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Using two rigorous electromagnetic approaches, we study plasmon scattering in two-

dimensional systems and show that plasmon amplification is possible in the presence

of dc currents. Two scenarios are considered: plasmon scattering from an interface

between different two-dimensional channels and plasmon reflection from electric con-

tacts of arbitrary thickness. In each case, the effect of a dc current of the plasmon

reflection and transmission coefficients, and the plasmon power are both quantified. A

resonant system is studied where plasmon roundtrip gain may exceed unity, showing

the possibility of plasmon generation.
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I. INTRODUCTION

Two-dimensional materials (such as, graphene1–4) and systems (such as GaAs/AlGaAs

heterostructures5–7) are able to support plasmons. These are waves that exist due to collec-

tive motion of free charges, and they may propagate in the microwave6,8,9, terahertz1,5,10,11,

and infra-red frequency3,4 ranges. Initial theoretical studies have concentrated on dis-

persion relations and resonance frequencies of gated and ungated two-dimensional (2D)

plasmons12–14, magnetoplasmons15, and edge (magneto-)plasmons16,17. There has recently

been an upsurge of interest in plasmon scattering at discontinuities, such as those formed

by interfaces between 2D systems with two different carrier densities18–20, between a gated

and an ungated system21–23, or by edges18,24 and electric contacts25. Plasmon scattering

has been studied by adopting methods developed previously for the traditional metallic

and dielectric waveguides, such as the mode-matching26,27 and the variational methods28,29,

transmission-line models28, and the Wiener-Hopf technique26. Two-dimensional plasmons in

the absence of dc currents have also been studied extensively experimentally, traditionally

in semiconductor heretostructures (e.g. Refs. [5–7, 10, 11, and 30]) and more recently in

novel 2D materials (e.g. Refs. [1–4, and 31]).

It was also suggested that, in the presence of a dc current, plasmon scattering by discon-

tinuities in 2D systems may lead to plasmon amplification. The first theoretical study was

performed by Dyakonov and Shur32 who showed that plasmon oscillations in the channel

of a field-effect transistor may become unstable provided specific boundary conditions are

realized at the source and the drain. Their model was developed further for different bound-

ary conditions33,34 and geometries35,36. Amplification of plasmons scattering from interfaces

between 2D systems (see Fig. 1) has received less attention. In contrast to transistor source

and drain, however, such interfaces are partially transparent to plasmons, and may serve

as building blocks for more sophisticated geometries with higher gain, such as plasmonic

crystals and Bragg mirrors, for example. Experimental studies of 2D plasmons in the pres-

ence of dc currents are scarce (e.g. Refs. [11, 37–39]); evidence of plasmon amplification

from interface scattering has come to date from observing radiation from double-grating-

gate transistors40. Several theoretical studies41–43 concentrated on analytical models for the

plasmon transmission and reflection coefficients. A typical approximation is to reduce the

three-dimensional interface to a single line of contact between two-dimensional systems. This
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FIG. 1: Interface between two 2D channels with different carrier densities. Plasmons

incident upon the interface will partially transmit through and partially reflect back.

quasi one-dimensional approach tends to disregard that plasmons reflecting from interfaces

acquire additional phase, whose existence has been revealed, in the absence of dc current, by

models that take into account fields across entire interfaces18,19,21,22,44. On the other hand,

prior numerical studies45,46 of two-dimensional plasmons in the presence of dc current mostly

concentrated on excitation of entire geometries by a free-space electromagnetic wave or a

filament. Plasmon scattering at single interfaces is then obscured by the excitation, multiple

reflections, losses, and matching to free space radiation.

The recent advances in analytical and numerical electromagnetic modeling of passive

interfaces motivate further efforts in studying such interfaces in the presence of dc current.

In this paper, we first consider amplification of plasmons incident on an interface formed

by two different two-dimensional systems, see Fig. 1. To this end, we develop two models:

a numerical model based on variational solution of an integral equation for the field at the

interface (Sec. IIIA), and a full-wave numerical model based on solution of coupled Maxwell’s

and hydrodynamic equations (Sec. III B). We compare results of the three models to each

other in Sec. IIIC. We then apply the full-wave model to plasmon reflection from electric

contacts in Sec. IIID. We discuss plasmon generation in Sec. IV. In Sec. V, we compare full

electromagnetic and quasi one-dimensional approaches. We draw conclusions in Sec. VI.

II. BASIC EQUATIONS

This section discusses known results that underpin a theoretical description of 2D plas-

mons in the system shown schematically in Fig. 1. A 2D channel occupies the plane x = 0

and is embedded in a uniform dielectric with a relative permittivity εd. The channel is in-
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finitely long in the y-direction. We assume that the charge carriers are electrons; the static

(dc) electron density in the channel is n0. A dc current is flowing in the channel, and the

electron drift velocity is v0. We assume harmonically-varying (ac) signals with the angular

frequency ω and will write all equations in terms of their amplitudes. Since our interest is in

plasmons, which are TM waves, we assume that the electric field has x- and z-components,

and the magnetic field only a y-component. Consequently, the ac current density only has

a z-component.

