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ABSTRACT

Technology Assisted Review (TAR) aims to minimise the manual

judgements required to identify relevant documents. Reductions

in workload are dependent on a reviewer being able to make an

informed decision about when to stop examining documents. Count-

ing processes offer a theoretically sound approach to creating stop-

ping criteria for TAR approaches that are based on analysis of the

rate at which relevant documents are observed. This paper intro-

duces two modifications to existing approaches: application of a

Cox Process (a counting process which has not previously been

used for this problem) and use of a rate function based on a power

law. Experiments on the CLEF 2017 e-Health TAR collection demon-

strates that these approaches produces results that are superior to

those reported previously.
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1 INTRODUCTION

Technology Assisted Review (TAR) aims to minimise the manual

effort required to assess collections of documents for relevance.

Strategies such as active learning have been shown to be highly

successful at ensuring that those of interest appear early in the

ranking, e.g. [1, 2, 6]. However, a highly successful ranking strategy

is not itself sufficient to cut down the effort required to review a

collection since a reviewer needs to know when it is safe to stop

examining documents. Stopping strategies, e.g. [1, 8, 13], offer a

solution by predicting an appropriate point at which the process of

examining documents can cease. They offer the potential to reduce

the effort required for TAR by removing the requirement to examine
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the entire document collection, particularly those that are unlikely

to be of interest (such as those that are low ranked).

Existing stopping criteria are generally based on either ad hoc

approaches or methods that attempt to estimate the total number

of relevant documents in the collection (see Section 2). Sneyd and

Stevenson [13] introduced an alternative approach based on count-

ing processes, stochastic processes that model the number of event

occurrences within a time interval. This approach was demon-

strated to be robust by evaluating it using rankings of varying

effectiveness produced by participants from the CLEF eHealth task

łTechnology Assisted Reviews in Empirical Medicine" [6]. However,

their work only explored a single counting process (Poisson Pro-

cess) and assumed that the rate at which relevant documents are

observed can be modelled as an exponential function. In addition,

they only reported results for a limited range of parameter settings

(recall of 70% with 95% confidence).

This paper extends previous work on the use of counting pro-

cesses for stopping criteria in multiple ways. It applies a counting

process that has not previously been applied to this problem (the

Cox Process). It explores the use of alternative rate functions, specif-

ically power laws [16], which are more commonly applied in IR

research than the exponential function used previously. It also re-

ports results for a range of recall and confidence levels.

The paper’s main contributions are: to introduce the Cox Process

for this problem; to demonstrate that using power laws to model

the rate at which relevant documents are observed is more effective

than the exponential function; to provide information about how

these approaches behave under a range of recall and confidence

levels and compare them against existing baselines.1

2 BACKGROUND

The simplest approaches to developing search stopping criteria are

based on heuristics, such as stopping after a set percentage of the

ranked documents have been examined or stopping after a set num-

ber of consecutive non-relevant documents have been observed, e.g.

[9]. However, these approaches rely heavily on parameters being

set to appropriate values which is difficult to achieve when the

approach is applied to a new collection or ranking algorithm.

A range of methods for identifying search stopping criteria have

been developed based on the approach of first estimating the total

number of relevant documents in the collection. It is then straight-

forward to create a stopping criteria based on a pre-defined level

of recall by simply stopping when the appropriate portion of the

relevant documents have been observed. Such approaches can also

be used to provide confidence estimates based on the confidence

in the estimation of the total number of relevant documents. This

1Code implementing the experiments described in this paper can be found at https:
//github.com/alisonsneyd/stopping_criteria_counting_processes



approach is very closely related to work on volume estimation e.g.

[10, 15], where the goal is to estimate the total number of relevant

documents in a (possibly unranked) collection.

One stopping method based on this approach, the target method

[1], was motivated by the problem of electronic discovery in the

legal domain. The target method involves examining randomly cho-

sen documents until a set number of relevant ones have been found;

these are referred to as the target set. The method then proceeds

through the ranking, making judgements until every document

in the target set has been encountered. The size of the target set

depends on the level of recall and confidence in this level that is

desired. A target set of 10 is sufficient to guarantee a minimum

recall score of 0.7 with probability 0.95, see [1]. The target method

does not make any assumptions about the distribution of relevant

documents in a ranking. For a reasonable retrieval system relevant

documents are more likely to occur at the start of the ranking than

at the end, but the target method does not exploit this information.

