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Methodology

The Extrapolation Performance of Survival Models for Data With a Cure
Fraction: A Simulation Study

Benjamin Kearns, MSc, PhD, Matt D. Stevenson, BSc, PhD, Kostas Triantafyllopoulos, MSc, PhD, Andrea Manca, MSc, PhD

A B S T R A C T

Objectives: Curative treatments can result in complex hazard functions. The use of standard survival models may result in

poor extrapolations. Several models for data which may have a cure fraction are available, but comparisons of their

extrapolation performance are lacking. A simulation study was performed to assess the performance of models with and

without a cure fraction when fit to data with a cure fraction.

Methods: Data were simulated from a Weibull cure model, with 9 scenarios corresponding to different lengths of follow-up

and sample sizes. Cure and noncure versions of standard parametric, Royston-Parmar, and dynamic survival models were

considered along with noncure fractional polynomial and generalized additive models. The mean-squared error and bias

in estimates of the hazard function were estimated.

Results: With the shortest follow-up, none of the cure models provided good extrapolations. Performance improved with

increasing follow-up, except for the misspecified standard parametric cure model (lognormal). The performance of the

flexible cure models was similar to that of the correctly specified cure model. Accurate estimates of the cured fraction

were not necessary for accurate hazard estimates. Models without a cure fraction provided markedly worse extrapolations.

Conclusions: For curative treatments, failure to model the cured fraction can lead to very poor extrapolations. Cure models

provide improved extrapolations, but with immature data there may be insufficient evidence to choose between cure and

noncure models, emphasizing the importance of clinical knowledge for model choice. Dynamic cure fraction models were

robust to model misspecification, but standard parametric cure models were not.
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Introduction

Estimates of future survival are frequently a key component of

technology appraisals (TAs). Decisions about whether a technol-

ogy should be funded are often sensitive to the extrapolation

approach used.1 Hence, it is important that appropriate methods

are used when generating extrapolations. In the last few years,

there has been a growing interest in generating extrapolations for

curative treatments, such as immuno-oncology drugs.2-5 These

present unique challenges, because the presence of a cured frac-

tion creates heterogeneity in the survivor (and hazard) functions,

resulting in complex hazard shapes. Standard parametric survival

models, as typically employed in TAs, are usually insufficiently

flexible to adequately describe these shapes.4,6

The development of potentially curative treatments has led to

an increased use of cure fraction models in TAs.7 During the recent

update of the methods used in National Institute for Health and

Care Excellence (NICE) TAs, cure fraction models were explicitly

identified as an option for consideration.8 Cure models were also

included in the recently published NICE decision support unit

technical support document on flexible methods for survival

analysis.9 Based on the results of simulation studies, the authors

concluded that when the truth contained a cure fraction, cure

models had lower bias than alternative methods. Nevertheless,

there are limitations with cure models. Reliable estimates of the

cure fraction require long follow-up; in practice estimates of the

cure fraction are very sensitive to model specification.4,10,11

Although there is a growing awareness of the importance of us-

ing a cure fraction model in TAs, there are limited examples of

their use; a recent review of NICE TAs did not find any reim-

bursement decisions that had been made based on a nonzero

cured fraction.7

A proper assessment of the performance of cure models re-

quires multiple data sets with full follow-up, so that models may

be fit to an interim data cut. This allows an evaluation of both

within-sample fit and extrapolation performance. In the absence

of suitable data, simulation studies may be used; to-date 2 sim-

ulations of cure models for extrapolation in TAs have been
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considered.7,9 These are limited because between them only 2

cure fraction models have been considered: a Weibull cure model

and a Royston-Parmar (RP) cure model with 2 internal knots.