We use the full system of Maxwell’s equations to describe the fields in the dielectric. At

the channel, the fields obey the standard field boundary conditions of the form

E(1)
z |x=0 − E(2)

z |x=0 = 0 , (1)

E(1)
x |x=0 −E(2)

x |x=0 =
en

ε0εd
, (2)

and

H(1)
y |x=0 −H(2)

y |x=0 = J . (3)

Here, n is the amplitude of the ac electron density, J is the amplitude of the ac current

density, e is the electron charge, and superscripts (1) and (2) denote the regions above and

below the channel, respectively.

The electron and current densities are related to each other through the following three

equations. The first is the standard linearized expression for the current density

J = en0v + env0 , (4)

where v is the amplitude of the ac electron velocity. The second is the linearized equation

of motion (Euler’s equation)

iωv + v0
dv

dz
+ γv =

e

m
Ez|x=0 , (5)

where m is the effective electron mass, and γ is the relaxation frequency (also expressed as

γ = 1/τ , where τ is the relaxation time). The third one is the continuity equation

dJ

dz
+ iωen = 0 . (6)

Substituting Eq. (4) into Eq. (6) gives

dv

dz
= −

1

n0

(

v0
dn

dz
+ iωn

)

(7)
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We substitute Eq. (7) in the equation of motion Eq. (5) to find an expression for the ac

velocity, which we then substitute into Eq. (4) to obtain

J = env0 +
en0

iω + γ

[

e

m
Ez|x=0 +

v0
n0

(

v0
dn

dz
+ iωn

)]

(8)

Equation (8) can be recast in terms of field quantities using Eqs. (2) and (3).

A. 2D plasmons

Maxwell’s equations together with Eq. (8) and the boundary conditions Eqs. (1)–(3)

permit eigemode solutions known as plasmons. These are surface TM waves whose magnetic

field component for x ≥ 0 can be written in the form

Hy(x, z) = Ae−ikz−κx (9)

where A is a constant; k is the longitudinal wavenumber (in the z-direction) and κ is the

decay rate. Both κ and k are positive and satisfy the dispersion relation in the dielectric in

the form

k2 − κ2 = k20 , (10)

where k0 = ω/c and c is the light velocity in the dielectric. Substituting Eq. (9) into

Maxwell’s equations and Eqs. (1)–(3) and (8) yields a plasmon dispersion relation of the

form

(ω − kv0)(ω − kv0 − iγ) = Ω2
pκ (11)

where Ω2
p = e2n0/(2mε0εd). In the absence of dc current and loss, Eq. (11) permits two

real solutions for k, which correspond to identical counter-propagating plasmons. In the

presence of a dc current, there can be up to four real-valued solutions. The full solution

of the dispersion relation was discussed in Ref. [47]. However, we will assume that the

drift velocity, v0, is low, so that electron drift provides a perturbation of the two drift-less

plasmons.

The power carried by a plasmon can be found as47

P = Re

∫

∞

0

ExH
∗

ydx+
mv0
2e

Re(vJ∗) , (12)

where ∗ denotes complex conjugation. The first term in Eq. (12) corresponds to electromag-

netic power, and the second one to kinetic power due to electron motion. Using Eq. (9) and
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ignoring loss, the expression for plasmon power can be written in the form

P =
|A|2

ωε0εd

(

k

2κ
+

κv0
ω − kv0

)

. (13)

B. Continuum modes

Aside from plasmons, whose fields decays away from the channel, Maxwell’s equations

permit other eigenmode solutions whose fields do not grow away from the channel. Our

interest is in TM modes that have the same symmetry as plasmons. Their y-component of

the magnetic field can be written in the form47

h(q, x, z) = A [Γ(q) cos(qx) + i sin(qx)] e−ikz , (14)

where k is the wavenumber in the z-direction, and q is the wavenumber in the x-direction

and

Γ(q) =
Ω2

pq

i(ω − kv0)2
. (15)

In contrast to plasmons, the values of k are unrestricted, 0 < k <∞. The dispersion relation

for electromagnetic waves is satisfied, so that

k2 + q2 = k20 , (16)

For 0 < k ≤ k0, the values of q are real and correspond to radiation modes. For k > k0, the

values of q are imaginary and correspond to evanescent modes.

In the absence of electron drift, the kinetic power of all continuum modes is zero. As

expected, the electromagnetic power of the evanescent modes is also zero. As shown in

Ref. [47], however, the electromagnetic power carried by the evanescent modes may be

non-zero in the presence of drift. On the other hand, their total power (as defined by

Eq. (12)) is zero, because the electromagnetic and the kinetic powers are carried in the

opposite directions. Non-zero total power can only be carried by the radiation modes and

the plasmons.

III. PLASMON SCATTERING BY INTERFACES

Having considered plasmons in uniform waveguides, we now proceed with discussing plas-

mons incident on an interface formed by two waveguides with different electron densities,
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see Fig. 1. A plasmon is incident on the interface (placed at z = 0) from the left waveg-

uide. It will partially reflect back to the left waveguide and partially transmit through into

the right waveguide. We are interested in finding the plasmon transmission and reflection

coefficients. To this end, we employ two different approaches: a variational solution and

full-wave simulations.

