on

HCM

We use the OPENPYXL package to convert unstructured

data into structured data. As shown in Fig.14, in practice,

the axial data we collected is unbalanced. In the coaxial sys-

tem we developed, the SMOTE method is used to solve the

problem of unbalanced encoding data distribution and used

to construct balanced bridge dataset, as shown in Fig.15.

The first type of bridge data points is represented by red

points, and the second type of bridge data points is repre-

sented by green points. In order to show the balance effect

of the SMOTE method, We chose the two most important

attributes to display. Then, a feature selection method based

on paired constraints is used to perform feature selection on

the axial data and select high-impact attributes (or variables)

[43].

In order to evaluate the performance of our method, we

compare our method (HCM&LDA) with the three methods

of RP, PA and RMDA. The above methods follow the same

experimental protocol in the simulation. In order to fully

evaluate the effectiveness of our algorithm and system, we

selected a variety of evaluation criteria, including Accuracy,

Recall, Precision and F-measure. The basic algorithms of

these four algorithms are all LDA algorithms. We run each

method ten times and report the average of the categories

Accuracy, F-measure, Recall,and Precision with the stan-

dard deviation in Fig.16-Fig.19, the black line represent the

standard deviation.It can be seen that our method achieves

the best performance compared with other methods. It can

also be explained that our method not only achieves excel-

lent classification Accuracy, F-measure, Recall, Precision

but also the robustness in a real word application. Mean-

while, the standard deviation of HCM&LDA algorithm is

obviously smaller than that of other algorithms, which also

reflects that HCM&LDA algorithm has a good stability in

the bridge data set.We also compared the computational ef-

ficiency of various methods. Fig.20 shows the CPU time

of RP, PA, RMDA and our method (HCM&LDA) on the

bridged dataset. The results showed that the preprocessing

process takes more time than the learning process. In all

comparison methods, the CPU time to run our method is rel-

atively similar to RMDA.

Next, in order to evaluation the classification accuracy

of our model under different ratios of noise, we set data

with different ratios of noise of 10%, 30% and 50%. We

run the experiment ten times and report the average Ac-

curacy and AUC with the standard deviation. To evalu-

ation the classification performance on the different rate

of noise bridge dataset, we again compare HCM&LDA,

HCM&SVM, HCM

&CART, HCM&KNN with various approaches, including

RP, PA and RMDA, the above methods follow the same ex-
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(a) appendicitis (b) australian

(c) cleve (d) digital1

(e) heart (f) heart-stalog

(g) housevotes (h) mammographic

Figure 13: Performance of RP, PA, RMDA and HC&LDA for increasing contamination rates on the UCI datasets
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Table 4
Bridge Health Evaluation Grade

Technical status rating Description of bridge technical status

Type-1 Brand new state; Functions in good condition
Type-2 Slight damage; Use function has no effect
Type-3 Secondary damage; Normal operation
Type-4 The bridge function will be seriously affected
Type-5 Out of order

Table 5
Bridge Data Set Information

Datasets Attribute
Instance

Type-1 Type-2 Total

Bridge data 64 1320 320 1640

Figure 14: The data distribution of bridge data set with class
imbalance

Table 6
Accuracy and AUC of Bridge Data Set for Seven Different
Algorithms and the Noise Ratio is 10%

Algorithm Accuracy AUC

RP 68.38±6.82 60.322±15.87
PA 72.71±7.03 59.37±9.80

RMDA 85.18±2.71 49.38±2.98
HCM&LDA 81.37±8.78 62.86±8.47

HCM&CART 82.81±7.39 58.17±7.71
HCM&KNN 83.78±9.98 69.34±9.49
HCM&SVM 86.69±7.05 61.72±9.80

perimental protocol in the simulation. We report the average

of the classification accuracy and AUC with the standard de-

viation in Table 6, 7 and 8. As you can see, our method still

has the best performance of all the methods compared. The

results show that our method not only has good accuracy

Figure 15: The precision of bridge data set for four different
algorithms

Table 7
Accuracy and AUC of Bridge Data Set for Seven Different
Algorithms and the Noise Ratio is 30%

