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Abstract

Accurate generation forecasting can effectively accelerate the use of renewable energy in hybrid en-
ergy systems, contributing significantly to the delivery of the net-zero emission target. Recently,
neural-network-based quantile forecast models have shown superior performance on renewable energy
generation forecasting, partially because they have subtly embedded quantile forecast evaluation met-
rics into their loss functions. However, the non-differentiability of involved metrics has rendered their
metric-embedded loss functions not everywhere-derivable, resulting in inapplicability of gradient-based
training approaches. Instead, they have resorted to heuristic searches for Neural Network (NN) train-
ing, bringing low training efficiency and a rigid restriction on the size of the resultant NN. In this
paper, the Indicator Gradient Descent (IGD) is proposed to overcome the non-differentiability of in-
volved metrics, and several metric-embedded loss functions are innovatively customized combining
IGD, enabling NNs to be trained efficiently in a ‘gradient-descent-like’ manner. Moreover, the deep
Bidirectional Long Short-Term Memory (BiLSTM) is adopted to capture the periodicity of renewable
generation (diurnal and seasonal patterns), and the residual technique is used to improve the training
efficiency of the deep BiLSTM. Finally, a Deep Quantile Forecast Network (DQFN) based on IGD and
deep residual BiLSTM is developed for wind and solar power quantile forecasting. Practical experi-
ments in four cases have verified the effectiveness and efficiency of DQFN and IGD, where DQFN has
achieved the lowest average proportion deviations (all below 1.7%) and the highest skill scores.

Keywords: Energy generation, Quantile forecasting, Renewable energy, Deep learning, Indicator
gradient decent, BiLSTM

Abbreviations

NN Neural Network

IGD Indicator Gradient Descent

BiLSTM Bidirectional Long Short-Term Memory

DQFN Deep Quantile Forecast Network

MILNN Metrics-In-Loss NN

PI Prediction Interval

MO Metric-Oriented
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NMO Non-Metric-Oriented

CWC Coverage Width-based Criterion

ELM Extreme Learning Machine

APD Average Proportion Deviation

SS Skill Score

GD Gradient Descent

PSO Particle Swarm Optimization

GPU Graphic Process Unit

IG Indicator Gradient

CDF Cumulative Distribution Function

LSTM Long Short-Term Memory

SMP Strictly Monotone Premises

PDPF Piecewisely Derivable Piecewise Function

DLQR Dynamic Linear Quantile Regression

DeepAR Deep Auto-Regressive recurrent network

MOrdReD Memory-based Ordinal Regression Deep neural network

BLSTM Bayesian LSTM

ARX Auto-Regressive including eXogenous covariate

GARCH Generalized AR Conditional Heteroskedasticity

DQR Direct Quantile Regression

Nomenclature

t Timestamp

T The total number of timestamps

xt Explanatory information (covariates)

yt The forecast target

Ft(·) The CDF of yt

ŷt The forecast of yt

D The lag interval
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Xt A series of xt with lag interval D

h The lead time

α The nominal proportion

qαt The quantile of yt with nominal proportion α

P (·) The probability of an event

q̂αt The forecast of qαt

q̂t All the forecasted quantiles for timestamp t

r The total number of nominal proportions

Q̂ All the forecasted quantiles

E(·) An evaluation function of quantiles

y All the observations of forecast target

H The dimension of hidden state in LSTM

L The number of modules in DQFN

DSMP The feasible region of Q̂ under SMP

APDα The APD corresponding to α

ε(·) The indicator function

Sαi

t An intermediate variable for obtaining SS

L(·) A metric-embedded loss function

M The number of metrics involved

Λ IG

∇ Gradient

λ∗ Step size during iterative update

LAPD Customized loss from APD

LSS Customized loss from SS

LSMP The penalty loss from SMP

θ All the trainable parameters of an MILNN

|APD| The average absolute APD over all α

ξ The upper bound of |APD|

β∗ Lagrangian multipliers

Lg(·) Lagrangian function
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1. Introduction

Uncertainty exists in almost all aspects of power systems, especially due to significant penetration
of renewable energy. As a crucial component in the operation and control of hybrid energy systems,
to develop advanced generation forecast models (e.g., for the forecasting of wind power, wind speed,
solar power, and solar radiation, etc.) is one of the most efficient ways to mitigate the uncertainty of
renewable energy, accelerate the use of renewable energy in the whole energy chain (Yan et al., 2016),
support renewable power integration in manufacturing and power systems, and contribute to the
delivery of the net-zero emission target (Yang et al., 2020; Xue et al., 2016). Existing forecast models
can be categorized into two groups: deterministic forecast and probabilistic forecast. Deterministic
approaches (i.e., point forecast) produce forecast results in the form of expectations (conditioned
on the explanatory information) (Hu et al., 2020b; Liu et al., 2020; Liu et al., 2020). While for
probabilistic forecast models, information on the distribution of forecasting targets can be obtained,
such as Prediction Intervals (PIs) (Wan et al., 2013b; Khosravi et al., 2013; Wan et al., 2013a; Khosravi
and Nahavandi, 2013; Yan et al., 2019), quantiles (Wan et al., 2017; Golestaneh et al., 2016; Sideratos
and Hatziargyriou, 2012), and full distributions (Wan et al., 2013c; Wang et al., 2017; He et al., 2017;
Hu et al., 2020a), offering greater flexibility in the design of cost-effective decision-making schemes.

Among the aforementioned probabilistic forecast models, much attention has been paid recently
to NN-based quantile (and PI) forecast due to their high non-linearity and universal approximation
ability. Depending on whether or not the quantile (or PI) forecast evaluation metrics are embedded
into NN’s loss functions or not, NN-based probabilistic forecast models can be further categorized
into two groups: Metric-Oriented (MO) models and Non-Metric-Oriented (NMO) models. For NMO
models, the generation and evaluation of quantiles or PIs are completely separated, i.e., the generation
of quantiles or PIs has no association with the quality of generated quantiles or PIs (their quality is
evaluated through metrics). Examples of NMO models include the delta technique (Khosravi et al.,
2010a), Bayesian (Zhang and Luh, 2005), bootstrap (Wan et al., 2013c), and mean-variance estimation
(Nix and Weigend, 1994). The quantiles (or PIs) of these models are all generated under assumptions
that either NN parameters or forecasting targets follow particular known distribution families (e.g.,
normal (Wan et al., 2013c; Wang et al., 2017), t-distribution (Khosravi et al., 2010a)). However, as
the actual distributions of NN parameters or forecast targets are often unknown, these distribution
assumptions may result in inevitable mismatches between models and practice, rendering them prob-
lematic to apply. While for MO models, the objective of NN training is to make the final evaluation
metrics (i.e., performances) more satisfactory. E.g., Khosravi et al. (2010a) adopted the delta tech-
nique to generate PIs, then the PI-error-based cost function, a combination of several metrics, was
used as the loss function for NN training. Khosravi et al. (2014) adopted bootstrap method to con-
struct PIs, and the NN was trained using Coverage Width-based Criterion (CWC, a quantile forecast
evaluation metric) as the loss function. In Khosravi and Nahavandi (2013), Khosravi et al. (2010b),
and Quan et al. (2013), PIs were directly generated by NNs with CWC as loss functions. In Wan
et al. (2013b), Wan et al. (2013a), Wan et al. (2017), and Golestaneh et al. (2016), PIs or quantiles
were directly generated by Extreme Learning Machines (ELMs) with a combination of metrics as their
loss functions, which had considered both the reliability and sharpness of resultant quantiles (or PIs).
Since evaluation metrics are embedded into MO models’ loss functions, they can thus directly pursue
the best quality of resultant quantiles or PIs (Wan et al., 2013b).

