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ABSTRACT

The use of language models in Web applications and other areas of

computing and business have grown significantly over the last five

years. One reason for this growth is the improvement in perfor-

mance of language models on a number of benchmarks Ð but a side

effect of these advances has been the adoption of a łbigger is always

betterž paradigm when it comes to the size of training, testing, and

challenge datasets. Drawing on previous criticisms of this paradigm

as applied to large training datasets crawled from pre-existing text

on the Web, we extend the critique to challenge datasets custom-

created by crowdworkers. We present several sets of criticisms,

where ethical and scientific issues in language model research rein-

force each other: labour injustices in crowdwork, dataset quality

and inscrutability, inequities in the research community, and cen-

tralized corporate control of the technology. We also present a new

type of tool for researchers to use in examining large datasets when

evaluating them for quality.

CCS CONCEPTS

·Computingmethodologies→Natural language processing;

· Information systems → Crowdsourcing; · Social and profes-

sional topics→ Licensing; Computing profession.
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1 INTRODUCTION

One way to describe the history of computing is as a series of

pendulum swings between two extremes. On one side, there are

the techno-utopians, who dream of a post-scarcity society enabled
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by the widespread adoption of computing technologies that can

be customized to every user’s needs [33]. On the other side, there

are the techno-capitalists, who imagine a world where centralized

control of computing technologies can wring profit out of every

data point that may be collected from end users [34]. We have seen

these swings of popular ideology again and again, from the ongoing

free/open source vs. proprietary software discourse that began with

the earliest personal computers, to the initial hopes for the World

Wide Web as a democratizing force that today seem naïve given

recurring stories of disdain for privacy and human rights in the

pursuit of profit by some of the largest Web-based companies.

In this paper, we are concerned with a recent swing to the techno-

capitalist side in the field of language models (LMs). A significant

contributor to the success of the modern Web is the rapid rise of

natural language understanding models. Since IBM publicly demon-

strated the technology’s capabilities by showcasing Watson in a

Jeopardy! exhibition match in 2011, machine learningśdriven lan-

guage processing has become an essential part of Web-based cus-

tomer service, analytics, healthcare, banking, and other business

applications.

However, as a recent critique of LM methodology shows, there

are worrying trends in how these models are produced [4]. In

the last five years, LMs have been growing dramatically both in

terms of the number of parameters and the size of datasets used for

training and testing. While larger models have shown significant

successes on a number of important benchmarks, the trend towards

ever-larger models and datasets comes with significant moral risk.

[4] call particular attention to the ethical problems raised by the

massive environmental impact and rising financial cost of training

large LMs on large datasets, as well as the increased difficulty of

determining what data are actually in these datasets. We share [4]’s

general aims and convictions, and in what follows, we present an

expansion of these criticisms of the łbigger is always betteržmindset

in LM development. Of particular importance to our argument is

that ethical and scientific vices come hand-in-hand, particularly

given the dependence of large LM development on corporate cloud

computing and, in the cases we examine, the microtask economy.

The argument proceeds as follows. In ğ2, we discuss the trend

towards larger datasets in LM development as it relates to LM chal-

lenges, paying particular attention to the labour injustices involved

in the use of crowdwork. In ğ3, we suggest that the exploitative

working environment of crowdwork combined with the difficulty

of scrutinizing large datasets risks creating low-quality datasets

whose flaws go unnoticed. In ğ4, we draw out epistemological wor-

ries with the łbigger is always betterž paradigm, arguing that the

1
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increased financial costs of large datasets, and the accompanying

increase in corporate power in this research area, will be damaging

to the LM research community and to the results it produces. Along

the way, we make several suggestions for mitigating ethical con-

cerns; in ğ5, as a partial way of mitigating epistemological problems,

we introduce a tool we call nlp-data-explorers for researchers to

examine large datasets when evaluating their quality. ğ6 concludes.