We assume a step-like variation of the dc electron density at the interface and do not

consider conducting gates placed above channels, which are often used to control the elec-

tron density electrostatically. We also assume the dielectric surrounding the channels to be

uniform. As a result, the model is symmetric, and the spectrum of the continuum modes,

Eq. (14), is simple, allowing for a relatively compact variational formulation. On the other

hand, the presence of conducting gates and non-uniform dielectrics results in a more com-

plicated spectrum of continuum modes21 even in the absence of dc current. This model

of abrupt junctions between two ungated sections is the same as developed for graphene

in Refs. [18, 19, and 24]. In graphene, the electron density in a channel can be controlled

without a gate, for example, by chemical doping48–50. In GaAs/AlGaAs heterostructures, on

the other hand, doping patterns can be written, with high spatial resolution, using a focused

ion gun51. Two-dimensional channels can then be integrated with coplanar waveguides and

photoconductive switches for terahertz-frequency characterization using the time-domain

technique reported in Refs. [7 and 52].

A. Variational solution

Here, we present a variational solution of the interface problem. We adopt a method29

originally developed for open dielectric waveguides supporting surface waves, in which an

integral equation is formulated for the field at a waveguide interface. The equation is then

solved using the variational Ritz-Galerkin procedure, by expanding the field into a series of

orthonormal functions with unknown coefficients. Truncating the series, substituting it into

the boundary conditions, and using the mode orthogonality conditions reduces the boundary

conditions into a matrix equation for the unknown coefficients. Once these are calculated,

mode reflection and transmission coefficients can be found.

In a previous study25, we adopted this variational method to the problem of Fig. 1 but

in the absence of dc current. In this case, the mode orthogonality condition may be written
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in terms of solely the Ex and Hy field components, and it can be applied directly to the two

field boundary conditions. In the presence of dc current, however, the mode orthogonality

also involves ac electron current and velocity53. As a result, the original variational method

can no longer be applied.

As we shall show, however, the variational method can be modified if one assumes that

the drift velocity v0 is low enough to neglect terms of the order v20 and higher.

A plasmon incident upon the interface from the left channel will excite a reflected and

a transmitted plasmon and continuum modes in the both channels, so that the boundary

condition for the continuity of the y-component of the magnetic field takes the form

e−κL+x +Re−κL−x +

∫

∞

0

r(q)[ΓL−(q) cos(qx) + i sin(qx)]dq =

Te−κR+x +

∫

∞

0

t(q)[ΓR+(q) cos(qx) + i sin(qx)]dq
(17)

Similarly, the boundary condition for the continuity of the x-component of the electric field

can be written as

kL+e
−κL+x − RkL−e

−κL−x −

∫

∞

0

r(q)k[ΓL−(q) cos(qx) + i sin(qx)]dq =

TkR+e
−κR+x +

∫

∞

0

t(q)k[ΓR+(q) cos(qx) + i sin(qx)]dq
(18)

Here, as before, R and T denote the plasmon reflection and transmission coefficients

defined for the magnetic field of the form of Eq. (9); kL+ and κL+, kL− and κL− are the

wavenumbers of the plasmons propagating, respectively, to the left and to the right in the

left channel; kR+ and κR+ are the wavenumbers of the plasmon in the right channel; r(q) and

t(q) are the amplitudes of the continuum modes in, respectively, the left and right channels.

We denote the unknown x-component of the electric field at the interface z = 0 as E(x),

so that Eq. (18) can be rewritten as the following two equations

kL+e
−κL+x −RkL−e

−κL−x −

∫

∞

0

r(q)k[ΓL−(q) cos(qx) + i sin(qx)]dq = E(x) (19)

and

TkR+e
−κR+x +

∫

∞

0

t(q)k[ΓR+(q) cos(qx) + i sin(qx)]dq = E(x) (20)

Taking Eq. (19), multiplying by exp(−κL−x) and integrating along the x-coordinate from

x = 0 to x = ∞ yields

kL+
κL+ + κL−

− R
kL−
2κL−

−

∫

∞

0

r(q)k
ΓL−(q)κL− + iq

q2 + (κL−)2
dq =

∫

∞

0

E(x)e−κL−xdx (21)
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Using the plasmon dispersion relation in the form Ω2
pLκL− = (ω − kL−v0L)

2 we can write

ΓL−(q)κL− + iq = iq
(2ω − (k + kL−)v0L)(kL− − k)

(ω − kv0L)2
v0L (22)

In the absence of dc current, v0L = 0, so that Eq. (22) and the integral in Eq. (21) are zero.

Then R would be the only unknown in Eq. (21) and could have been expressed directly.

It is a consequence of the mode orthogonality, on which the original variational method

relies. The next steps of the original method would be to find, by similar manipulations,

expressions for T , r(q), and t(q) and substitute them into the other boundary condition for

the magnetic field, Eq. (17).

In the presence of dc current, however, Eq. (21) contains two unknowns R and r(q), and

is an integral equation for the latter. Neither R nor r(q) can be found from Eq. (21) and

the original solution procedure cannot be applied.