Nevertheless, the computational efficiency and scalability of the above MO models still need im-
provement. Frequently used quantile forecast evaluation metrics include the following two: (a) Aver-
age Proportion Deviation (APD), assessing the reliability of the model; (b) Skill Score (SS), assessing
both the reliability and sharpness comprehensively. Though rich applications of APD and SS (es-
pecially in the renewable energy generation forecast field) have demonstrated their effectiveness in
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model assessment, both of them are not everywhere-derivable due to the indicator function in their
definitions. Consequently, the loss functions of the MO models in which APD or SS is embedded are
not everywhere-derivable, either. The non-differentiability of these metric-embedded loss functions
has made Gradient Descent (GD) and back propagation inapplicable to the training of NNs in these
MO models. Instead, they have resorted to heuristic searches, e.g., Particle Swarm Optimization
(PSO) (Wan et al., 2013b,a; Golestaneh et al., 2016; Sideratos and Hatziargyriou, 2012; Quan et al.,
2013), simulated annealing (Khosravi et al., 2013; Khosravi and Nahavandi, 2013; Khosravi et al.,
2010a,b), genetic algorithm (Wan et al., 2016), evolutionary algorithm (Khosravi et al., 2014), and
bat algorithm (Kavousi-Fard et al., 2015), etc. Though heuristic searches have made the NN training
implementable, their computational efficiency is very sensitive to the problem size, i.e., as the size of
search space grows exponentially with the number of trainable parameters, solving large optimization
problems using heuristic searches will become dramatically time-consuming. Indeed, the intolerance of
heuristic searches to the problem size has directly constrained the widths and depths of candidate NNs,
resulting in limited approximation ability, scalability, and generalizability. Moreover, the performances
of heuristic searches can be significantly affected by their hyper-parameters, e.g., the probability of
crossover and mutation in genetic algorithm, inertia weight and velocity limits in PSO, and the con-
trol of added noise, etc. Since the adjustment of these hyper-parameters relies on a case-by-case basis
and no effective strategy has been proposed to solve this problem yet, a significant mismatch might
exist between case studies and practice. Wan et al. (2017) has converted the optimization of metrics
into a linear optimization problem tactfully, which can effectively avoid the shortcomings of heuristic
searches. Even though this conversion is effective, it was only applicable for ELMs with limited model
capacities and approximation ability (compared to NNs) due to their relatively shallow structures and
the random assignment of their parameters.

The low computational efficiency and scalability of heuristic searches have motivated the develop-
ment of a more efficient training approach for MO models in this study. As MO models are essentially
NNs, an intuitive idea is to use the off-the-shelf GD-based optimizers, e.g., momentum, Adam, Nadam,
etc. These GD-based optimizers possess high compatibility with Graphic Process Units (GPUs), fa-
cilitating their broad application in the deep learning domain (Bengio et al., 2017). Nevertheless,
as mentioned above, the non-differentiability of involved metrics has made their gradient calculation
problematic, ruling out all the off-the-shelf GD-based optimizers. To overcome the non-differentiability
of involved metrics, in this work, a novel training approach is proposed to train MO quantile forecast
models, i.e., the IGD. In IGD, two steps are taken for optimizing the APD and SS in a “GD-like”
manner: 1) the proposal and utilization of Indicator Gradient (IG), aiming to eliminate the presence
of impulse functions when differentiating the indicator function (which is contained in APD, SS, and
NN’s loss function); 2) two loss functions for APD and SS have been specially customized after fully
considering the properties of IGD, ensuring that each iteration in IGD always leads to more satisfac-
tory APD and SS. Moreover, IG follows the same chain rule with gradient, making it compatible with
back propagation and thus applicable to all kinds of NNs.

Another noticeable trend in the renewable energy generation forecast field is the increasing adoption
of deep learning models. Deep learning has attracted a great deal of interest in academia recently
(Bengio et al., 2017), and it has also been applied to probabilistic forecast: in Wang et al. (2017),
convolutional neural networks and the bootstrap method were combined for wind power PI forecast. In
Flunkert et al. (2017), a Deep Auto-Regressive recurrent network (DeepAR) under normal distribution
is proposed for the probabilistic forecast. In Zhu and Laptev (2017), a Bayesian LSTM (BLSTM)
model is proposed for the probabilistic forecast. The parametric models such like Wang et al. (2017),
Flunkert et al. (2017), and Zhu and Laptev (2017) need a preemptive assumption on the distribution
of the forecast errors or forecast target (e.g., normal), and this might result in considerable mismatches
between model and practice. Recently proposed Memory-based Ordinal Regression Deep (MOrdReD)
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neural network (Orozco et al., 2018) is another deep-learning-based probabilistic forecast model that
has converted the probabilistic forecast task into a multi-class classification one. Though MOrdReD is
non-parametric, it is NMO. In this work, a deep-learning-based non-parametric MO quantile forecast
model is developed, i.e., the DQFN, which takes in explanatory information and outputs forecasted
quantiles in an end-to-end manner. Considering the periodicity of renewable energy generation, e.g.,
diurnal and seasonal patterns, the BiLSTM model is adopted as the building block in DQFN, since
BiLSTM has shown effectiveness for extracting periodicity features (Liu et al., 2017). The DQFN is
trained using the IGD approach, and substantive practical experiments in four cases have demonstrated
the superiority of DQFN over the state-of-the-arts and the superiority of IGD over heuristic searches.

The main contributions of this work can be summarized as follows:
(1) An investigation on the differentiability of two most crucial quantile forecast evaluation metrics,

i.e., APD and SS, is first presented in detail, which systematically revealed the obstacles that have
resisted the application of deep learning in the non-parametric quantile forecast domain.

(2) The IGD, a GPU-compatible training approach for (NN-based) MO quantile forecast mod-
els, is proposed. With the proposal of IG and customized losses, the IGD has overcome the non-
differentiability of evaluation metrics and metric-embedded loss functions, and it can be applied to
any NN-based MO quantile forecast models. Substantive case studies using practical data have verified
the superiority of IGD in terms of effectiveness and efficiency over heuristic searches.

(3) A deep-learning-based non-parametric MO quantile forecast network is developed, i.e., DQFN.
The DQFN is built based on deep residual BiLSTM, and it is trained using IGD with GPU acceleration.
Practical experiments have verified the superiority of DQFN in terms of forecast performance over
state-of-the-art models.

The rest of this paper is organized as follows: Section 2 introduces the evaluation metrics of quantile
forecast and their derivability; Section 3 presents the IGD and customized losses; Section 4 details the
framework of DQFN. Section 5 provides the results of the practical experiments. Finally, conclusions
are drawn in Section 6.