There is a need for a comprehensive assessment of multiple cure

fraction models for extrapolating data with a cured fraction. The

primary aim of this study was to address this evidence gap by

comparing the overall goodness of fit, for both within-sample

estimates and extrapolations, of cure models when fit to data

containing a cure fraction. There were 2 secondary aims:

1. To identify the accuracy with which the true cure fraction was

estimated

2. To assess the impact of not incorporating external data, by

comparing extrapolations from cure models with extrapola-

tions from models that do not assume a cure fraction

Methods

To assess the extrapolation performance of models with a cure

fraction, a simulation study was used. The reporting of the

simulation study follows published guidance.12 Components of

the simulation study are reported based on their aims (provided in

the previous section), data-generating mechanism, methods,

estimands, and performance measures. The code used is provided

in Appendix 1 in Supplemental Materials found at https://doi.

org/10.1016/j.jval.2021.05.009.

Data-Generating Mechanism

The “true” survival and hazard functions were simulated from

a Weibull cure data-generating mechanism. Hazard and survival

functions are represented by a Weibull model for individuals who

will die of the disease. General population English life tables are

used for cured individuals.13 A Weibull model with shape (g) and

scale (L) values of 1.6 and 2.6, respectively, was used for uncured

individuals, and it was assumed that one-quarter of the sample

would be cured (r = 0.25). The shape and scale were arbitrarily

chosen, with the aim of providing disease-specific death within a

moderately short timeframe (mean disease-specific survival 2.33

years) and with few survivors beyond 8 years. The cure fraction

was arbitrarily chosen with the intention that it was not the ma-

jority of patients, but large enough to notably influence survival.

The equations for obtaining the observed survivor and hazard

functions are:

Sti ¼ rSPti1ð12 rÞSUti

lti ¼
rlPtiS

P
ti
1ð12rÞlUti S

U
ti

Sti

where SPti , S
U
ti

are the survival for the cured and uncured pop-

ulations at time ti, with lPti , l
U
ti
the corresponding hazard values

(both of which are monotone increasing for this study). The in-

dividual components are provided in Appendix Figure 1 in Sup-

plemental Materials found at https://doi.org/10.1016/j.jval.2021.

05.009. A total of 9 scenarios were considered, with 200 data

sets simulated for each scenario. For each individual, survival

times were randomly sampled from SPti or SUtiwith probabilities

0.25 and 0.75, respectively. That is, uncertainty in survival (and

hence hazard) functions was simulated but it was assumed that

there was no uncertainty in the cure fraction. The 9 scenarios

corresponded to 3 different sample sizes (small = 100, medium =

300, large = 600) and 3 different lengths of follow-up (short = 2

years, medium = 4 years, long = 8 years). The longest follow-up

was chosen so that there were almost no uncured individuals

still alive. The shortest follow-up was chosen to be representative

of the lengths of follow-up often seen in cancer trials.14 Sample

sizes were chosen to represent typical sample sizes of cancer

treatments seen in TAs. Details on the 9 scenarios are provided in

Table 1. Figure 1 shows the simulated hazards for each scenario (in

gray) along with the true hazard (in black, which is the same for

each scenario). The short-term increase in the hazard function is

driven by deaths among the uncured population. The first turning

point occurs when the contribution of the cured population out-

weighs that of the uncured population, with the overall hazard

decreasing to that of the cured population. This is followed by a

long-term increase in the hazard function because of aging.

Estimand and Performance Measures

The estimand was the natural logarithm of the time-varying

hazard function lti . The use of the hazard function is preferable

to the survivor function because the latter is a cumulative

measure, so estimates will not be independent. The primary and

secondary performance measures were mean-squared error

(MSE) and bias. Both time-varying and summary performance

measures were considered. A time horizon of 40 years was used

(at which overall survival was 0.1%), with time-steps of 0.05

years. Appendix 1 in Supplemental Materials found at https://

doi.org/10.1016/j.jval.2021.05.009 provides further details and

justification.

Methods

For all the methods (models) discussed in this section, a brief

overview is provided. Further details on model specification (for

the noncured component) are provided in a previous

publication.15

A total of 4 types of cure fraction model were included. For

these, the correct background mortality was provided for the

cured group. Hence, the models estimated the cure proportion and

the hazard function for the uncured group.

1. Weibull cure model: this is the same as the data-generating

mechanism, so the model structure is correctly specified.

2. Lognormal cure model: the model structure is incorrectly

specified (misspecified) with regard to the true functional form

for the uncured group.