The knee method [1] aimed to overcome this limitation by as-

suming that the gain curve of rank versus recall is convex in shape.

It employs geometric analysis [12] to estimate when the gain curve

has exceeded a certain tipping point, called the slope ratio. This

method was better able to predict an efficient stopping point than

the target method, but did not provide any probabilistic guarantees

about the level of recall that would be achieved.

Other approaches include Wallace et al. [14] who proposed a

number of measures to estimate the total number of relevant docu-

ments in a collection and provided this information to the user to

allow them to make the decision about when to stop. Recently Li

and Kanoulas [8] also developed estimates, which they proved to be

statistically unbiased, and integrated them into an active learning

approach to document review.

Sneyd and Stevenson [13] proposed an alternative approach

based on analysis of the rate at which relevant documents are iden-

tified in a ranking. Their approach examines the documents highest

in the ranking (i.e those most likely to be relevant) and models

the rate at which relevant documents are likely to be found in the

examined portion of the ranking using a statistical model. They

chose to model the rate at which relevant documents are found

in the ranking used an exponential function. The approach was

demonstrated to be robust on a set of rankings of varying effective-

ness produced by participants in a shared task [6]. Since it is based

on an established statistical model, this approach has the advantage

of providing estimates of the total number of relevant documents

in a ranking together with confidence estimates. However, Sneyd

and Stevenson do not justify the use of an exponential function to

model the rate at which relevant documents occur and also point

out that it might not be suitable in all circumstances.

3 APPROACH

This section describes how counting processes can be used to pro-

duce stopping rules, building on previous work [13]. Counting

processes are stochastic models of the number of occurrences of

an event over time (see e.g. [5]). They can naturally be applied to

the problem of estimating the number of relevant documents in

search results by treating positions in a search ranking as łtimež and

occurrences of relevant documents within this ranking as łevents".

Poisson processes [7] assume that the events occur indepen-

dently and that the number of occurrences in given interval follows

a Poisson distribution. If the rate at which events occur is con-

stant, the Poisson process is called homogeneous. If the rate varies

then the Poisson process is inhomogeneous (or non-homogeneous).

These Poisson processes have a rate, 𝜆, which is a function repre-

senting the frequency with which events occur over the space over

which the process is defined (in our case this space is a ranked list

of documents). Let:

Λ(𝑎, 𝑏) =

∫ 𝑏

𝑎
𝜆(𝑥)𝑑𝑥, (1)

and let 𝑁 (𝑎, 𝑏) be a random variable denoting the number of events

an occurring in the interval (𝑎, 𝑏]. Then:

𝑃 (𝑁 (𝑎, 𝑏) = 𝑟 ) =
[Λ(𝑎, 𝑏)]𝑟

𝑟 !
𝑒−Λ(𝑎,𝑏) . (2)

𝑁 has a Poisson distribution with expected value Λ(𝑎, 𝑏). This pro-

vides a mechanism to model the number of relevant documents

found between indexes 𝑎 and 𝑏 of a ranking and estimate the prob-

ability of this being a particular value (𝑟 ). Restricting attention to

the interval 𝑁 (0, 𝑛), where 𝑛 is the total number of documents in

the collection, provides a distribution that can be used to estimate

the number of relevant documents in the entire collection.

Selecting an appropriate rate function is important to ensure the

Poisson process represents an accurate model, but in most cases the

rate function is not known and cannot be directly observed. Cox

processes [4], also known as doubly stochastic Poisson processes,

are an extension of Poisson Processes that account for this uncer-

tainly by also modelling the rate function as a stochastic process.

In a Cox process, the probability that a defined number of events, 𝑟 ,

occurs within the interval (𝑎, 𝑏] is computed by integrating over

all of the possible values of the rate function 𝜆, i.e.

𝑃 (𝑁 (𝑎, 𝑏) = 𝑟 ) =

∫ ∞

0

[Λ(𝑎, 𝑏)]𝑟

𝑟 !
𝑒−Λ(𝑎,𝑏)𝑃 (Λ)𝑑 (𝜆). (3)

3.1 Estimating the Rate Function

In this application the rate function, 𝜆, represents the probability

of a document being relevant at a particular point in the rankings

and choosing a suitable one is a key decision in the application of

counting processes. An appropriate function should assume that a

suitable ranking has, in accordance with the probability ranking

principle [11], succeeded in placing documents that are more likely

to be relevant higher in the ranking than those less likely to be and,

consequently, the rate at which relevant documents occur decreases

in direct proportion to the document’s position in the ranking.