2. Evaluation Metrics of Quantile Forecast and Their Derivability

2.1. Problem Formulation of Quantile Forecast

Given a set of information-target pairs as {(xt, yt)}
T
t=1, where t is the timestamp, T is the total

number of timestamps, xt denotes available explanatory information (covariate) for quantile forecast
at time t (such as historical wind/solar power and weather conditions in wind/solar power forecast
scenarios), and yt is the forecast target at time t. Point forecast essentially aims to build a mapping
from historical information to the future target, which can be formulated as:

xt−D+1,xt−D+2, · · · ,xt → ŷt+h (1)

whereD denotes the lag interval, h denotes the lead time, and ŷt+h denotes the forecast of yt+h. As yt+h

is a random variable, point forecast yields too little information on its distribution and uncertainty.
If denote Ft+h (·) as the Cumulative Distribution Function (CDF) of yt+h, the quantile of yt+h with
nominal proportion α (denoted as qαt+h) can be obtained through the inverse function of CDF:

qαt+h =
(

Ft+h

)−1
(α) , thus P

(

yt+h ≤ qαt+h

)

= α (2)

Quantile forecast models aim to estimate the quantiles accurately, so that much more information
on the distribution of yt+h can be obtained than point forecast. If denote explanatory variable series
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[xt−D+1,xt−D+2, · · · ,xt] anew as Xt for concise, quantile forecast aims to build a mapping as follows:

Xt → [q̂α1

t+h, q̂
α2

t+h, · · · , q̂
αr

t+h] (3)

where r is the total number of nominal proportions considered, q̂αt+h denotes the forecast of q
α
t+h. If write

the quantile forecast results at time t anew as q̂t+h = [q̂α1

t+h, q̂
α2

t+h, · · · , q̂
αr

t+h], then the forecasted quantiles

across all timestamps can be denoted as Q̂ = [q̂1, q̂2 · · · , q̂T ], Q̂ ∈ R
(T×r). If denote y = [y1, y2, · · · , yT ]

as all the observations (realizations) of forecast targets, then a quantile forecast evaluation metric can
be regarded as a measure of the mismatch between Q̂ and y, i.e., E(Q̂,y), where E(·) is the evaluation
function that maps forecasted quantiles into metrics.

2.2. Quantile Forecast Evaluation Metrics and Their Derivability

2.2.1. Strictly Monotone Premises

Before introducing evaluation metrics, the Strictly Monotone Premises (SMP) is introduced first.
The SMP defines a reasonable relationship among all the forecasted quantiles, and it is also a prereq-
uisite for the validity of evaluation metrics. The SMP is defined as follows:

∀i, j ∈ [1, r], i, j ∈ N+: if αi < αj, then q̂αi

t < q̂
αj

t (4)

Any point satisfying SMP in the space R(T×r) is a feasible point of Q̂. The union of all the feasible
points is the feasible region (denoted as DSMP), which is an open set.

2.2.2. Average Proportion Deviation

Reliability is the most crucial evaluation perspective of the probabilistic forecast. APD is the key
evaluation metric from the perspective of reliability (Wan et al., 2017). Its definition is as follows:

APDαi =
1

T

T
∑

t=1

ε (q̂αi

t − yt)− αi (5)

where APDαi denotes the APD corresponding to nominal proportion αi, ε(·) is the indicator function
defined as follows:

ε (x) =

{

1, if x ≥ 0

0, if x < 0
(6)

The closer APDαi is to 0, the better forecasted quantiles are in terms of reliability. Obviously,
APDαi is a piecewise function of q̂αi

t . For convenient narration, define the Piecewisely Derivable
Piecewise Function (PDPF) as follows:

Definition 1. (Piecewisely Derivable Piecewise Function)
For a piecewise function W (·) defined on an open set DP , if it can be written into the following

form:

W (x) =

NW
∑

i=1

fi(x) · σi(x) (7)

where NW is the number of pieces, and fi(·) is a derivable function defined on DP . σi(·) is defined as
follows:

σi (x) =

{

1, if x ∈ Si

0, if x /∈ Si

(8)
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where Si is fi(·)’s active region, and it is a continuous set. {Si}
NW

i=1 forms a partition of DP .
Then, W (·) is a PDPF.

Obviously, PDPF is derivable at all the points inside the regions bounded by the pieces (i.e.,
excluding points on the inter-piece boundaries). Moreover, if a PDPF is also derivable at all the
inter-piece boundaries, then it is essentially an everywhere-derivable function. Combining (5), (6), (7),
and (8), one can obtain that APDαi is a PDPF of q̂αi

t , which equivalently means that APDαi is also a
PDPF of Q̂ on DSMP (in higher dimensions, of course). Besides, it is not hard to prove that APDαi

is not derivable on the inter-piece boundaries because of ε(·). Thus, APDαi is a PDPF of Q̂ on DSMP

but with non-derivable points inside DSMP.
Moreover, the average absolute APD over all the nominal proportions can be considered as an

overview of reliability (denoted as |APD|):

|APD| =
r
∑

i=1

|APDαi |

r
(9)

2.2.3. Skill Score

Under the guarantee of satisfying reliability, the sharpness of forecasted quantiles is also a pursuit
(Pinson and Kariniotakis, 2010). SS (Wan et al., 2017) is a comprehensive quantile forecast evaluation
metric that has fused both reliability and sharpness:

SS =
1

T

T
∑

t=1

r
∑

i=1

Sαi

t (10)

where
Sαi

t = [ε (q̂αi

t − yt)− αi] · (yt − q̂αi

t ) (11)

One can infer from (11) that SS is a PDPF of Q̂, since Sαi

t can be rewritten as follows:

Sαi

t =

{

(1− αi) · (yt − q̂αi

t ), if q̂αi

t ≥ yt

− αi · (yt − q̂αi

t ), if q̂αi

t < yt
(12)

Moreover, Sαi

t is obviously not derivable versus q̂αi

t when q̂αi

t = yt. Thus, similar to APD, SS is
also a PDPF of Q̂ on DSMP with non-derivable points inside DSMP. Since SS is negatively defined but
positively oriented, higher SS implies better quantile forecast.

3. Indicator Gradient Descent and Customized Losses

3.1. Challenges: The Difficulty of Training Neural-network-based Metric-oriented Models

Most NN-based MO quantile forecast models are developed to map explanatory information into
forecasted quantiles, and their loss functions are constructed based on several quantile forecast eval-
uation metrics. One may as well call these NNs as Metrics-In-Loss NNs (MILNNs). In general, a
suitable collocation of an NN’s loss function and training algorithm should meet the following two
requirements:

Requirement A: Minimizing the loss function must be practicable (implementable) for the train-
ing algorithm. Namely, a function that is problematic to minimize should not serve as the loss function.

Requirement B: Minimizing the loss function must be favorable to obtain a more satisfactory
NN (which should have a better quantile forecast performance in this scenario).
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It is worth mentioning that Requirement B is the exact basis of MO models, since they have directly
embedded the quantile forecast evaluation metrics into the loss functions of their NNs. Namely,

L
[

E1(Q̂, Y ), E2(Q̂, Y ), · · · , EM(Q̂, Y )
]

(13)

where M is the number of involved metrics, L(·) is a metric-embedded loss function that fuses various
metrics into a single-value loss, which can be a linear combination (Wan et al., 2013b,a) or a more
complex form (such as CWC (Khosravi and Nahavandi, 2013; Khosravi et al., 2010b; Quan et al.,
2013)). By embedding metrics into L(·) directly, MO models can achieve better evaluation perfor-
mance. However, as are discussed in Sections 2.2.2 and 2.2.3, two crucial evaluation metrics of quantile
forecast, i.e., APDαi and SS, are not everywhere-derivable. Thus, any MILNN whose loss function has
APDαi or SS embedded cannot be directly optimized by GD (i.e., Requirement A is not satisfied).
Existing studies have resorted to heuristic searches, which, however, suffers from low computational
efficiency, scalability, and generalizability.