3. RP cure model. These introduce additional flexibility through

the use of piecewise cubic polynomials. Between 0 and 4 in-

ternal knots were considered for these spline-based models.

Models were fit on the hazard scale, so include as a special case

the Weibull cure model (zero knots). Hence, the model is

overspecified because it includes the correctly specified model

as a special case but allows for a range of more flexible models.

For each data set, the model with the lowest value of Akaike

information criterion (AIC) was used to generate

extrapolations.

4. Dynamic cured fraction models (DCFMs). These are models for

which parameters evolve dynamically over time, as modeled

by a time series (such as a random walk). A total of 2 models

were considered: a local trend model (a Weibull model with

dynamic parameters) and a damped trend model (as before,

but the trend in extrapolations is dampened over time until it

becomes 0). The local trend model is overspecified (it is the

same as the Weibull cure model if there is no parameter evo-

lution), while the damped trend model is incorrectly specified.

2 VALUE IN HEALTH - 2021



Hence, in total 5 cure models were included. R version 3.5.3 (R

Core Team, Austria, Vienna) was used. All dynamic models were fit

using RStan (Stan Development Team, Columbia); the remaining

cure fraction models used the cuRe package (Jakobsen, Aalborg,

Denmark).16

A total of 4 classes of model without a cured fraction were

considered. Where multiple model specifications were possible,

model choice was based on minimizing AIC to provide an auto-

mated method that reflects current approaches to model choice.17

One exception was the Gompertz, which was excluded from the

main results because the majority of extrapolations lacked face

validity.

1. Current practice. These models were designed to reflect the

models currently used in TAs.6 A total of 6 models were eval-

uated: exponential, Weibull, lognormal, log-logistic, gamma,

and generalized gamma. One model was retained. Results

including the Gompertz are provided in Appendix Figure 2 in

Supplemental Materials found at https://doi.org/10.1016/j.jval.2

021.05.009. Fitting used the flexsurv package (Jackson, Cam-

bridge, England).18

2. Fractional polynomials (FPs). These represent the outcome as a

sum of polynomial terms. First-order FP and second-order FP

models were considered, where the order denotes the number

of polynomial terms, fit using the stats package. A total of 8

Figure 1. Simulated hazards (gray lines) for the 9 scenarios, along with the truth (black line).
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Table 1. Details of the 9 scenarios simulated.

Scenario Follow-up (survival %) Sample size

Short follow-up, small sample size 2 years (63.9%) 100

Short follow-up, medium sample size Cured = 97.7% 300

Short follow-up, large sample size Uncured = 52.6% 600

Medium follow-up, small sample size 4 years (34.8%) 100

Medium follow-up, medium sample size Cured = 95.5% 300

Medium follow-up, large sample size Uncured = 14.5% 600

Long follow-up, small sample size 8 years (22.7%) 100

Long follow-up, medium sample size Cured = 90.1% 300

Long follow-up, large sample size Uncured = 0.3% 600
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first-order FP and 36 second-order FP models were considered;

1 model was retained for each.

3. Spline-based models. A total of 2 implementations were eval-

uated. One used the generalized additive models implemented

in the mgcv package (Wood, Edinburgh, Scotland),19 which

incorporates penalization (via shrinkage of parameter esti-

mates) during model fitting, removing the decision of how

many knots to use. The second was the RP model (RPM), with

up to 5 internal knots (no internal knots being the same as the

Weibull model), as estimated by the flexsurv package, with 1

RPM retained.18

4. Dynamic survival models (DSMs). A total of 2 DSMs were used:

a local trend DSM and a damped trend DSM.

This provided 7 models for which goodness of fit was

examined.

Results

For the 9 scenarios considered, varying the length of follow-up

had a larger impact on results than varying the sample size. Hence

detailed results are presented for the 3 follow-ups (2, 4, 8 years),

with a sample size of 300. Summary results are provided for the

remaining 6 scenarios.

Cure Models

A visual comparison of the model estimates and the true log-

hazards is provided in Figure 2. With the shortest follow-up, all

the considered models provided poor predictions. The Weibull

cure and RP cure models both resulted in very similar extrapola-

tions; exhibiting the largest variation of the 5 models considered

with both overestimates and underestimates of the true hazard.