However, if the electron velocity is small, we can expand r(q) into a power series with

respect to the drift velocity and ignore all but the first two terms, so that r(q) ≈ r(0)(q) +

δr(q) · v0L, where r
(0)(q) is the value in the absence of dc current. Keeping only the terms

that are linear in v0L in Eq. (21) implies that r(q) in the integrand should be replaced with

r(0)(q). If the value of r(0)(q) is known, the integral can be evaluated, and R can be expressed

as

R =
2κL−
kL−

(

kL+
κL+ + κL−

− A−

∫

∞

0

E(x)e−κL−xdx

)

(23)

where

A =

∫

∞

0

r(0)(q)k
ΓL−(q)κL− + iq

q2 + (κL−)2
(24)

The values of r(0)(q) can be found, for example, by following the method introduced in

Ref. [25].

The next step is to find an expression for r(q) using a similar procedure. We multiply

Eq. (19) by ΓL−(q̃) cos(q̃x) + j sin(q̃x) and integrate
∫

∞

0
dx. We then ignore higher-order

contributions to R and r(q) and obtain

r(q) =
2

πk[(ΓL−(q))2 − 1]

(

B(q)−

∫

∞

0

E(x)[ΓL−(q) cos(qx) + i sin(qx)]dx

)

(25)

where

B(q) = kL+
ΓL−(q)κL+ + iq

q2 + (κL+)2
− R(0)kL−

ΓL−(q)κL− + iq

q2 + (κL−)2
− i−

∫

∞

0

r(0)(q̃)k̃
ΓL−(q)q̃ − ΓL−(q̃)q

q̃2 − q2
dq̃

(26)
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and −

∫

denotes the Cauchy principal value. The plasmon reflection coefficient in the absence

of drift R(0) can also be found using the variational method25; analytical expressions are also

available that are applicable in the absence of retardation19.

Similar manipulations with Eq. (20) give the following expressions for T and t(q)

T =
2κR+

kR+

(

−C +

∫

∞

0

E(x)e−κR+x

)

(27)

where

C =

∫

∞

0

t(0)(q)k
ΓR+(q)κR+ + iq

q2 + (κR+)2
dq (28)

and

t(q) =
2

πk[(ΓR+(q))2 − 1]

(

D(q) +

∫

∞

0

E(x)[ΓR+(q) cos(qx) + i sin(qx)]dx

)

(29)

where

D(q) = −T (0)kR+
ΓR+(q)κR+ + jq

q2 + (κR+)2
− i−

∫

∞

0

t(0)(q̃)k̃
ΓR+(q)q̃ − ΓR+(q̃)q

q̃2 − q2
dq̃ (30)

and the superscript (0) denotes values in the absence of dc current.

Substituting now Eqs. (23), (25), (27) and (29) into Eq. (17) and rearranging yields

F (x) =

∫

∞

0

E(x′)G(x, x′)dx′ (31)

where

F (x) = e−κL+x +
2kL+κL−

kL−(κL+ + κL−)
e−κL−x −

2κL−
kL+

Ae−κL−x +
2κR+

kR+

Ce−κR+x+

2

π

∫

∞

0

(

B(q)[ΓL−(q) cos(qx) + i sin(qx)]

k[(ΓL−(q))2 − 1]
−
D(q)[ΓR+(q) cos(qx) + i sin(qx)]

k[(ΓR+(q))2 − 1]

)

dq

(32)

and Green’s function G(x, x′) is of the form

G(x, x′) =
2κL−
kL−

e−κL−(x+x′) +
2κR+

kR+
e−κR+(x+x′)+

2

π

∫

∞

0

(ΓL−(q) cos(qx) + i sin(qx))(ΓL−(q) cos(qx
′)− i sin(qx′))

k[(ΓL−(q))2 − 1]
dq+

2

π

∫

∞

0

(ΓR+(q) cos(qx) + i sin(qx))(ΓR+(q) cos(qx
′)− i sin(qx′))

k[(ΓR+(q))2 − 1]
dq

(33)

Equation (31) is an integral equation for the unknown field E(x), and it can be solved by

the Ritz-Galerkin procedure. Choosing a complete set of basis orthogonal functions ψn(x),
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the unknown field E(x) is expanded into a series of the form

E(x) =
∑

n

λnψn(x) , (34)

where λn is a constant. Substituting (34) into (31), multiplying by ψm(x) and integrating

over x, and then truncating the series transforms the integral equation into a finite matrix

equation. Following Refs. [29] and [25], we choose the basis functions as the Laguerre

polynomials Ln(x) weighted by an exponential, so that

ψn(x) = Ln

(

x

x0

)

exp

(

−
x

2x0

)

. (35)

where x0 is a constant.

In the absence of dc current, the quantities A, B(q), C and D(q) defined by Eqs. (24),

(26), (28) and (30) are equal to zero. They have non-zero values in the presence of dc

current because the functions defining the field profiles of the modes in the waveguides are

not orthogonal to each other. Equations (24) and (28), the first term in Eq. (30), and the

first two terms in Eq. (28) describe contributions due to non-orthogonality between the fields

of plasmons and of the continuum modes. On the other hand, the integrals in Eq. (26) and

Eq. (30) describe contributions due to non-orthogonality of the fields of different continuum

modes. The latter contributions can be expected to be small compared to those involving

plasmons, and we neglected these contributions to simplify further calculations.