3.2. Solutions: Indicator Gradient Descent and Customized Losses

Since powerful NNs (especially deep neural nets ) usually possess numerous trainable parameters,
training them through heuristic searches is too time-consuming or even impracticable. As GD-based
training approaches have proven quite efficient and suitable for deep NNs due to their high compati-
bility with GPUs, a “GD-like” training approach, i.e., the IGD, is proposed in this work for training
MILNNs. IGD takes two steps to overcome the non-differentiability of metric-embedded loss functions,
through which both Requirement A and B in Section 3.1 can be satisfied. The two steps are as follows:

Step #1: IG is proposed and utilized to overcome the non-differentiability of evaluation metrics,
such that the training of an MILNN is implementable (and compatible with GPUs). By taking Step
#1, Requirement A can be satisfied.

Step #2: Through an elaborate constructing of L(·), MILNNs’ loss function has been specially
customized based on the metrics to ensure that each iteration in IGD always leads to better MILNNs
(which would achieve a more satisfying quantile forecast performance). By taking Step #2, Require-
ment B can be satisfied.

Steps #1 and #2 are detailed in Sections 3.3 and 3.4, respectively.

3.3. Step #1: Indicator Gradient and Indicator Gradient Descent Satisfy Requirement A

Since both APD and SS are not derivable versus Q̂ at their inter-piece boundaries, optimizing
them using GD directly is infeasible. In this work, IG and IGD are proposed to overcome their non-
differentiability, which finally makes MILNNs trainable in a “GD-like” manner. IG (denoted as Λ) is
defined by the following rules:

Definition 2. (IG)
i) IG of ε(·) is always 0

Λxε(x) ≡ 0 (14)

ii) For a function F (·), if it is derivable at x, then its IG at x is identical to the gradient:

ΛxF (x) ≡ ∇xF (x) (15)

iii) IG follows the chain rule, the same as the gradient method when differentiating the compound
functions. Namely, given two functions as f = F (x) and z = Z(f), the compound function of z
corresponding to x can be written as z = Z[F (x)]. Then, the IG of z versus x is:

Λxz = Λxf · Λfz (16)
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The fatal limitation of GD is that the gradient at a non-derivable point does not exist. As introduced
in Sections 2.2.2 and 2.2.3, both APD and SS are PDPFs with non-derivable points inside DSMP, thus
they cannot be directly optimized using GD. In contrast, as is introduced in Theorems 1 and 2 in
the Appendix A, the IG of a PDPF always exists regardless of its derivability. As both APD and
SS are PDPFs, optimizing APD and SS using IG directly is now practical and implementable, which
satisfies Requirement A in Section 3.1. Besides, the relationship between IG and gradient for an
everywhere-derivable PDPF is presented in Theorem 3 in the Appendix A.

3.4. Step #2: Customized Losses Satisfy Requirement B

Though IG has met Requirement A in Section 3.3, Requirement B still needs to be satisfied, which
means that training MILNNs using IGD must lead to a better resultant quantile forecast performance,
namely:

∀m ∈ {1, 2, · · · ,M}, lim
λ→0

[

Em(Q̂j,y) is better than Em(Q̂j−1,y)
]

(17)

where j denotes the sequence number during the iterative update of an MILNN trained by IGD (the
update of this MILNN’s parameters, of course). Q̂j denotes the forecasted quantiles from this MILNN
after the j-th update using IGD. λ denotes the step size of each update. Then for a sufficiently small
λ, each update of this MILNN implemented by IGD should lead to more satisfactory metrics. To
achieve this goal, losses from the aforementioned APD and SS are further customized as follows.

3.4.1. Loss Corresponding to Average Proportion Deviation

Loss from all the APDs corresponding to different nominal proportions is customized as follows:

LAPD =
r
∑

i=1

(

APDαi ·
T
∑

t=1

q̂αi

t

)

(18)

where LAPD denotes the loss of MILNNs from APD. The partial IG of LAPD on q̂αi

t is:

Λq̂
αi
t
LAPD = Λq̂

αi
t
APDαi ·

T
∑

t=1

q̂αi

t +APDαi · Λq̂
αi
t

(

T
∑

t=1

q̂αi

t

)

= Λq̂
αi
t

[

1

T

T
∑

t=1

ε (q̂αi

t − yt)− αi

]

·
T
∑

t=1

q̂αi

t +APDαi · 1

=
1

T
Λq̂

αi
t
ε (q̂αi

t − yt) ·
T
∑

t=1

q̂αi

t +APDαi

(19)

According to (14), one has:

Λq̂
αi
t
LAPD =

1

T
Λq̂

αi
t
ε (q̂αi

t − yt) ·
T
∑

t=1

q̂αi

t +APDαi

= 0 + APDαi = APDαi

(20)

Thus, IGD of LAPD on q̂αi

t essentially follows the following step:

q̂αi

t ← q̂αi

t − λ · Λq̂
αi
t
LAPD = q̂αi

t − λ · APDαi (21)
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3.5. Training Metrics-in-loss Neural Networks with Indicator Gradient Descent

3.5.1. Penalty Loss from Strictly Monotone Premises

Before determining the loss function of MILNNs eventually, a penalty loss is formulated for the
guarantee of SMP:

LSMP =
1

T · r

T
∑

t=1

r
∑

i=0

(qαi

t − q
αi+1

t ) · ε (qαi

t − q
αi+1

t ) (26)

where LSMP denotes the penalty loss from SMP.

3.5.2. Training Algorithm for Metrics-in-loss Neural Networks

Since SMP is the prerequisite for the validity of evaluation metrics, and also reliability is the most
crucial evaluation perspective of the probabilistic forecast, the training of MILNNs is formulated into
the following optimization problem:

min
θ

LSS

s.t. LSMP ≤ 0

|APD| ≤ ξ

(27)

where θ denotes all the trainable parameters of the MILNN. ξ is a threshold which |APD| should be
within, e.g., 2%. (27) can be implemented using a Dual Indicator Gradient Descent (DIGD) approach
similar to the dual gradient descent, in which firstly Lagrangian function Lg(θ, βs, βr) is defined as:

Lg(θ, βs, βr) = LSS + βs · LSMP + βr ·
(

|APD| − ξ
)

(28)

where βs and βr are Lagrangian multipliers, and βs ≥ 0, βr ≥ 0. Since minimizing (|APD| − ξ) is
equivalent to minimizing LAPD (both aiming to improve the reliability), (28) is rewritten as (29) for
making the best use of the properties of LAPD:

L′
g(θ, βs, βr) = LSS + βs · LSMP + βr · LAPD (29)

Then, the IG of L′
g(θ, βs, βr) versus θ can be obtained as follows:

ΛθL
′
g(θ, βs, βr) = ΛθLSS + βs · ΛθLSMP + βr · ΛθLAPD

= ΛθQ̂ · ΛQ̂LSS + βs · ΛθQ̂ · ΛQ̂LSMP + βr · ΛθQ̂ · ΛQ̂LAPD

= ∇θQ̂ · ΛQ̂LSS + βs · ∇θQ̂ · ΛQ̂LSMP + βr · ∇θQ̂ · ΛQ̂LAPD

(30)

The [θ, βs, βr] are updated alternately following the procedure in Algorithm 1. For a more intuitive
presentation, the update of θ is graphically illustrated in Figure 1. Based on IGD and customized
losses, the training of MILNNs is now implementable and effective (favorable). Moreover, it is worth
mentioning that IGD and customized losses can be applied to any NN configurations.

4. Deep Quantile Forecast Network

Despite all the MILNNs in the literature, a novel candidate MILNN based on deep learning is
proposed for quantile forecast in this work, i.e., the DQFN. The DQFN is an end-to-end NN that
maps Xt to q̂t+h directly, and it is built following a deep residual architecture with BiLSTM as the
basic building block. The structure of DQFN is shown in Figure 2.