This similarity was because for most simulations (78%) the RP cure

model chose zero internal knots, resulting in a Weibull cure

model. The mean number of internal knots ranged from 0.32 to

0.55 across the 9 scenarios. Extrapolations from the DCFMs

underestimated the true hazards while the lognormal cure model

provided extrapolations that nearly always overestimated the

truth. For the shortest follow-up, increasing the sample size led to

less variation in extrapolations from the lognormal cure model

(but not improvement in fit) and had a negligible impact on ex-

trapolations from the remaining 4 cure models. For all 5 cure

models visual goodness of fit improved as the length of follow-up

increased; with the longest follow-up, all the cure models pro-

vided very good fits except for the misspecified lognormal cure

model, which continued to systematically overestimate the truth.

Summary measures of MSE and bias averaged over the entire

time horizon are provided for all 9 scenarios in Table 2, along with

a rankogram in Appendix Figure 3 in Supplemental Materials

found at https://doi.org/10.1016/j.jval.2021.05.009. A rankogram

displays the average number of times each model achieved each

rank based on its goodness of fit (where 1 is the best and 5 the

worst). Time-varying performance measures are provided in

Appendix Figures 4, 5 and Appendix Table 1 in Supplemental

Materials found at https://doi.org/10.1016/j.jval.2021.05.009. The

within-sample 95% confidence intervals all included zero, with

point estimates very close to zero, indicating that within-sample

Figure 2. Estimates of the log-hazard compared with the truth: cure fraction models.

DCFM indicates dynamic cured fraction model; RPM, Royston-Parmar model.
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bias was small and within an acceptable range. Similar

within-sample results were obtained for MSE values which, when

compared with the range of MSE values for the extrapolated

period, were very minor. In the scenarios with the longest follow-

up, all the models apart from the lognormal had overall (within-

sample and extrapolated period) MSE and bias values that were

very close to zero. Furthermore, except for the lognormal,

extrapolation performance and overall goodness of fit of the

models generally increased as the length of follow-up or the

sample size increased. The lognormal cure model had similar

within-sample fit to the other models; the poor overall perfor-

mance of this model was due to it providing poor extrapolations,

which remained biased even with 8 years follow-up.

The results of the rankogram further illustrate the poor per-

formance of the lognormal model. The remaining 4 models typi-

cally had similar MSE values, while the 2 DCFMs usually had the

lowest bias values. Hence, for the nondynamic cure models, model

misspecification (using a lognormal cure model instead of a

Weibull cure model) led to reduced extrapolation performance,

while using an overspecified model (RP cure model) had a negli-

gible impact on bias. The overall goodness of fit of the DCFMs was

similar to that of the correctly specified Weibull cure model,

despite being overspecified (local trend) or misspecified (damped

trend). Across the 9 scenarios, the Weibull cure model and dam-

ped trend cure models had the lowest MSE in 4 scenarios each.

The remaining scenario had the least mature data (follow-up 2

years and sample size = 100). For this, the lognormal cure model

provided the best MSE as its extrapolations had very low vari-

ability. The second lowest MSE was from a DCFM in 6 scenarios

and the RP cure model in the remaining 3.

Estimates of the Cure Fraction

Estimates of the cure fraction for each model and each scenario

are provided in Figure 3. For the shortest follow-up, none of the

models provided accurate estimates of the cure fraction; on

average, the lognormal cure model underestimated the true value,

while the remaining models overestimated it. Increasing length of

follow-up led to more accurate and less variable estimates,

although, even at the longest follow-up (when virtually all the

uncured patients had died), the lognormal provided an underes-

timate of the cure fraction.

In general, the Weibull cure and RP cure models provided

slightly more accurate estimates of the true cure fraction than the

2 DCFMs. Nevertheless, this did not correspond to improved

goodness of fit. This was most notable for the scenarios with

shortest follow-up, for which both DCFMs had better overall MSE

despite substantially overestimating the cured fraction (range for

mean estimates: DCFMs 44.5%-45.3%, Weibull cure and RP cure

models 30.3%-34.7%).