B. Full-wave simulations

The other method we developed to study plasmon scattering at interfaces of Fig. 1 is

full-wave simulations. Maxwell’s equations were solved using the finite-element method in a

commercial solver. Two-dimensional channels were modelled using the boundary conditions

Eqs. (2) and (3) combined with the equation for the linearized current density Eq. (8). In

the presence of dc current, the wavenumbers and field distributions of plasmons in a 2D

channel are different for the opposite propagation directions, so that the channel becomes a

nonreciprocal waveguide. As a result, we could not rely on such built-in solver techniques as

perfectly-matched layers, and computation of eigenmode fields and of scattering parameters.

We had to design a bespoke computational domain, a method of plasmon excitation, and a

method to extract plasmon transmission and reflection coefficients.

11



z

x

n
0R n

0L

excitation

b
1

absorber absorber

junction

1 2 3 4

b
2

b
3

H
y

coordinate0 10 µm

total

reflected
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plasmon scattering. Plasmons are excited at boundary b1 and scatter at boundary b2. The

absorbers in regions 1 and 4 prevent plasmon reentry. (b) amplitude of a typical simulated

field distribution along the 2D channels (black line) and the extracted reflected field

(orange line).

The computational domain consisted of four regions as shown in Fig. 2. Regions 2 and

3 were 10 µm-long, lossless 2D channels with different electron densities. Plasmon was

excited at boundary b1 and travelled to the right along region 2, reaching the interface

between the 2D channels at boundary b2. The plasmon then partially reflected back into

region 2 and partially transmitted through the interface into region 3. The energy of the

reflected and transmitted plasmons had then to be guided away from regions 2 and 3. It was

accomplished by the absorbing terminations in regions 1 and 4, each of which was 20 µm

long. These regions were identical to their neighbors except for the loss in the 2D channels.

The relaxation frequency [see Eq. (5)] varied along regions 1 and 4 as

γ(z) = γ0(z − z0)
α , (36)
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where z0 is the coordinate of the edge of a region; and γ0 and α are constants whose values

(γ0 = 1013 s−1 and α = 6) were chosen to create slow variation of loss along the distance.

Such a variation prevented plasmons from re-entring regions 2 and 3 while gradually ab-

sorbing their power. The field amplitudes at the ends of regions 1 and 4 were negligible,

and these regions could be terminated with perfectly conducting boundaries. Since plasmon

fields decay exponentially away from the 2D channels, radiation at the interface can be ex-

pected to be negligible25. The top and bottom of the computation domain could then be

also terminated by perfectly conducting boundaries placed each 100 µm away from the 2D

channels.

To excite a plasmon, we first solved the plasmon dispersion relation in the left 2D channel,

taking electron drift into account, and then calculated, using an analytical expression, the

corresponding amplitude of the Hy field component. We then imposed this field distribution

at boundary b1. The resulting plasmon travelled to the right (into region 2).

To calculate the plasmon reflection coefficient, we extracted the Hy(x) field component

immediately to the left of boundary b1, projected in onto the analytical expression for the

corresponding field component of the incident plasmon, H
(inc)
y , and normalized the result,

leading to

R =

∫

b1−0

Hy(x)H
(inc)
y dx

∫

b1−0

[

H(inc)
y

]2
dx

(37)

The plasmon transmission coefficient was found in a similar fashion, by extracting the field

at boundary b3, projecting it onto the analytical expression for the field of the transmitted

plasmon, H
(trans)
y , and normalizing, so that

T =

∫

b3

Hy(x)H
(trans)
y dx

∫

b3

[

H(trans)
y

]2
dx

(38)

To demonstrate that the above approach indeed allows us to excite a single plasmon

incident on the interface and then extract the reflected and transmitted plasmons without

reentry, Fig. 2 also shows an example of the amplitudes of calculated total (black solid line)

and reflected (orange dashed line) Hy field components. The transmitted field coincides

with the total field to the right of the interface. In region 2, the total field amplitude has a

standing-wave pattern created by interference of the incident and reflected plasmons. Away

13



from the interface, the transmitted and reflected field amplitudes are constant, showing

propagation of a single wave in each region. However, close to the interface, field amplitudes

vary significantly, indicating excitation of evanescent modes. The length of regions 2 and 3

(10 µm) was chosen specifically to allow the evanescent modes to decay. In regions 1 and 4,

the field amplitudes remain initially almost constant but then quickly fall off.

C. Results

In this section, we compare results of the two models. The main parameters to explore

are the ratio of the electron densities in the two channels, n0R/n0L, and the dc electron

velocities, for which n0Lv0L = n0Rv0R. In all our calculations made for the interface geometry,

the chosen frequency was 1 THz, the relative dielectric permittivity was 12.4, the effective

electron mass was 0.067m0 (corresponding to GaAs), and the electron density in the left

channel was n0 = 5 × 1011cm−2. The electron density in the right channel varied between

0.5n0L and 2.5n0L. The drift velocity in the left channel varied between −3 × 106 and

+3 × 106 cm/s, where negative values correspond to the dc current flowing to the left

(opposite to the direction of plasmon incidence).