Previous work on the application of counting processes to stop-

ping [13], chose to model 𝜆 using an exponential function, i.e.

𝜆(𝑥) = 𝑑𝑒𝑘𝑥 where 𝑥 is an index in a ranking (i.e. 𝑥 ∈ {1, 2 . . . 𝑛} for

a collection of𝑛 documents) and𝑑, 𝑘 ∈ R are parameters controlling

the function’s shape. This choice of rate function has mathematical

properties that make it a convenient choice of rate function for a

counting processes (see [13]), but it is unclear whether it is a suitable

model for representing the occurrence of relevant documents.

Power laws have been proposed as a suitable model of the rate

at which relevant documents are found in a ranking [16] and have



been shown to be useful for estimating the number of relevant

documents remaining for test collection development, e.g. [9]. For-

tunately the mathematical properties of these functions also make

them a convenient choice of rate function for counting processes.

Power laws have the form 𝜆(𝑥) = 𝑐𝑥𝑘 where 𝑥 is an index and the

parameters 𝑐, 𝑘 ∈ R determine the function’s shape. Substituting

this into equation 1 produces:

Λ(𝑎, 𝑏) =

∫ 𝑏

𝑎
𝑐𝑥𝑘𝑑𝑥 =

[

𝑐𝑥𝑘+1

𝑘 + 1

]𝑏

𝑎

=

𝑐

𝑘 + 1

(

𝑏𝑘+1 − 𝑎𝑘+1
)

. (4)

Since we are interested in estimating the total number of relevant

documents in the collection (𝑛), attention can be restricted to the

interval (0, 𝑛], then

Λ(0, 𝑛) =
𝑐𝑛𝑘+1

𝑘 + 1
. (5)

This equation provides a convenient closed form expression that

can be substituted into Equations 2 and 3 to estimate a distribution

of the number of relevant documents in a collection.

3.2 Stopping Rule

Combining Equations 2 and 3with a rate function allows the produc-

tion of distributions estimating the number of relevant documents

within some portion of the ranking. Examining this distribution’s

cumulative distribution function (CDF) provides an upper limit

on this estimate, given a specified probability. For example, the

maximum number of relevant documents in the collection with

95% probability. This allows us to develop an algorithm for deter-

mining a suitable stopping point for examining documents in the

ranking with confidence bounds on the estimates produced. The

proposed algorithm (see Algorithm 1) is provided with a desired

level of recall (ℓ) and confidence level (𝑝). The first 𝛼 documents in

the ranking are examined, and an upper bound with confidence 𝑝

is placed on the total number of relevant documents in the entire

ranking (denoted by 𝑅); this is estimated by computing the CDF of

the counting process model being used (lines 3-6). If the number of

relevant documents observed in the first 𝛼 documents (𝑟𝑒𝑙 (𝛼)) is

greater than or equal to the number of relevant documents needed

to achieve the desired level of recall (i.e. 𝑟𝑒𝑙 (𝛼) ≥ ⌈ℓ𝑅⌉) (line 7), the

process stops and no more documents are examined. Otherwise,

the next 𝛽 documents are added to the pool of examined documents

(line 10) and the process repeated. The algorithm continues until

either enough relevant documents have been found to achieve the

desired recall level or all documents have been examined.2

4 EXPERIMENTS

Experiments were carried out to evaluate the approaches based

on counting processes described in Section 3 and compare them

against existing methods (Section 2). Each method was tested at a

variety of recall (ℓ ∈ {0.7, 0.8, 0.9, 0.95}) and probability levels (𝑝 ∈

{0.8, 0.95}). For the counting process methods, the initial sample

of the ranking to examine (𝛼) was set to 30% and the percentage

of new documents to examine at each iteration of the algorithm

(𝛽) set to 5%. In addition, at least 20 relevant documents had to

2Note that this approach can be applied to a pre-ranked collection of documents or
naturally integrated into an approach employing active learning, with the sample size
parameters (𝛼 and 𝛽) adjusted as required.