12



Algorithm 1: The training of MILNNs based on DIGD.

Hyper-parameters: The size of mini-batch Mb; [λθ, nθ, λβ, ξ].
Input: Initialized θ and training set {Xt, yt+h}

T
t=1.

Output: θ after training.
1 βr ← 103, βs ← 105;
2 while maximum iteration has not been reached do

3 for i = 1, · · · , nθ do

4 Sample a mini-batch {Xj, yj+h}
Mb

j=1;

5 Input {Xj}
Mb

j=1 to MILNN and get {q̂j+h}
Mb

j=1;

6 Get APD and SS using {q̂j+h}
Mb

j=1 and {yj+h}
Mb

j=1 through (5) and (10);

7 Get LAPD, LSS, and LSMP through (18), (23), and (26), respectively;
8 L′

g(θ, βs, βr) = LSS + βs · LSMP + βr · LAPD;

9 Get ΛθL
′
g(θ, βs, βr) through (30);

10 θ ← θ − λθ · ΛθL
′
g(θ, βs, βr);

11 Sample a mini-batch {Xj, yj+h}
Mb

j=1;

12 Input {Xj}
Mb

j=1 to MILNN and get {q̂j+h}
Mb

j=1;

13 Get APD using {q̂j+h}
Mb

j=1 and {yj+h}
Mb

j=1 through (5);

14 Get |APD| through (9);

15 βr ← max
[

0, βr + λβ ·
(

|APD| − ξ
)]

;

16 Get LSMP using {q̂j+h}
Mb

j=1 through (26);

17 βs ← max(0, βs + λβ · LSMP);

4.1. Bidirectional Long Short-term Memory

As a recurrent neural network, the introduction of memory units and adaptive gating mechanism
in LSTM (Hochreiter and Schmidhuber, 1997; Liu et al., 2021) has enabled the capturing of long-term
dependence and makes it suitable for time series problems. Given Xt = [xt−D+1,xt−D+2, · · · ,xt] as the
input series, the information flow in (vanilla) LSTM can be described as follows: for k = t−D+1, · · · , t:

ik=ρ (wixk+uihk−1+bi) (31)

fk=ρ (wfxk+ufhk−1+bf ) (32)

ck = fk ⊗ ck−1 + ik ⊗ tanh (wcxk+uchk−1+bc) (33)

hk = ok ⊗ tanh (ck) (34)

where ik is the input gate, fk is the forget gate, ok is the output gate, ck is the memory unit, hk is the
hidden state, w∗ and u∗ are weights, b∗ are biases, ρ represents the element-wise sigmoid function,
and ⊗ represents element-wise multiplication.

Considering the periodicity of renewable energies (diurnal and seasonal patterns), a bidirectional
feature learning strategy is adopted to strengthen the LSTM further, i.e., BiLSTM, which is motivated
by that BiLSTM has shown effectiveness for extracting periodicity features (Liu et al., 2017). In
BiLSTM, another LSTM is built which marches in the opposite direction of the first LSTM, as is
shown in Figure 2.
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Table 1: Details of four cases

Cases Case #1 Case #2 Case #3 Case #4

Scenario Wind power Wind power Solar power Solar power

Resolution 5 minutes 10 minutes 5 minutes 10 minutes (after merging)

Location
Waterloo Wind Farm,

Australia

Guangzhou,

China

Royalla Solar Farm,

Australia

Univ. of Queensland,

Australia

Capacity 111 MW 49.6 MW 20 MW 433 kW

Period 2015/3/1 to 2017/3/1 2016/1/1 to 2017/1/1
2016/5/1 to 2017/8/15,

5:00-19:00

2011/9/1 to 2017/9/1,

5:00-19:00

Lead time 5 minutes 10 minutes 5 minutes 10 minutes

Xt historical power series, time of the day, day of the year

5. Practical Experiments

DQFN and IGD were tested through practical experiments in four cases, which demonstrated their
superiority in forecasting performance and time-efficiency over state-of-the-art models.

5.1. Four Cases

All four cases were based on real-world datasets, which are detailed in Table 1. For market opera-
tors, the very-short-term forecast (e.g., 5-min or 10-min ahead) is crucial for optimal dispatch schemes
and system operation, since renewable energy is causing increasing uncertainty and fluctuations in
power systems. Both the datasets in Cases #1 and #3 are from the national electricity market of
Australia (Australian Energy Market Operator, 2016). In the national electricity market, all gener-
ators submit their offers and are dispatched every 5 minutes, thus 5-min lead time is of significant
importance for generators, consumers, and retailers to offer a reasonable bid (including amount and
price). Therefore, in Cases #1 and #3, 5-min ahead forecast is implemented. Besides the 5-min lead
time, 10-min ahead wind and solar power forecast have also been considered important for power
system operation (Wan et al., 2017; Golestaneh et al., 2016). Thus, in Cases #2 and #4, 10-min
ahead forecast was implemented. The datasets in Cases #2 and #4 are from China Southern Power
Grid and the University of Queensland (Solar, 2017), respectively. It is worth mentioning that the
original resolution of the dataset in Case #4 is one-minute, and it is merged into ten-minute-resolution.
Each dataset was divided into three parts: the first 40%, middle 20%, and last 40% as the training,
validation, and testing sets, respectively. Moreover, time of the day and day of the year are included
in Xt for considering diurnal and seasonal effects in the same way as introduced in Hu et al. (2020a).
Namely, given Nsec as the total amount of seconds counting from 00 : 00 to the timestamp of yt+k,
then time of the day could be designed into a pair of variables as follows:

{

sin
( 2πNsec

24× 3600

)

, cos
( 2πNsec

24× 3600

)

}

(36)

Day of the year could be obtained similarly by substituting Nsec with the total amount of days
between January 1st and the date of yt+k and correspondingly substituting 24 × 3600 with the total
amount of days in this year.

5.2. Structure Determination of Deep Quantile Forecast Networks

The structure of DQFN in each case was determined through a grid search: D was chosen from
{4, 16, 64, 256}, L was chosen from {2, 4, 8, 16}, H was chosen from {8, 16, 32, 64}, and the width
of the fully-connected layer was chosen from {10, 50, 100, 500}, during which the combination that
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Figure 3: Change of |APD|, SS, and LSMP for DQFN in the four cases.

had achieved the highest SS on the validation set after training was chosen as the optimal structure
of this DQFN, and the reason choosing SS to observe is that SS is a more comprehensive metric than
APD (APD only focuses on reliability). Moreover, [λθ, nθ, λβ, ξ] was set as [0.001, 50, 10, 2%] in all
the cases based on experience in order to reduce the search space of hyper-parameters.

5.3. Quantile Forecast Results of Deep Quantile Forecast Network

The quantiles’ nominal proportions that DQFN aims to forecast range from 5% to 95% in 5% steps.
The change of |APD|, SS, and LSMP during the training of DQFN using IGD in the four cases is shown
in Figure 3. Figure 3 shows that: 1) the LSMP convergences to 0 very fast in all cases, which is caused
by the very large initial value of βs in Algorithm 1. 2) The |APD| tends to vibrate around 2% up and
down (except Case #4) similarly with the negative feedback regulation, which has demonstrated the
effectiveness of the constraint on |APD| in (27).

To intuitively illustrate the quantile forecast performance of DQFN, PIs formulated from forecasted
quantiles in the four cases together with corresponding real measurements (truth) are plotted in Figure
4a-4d, respectively. Figure 4 shows that real measurements can be enclosed by the forecasted PIs in
all four cases, indicating the satisfying superiority and generalization ability of DQFN. Moreover,
Figure 4 also shows that PIs corresponding to lower nominal proportions are perfectly covered by
those corresponding to higher proportions, so that the quantile cross has been avoided, which has
verified the effectiveness of LSMP in (27).

