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Kernelised Bayesian transfer learning for population-based
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P. Gardner, L.A. Bull, N. Dervilis and K. Worden
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Mappin Street, Sheffield S1 3JD, UK

Abstract

Population-based structural health monitoring is the process of utilising information from a group of structures in order
to perform and improve inferences that generalise to the complete population. A significant challenge in inferring
a general representation for structures is that feature spaces will be inconsistent for a wide variety of populations
and datasets. This scenario, where the dimensions of the feature spaces for each structure are different, occurs for a
variety of reasons. Firstly, the group of structures themselves may be a heterogeneous population, where differences
occur due to topology, leading to inconsistency in modal-based features. Secondly, feature spaces may be inconsistent
across the population due to differences in the raw data (i.e. different sample frequencies etc.) and feature extraction
processing. In this context, where feature spaces are inconsistent between different structure in a population, a
general model that describes their behaviours becomes challenging to infer. This issue is because dimensionality
reduction must be performed such that each domain’s feature set projects to a consistent shared latent space where a
model can be inferred. This paper introduces a technique, kernelised Bayesian transfer learning, that seeks to learn a
projection matrix and kernel embedding that map to a latent space where a discriminative classifier can be inferred
in a Bayesian manner, using variational inference. This algorithm allows a general discriminative classifier to be
inferred across a population where the feature spaces for each structure are inconsistent. A numerical case study
is presented, demonstrating the effectiveness of this approach and for providing a discussion of its implications for
population-based structural health monitoring.
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1 Introduction

Performing health monitoring collectively for a group of structures is known as Population-based Structural Health
Monitoring (PBSHM) [1]. A requirement of performing PBSHM is inferring a general representation of a population
of structures that applies to the complete population [2, 3]. By inferring a general machine learning model, label
knowledge can be exchanged between structures in the population, improving the overall accuracy of any health
monitoring approach for the population. Several benefits are provided by a population-view of Structural Health
Monitoring (SHM), such as improved knowledge of feature and label relationships, a removal of confounding influences
across the population in a latent space representation, and an increase in classification performance for each member
of the population. Another aim of PBSHM is to overcome a lack of available damage state data for each member of
the population by pooling and transferring label knowledge between the population, as demonstrated in [3].

This paper is concerned with the scenario in PBSHM in which the aim is to generate an improved general representation
of the population of structures, related to a form [2]. Specifically, the context considered is when the feature spaces are
inconsistent, which arises for several reasons. Firstly, the population may be heterogeneous [4, 3], based on differences
in topology (i.e. differences in physical connections between parts of the structure) [4], leading to feature spaces that
are different dimensions for each structure, especially when features are modal-based. The second scenario is when
the raw data and feature extraction process lead to inconsistent feature spaces. This may occur due to different



signal processing and data acquisition processes for each member of the population. As a result, any general model
must include a projection into a consistent shared feature space, such that label information can be shared. Here
kernelised Bayesian transfer learning is introduced as a multi-task learning algorithm [5]. This technique seeks to use
information from multiple sources with inconsistent feature spaces, such that an improved discriminative classifier
can be inferred for the complete population. This technique is beneficial when several structures have large overlap
between clusters in their feature space, and when limited label knowledge is known for each structure.

Health monitoring for wind farms provides an illustration of this approach. Typically, an asset manager of a wind
farm is required to monitor the complete fleet, where each turbine has a distinct individual behaviour due to unique
environmental conditions and manufacturing tolerances. This results in the finite datasets from each turbine having
a different data distribution and will cause a machine learner trained on one member of the population to fail to
generalise to another member of the population. In fact, the company will often have access to a variety of wind farms,
each of which might have a different model of wind turbine in them. Within all these data sources (from members of
the population) a variety of labelled health state data will often be available. Obtaining a complete label set for each
turbine in the population is clearly not feasible; however, the asset manger wishes to use their label knowledge from
their complete population of turbines from multiple wind farms in health monitoring, as labelled data is a valuable
asset. However, the feature spaces may not be the same dimension for each member of the population, due to different
data acquisition processes and feature extraction. In this context, kernelised Bayesian transfer learning is applicable
in inferring a model in a consistent latent feature space in which all members of the population can be mapped, and
their label information utilised.