Algorithm 1 Algorithm to Generate Search Stopping Criteria

1: Input: n (= no. documents in ranking), ℓ (= target recall level,

e.g. 0.7), p (= confidence level, e.g. 0.95), 𝛼 (= initial sample size,

e.g. 0.3), 𝛽 (= sample increment size, e.g. 0.05)

2: Output: s (= stopping rank)

3: 𝑠 ← 𝛼 × 𝑛

4: while 𝑠 < 𝑛 do

5: Fit Counting Process (N(0, s)) to documents in range 1 ... s

6: 𝑅 ← 𝐶𝐷𝐹 𝑜 𝑓 𝑁 (0, 𝑠) > 𝑝

7: if ℓ𝑅 < 𝑟𝑒𝑙 (𝑠) then

8: break

9: end if

10: 𝑠 ← 𝑠 + 𝛽 × 𝑛

11: end while

12: return 𝑠

be observed before a stopping point was proposed (c.f. previous

approaches that required 150 relevant documents [1]).

The first approach, Inhomogeneous Poisson Process with

Exponential Rate (IP-E), uses a Poisson Process with an expo-

nential function as the rate function. The parameters of the rate

function were estimated using a non-linear least squares algorithm,

the samemethods as used in previous work [13]. The next approach,

Inhomogeneous Poisson Process with Exponential Rate (IP-

E), is the same as IP-E except that the rate is determined using a

power curve function rather than an exponential. The next two

approaches, Cox Process with Exponential Rate (CX-E) and

Cox Process with Power Rate (CX-P) replace the Poisson Pro-

cess with a Cox Process with rates modelled as exponential and

power law functions respectively. Parameters of the rate function

as identified using non-linear least squares are normally distributed.

Examining the covariance of each parameter allows the distribution

of 𝜆 required for the Cox Process (see Eq. 3) to be computed.

For comparison, the target method (TM) [1] was implemented

with the target set size adjusted to the relevant recall ℓ and proba-

bility 𝑝 levels. The knee method (KM) [1] was also implemented

but does not offer an intrinsic way to adjust its desired recall or

confidence levels. Consequently the algorithm’s parameters were

set to their recommended values: slope ratio (𝜌) to 6 and early

stopping prevention parameter (𝛽) to 150.

Finally, an Oracle Method (OR) was implemented to stop ex-

actly when the desired recall level has been achieved. This approach

requires complete information about the ranking and is clearly not

feasible as a practical approach. However, it is included for compar-

ison purposes since it shows the maximum number of documents

that can remain unexamined while still achieving the desired recall.

4.1 Data

Following [13], we utilise the publicly available submissions to the

CLEF 2017 e-Health Lab Task 2 łTechnology Assisted Reviews in

Empirical Medicine" [6].3 Participants in the task were required

to rank documents retrieved from a complex Boolean query for

a set of 30 systematic reviews, called topics. The total number of

documents across all topics is 117,562, with a per topic median of

3Available from https://github.com/CLEF-TAR



Mean Recall (↑) Effort (↓) PES (↑)

ℓ TM KM IP-E CX-E IP-P CX-P TM KM IP-E CX-E IP-P CX-P OR TM KM IP-E CX-E IP-P CX-P OR

p = 0.95

0.95 1.00 1.00 1.00 1.00 1.00 1.00 102,105 86,243 116,521 117,558 63,605 63,314 22,637 13.1 26.6 0.9 0.0 45.9 46.1 80.7

0.90 0.98 1.00 1.00 1.00 1.00 1.00 83,954 86,243 103,509 99,314 61,361 61,711 16,706 28.6 26.6 12.0 15.5 47.8 47.5 85.8

0.80 0.95 1.00 0.99 0.99 1.00 1.00 62,867 86,243 73,728 80,040 56,840 57,455 9675 46.5 26.6 37.3 31.9 51.7 51.1 91.8

0.70 0.92 1.00 0.97 0.98 0.99 0.99 55,005 86,243 54,754 48,290 53,585 53,263 7,419 53.2 26.6 53.4 58.9 54.4 54.7 93.7

p = 0.8

0.95 0.99 1.00 1.00 0.99 1.00 1.00 86,381 86,243 95,235 92,819 59,703 60,043 22,637 26.5 26.6 19.0 21.0 49.2 48.9 80.7

0.90 0.96 1.00 0.99 0.99 1.00 1.00 66,476 86,243 79,563 83,510 58,619 59,113 16,706 43.5 26.6 32.3 29.0 50.1 49.7 85.8