16



00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

Clock Time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

W
in

d 
Po

we
r (

of
 c

ap
ac

ity
)

truth
90%
80%
70%
60%
50%
40%
30%
20%
10%

(a) Forecasted PIs and measurements in Case #1

00
:00

02
:00

04
:00

06
:00

08
:00

10
:00

12
:00

14
:00

16
:00

18
:00

20
:00

22
:00

00
:00

02
:00

04
:00

06
:00

08
:00

10
:00

12
:00

14
:00

16
:00

18
:00

20
:00

22
:00

Clock Time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

W
in

d 
Po

we
r (

of
 c

ap
ac

ity
)

truth
90%
80%
70%
60%
50%
40%
30%
20%
10%

(b) Forecasted PIs and measurements in Case #2

06
:00

08
:00

10
:00

12
:00

14
:00

16
:00

18
:00

06
:00

08
:00

10
:00

12
:00

14
:00

16
:00

18
:00

06
:00

08
:00

10
:00

12
:00

14
:00

16
:00

18
:00

Clock Time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

So
la

r P
ow

er
 (o

f c
ap

ac
ity

)

truth
90%
80%
70%
60%
50%
40%
30%
20%
10%

(c) Forecasted PIs and measurements in Case #3

06
:00

08
:00

10
:00

12
:00

14
:00

16
:00

18
:00

06
:00

08
:00

10
:00

12
:00

14
:00

16
:00

18
:00

06
:00

08
:00

10
:00

12
:00

14
:00

16
:00

18
:00

Clock Time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

So
la

r P
ow

er
 (o

f c
ap

ac
ity

)

truth
90%
80%
70%
60%
50%
40%
30%
20%
10%

(d) Forecasted PIs and measurements in Case #4

Figure 4: PIs from the forecasted quantiles of DQFN and measurements in four cases.

5.4. Performance Comparison with Benchmarking Models

Several cutting-edge quantile forecast models belonging to either MO or NMO families were im-
plemented for performance comparison. They are the follows:

1) A probabilistic generalization of persistence following double-censored normal distribution. Its
expectation is the last observation, and its variance is obtained by exponential smoothing of
recent squared residuals whose forgetting factor is set by finding the highest SS on the validation
set.

2) Auto-Regressive including eXogenous covariate (ARX) following double-censored normal distri-
bution whose parameters are obtained by recursive least square estimation. The D of ARX was
set by finding the highest SS on the validation set.

3) ARX(D)-GARCH(p, q) (Taylor et al., 2009) carried out following a sliding-window process under
double-censored normal distribution, where the orders of GARCH terms and AR Conditional
Heteroskedasticity (ARCH) terms are denoted as q and p, respectively. The {D, p, q} were set
by finding the highest SS on the validation set.

4) Direct Quantile Regression (DQR) (Wan et al., 2017), an ELM-based MO quantile forecast
model whose solver is linear programming.

5) BLSTM (Zhu and Laptev, 2017), a deep-neural-network-based parametric model following
double-censored normal distribution.

7) DeepAR (Flunkert et al., 2017), another deep-neural-network-based parametric model following
double-censored normal distribution.

7) An MO quantile forecast model proposed in Golestaneh et al. (2016) based on ELM and PSO
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Table 2: Performance comparison of all the models

Models
Case #1 Case #2 Case #3 Case #4

|APD|
A

SSA time |APD| SS time |APD| SS time |APD| SS time
Persistence 4.90 -17.5 0.16ms 5.31 -21.2 0.16ms 5.79 -52.6 0.15ms 5.78 -46.9 0.15ms

ARX 3.13 -16.6 0.17ms 3.49 -19.8 0.17ms 3.97 -51.3 0.16ms 5.25 -47.4 0.16ms
GARCH 2.93 -16.7 23.96ms 3.64 -19.7 24.63ms 3.07 -46.5 26.93ms 4.75 -47.5 29.14ms
BLSTM 3.16 -16.1 4.72ms 3.00 -18.3 5.12ms 2.48 -51.5 6.13ms 3.79 -48.6 6.51ms

ELM-PSO 3.15 -15.2 1.41s 2.31 -18.1 1.50s 3.05 -46.9 2.78s 4.42 -48.6 2.70s
DeepAR 2.83 -14.9 1.50ms 2.21 -19.4 1.62ms 3.00 -46.1 2.51ms 4.02 -44.6 3.06ms
DLQR 2.08 -15.7 1.37ms 1.75 -17.8 0.79ms 2.45 -50.7 1.18ms 3.22 -44.9 1.12ms
DQR 1.42 -15.6 8.68ms 1.47 -18.2 9.40ms 2.35 -46.2 9.89ms 3.11 -43.2 9.52ms
DQFN 1.15 -14.9 10.96ms 1.18 -17.6 12.25ms 1.69 -45.8 11.63ms 1.63 -42.6 10.93ms

A. |APD| and SS are presented in the form of “%”.

(ELM-PSO).
8) Dynamic Linear Quantile Regression (DLQR) carried out using the R package with quantreg

library and the model dynrq.
Amongst them, parametric models include persistence, ARX, GARCH, BLSTM, and DeepAR,

while non-parametric models include DQR, ELM-PSO, DLQR, and DQFN. The BLSTM and DeepAR
were trained with Adam(Kingma and Ba, 2014) (where α = 0.0001, β1 = 0.9, β2 = 0.999, ǫ = 10−8).
Their performances on testing sets are shown in Table 2, which demonstrates that: 1) DQFN has
performed best in terms of both reliability and sharpness, i.e., the DQFN has achieved the least |APD|
and the highest SS in all the cases. It is worth mentioning that for Case #1, both DeepAR and DQFN
have achieved the highest SS as −14.9%, while in the other three cases, the highest SS is achieved by
DQFN solely. 2) The |APD| of DQFN is all lower than 2% in all the cases, which has verified the
effectiveness of the constraint on |APD| in (27). 3) The MO models have performed better than the
NMO ones overall, i.e., the DQFN and DQR are the best two among all the models, and ELM-PSO has
also performed fairly well compared to the persistence, ARX, GARCH, and BLSTM. This is because
embedding metrics into loss functions has enabled MO models to directly pursue the best performance
of resultant quantiles. 4) The two MO benchmarking models, i.e., ELM-PSO and DQR, are both
based on shallow-structure (three-layer) ELMs, and this has limited their approximation ability and
generalizability. As a result, they are unable to perform as well as deep-structure ones, i.e., DeepAR
and DQFN, respectively (even though DeepAR is NMO). 5) From the perspective of parametric
and non-parametric, the non-parametric models have performed better than parametric ones overall
(except that DeepAR has performed better than ELM-PSO due to its deep structure as mentioned
above), which indicates that the core assumption of parametric methods, i.e., the forecast target will
follow a particular known distribution family, may be inconsistent with practice. Moreover, among
the parametric models, the performances of deep-learning-based ones, i.e., BLSTM and DeepAR, are
obviously better than the else (especially on reliability).