Algorithm Accuracy AUC

RP 50.69±10.803 53.16±4.62
PA 55.48±5.71 53.92±15.94

RMDA 64.70±18.02 50.60±6.77
HCM&LDA 77.561±14.60 65.28±16.35

HCM&CART 64.80±10.37 52.16±18.05
HCM&KNN 78.52±8.90 59.68±7.64
HCM&SVM 80.44±9.72 57.75±10.73

and AUC, but also has good robustness in practical appli-

cation. Meanwhile, the standard deviation of HCM&SVM

algorithm is obviously smaller than that of other algorithms,

which also reflects that HCM&SVM algorithm has a good

stability in the bridge data set. The experimental results also

show that the standard deviation of our algorithm is rela-

tively small, and it can be analyzed that our algorithm has

certain robustness.

The results of RP, PA and RMDA are not ideal, first of

all, because the bridge data is not enough. In the absence of

samples, we adopt a hybrid model to increase the diversity of

classifiers, which is conducive to improving the generaliza-

tion ability of the initial classifier. Secondly, our algorithm

has error correction mechanism. We select the two models
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Figure 16: The accuracy of bridge data Set for four different
algorithms

Figure 17: The precision of bridge data set for four different
algorithms

Figure 18: The recall of bridge data set for four different al-
gorithms

Figure 19: The F-measure of bridge data set for four different
algorithms

Table 8
Accuracy and AUC of Bridge Data Set for Seven Different
Algorithms and the Noise Ratio is 50%

Algorithm Accuracy AUC

RP 53.124±7.96 47.79±7.95
PA 53.74±17.27 58.14±10.36

RMDA 45.77±21.01 49.97±8.32
HCM&LDA 63.74±10.02 52.20±11.42

HCM&CART 57.13±11.71 51.64±14.23
HCM&KNN 75.54±10.78 59.56±8.66
HCM&SVM 77.58±9.17 59.99±8.65

Figure 20: CPU Time (in seconds) of RP, PA, RMDA and
HCM&LDA on bridge data set

of clustering (unsupervised) and classification (supervised),

and determine its final label by calculating consistency. At

the same time, the samples of uncertain labels also partici-

pate in the training of the model, which expands the sample

set and improves the generalization ability of the classifier.

5. Conclusion and Discussion

In this paper, we propose a hybrid model classification

method called robust hybrid classification model (HCM),

which is used for classification in the presence of uncertain

label. According to our latest research findings, studies on

uncertain labels are relatively rare, and this article has to

some extent supplemented the research content in the field

of uncertain labels. Experimental studies have shown that

when uncertain label rate is low, HCM is as effective as fully

supervised technology, and even in complex and real situa-

tions, HCM is very robust to uncertain labels. In particular,

HCM seems to be more robust than existing methods. At

the same time, we propose a hybrid classification model for

a robust bridge health assessment system. Its main design

purpose is to solve the uncertain labeling problem that ap-

pears in most collected data sets. Our method adopts a hy-
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brid model, which can make the label prediction more reli-

able, thereby significantly improving the performance of the

supervised learning process. A large number of experimen-

tal results show that, compared with the related algorithms

(RP, PA and RMDA), our method is very competitive in the

benchmark data set and the actual bridge data set collected

from the road bridge company. In future, we will further

research the complementarity of different hybrid models to

make the best choice for basic learners. In the future, we

will use semi-supervised learning to solve the problem of

uncertain labels in machine learning, and our main idea is

that the sample of uncertain labels is more troublesome than

the sample of unlabeled ones.

Through the analysis of Table 6, 7 and 8, we can clearly

find that both our algorithm and the advanced algorithm have

a large standard deviation in bridge evaluation. There may

be two reasons for this phenomenon: (1) noise in the data

transmission of the device or sensor, and (2) missing values

in some data during data integration. In the future work,

we will mainly deal with noise reduction processing and

data missing value filling of noise data brought by sensors.

Since bridge health assessment is a multi-sensor transmis-

sion mode, we will mainly consider how to improve the gen-

eralization ability of the model under multi-mode to solve

the problem of data heterogeneity.
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