As a first step, to validate our two models and to calculate the zero-order transmission and

reflection coefficients needed for the variational approach, we apply our models to plasmon

scattering at the interface in the absence of dc current and compare their results in Fig. 3

with the model of Ref. [19]. All three models give almost identical results for the amplitude

and phase of the reflection, R(0), and the transmission, T (0), coefficients. The nontrivial

contribution to the phase of the reflection reaches around ±0.1π at the extremes of the

density ranges, but the phase of the transmission coefficient is zero. The agreement between

the models suggests that all three capture the essential physical mechanism of plasmon

scattering in the absence of dc current. However, the expressions for plasmon reflection

and transmission coefficients in Ref. [19] cannot be applied directly in the presence of a dc

current in the 2D channels.

We then write the reflection coefficient in the presence of drift in the form

R =

(

|R(0)|+ δR
k
(0)
L v0L
ω

)

eiϕ
(0)

(39)

Here, δR is the change of the reflection coefficient normalized to the ratio of the drift velocity

14
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FIG. 3: Amplitudes, (a) and (c), and phases, (b) and (d), of the reflection and

transmission coefficients for plasmon incident of an interface between 2D channels in the

absence of drift. Results of three models are identical.

to the plasmon phase velocity in the absence of drift (ω/k
(0)
L ). Once R and R(0) have been

found from the full-wave simulations and the variational method, Eq. (39) can be used to

find δR for a particular value of the drift velocity. Both models show that the presence

of drift does not appreciably change the phase of the reflection coefficient, and δR is real

for the whole range of the drift velocities used. Figure 4 shows the values of δR calculated

for different drift velocities and values of n0R; Fig. 4(a) is for the full-wave simulations and

Fig. 4(b) is for the variational solution.

Both models result in the same behaviour of δR. Once the electron densities in the two

channels start to differ, the magnitude of the δR becomes nonzero. The change of δR is

more steep for n0L > n0R. Quantitatively, the variational solution results in slightly higher
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drift velocities by (a) the full-wave simulations and (b) the variational models. The two

models agree well.

values of δR than the full-wave simulations; for example at n0R = 2.5n0L, the full-wave

simulations give δR ≈ −0.35 whereas the variational model gives δR ≈ −0.5. For most of

the range of n0R used, the curves calculated for different drift velocities lie close to each other

for both models, which confirms the assumption that the absolute change of the reflection

coefficient R − R(0) is proportional to the drift velocity. However, at the lower end of the

n0R range, the curves for different drift velocities deviate from each other more noticeably.

Because the variational model relies on the assumption that the change of the reflection and

transmission coefficients is proportional to the drift velocity, it cannot be expected to yield

quantitatively correct values of R for values of n0R lower that the minimum value chosen.

The full-wave simulations, however, are free from this assumption. Both models also show

that the absolute change of the plasmon transmission coefficient, |T − T (0)| is an order of

magnitude lower than the corresponding values of |R−R(0)|, which suggests that dc current

does not appreciably affect the transmission coefficient.

We have defined the plasmon reflection and transmission coefficients based on the mag-

netic field component, see Eq. (17). However, the magnitude of the coefficients may be

different for a different choice of the field component, because the wavenumbers of the

counter-propagating plasmons even in the same waveguide are different in the presence of

drift. This ambiguity may be removed by using power relationships. As mentioned in
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Sec. II B and discussed in more detail in Ref. [47], the evanescent modes may carry elec-

tromagnetic power in the presence of drift, but do not carry total power (the sum of the

electromagnetic and the kinetic terms is zero). Therefore, a coefficient based on the total

plasmon power, Eq. (13), appears to be an appropriate choice. We define a coefficient based

on the ratio between the power flowing out of the interface, Pout, to the power flowing into

it, Pin, as

G =
Pout

Pin

(40)

where Pout is a sum of the powers of the reflected and the transmitted plasmons, and Pin

is the power of the incident plasmon. All powers are calculated from Eq. (12) and take

into account both the electromagnetic and the kinetic terms. When G > 1, the total power

flowing out of the interface exceeds the power incident upon it. In this sense, the total ac

power is amplified at the interface. The value of G cannot, however, be interpreted as gain

in resonators aiming to achieve plasmon oscillations (see Sec. IV).

Figure 5 shows the dependence of G on the drift velocity for four values of n0R/n0L,

calculated by both models. In all four cases, the value of G can be both larger and smaller

than unity. When n0R/n0L < 1, G > 1 for positive values of the drift velocity (the direction

of dc current coincides with the direction of incidence). On the other hand G < 1 for the

opposite direction of the dc current. The situation reverses for n0R/n0L > 1. The effect of

dc current is larger for greater differences between the electron densities in the two channels;

the maximum relative increase of power is around 7%.

D. Reflection from electric contacts

Current is supplied to 2D channels through electric contacts, on which plasmons may

also scatter. Using the full-wave model, we have studied how plasmons reflect from contacts

in the configuration shown in Fig. 6(a). The contact has finite thickness and is assumed to

be perfectly conducting. The electron density in the channel is n0 = 5 × 1011cm−2 and the

drift velocity is v0 = 3 × 106 cm/s; its direction coincides with the direction of incidence.