The outline of this paper is as follows. Firstly, kernelised Bayesian transfer learning is introduced in Section 2 within
the context of transfer learning and multi-task learning. Section 3 demonstrates kernelised Bayesian transfer learning
on a numerical example in which different sets of shear buildings with varying degrees-of-freedom are utilised in
creating a general classification model of the population. Finally, conclusions are presented highlighting areas of
further research.

2 Kernel-based transfer learning

Kernelised Bayesian transfer learning is a supervised multi-task learning algorithm for inconsistent feature domains
[5], i.e. the dimension d of the feature space X for each domain is not equal e.g. d1 6= d2 for a two-domain problem.
Before formally introducing multi-task learning, the definition of two objects are required:

A domain D = {X , p(X)} is an object that consists of a feature space X and a marginal probability distribution
p(X) over a finite sample of feature data X = {xi}

N
i=1

∈ X from X .

A task T = {Y, f(·)} is the combination of a label space Y and a predictive function f(·).

Multi-task learning is a branch of transfer learning in which the aim is to use knowledge from multiple domains to
improve a particular task [6, 7]. The main difference to other transfer learning methods is that multi-task learning
weights knowledge transfer equally for all domains. The goal therefore, is to generate an improved prediction function
f(·) for one consistent label space Y using the feature data from several source domains. Kernelised Bayesian transfer
learning is a particular form of multi-task learning that can be defined as heterogeneous transfer learning i.e. at
least one feature space Xj for a domain Dj is not the same dimension as another feature space Xk in the domain set
such that dj 6= dk. The assumptions are that there is a relationship between the feature space for each domain and
the label space and that each domain provides informative knowledge that will improve the predictive function f(·).
Several other heterogeneous transfer learning methods exist [8, 9]; however, kernelised Bayesian transfer learning is a
multi-task learning that performs two tasks: 1) finding a shared latent subspace for each domain and 2) inferring a
discriminative classifier in the shared latent subspace, in a Bayesian manner, are visualised in Figure 1.

Kernelised Bayesian transfer learning assumes T domains {Dj}
T
j=1

with consistent label spaces Yj = Yk∀ j ∈ T and
∀ k ∈ T but with features spaces that are not consistent. For each domain, an associated finite label set is available
yj = {yj,i ∈ {−1,+1}}i∈Ij

where Ij is the index set for each data point in domain j. For each domain, the data

are embedded in a kernel matrix {Kj ∈ R
Nj×Nj}Tj=1

using a particular kernel function, where Nj is the number of

data point in domain j. An optimal projection matrix {Aj ∈ R
Nk×R}Tj=1

is constructed for each domain and projects

the kernel embedding into a a shared latent subspace {Hj = AT

j Kj}
T
j=1

. In this subspace a discriminative functional
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Figure 1: Visual representation of kernelised Bayesian transfer learning.
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Figure 2: Schematic of the shear structures: panel (a) is a nominal representation of the five systems and panel (b)
depicts the cantilever beam component where {ki}

n
i=1

= 4kb i.e. the stiffness coefficients in (a) are generated from
four times the tip bending stiffness in (b).

classifier {f j = HT

j w + 1b}Tj=1
is inferred that predicts the outputs in the shared latent subspace with shared

classification parameters {b ∈ R,w ∈ R
R}. The quantities are inferred in a Bayesian manner, utilising variational

techniques and conjugate analysis. In keeping with the brevity of the current paper the reader is referred to [5] for
mathematical details.

3 Shear Building Case Study

In order to demonstrate the applicability of kernelised Bayesian transfer learning for PBSHM, a numerical case study
is demonstrated. The SHM problem is a two-class location problem (which can be seen as binary damage detection
as there are only two classes). The population of structures is composed of five different shear building structures,
schematically depicted in Figure 2 as lumped-mass models in bending, forming a heterogeneous population [4, 3].