0.80 0.90 1.00 0.98 0.98 0.99 0.99 52,417 86,243 56,051 56,050 54,948 54,758 9675 55.4 26.6 52.3 52.3 53.3 53.4 91.8

0.70 0.85 1.00 0.97 0.97 0.99 0.99 43,396 86,243 46,783 47,622 51,479 51,236 7,419 63.1 26.6 60.2 59.5 56.2 56.4 93.7

Table 1: Results of experiments described in Section 4. ↑ and ↓ show metrics where higher and lower values are preferred

(respectively). Highlighted results indicate the best non-Oracle approach.

2,070 documents and 38 relevant documents (the relevance judge-

ments provided at abstract level are used in this paper). On average

over the topics, only 1.58% of documents were relevant. The most

effective set of rankings submitted to the task, i.e. the run with the

highest AURC (area under recall curve) score, were used for the

experiments; WaterlooB-rank-normal [3].

4.2 Evaluation Metrics

Stopping criteria aim to balance two opposing goals: retain a min-

imum level of recall, whilst also minimising the number of docu-

ments examined. The following metrics quantify these objectives

and have been used in previous work on stopping criteria [1, 8, 13]:

Given a stopping criteria 𝑆 and topic (document set)𝑇 such that 𝐸𝑇
is the set of documents in 𝑇 that were examined before stopping,

the effort of 𝑆 for𝑇 is defined as |𝐸𝑇 |. Extending this definition, the

effort of 𝑆 for a run R (a set of topics ranked by the same system) is

given by
∑

𝑇 ∈R |𝐸𝑇 |. We also compute the percentage of effort

saved by 𝑆 over R as the percentage of all documents in the run

that are not examined:

100 ×
∑

𝑇 ∈R

|𝑇 | − |𝐸𝑇 |

|𝑇 |
.

The (macro-averaged)mean recall of a run over each topic is

reported. As we are interested in maintaining a minimum desired

level of recall ℓ , we also consider the proportion of topics in the run

where this minimum recall level is met; if this proportion is greater

than or equal to a preset desired proportion 𝑝 , we say the method

is reliable. Where appropriate for the probabilistic methods, 𝑝 will

be viewed as the method’s probability parameter.

5 RESULTS

Results are shown in Table 1.4 All methods were reliable for all recall

levels at both values of 𝑝 . Mean recall levels were generally high for

all methods. Mean recall for the knee method is always 1 since its

parameters are set to the default levels, rather than being adjusted

for particular values of 𝑝 and ℓ . Although mean recall is reduced

4A similar patterns of results was observed in further experiments carried out with
additional levels of desired recall and confidence.

for other approaches, it always exceeds the desired recall levels (ℓ),

particularly for the approaches based on counting processes (IP-E,

IP-P, CX-E and CX-P).

The stopping criteria based on counting processes perform well

in terms of effort / percentage of effort saved, with one of these

methods producing the best results for all recall levels with 𝑝 = 0.95

and the highest recall levels for 𝑝 = 0.8. Performance of these

methods is much better when the power law is used as the rate

function and the improvement over the exponential rate function

becomesmore pronounced for higher levels of recall and confidence.

For example, at the highest levels of recall and confidence using

the power law rather than the exponential rate function with the

Cox Process (CX-P and CX-E) reduces the number of documents

that need to be examined by over 54 thousand. Using CX-P saves

46.1% of documents being examined while, in contrast, the target

method saves 13.1% and IP-E only 0.9%.

Overall, there appears to be little difference between performance

of the two counting processed compared (Inhomogenous Poisson

Process, IP, and Cox Process, CX).

6 CONCLUSION

Determining when to stop making expensive manual relevance

judgements is an important and challenging problem in Technol-

ogy Assisted Review. Counting processes, such as Poisson and Cox

processes, represent a theoretically motivated approach to develop-

ing stopping algorithms. This work demonstrated that modelling

the rate at which relevant documents occur in a ranked set of re-

trieved documents using a power law is more effective than existing

approaches which used exponential functions. Evaluation on the

CLEF 2017 e-Health Lab Task 2 demonstrated that this approach

worked well, particularly for high recall levels, and was able to

achieve mean recall of 100% while avoiding the need to examine

over 45% of the documents.
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