Models Without a Cure Fraction

Visual extrapolations from the models that do not include a

cured fraction are provided in Figure 4. Without external evidence,

none of the models provided accurate extrapolations for any of the

scenarios considered. As such, estimates of bias and MSE are not

quantified because there is little merit in identifying the model

with the best goodness of fit when none of the models are useful.

The poor performance of these models is because, without

external evidence, they are unable to describe the unobserved

long-term increase in hazards beyond the follow-up period.

Distinct extrapolation patterns may be seen for the current

practice models. These patterns arise from the selection of

different parametric models; results for the individual models

(including the Gompertz) are shown in Appendix Figure 2 in

Supplemental Materials found at https://doi.org/10.1016/j.jval.2

021.05.009. For the scenarios with short-to-medium follow-up,

despite all the models (excluding the exponential) having very

similar within-sample fit years (range in mean MSE values: 0.01-

0.04), extrapolations varied markedly; extrapolations from the

Gompertz, Weibull, and gamma all increased, and those from the

log-logistic and lognormal decreased, while the generalized

gamma provided extrapolations that could increase or decrease.

This highlights the danger in basing model choice on within-

sample goodness of fit, because models with near-identical

within-sample fit could provide qualitatively discrepant extrapo-

lations (with no models providing accurate extrapolations).

The impact of within-sample goodness of fit on model choice

was also explored for the choice of using a cure model versus a

current practice or RPM. Appendix Table 2 in Supplemental Ma-

terials found at https://doi.org/10.1016/j.jval.2021.05.009 provides

the average absolute improvement in AIC by scenario when using

a cure model in preference to its noncure alternative (the focus is

on AIC because in practice MSE and bias are unknown, and AIC

cannot be calculated for the dynamic models). On average, the use

of a cure model led to an improved within-sample fit for all 9

scenarios, with larger improvements in more data-rich scenarios

(longer follow-up or increased sample size). Nevertheless, in the

scenarios with the least data, there was very little difference be-

tween cure fraction models and their corresponding noncure

models, suggesting that it would be difficult to choose between

the models in these situations. Given that extrapolations varied

Table 2. Goodness of fit over the entire time horizon: cure fraction models.

Measure and model Sample size: 100. Follow-up: Sample size: 300. Follow-up: Sample size: 600. Follow-up:

2 years 3 years 4 years 2 years 3 years 4 years 2 years 3 years 4 years

Overall mean squared error
Weibull cure model 1.73 0.34 0.04 1.35 0.14 0.01 0.84 0.04 0.01
Lognormal cure model 0.85 0.87 0.23 0.87 1.04 0.17 0.92 1.06 0.17

Royston-Parmar cure model 1.77 0.34 0.06 1.36 0.31 0.02 0.91 0.22 0.01
Local trend cure model 0.90 0.13 0.07 0.70 0.08 0.02 0.66 0.06 0.01
Damped trend cure model 0.87 0.13 0.07 0.68 0.08 0.02 0.64 0.06 0.01

Overall bias
Weibull cure model 0.20 0.16 0.08 0.07 0.04 0.01 0.01 0.02 0.02
Lognormal cure model 0.33 0.45 0.48 0.49 0.59 0.60 0.18 0.20 0.21
Royston-Parmar cure model 0.08 0.12 0.08 0.05 0.10 0.07 0.01 0.02 0.02
Local trend cure model 20.42 20.37 20.37 20.10 20.08 20.07 20.04 20.03 20.02
Damped trend cure model 20.42 20.37 20.36 20.10 20.08 20.06 20.04 20.03 20.02

-- 5



markedly between cure and noncure models, this highlights the

difficulties with model specification in data-poor scenarios.

Practical Recommendations When Choosing a Survival
Model for Extrapolation

A key first step is to assess the plausibility of assuming that a

health technology will result in a fraction of patients being “cured”

and so only experiencing general population mortality. This is a

clinical question, emphasizing the importance of including

subject-matter specialists.