We varied the contact thickness between 2.5 nm and 200 µm, and calculated the plasmon

reflection coefficients, in the presence and absence of drift, for three values of frequency, 0.5,

0.75, and 1 THz. Figure 6(b) shows how the normalized change of the reflection coefficient

δR [see Eq. (39)] depends on a normalized contact thickness defined as Λ = hk(0), where k(0)
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FIG. 5: Dependence of the plasmon power coefficient G on the drift velocity for different

values of the carrier densities in the channels: (a) n0R/n0L = 0.5, (b) n0R/n0L = 0.65, (c)

n0R/n0L = 1.25, (d) n0R/n0L = 2.5.

is the plasmon wavenumber in the absence of dc current. With an exception of a small dip,

δR has values around 2 already for Λ > 1. The value of δR = 2 agrees with the analytical

result obtained previously for an infinitely thick contact47. On the other hand, the values

of δR are close to 4 for Λ < 0.1. Therefore, the thin contacts affect the plasmon reflection

coefficient more strongly than thick ones. The behavior is the same for all three frequencies.

IV. PLASMON GENERATION

Combining plasmon amplification at interfaces with feedback may lead to plasmon gen-

eration. Feedback can be realized by multiple reflectors, such as interfaces and electric

contacts. A basic system is shown in Fig. 7(a). It consists of two sections of 2D channels of
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presence of drift. (b) Dependence of the normalized change of the reflection coefficient on

the normalized contact thickness for three frequencies.

different lengths and with different carrier densities. DC current is supplied through elec-

tric contacts, which we assumed to be thick. The left channel has an electron density of

n0L = 5× 1011cm−2, and the right one a density of n0R = 2.5× 1011cm−2. The length of the

left section is 1 µm.

Plasmons propagate along the two sections, and they reflect from the contacts as well

as partially transmit through and partially reflect from the interface between the channels.

The acts of reflection and transmission may, depending on the relative directions of incidence

and of dc current, lead to plasmon amplification or de-amplification. In addition, plasmons

are losing their energy while propagating along the lossy channels. In the original study by

Dyakonov and Shur as well as several subsequent studies where analytical expressions for

the plasmon coefficients in terms of plasmon wavenumbers were available, the analysis of

plasmon instability could been done in terms of complex frequency derived from a dispersion
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relation. Assuming time variation of the form exp(iωt), a negative value of the imaginary

part of the frequency implies waves that grow in time. The imaginary part of the frequency

has then the meaning of the instability increment. However, this approach is unsuitable for

our study, because the plasmon coefficients are calculated numerically assuming real-valued

frequency. To demonstrate plasmon instability, therefore, we have used a somewhat different

approach, adopted from analysis of threshold conditions in lasers54. Instability requires two

conditions to be fulfilled. First, the roundtrip change of the plasmon phase should be equal

to a multiple of 2π, and second, the magnitude of the roundtrip amplitude gain should

exceed unity.

We have analyzed the configuration of Fig. 7(a) as follows. First, using full-wave sim-

ulations, we found all reflection and transmission coefficients at a frequency of 1 THz and

several values of the drift velocity, v0L = 0, ±15, ±30 × 106 cm/s. Positive values of the

drift velocity correspond to the current flowing to the right. When a plasmon is incident

on the interface between the section from the left, it will partially reflect back and partially

transmit through the interface. The transmitted plasmon will travel along the right section,

reflect from the right contact and travel back to the interface, where it will undergo further

partial reflection and transmission. The total reflection coefficient from the interface, R,

can then be found using the sum-of-all-paths method22,44,53. The roundtrip gain in the left

section is then given by the following expression

RRlce
−i(kL++kL−)lL (41)

where Rlc is the reflection coefficient of the left contact, and lL is the length of the left section.

From, Eq. (41), we have determined whether the conditions for plasmon oscillations can be

fulfilled. By varying the length of the right section, we changed the argument of R and,

therefore, the plasmon roundtrip phase. We then found those values of the right-section

length that fulfilled the roundtrip phase condition and calculated the magnitude of the

roundtrip gain to see whether it can exceed unity. Figures 7(b)–(d) show the magnitude of

the roundtrip gain (circles) calculated for different values of the relaxation time. Figure 7(b)

corresponds to lossless channels. When no dc current flows, the roundtrip gain (hollow

circles) is equal to unity, corresponding to a lossless plasmon resonance. When the current

is flowing from the left to the right contacts, the roundtrip gain is less than unity, indicating

a damped resonance. However, for the opposite direction of current, the roundtrip gain
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exceeds unity, indicating instability and plasmon generation. The resonant lengths of the

left section depend on the drift velocity because dc currents affect plasmon wavenumbers

[see Eq. (11)].

As shown in Figs. 7(c) and (d), loss in the channels suppresses gain, and this effect

is stronger for longer sections. For τ = 50 ps, the roundtrip gain still exceeds unity for

all resonances and the highest drift velocity of v0L = −30 × 106 cm/s. For the smaller

drift velocity of v0L = −15 × 106 cm/s, the roundtrip gain exceeds unity only for the first

resonance. For τ = 10 ps, the roundtrip gain is less than unity for all resonances.