2 THE HUMAN COST OF łHUMAN
INTELLIGENCEž

A limitation of [4] is that they confine their critique to LM training

datasets that have been crawled from existing text corpora on the

Web. But the trend towards larger datasets has also influenced the

development of LM challenges. Because these challenges are typi-

cally narrowly defined tasks that are easy for humans but difficult

for LMs, they cannot be created simply by assembling a massive

collection of publicly accessible textual data. Instead, researchers de-

fine a formula for test questions, then either create a set of problems

themselves, or assign the task of creating problems to microtask

workers through services such as Amazon Mechanical Turk.

Consider CommonsenseQA, a challenge designed to test an LM’s

łcommonsensež understanding [35]. (It is beyond the scope of this

paper to discuss, but it is worth noting that CommonsenseQA does

not engage with [7]’s well-known argument that computer systems

can never achieve commonsense.) To develop theCommonsenseQA

challenge, the researchers engaged crowdworkers to create over

12,000 multiple choice questions based on the links between con-

cepts in ConceptNet [32]. For example, from the link between

the concepts river and waterfall, a crowdworker might create a

question like, łYou would expect to find a waterfall at the end of

a what?ž, with łriverž being the correct answer. While we concen-

trate on the case of CommonsenseQA, some LM challenges have

developed even larger datasets: e.g., theWinoGrande challenge

[28], which tests an LM’s ability to handle ambiguous referents in

Winograd schemas (see [19]), relies on a dataset of about 44,000

crowdworker-generated problems.

This approach is problematic, as the use of crowdwork comes

with well-documented moral risk [11, 13, 16, 17, 21ś23, 29, 30].

Crowdworkers are generally extremely poorly paid for their time;

ineligible for benefits, overtime pay, and legal or union protections;

vulnerable to exploitation by work requesters; likely to lose wages

to łdowntimež spent looking for decently paying work; and sub-

ject to deceit, obfuscation, and intimidation from the platforms

that mediate between them and work requesters. Moreover, many

crowdworkers end up trapped in this situation due to a lack of

jobs in their geographic area for people with their qualifications,

compounded with other effects of poverty.

Some researchers have suggested potential remedies to this

moral risk. For example, building on calls [31] to pay crowdworkers

at least minimum wage, [38] suggest one relatively simple inter-

vention that they call łFair Work.ž Their approach enables crowd-

workers to report their actual time spent on microtasks, allowing

their wages to be topped up to a łfairž rate of US $15/hour by

the researcher. It is unclear how widely such principles have been

adopted, however; and, as we return to below, the increased finan-

cial cost may be burdensome for some research groups.

3 KNOW YOUR DATA

Even supposing that crowdworkers are fairly paid for their ser-

vice to computer science, two ethical problems with this research

paradigm remain. Firstly, a fair wage is not yet a fair working envi-

ronment: fairly compensated crowdworkers would still be ineligible

for benefits and protections, and subject to intimidation from plat-

form managers. Without sweeping regulatory changes to enforce

crowdworkers’ labour rights, even researchers who follow best

practices are complicit in an exploitative marketplace. Secondly,

and more significantly from a scientific standpoint, we suggest that

precisely this exploitative arrangement could lead to the production

of poor quality datasets, undermining research based upon them.

Concerns about the quality of crowdwork-generated data have

been discussed in the social science context, where crowdworker

surveys are relied upon for collecting psychological and socio-

logical data. [26, p. 185] found that łworkers are diverse but not

representative of the populations they are drawn from,ž with re-

gard to personality, educational background, age, and other demo-

graphic markers. This casts doubt on whether challenges such as

CommonsenseQA actually capture what can properly be called

commonsense understanding. To paraphrase [14], when we build

datasets for these challenges, we need to ask, whose commonsense

and whose understanding are we capturing and testing for?

This issue recalls [4]’s worry about the possibility of unreported

bias in datasets. A suggestion they make which would apply here

is the inclusion of data statements [3]. These information slips are

presented as appendices to LMs that include information on the lin-

guistic data contained in the dataset, and demographic information

on the people who created and annotated the data. A data statement

for crowdwork-generated datasets would specify the self-reported

demographics of the crowdworkers whose labour produced the

data, enabling human researchers or automated tools to scan for

the presence of bias.