If there are clinical reasons to believe that there may be a cure

fraction, the results of this study suggest that models that make

weak structural assumptions should be preferred. These models

typically performed and the correctly specified model while

avoiding the sensitivity to model misspecification. This includes

the RP cure model and both DCFMs. The sensitivity of extrapola-

tions to the choice of survival model should be assessed in

sensitivity analyses. The choice of base-case model should be

guided by the plausibility of extrapolations, because good within-

sample fit does not guarantee accurate extrapolations. If multiple

models provide plausible extrapolations, the use of a damped

trend DCFM may be preferable. This is because this model

dampens any extrapolated trend, so partly mitigates the danger of

extrapolating an incorrect trend. Care should be taken to avoid

overinterpreting the estimated cure fraction. Owing to a lack of

identifiability, cure fraction models can provide accurate extrap-

olations even if the estimated cure fraction is wrong. If there is

uncertainty about the plausibility of a cure, this should be

assessed by using noncure models in sensitivity analyses.

By definition, the accuracy of extrapolations is not known in

practice and waiting for longer follow-up is typically not an op-

tion. The results of this article emphasize the importance of

follow-up on extrapolation accuracy; with short follow-up, there

is a danger that no model will provide useful predictions of the

future.

Discussion

Recent innovations in health technologies have led to some

patients experiencing long-term survival. Generating accurate

extrapolations in the presence of a cured fraction is important but

challenging. This article compared the within-sample and

extrapolation performance of models with and without a cure

fraction when fit to data with a cured fraction. The use of models

with a cured fraction led to generally acceptable extrapolations. In

contrast, noncure models failed to provide plausible extrapola-

tions even at 8 years of follow-up, when over three-quarters of the

sample had died. Nevertheless, at the shortest follow-up consid-

ered (2 years, with over a third of the sample dead), even the

correctly specified Weibull cure model provided poor

extrapolations.

Of the cure models considered, the Weibull and lognormal

models both make strong structural assumptions about the shape

of the disease-specific hazard: that it is either monotonic or has a

single turning point, respectively. The results shown here suggest

Figure 3. Estimates of the cure fraction.

RPM indicates Royston-Parmar model.
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that when these strong structural assumptions are incorrect,

resulting extrapolations can be poor. In contrast, the cure RPM and

DCFMs make very weak structural assumptions and provided

extrapolations that were similar to the correctly specified model

across the scenarios considered. In particular, the misspecified

damped trend cure fraction model had the lowest overall MSE in 4

of the 9 scenarios and the second lowest in a further 2. As antic-

ipated, the correctly specified Weibull cure model led to the most

accurate estimates of the cure fraction for the cure models

considered, on average. Nevertheless, this did not result in

improved goodness of fit, which is influenced by estimates of both

the cure fraction and the hazard function for the uncured fraction.

Furthermore, with short follow-up, estimates from the Weibull

cure model were also highly variable while within-sample fit was

no better than that from a noncure Weibull model. Together these

highlight the lack of identifiability for data with a cure fraction;

where the cure fraction is unknown, the overall observed hazard

function may be described equally well by different combinations

of disease-specific hazard functions and cure fractions.

There is limited assessment of the performance of cure fraction

models in the literature. An analysis of long-term ovarian cancer

registry data, using Weibull cure and lognormal cure models,

showed both that estimate of the cure fraction was sensitive to

model choice and that the Weibull cure model provided more a

plausible estimate despite having a worse within-sample fit. The

authors also cautioned that “The estimate of the cure fraction can

be unstable when there are a small number at risk toward the end

of follow-up.”11 Stedman et al20 also used registry data and

demonstrated that estimates of the cure fraction were sensitive to

both the length of follow-up and model choice and to cancer site

and stage. The results of this study confirm the findings of these

studies, by showing that estimates of the cure fraction are strongly

influenced by the length of follow-up and can vary by model.