Each structure is represented by n mass {mi}
n
i=1

, stiffness {ki}
n
i=1

and damping {ci}
n
i=1

coefficients. The masses
are specified by a length lm, width wm, thickness tm and density ρ. The stiffness elements are calculated from four
cantilever beams in bending 4kb = 4(3EI/l3b), where E is the elastic modulus, I the second moment of area and lb
the length of the beam. The damping coefficients are directly specified and are not derived from a physical model.
Damage is introduced to the structure via an open crack, using a reduction in EI (using the model in [10]) across
one of the beams in k1, i.e. k1 = 3(3EI/l3b) + kd, where kd is the tip stiffness of a cantilever beam subject to an
open crack of length lcr at location lloc along the length of the beam. Each observation, for a particular structure, is



Table 1: Properties of the five structures in the heterogeneous population case study. Degrees-of-freedom (DOF) are
denoted by n.

Domain DOF Beam geometry Mass geometry Elastic modulus Density Damping coefficient
n {lb, wb, tb} {lm, wm, tm} E ρ c

m m GPa kg/m3 Ns/m

1 4 {5.0, 0.35, 0.35} {12, 12, 0.35} N
(

210, 1.0× 10−9
)

N (8000, 10) G (50, 0.1)
2 10 {4.3, 0.50, 0.50} {10, 10, 0.50} N

(

200, 2.0× 10−9
)

N (7800, 50) G (8, 0.8)
3 20 {4.8, 0.40, 0.40} {11, 11, 0.40} N

(

205, 1.5× 10−9
)

N (7950, 25) G (25, 0.2)
4 3 {4.5, 0.45, 0.45} {11, 11, 0.45} N

(

208, 1.0× 10−9
)

N (7900, 15) G (20, 0.1)
5 5 {4.2, 0.46, 0.46} {12, 12, 0.46} N

(

201, 2.0× 10−9
)

N (7850, 20) G (50, 0.1)

Table 2: Number of data points in each class for each domain.

Domain Training Testing

y = −1 y = +1 y = −1 y = +1
1 250 100 500 500
2 100 25 500 500
3 120 50 500 500
4 200 150 500 500
5 500 10 500 500

composed from random draws from a base distribution for E, ρ and c. The properties of the five structures in the
population are shown in Table 1.

The features in this case study are damped natural frequencies and damping ratios i.e. X = {ωi, ζi}
n
i=1

. The first two
principal components for each domain are depicted in Figure 3, indicating the level of overlap in the classes, where
the number of training and testing data point for each domain are presented in Table 2. Each domain has a different
degree of class imbalance in the training dataset (Table 2), reflecting scenarios where certain structures may provide
more informative data about a particular damage class.

Figure 4 presents the classification function and margin (set as zero) for the test data (top panel) and the probability
of the data point belong to the +1 class (bottom panel) compared to the true label. These plots show the value of a
probabilistic approach, as a soft margin reduces the number of misclassified points. It can also be seen, that due to
imbalance in the class (weighted towards −1 the undamaged class for each structure), there is greater uncertainty
in the damaged class (+1). The figures also depict more confident predictions for domains 1 and 4, which can be
expected due to their relatively large number of data points and separability.

The classification result are presented in Table 3. Accuracies and F1 macro scores are based on data points belonging
to class +1 if p(y∗,j = +1)f∗,j ≥ 0.5. Considering classification performance, kernelised Bayesian transfer learning has
accurately inferred a general model for the five domains. Although there is a large performance decrease for domain
2, this is expected due to the few data points used to train the method, compared with the other domains, and a
relatively large degree of overlap in the classes. Performance remains high for the two separable domains (1 and 4),
meaning that the method has not negatively impacted classification in these domains by learning a multi-task model.

Table 3: Classification results on test data for each domain.