V. COMPARISON WITH OTHER APPROACHES

The effects we have considered here are similar to those discussed in several previous

theoretical studies, starting with the pioneering paper by Dyakonov and Shur32. Different

types of instabilities have been investigated, but the common idea is to use discontinuities

in 2D channels to realize plasmon amplification in the presence of a dc current, and to use

reflections from the discontinuities to provide feedback needed for oscillations. Such dis-

continuities can be realized by electric contacts32,33,47,55, by interfaces between gated and

ungated channels42,44,53, or by a variation in the channel geometry36,41,43,56. However, phys-

ical interpretation of the effects may differ depending on the approach chosen.

A number of studies23,32,33,36,41–43,56 have employed quasi one-dimensional approaches that

can be summarised as follows. The properties of plasmons (for example, their dispersion

relation) in a uniform channel are derived taking into account the variation of the relevant

quantities (such the potential in the quasi-static approximation) at the both sides of the

channel. However, plasmon scattering at interfaces is then treated using a one-dimensional

model. Different studies have used different boundary conditions at interfaces, but a common

essential feature is that these boundary conditions can be satisfied solely by the incident and

the scattered plasmons.

The fully-electromagnetic approach we have adopted here differs by requiring that the

field boundary conditions are satisfied across the entire plane of an interface. These bound-

ary conditions do not reduce to the continuity of the potential and current at the channels

because of the different decay rates of the incident, reflected, and transmitted plasmons.

Matching the fields across the entire interface leads to excitation of continuum modes (see
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Fig. 2), in addition to plasmons. One consequence, observed in the absence of drift, is a non-

trivial phase of the reflected plasmons, see Fig. 3(b) and Refs. [18, 21, and 22]. This phase

may not vanish for a junction between a gated and an ungated channel even in the long-

wavelength limit22. Using a one-dimensional quasi-static approach, Rejaei and Khavasi also

obtained19 non-trivial reflection phase for plasmons incident on junctions between two un-

gated channels. They suggested that excitation of the evanescent modes at the junction was

responsible for the non-trivial phase, which agrees with the physical interpretation offered

by our model. The continuum modes are also excited at the interface in the presence of drift,

but as we have shown, the drift does not change the reflection phase for the configuration

of Fig. 1. On the other hand, the complexity of the fully-electromagnetic approaches means

that, for example for the three-dimensional structures considered in Refs. [56] and [43], a

variational solution similar to the one developed in Sec. IIIA is unlikely to be practical, and

full-wave simulations57 would require significant computational resources.

VI. CONCLUSIONS

Using two rigorous electromagnetic approaches, we showed that plasmons may be ampli-

fied when scattering from interfaces between 2D channels in the presence of a dc current.

For moderate values of the carrier drift velocity and ratio of carrier densities in the two

channels, the change of the magnitude of the plasmon reflection coefficient is proportional

to the drift velocity. However, dc current does not affect considerably the phase of the

reflection coefficient and both the amplitude and the phase of the transmission coefficient.

We further studied plasmon reflection from electric contacts of different thickness. The ef-

fect of dc current on the magnitude of the plasmon reflection coefficient for thin contacts

was shown to be twice as large than for thick ones. Finally, we showed that conditions for

plasmon generation can be met in a resonant system comprising two different channels and

two electric contacts, and we quantified the effects of loss on the roundtrip gain. The results

contribute to the understanding of plasmonic gain in two-dimensional systems, and may aid

design of future plasmon oscillators in the terahertz range.
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of graphene plasmons at abrupt interfaces: An analytic and numeric study,” Phys. Rev.

B. 97, 035434 (2018).

21O. Sydoruk, K. Choonee, and G. Dyer, “Transmission and reflection of terahertz plasmons

in two-dimensional plasmonic devices,” IEEE Trans. Terahertz Sci. Technol. 5, 486–496

(2015).

22S. Siaber, S. Zonetti, J. E. Cunningham, and O. Sydoruk, “Terahertz plasmon resonances

in two-dimensional electron systems: Modeling approaches,” Phys. Rev. Appl. 11, 064067

(2019).

23G. R. Aizin and G. C. Dyer, “Transmission line theory of collective plasma excitations in

periodic two-dimensional electron systems: Finite plasmonic crystals and Tamm states,”

Phys. Rev. B 86, 235316 (2012).

24V. Semenenko, M. Liu, and V. Perebeinos, “Scattering of quasistatic plasmons from one-

dimensional junctions of graphene: Transfer matrices, Fresnel relations, and nonlocality,”

Phys. Rev. Appl. 14, 024049 (2020).

26



25S. Siaber, S. Zonetti, and O. Sydoruk, “Junctions between two-dimensional plasmonic

waveguides in the presence of retardation,” J. Opt. 21, 105002 (2019).

26R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves (Collier

Crowell Macmillan, New York, 1972).

27D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1982).

28R. E. Collin, Field Theory of Guided Waves (Wiley-Interscience-IEEE, New York, 1991).

29T. Rozzi and M. Mongiardo, Open Electromagnetic Waveguides (IET, London, 1997).

30G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A.

Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz

plasmonic crystals,” Nat. Photon. 7, 925–930 (2013).
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