Data statements only go so far, however, for the working environ-

ment of crowdwork is itself in tension with the demands of dataset

generation for LM research. In order to be properly composed, the

problems that constitute challenges like CommonsenseQA require

precise attention to linguistic details. Given the pressures on crowd-

workers intrinsic to the crowdwork economy, there is good reason

to think that such attention is frequently absent. This shortcom-

ing would be less problematic if the resulting datasets were small

enough for researchers to scrutinize for quality before publica-

tion, but the desired scale makes such curation impossible. Instead,

datasets like CommonsenseQA rely on additional crowdworkers

for data validation [35]. However, this solution only re-introduces

precisely the same concerns at a higher level.

This underscores another of [4]’s worries, namely, that the con-

tents of large datasets are difficult to examine. While their primary

concern is with the presence of bias, overall dataset quality is also

difficult to determine when the dataset is sufficiently large. If, as we

argue, the nature of the crowdwork economy is in tension with the

demands of dataset creation, large challenge datasets like Common-

senseQA could have significant flaws that go unnoticed. If true,

these pernicious flaws would undermine claims regarding an LM’s

performance on the challenge. For example, it would be difficult
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to tell if a poor score represents a deficiency of the LM or of the

dataset.

4 EPISTEMOLOGICAL IMPLICATIONS

A further set of problems with large datasets arises from the simple

fact that the larger one’s LM, and the larger the datasets one feeds it,

the more computing power one needs. As [4, p. 9] also argue, a re-

search paradigm with a high financial bar to entry stands to exclude

researchers from institutions and countries with limited research

funds, further deepening inequality in the research community.

These inequalities represent more than an ethical risk: they also

present epistemological risks. A research paradigm dependent on

financially inaccessible computing resources shuts out citizen sci-

entists whose contributions have historically played pivotal roles

in the history of computing. Furthermore, by excluding these out-

sider contributions and marginalized researchers at less resourced

institutions, the łbigger is always betterž paradigm can be expected

to reduce the diversity of the LM research community, contribut-

ing to what [37] call the łdiversity crisisž in AI research. And, as

philosophers of science have argued for over a century [2, 20, 27],

a diverse community of inquiry is necessary to filter out biases

that may go unnoticed in a demographically homogeneous group

of researchers. We have seen how a lack of diversity in computer

science research in particular has led to errors many times before

[6, 12, 25]. Machine learning research thus stands to be less objec-

tive and, as [36] suggests, LM research in particular stands to be

less reliable.

In addition to these mixed ethical-epistemological problems, the

financial costs of the łbigger is always betterž paradigm increase

corporate power in LM research. LM projects are already often

dependent on Big Tech firms, such as Microsoft [24], that offer paid

cloud computing services to businesses and researchers without

the resources or expertise to train and customize machine learning

models locally. But regardless of whether the resulting applications

are open source, they are not free software [8], because of the

centralized control over how the service may be used that Microsoft

and other providers maintain. As [18] observe, when corporations

retain this kind of power, it impairs the autonomy of users and

smaller developers. The łbigger is always betterž paradigm thus

serves the interests of Big Tech firms as much as it serves the

interest of LM research Ð and perhaps more, since they retain the

power to restrict what outsiders can do with their services.

The worry about corporate power in LM research is more than

a familiar lament about wealth inequality. This kind of corporate

influence has been observed to be damaging to research in other

scientific domains. For example, as [5] observes in the context of the

pharmaceutical industry, when corporate interests drive research

through private research grants, studies that are published tend

to favour their donors’ interests Ð e.g. drug efficacy and safety

trials are more likely to favour the donor’s products Ð and studies

with results opposed to the donor’s interests are often suppressed.

The recent ouster of two prominent AI ethicists at Google, in part

for their contributions to [4], suggests that the same patterns of

corporate interference are active in LM research [10].