Besides, the reliability of all the models in all the cases is summarized in four reliability diagrams,
as is shown in Figure 5. Figure 5 reveals that DQFN has performed quite well on reliability (In fact,
Table 2 shows that the |APD| of DQFN is lower than 1.7% in all the cases, which is quite acceptable).
While for other models, non-negligible bias can be observed: 1) In Case #1, persistence tends to
overestimate the quantiles with high nominal proportions and underestimate the ones with low nominal
proportions; ARX, GARCH, BLSTM, ELM-PSO, DeepAR, and DLQR tend to underestimate most
quantiles; DQR tends to overestimate the quantiles in [20%, 50%] and [85%, 95%], and underestimate
the else; DQFN also tends to underestimate most quantiles slightly. 2) In Case #2, things are quite
similar to Case #1, except that DQFN tends to sightly overestimate most quantiles this time. 3) In

18



0 10 20 30 40 50 60 70 80 90 100
 (%)

7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
8

AP
D

 (%
)

Ideal
Persistence
ARX
GARCH
BLSTM

ELM-PSO
DeepAR
DLQR
DQR
DQFN

Ideal
Persistence
ARX
GARCH
BLSTM

ELM-PSO
DeepAR
DLQR
DQR
DQFN

(a) APD of DQFN for Case #1

0 10 20 30 40 50 60 70 80 90 100
 (%)

7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
8
9

AP
D

 (%
)

Ideal
Persistence
ARX
GARCH
BLSTM

ELM-PSO
DeepAR
DLQR
DQR
DQFN

Ideal
Persistence
ARX
GARCH
BLSTM

ELM-PSO
DeepAR
DLQR
DQR
DQFN

(b) APD of DQFN for Case #2

0 10 20 30 40 50 60 70 80 90 100
 (%)

6
5
4
3
2
1
0
1
2
3
4
5
6
7
8
9

10
11
12

AP
D

 (%
)

Ideal
Persistence
ARX
GARCH
BLSTM

ELM-PSO
DeepAR
DLQR
DQR
DQFN

Ideal
Persistence
ARX
GARCH
BLSTM

ELM-PSO
DeepAR
DLQR
DQR
DQFN

(c) APD of DQFN for Case #3

0 10 20 30 40 50 60 70 80 90 100
 (%)

5
4
3
2
1
0
1
2
3
4
5
6
7
8
9

10
11
12
13

AP
D

 (%
)

Ideal
Persistence
ARX
GARCH
BLSTM

ELM-PSO
DeepAR
DLQR
DQR
DQFN

Ideal
Persistence
ARX
GARCH
BLSTM

ELM-PSO
DeepAR
DLQR
DQR
DQFN

(d) APD of DQFN for Case #4

Figure 5: Reliability diagrams.

Case #3, persistence, ARX, GARCH, DLQR, and DQR tend to overestimate the quantiles with high
nominal proportions and underestimate the ones with low nominal proportions; BLSTM, ELM-PSO,
and DeepAR tend to underestimate the quantiles with high nominal proportions and overestimate
those with low nominal proportions; DQFN tends to slightly overestimate or underestimate those
quantiles only with high nominal proportions. 4) In Case #4, three MO models, i.e., DQFN, DQR,
and ELM-PSO, tend to overestimate most quantiles; BLSTM tends to overestimate the quantiles in
[30%, 75%] and underestimate the else; Other models all tend to overestimate the quantiles with high
nominal proportions and underestimate the ones with low nominal proportions. On the whole, the over-
or underestimation of DQFN is the slightest among all the models, while the over- or underestimation
of the persistence is the severest.

5.5. Time-efficiency of Deep Quantile Forecast Network

All tests were implemented on the same computer with a 3.6 GHz central processing unit, 32 GB
memory, and a graphics card (NVIDIA RTX3090) with 24 GB graphics memory. For every model
in every test, the total running time (including training and rolling forecasting) averaged at every
timestamp is presented in Table 2. Table 2 shows that DQFN has a satisfactory time-efficiency (with
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(c) Convergence for Case #3
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(d) Convergence for Case #4

Figure 6: Convergence analyses for IGD in the four cases. The purple & pink numbers above denote average values of
|APD|, SS, or LSMP, respectively.

GPU), i.e., the computation time of DQFN was much shorter than the heuristic-search-based ELM-
PSO, and it was only very slightly longer than the computation time of the linear-programming-based
DQR, even though the deep-NN-based DQFN has far more training parameters than DQR. Although
DQFN is not the fastest one (the fastest one is, beyond doubt, persistence), DQFN’s time-efficiency
sill has a great potential for practice. This is because the running times of DQFN averaged at every
timestamp are only 10.96ms, 12.25ms, 11.63ms, and 10.93ms in these four tests, respectively, and they
are indeed much shorter than the corresponding lead times of these tests (5 minutes, 10 minutes, 5
minutes, and 10 minutes, respectively).

5.6. Convergence Analyses of Indicator Gradient Descent

For investigating the convergence property of IGD, the training of the four DQFN instances pre-
sented in Figure 3 was re-implemented by another five hundred times each, and the distributions of
the eventual |APD|, SS, and LSMP are demonstrated by box-plots in Figure 6a, 6b, 6c, and 6d, re-
spectively, which demonstrates that: 1) The IGD has performed satisfactorily on convergence, i.e.,
the variances of the eventual |APD|, SS, and LSMP were quite low, indicating that DQFNs have been
trained to a satisfactory stage mostly. 2) The eventual average LSMP is quite low in each case, i.e.,
8.2× 10−5, 8.7× 10−5, 8.2× 10−5, and 8.1× 10−5, which indicates that the very large initial value of
βs in Algorithm 1 has made the constraint on LSMP in (27) highly effective. Thus, the quantile cross
has been avoided for very most of the time. 3) It is worth mentioning that sometimes the eventual
|APD| is above 2%, which may be caused by that the training of DQFNs has been trapped into local
minimums. For overcoming this, the strategies in Adam and Nadam can be introduced into Algorithm
1 to enhance IGD further in future work.

5.7. The Comparison between Long Short-term Memory and Bidirectional Long Short-term Memory

Since the quantile forecast task is based on time series, the utilization and effectiveness of BiLSTM
in this paper seem somewhat counter-intuitive. Thus, more numerical tests and comparisons between
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Table 3: Comparison Test of LSTM and BiLSTM on Case #1

Model |APD|
A

SSA time
Double-left DQFN 1.96 -17.9 10.74ms
Double-right DQFN 1.92 -16.3 11.02ms

DQFN 1.15 -14.9 10.96ms

A. |APD| and SS are presented in the form of “%”.

LSTM and BiLSTM are carried out to verify the validity of using BiLSTM in this time series forecast
task. Namely, the Double-left DQFN (where all the LSTMs in Figure 2 marches towards the left) and
Double-right DQFN (where all the LSTMs in Figure 2 marches towards the right) were implemented,
and their performances on Case #1 are shown in Table 3.

Table 3 shows that the Double-left DQFN is the worst, which is not surprising. Interestingly, the
DQFN performs better than the Double-right DQFN, which implies that BiLSTM is more suitable
than LSTM for this task. Indeed, this was not the first comparison test between BiLSTM and LSTM
on time series tasks. I.e., Cui et al. (2018) and Siami-Namini et al. (2019) had also carried out
detailed comparisons between LSTM and BiLSTM on time series tasks, and their results showed that
BiLSTM outperforms LSTM on corresponding time series tasks. However, an in-depth analysis of this
phenomenon was missing in these studies.

It may be “attention” that makes BiLSTM better than LSTM. Namely, even the LSTM has a
“memory cell”, it is still unavoidable that it forgets the information along with time, which can be
recognized as “catastrophic forgetting”. Therefore, at time spot t, the LSTM has forgotten most of
the information at t −D + 1, even with a so-called gating mechanism. Consequently, the LSTM has
paid much more attention to recent time spots than long from the past, limiting its ability to deal
with long time series. While for BiLSTM, the other LSTM marching oppositely has provided strong
attention to the information that is long ago from now, relieving the “catastrophic forgetting” to some
extend.