Domain 1 2 3 4 5
Training Accuracy 99.7% 96.8% 97.6% 100.0% 99.6%

F1 Macro 0.997 0.947 0.971 1.000 0.943
Testing Accuracy 99.6% 87.9% 92.8% 99.8% 92.1%

F1 Macro 0.996 0.877 0.928 0.998 0.921
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Figure 3: First and second principal components for each of the five domains, where training data are denoted by (·)
and testing data by (◦) (where domains are presented top left to bottom right).
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Figure 4: Functional classifier (red (·)) and margin (blue) (top panels) and probability of y∗,j = +1 (red) and true
label (green) (bottom panels) for the test data for each of the five domains (where domains are presented top left to
bottom right).

4 Conclusions

Population-based SHM requires machine learning techniques that utilise knowledge from a range of sources in order
to construct improved general models of the population. One challenge is creating general models when feature spaces
are inconsistent. This paper demonstrates one approach to multi-task learning, kernelised Bayesian transfer learning,
where each domain has an inconsistent feature space. This approach is applicable to heterogeneous populations (with
topological differences) and when data processing has led to feature inconsistencies.

Kernelised Bayesian transfer learning, has been demonstrated to provide a good level of classification performance for
a numerical case study involving a heterogeneous population of shear structures with a different number of storeys.
The approach aids classification in scenarios of high class overlap, and in scenarios with a large class imbalance.



Further research is required in investigating the multi-class problem, and in extending the method to scenarios in
which one domain has no labels for a particular class. This will extend the approach from a multi-task learner to a
full transfer learning method.

Acknowledgements

The authors would like to acknowledge the support of the UK Engineering and Physical Sciences Research Council
via grants EP/R006768/1 and EP/R003645/1.

References

[1] E. Papatheou, N. Dervilis, E. A. Maguire, I. Antoniadou, and K. Worden, “Population-based shm: a case study
on an offshore wind farm,” in Proceeding of the 10th International Workshop on Structural Health Monitoring,
2015.

[2] L. A. Bull, P. Gardner, J. Gosliga, T. J. Rogers, M. Haywood-Alexander, N. Dervilis, E. J. Cross, and K. Worden,
“Towards a population-based structural health monitoring. Part I: Homogeneous populations and forms,” in
Proceedings of IMAC XXXVIII the 38th International Modal Analysis Conference, Houston, TX, 2020.

[3] P. Gardner, L. A. Bull, J. Gosliga, N. Dervilis, and K. Worden, “Towards population-based structural health
monitoring, Part IV: Heterogeneous populations, transfer and mapping,” in Proceedings of IMAC XXXVIII the

38th International Modal Analysis Conference, Houston, TX, 2020.

[4] J. Gosliga, P. Gardner, L. A. Bull, N. Dervilis, and K. Worden, “Towards a population-based structural health
monitoring. Part II: Heterogeneous populations and structures as graphs.” in Proceedings of IMAC XXXVIII

the 38th International Modal Analysis Conference, Houston, TX, 2020.

[5] M. Gönen and A. A. Margolin, “Kernelized Bayesian transfer learning,” in Proceedings of the National Conference

on Artificial Intelligence, 2014.

[6] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge and Data Engineering,
vol. 22, no. 10, pp. 1345–1359, 2010.

[7] Y. Zhang and Q. Yang, “An overview of multi-task learning,” National Science Review, vol. 5, no. 1, pp. 30–43,
2018.

[8] L. Duan, D. Xu, and I. W. Tsang, “Learning with augmented features for heterogeneous domain adaptation,” in
Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 2012.

[9] O. Day and T. M. Khoshgoftaar, “A survey on heterogeneous transfer learning,” Journal of Big Data, vol. 4,
no. 1, p. 29, dec 2017.

[10] S. Christides and A. D. Barr, “One-dimensional theory of cracked Bernoulli-Euler beams,” International Journal

of Mechanical Sciences, 1984.


	Introduction
	Kernel-based transfer learning
	Shear Building Case Study
	Conclusions