5 EXPLORING DATASETS

The use of large datasets is still probably required for some aspects

of LM development andmachine learning generally. However, given

the concerns we have discussed in this paper, researchers have all

the more reason to think carefully about whether large datasets are

actually needed to answer their research questions, as [4] also urge.

It thus behooves LM researchers to devise methods of mitigating

the risks inherent to the creation and use of large datasets.

We have already discussed some strategies for addressing the

ethical issues of crowdworker exploitation and data bias. A potential

way to address the epistemological risk of quality problems would

be to make it easier for researchers to explore the contents of

challenge datasets. To this end, we introduce a type of tool we call

nlp-data-explorers [1, full code is in the auxilliary files]. Each

explorer is an executable python file run from the command line

that pulls problems from a dataset, such as CommonsenseQA or

WinoGrande, and presents them to the user in a multiple choice

test (see Figures 1ś3). The user can thereby view a random selection

of problems from the dataset, test their performance against the

łcorrectž answers, and compare their scores to an LM by cross-

referencing the LM scores reported in publications or leaderboards.

With a large enough sample, a coherent snapshot of the dataset

as a whole can be captured, and its quality evaluated. Tools like

these can supplement data statements and other types of dataset

information slips (e.g. nutrition labels [15] or datasheets [9]) by

allowing researchers to explore datasets for themselves before using

them, or before recommending papers presenting the dataset for

publication.

For example, using an nlp-data-explorer that taps Common-

senseQA, we were able to find multiple issues that lead us to rec-

ommend against using it as a challenge for LMs. Table 1 lists some

of the prompts we observed, with the łcorrectž answer marked in

boldface. We found items that contain grammatical errors, admit

multiple correct interpretations, or that have łcorrectž answers that

are inaccurate. These findings corroborate our suspicion that large

crowdwork-generated datasets, even those that have been łverifiedž

by additional crowdworkers, may have quality issues. Furthermore,

the nature of the errors makes us suspect that CommonsenseQA

fails to provide a proper test of commonsense understanding. An

LM may fail to answer questions łcorrectlyž because of grammati-

cal errors that lead to mistaken interpretations. Or an LM may fail

to determine the łcorrectž answer because multiple answers are

potentially admissible. Or, an LM may choose the łcorrectž answer

merely because it is the only answer whose grammar agrees with

the prompt. These issues make it difficult to determine what, if

anything, CommonsenseQA measures when testing an LM.

6 CONCLUSION

Let’s take stock. There are mutually reinforcing ethical and scien-

tific problems with the trend towards ever-larger datasets in LM

research and LM applications on the Web and elsewhere. The first

set of problems arise from the engagement of crowdworkers in

the creation of these datasets. Not only is the microtask economy

fraught with labour injustices, the working environment so pro-

duced raises worries about the quality of datasets created with this

method. But given the sheer size of the resulting datasets, they
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Figure 1: The initial screen presented to the user in CQA_Explorer.py, an nlp-data-explorer that taps CommonsenseQA’s

dataset.

are often difficult for researchers to scrutinize for quality issues.

Finally, we contended that a research paradigm desirous of large

datasets not only risks pricing out citizen scientists and marginal-

ized researchers, it also actively contributes to the centralization

of corporate control in LM research. Such control is not only anti-

thetical to the principles of free software; there is also good reason

to think that it will allow large tech firms to push research along

directions that suit their business interests over scientific progress

or societal interests.

In light of these arguments, we suggest that LM researchers

should consider carefully whether creating or processing a large

dataset is actually necessary to answer their research questions. We

additionally urge research ethics boards to become familiar with

the ethical and epistemological risks of the use of large datasets

in LM research, to require researchers to pay crowdworkers a fair

wage, and to require researchers to publish data statements and

dataset explorers to accompany their work. These changes will help

mitigate the risks we have called attention to, and to nudge the

pendulum away from the techno-capitalist extreme.
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Figure 2: A question from the CommonsenseQA dataset in CQA_Explorer.py.
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