5.8. Summary of Practical Experiments

Summarizing both forecasting performance and time-efficiency, one can conclude that DQFN (and
IGD) has achieved superior performances over state-of-the-art benchmarking models. Namely, 1)
embedding APD and SS into the loss function has led DQFN to pursue the best evaluation performance
directly, which thus made it superior to NMO models, i.e., persistence, ARX, GARCH, BLSTM,
DeepAR, and DLQR; 2) the deep architecture and high capacity of DQFN have made it superior
to existing MO models which have relatively small model capacities, i.e., DQR and ELM-PSO; 3)
the satisfactory compatibility of IGD with GPU has made DQFN much more time-efficient than the
heuristic-search-based MO model, i.e., ELM-PSO.

The two tasks in this paper, i.e., wind and solar power forecast, are widely studied forecasting
problems in the literature. They are of great importance for the operation and control of energy
internet and smart-grids. The authors believe that the case studies have shown the superiority of
DQFN and IGD in a fair manner.

Of course, it would be better to use a open benchmark problem for comparison. By far, an open
benchmark problem or task for quantile forecast where both reliability and sharpness are considered
has not been found. Therefore, on the one hand, publishing this dataset to make it an open benchmark
for researchers after getting permission from the data provider is under consideration. On the other
hand, finding a suitable open benchmark task for quantile forecast where both reliability and sharpness
are considered is still being focused.
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5.9. Discussion

The proposed indicator gradient, customized losses, and the indicator gradient descent algorithm
is a general solution to all the quantile forecast problems, i.e., not limited to the power system field
cases presented in this paper. They together have bridged the gap between deep learning and non-
parametric quantile forecast, such that various deep neural networks with different architectures can
be directly applied to quantile forecast, e.g., deep convolutional neural networks, deep recurrent neural
networks, graph neural networks, and even recently proposed transformers, i.e., not limited to DQFN.
Besides, quantile forecast, an essential branch of the probabilistic forecast, is the fore-end of optimal
control approaches. Namely, the forecasting results of the probabilistic forecast are a crucial input for
the subsequent optimization or control tasks, e.g., the stochastic programming, predictive control, and
robust control of the micro-grids or energy internet, which has been discussed by Chen et al. (2020),
Hua et al. (2019), and Chen et al. (2018) in detail.

Although IGD has been proven a well-defined and effective training approach, the APD of DQFN
is still not close to zero enough (APD is indeed vibrating around the threshold, 2%), which means
a non-ignorable mismatch exists between real and forecasted quantiles. This mismatch may result
from three aspects: 1) Bayes error. For a classification or regression task, Bayes error is the lowest
possible error that can be obtained based on offered information, which gives a statistical upper bound
on achievable performance. Here, Bayes error can theoretically be lowered by extending explanatory
variables with extra useful information. 2) The training of DQFN may fall into local minimums, which
results from the non-convexity of neural networks. 3) Under-fitting might occur during the training of
DQFN, which results from the fact that IGD is still a first-order optimization algorithm with limited
searching efficiency.

6. Conclusions

As a crucial component in the operation and control of hybrid energy systems, to develop advanced
forecast models is one of the most efficient ways to accelerate the use of renewable energy in the
whole energy chain and contribute to the delivery of the net-zero emission target. In this work, an
investigation on the differentiability of two most crucial quantile forecast evaluation metrics, i.e., APD
and SS, is first presented in detail, which systematically revealed the obstacles that have resisted the
application of deep learning in the non-parametric quantile forecast domain. Then, IGD, a GPU-
compatible training approach for NN-based MO quantile forecast models, is proposed. With IG and
customized losses, the IGD has overcome the non-differentiability of SS, APD, and metric-embedded
loss functions, and it can be applied to any NN-based MO quantile forecast models. Substantive case
studies using practical data have verified the superiority of IGD in terms of effectiveness and efficiency
over heuristic searches. Moreover, a deep-learning-based non-parametric MO quantile forecast network
is developed, i.e., DQFN. The DQFN is built based on deep residual BiLSTM, and it is trained using
IGD with GPU acceleration. Practical experiments have verified the superiority of DQFN in terms of
forecast performance over state-of-the-art models.
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Appendix A. Theorems on the Properties of Indicator Gradient

Theorem 1. Given W (·) as a PDPF on DP and any one point on its inter-piece boundaries as xb,
then the IG of W (·) at xb always exists, regardless of whether W (·) is derivable at xb or not.

Proof. Assume xb belongs to region SI corresponding to function fI(·), then IG of W (·) at xb can be
directly obtained as:

[ΛxW (x)]|xb
=

{

NW
∑

i=1

[Λxfi(x) · σi(x) + Λxσi(x) · fi(x)]

}∣

∣

∣

∣

∣

xb

=

{

NW
∑

i=1

[Λxfi(x) · σi(x)]

}∣

∣

∣

∣

∣

xb

=[ΛxfI(x)]|xb

(A.1)

According to Definition 1, fI(·) is derivable on DP , which means [∇xfI(x)]|xb
exists. Then according

to (15), one has:
[ΛxfI(x)]|xb

= [∇xfI(x)]|xb
(A.2)

Combining (A.1) and (A.2), one has:

[ΛxW (x)]|xb
= [∇xfI(x)]|xb

(A.3)

Theorem 2. If W (·) is a PDPF on DP , then for any xJ inside the pieces of W (·) (i.e., not on
boundaries), the IG of W (·) always exists, and it is identical to the gradient of W (·) at xJ .

Proof. Assume xJ is inside region SJ corresponding to function fJ(·), then the gradient of W (·) at xJ

can be derived as:

[∇xW (x)]|xJ
=

{

NW
∑

i=1

[∇xfi(x)σi(x)+∇xσi(x)fi(x)]

}∣

∣

∣

∣

∣

xJ

=[∇xfJ(x)σJ(x)+∇xσJ(x)fJ(x)]|xJ
(A.4)

Since xJ is inside SJ , one has:
[σJ(x)]|xJ

= 1 (A.5)

[∇xσJ(x)] = 0 (A.6)

Combining (A.4), (A.5) and (A.6), one has:

[∇xW (x)]|xJ
= [∇xfJ(x)]|xJ

(A.7)

The IG of W (·) at xJ can be obtained as:

[ΛxW (x)]|xJ
=

{

NW
∑

i=1

[Λxfi(x)σi(x)+Λxσi(x)fi(x)]

}∣

∣

∣

∣

∣

xJ

=

{

NW
∑

i=1

[Λxfi(x)σi(x)]

}∣

∣

∣

∣

∣

xJ

= [ΛxfJ(x)]|xJ
= [∇xfJ(x)]|xJ

(A.8)
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Comparing (A.7) and (A.8), one has:

[∇xW (x)]|xJ
= [ΛxW (x)]|xJ

(A.9)

Theorem 3. If W (·) is an everywhere-derivable PDPF on DP , then ΛxW (x) = ∇xW (x) for any x

in DP .

Proof. For an everywhere-derivable PDPF W (·), its IG can be directly written as:

ΛxW (x) =

NW
∑

i=1

[Λxfi(x) · σi(x) + Λxσi(x) · fi(x)] =

NW
∑

i=1

[Λxfi(x) · σi(x)]

=

NW
∑

i=1

[∇xfi(x) · σi(x)] = ∇xW (x)

(A.10)
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