Grant et al7 performed a case study to assess the performance of

Weibull cure models when applied to data representative of a

NICE appraisal, with an overall cure fraction of 40% and the ma-

jority of uncured people dead by 150 months. Models fit to 40

months of follow-up were found to fit the observed data well but

underestimate the overall cure fraction and provide visually poor

extrapolations. Their findings support the findings of this study in

demonstrating that extrapolation with short follow-up (relative to

lifetime follow-up) can provide poor extrapolations, even if

within-sample fit is good. A simulation study performed by

Rutherford et al9 demonstrated that, if the truth includes a cure

fraction, cure models will provide better extrapolations than

noncure models; similar results were observed in this study.

This is the first time that the within-sample and extrapolation

performance of DCFMs has been assessed. In total, 69 models were

considered (9 cure models, 60 noncure), with 11 models retained

for estimating extrapolation performance (4 cure models, 7 non-

cure). This allows for an assessment of the impact that model

misspecification has on both goodness of fit and model selection

in practice. This includes both misspecifying the model for

disease-specific mortality in a cure fraction model and the

Figure 4. Estimates of the log-hazard compared with the truth: models without a cure fraction.

DSM indicates dynamic survival model; FP1, first-order fractional polynomial; FP2, second-order fractional polynomial; GAM, generalized additive model;
RPM, Royston-Parmar model.
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misspecification of not using a cure fraction model for data with a

cure fraction. For the former, the use of a misspecified current

practice model did not affect within-sample fit but led to very

poor and consistently biased extrapolations. In contrast, the use of

a misspecified DCFM had little effect. For all model classes, the use

of a model without a cured fraction provided extremely poor

extrapolations.

A potential limitation of this study is that the results only

represent an upper bound on the performance of the cure models

in practice. This is because for this study it has been assumed that

the survival of the cured patients is known with certainty (the

same life tables are used in the data-generating mechanism and

the models). In practice, there will be some misspecification; in-

dividual patient characteristics and local geographical factors may

lead to survival that is different to national life tables. This would

affect absolute goodness of fit but is unlikely to affect the relative

performance of the models assessed. The hazard function of the

uncured population is also relatively simple, arising from a

monotonic Weibull model. In reality the hazard function may not

be monotonic (eg, because of patient heterogeneity in survival),

which again may hamper extrapolation performance. This is likely

to most affect the Weibull cure and lognormal cure models,

because this study has demonstrated that extensions to current

practice models are sensitive to model misspecification. This

simulation study also only assessed 1 set of parameters for 1 data-

generating mechanism. Future research could continue to assess

the goodness of fit of cure models with different data-generating

mechanisms or in situations with real data with long follow-up

where a proportion of the sample are known to be cured. This

could include situations where the “cured” fraction have a mor-

tality that is persistently elevated compared with the general

population. In addition, it would be beneficial to know whether

cure versions of RPMs are affected by misspecification (do not

include the true model as a special case). This article has illus-

trated the impact of length of follow-up on extrapolation perfor-

mance. Further research to identify the situations when there is

sufficient follow-up to provide reliable extrapolations would be

valuable, particularly for situations such as rare diseases when it

may be difficult to obtain large sample sizes or long follow-up.

Future studies could also expand the data-generating mecha-

nism to consider the impact of disease progression on both sur-

vival and censoring, as was modeled in the study of Grant et al.7

Conclusions

The presence of a cure fraction creates complex hazard pat-

terns that can pose a challenge for extrapolation. Extensions of

current practice models to incorporate a cure fraction work well

if they match the true data-generating mechanism but can

provide poor results otherwise. Dynamic models with a cure

fraction generally performed and the correctly specified model,

while avoiding the sensitivity to model misspecification. For all

the models evaluated, incorrectly omitting the cure fraction led

to very poor extrapolations. When the truth did include a cure

fraction, all the cure models provided poor extrapolations at the

shortest follow-up considered, and in the data-poor scenarios,

there was little difference in the within-sample fit of cure and

noncure models. Hence, incorporating external data, in the form

of general population hazards, can in some situations improve

extrapolation performance but it is not guaranteed to do so. It is

not a substitute for having both adequate follow-up and subject-

matter input into the plausibility of assuming a cure fraction.

Supplemental Material

Supplementary data associated with this article can be found in the

online version at https://doi.org/10.1016/j.jval.2021.05.009.
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