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ABSTRACT1

Interest in behavioural realism has gradually led to the introduction of alternatives to random util-2

ity models (RUMs) as a paradigm for representing choice behaviour, with notable interest, for3

example, in random regret minimisation (RRM). These more general models continue to rely on a4

framework where a single value function is calculated for each alternative in each choice setting,5

and the choice probabilities are calculated by comparing these value functions across alternatives.6

By contrast, research in mathematical psychology has used a more dynamic approach, where the7

preference value of each alternative updates over time in a given situation while the decision maker8

is deliberating about the choice to make. These accumulator models are well suited to accom-9

modating a variety of context effects, and have been shown to give good performance for data10

collected in laboratory-based settings. The present paper considers two such accumulator models,11

namely decision field theory (DFT) and the multi-attribute linear ballistic accumulator (MLBA),12

and addresses limitations that have prevented their use in travel behaviour research. The method-13

ological additions include the ability to capture the influence of socio-demographics, the presence14

of underlying preferences for specific alternatives, and/or the representation of attributes that have15

opposite effects on choice probabilities. We develop what we believe to be the first in-depth simul-16

taneous comparison of DFT and MLBA with typical discrete choice models, and test both DFT17

and MLBA on a revealed preference dataset. We find that each model outperforms typical RUM18

and RRM implementations for both in-sample estimation and out-of-sample prediction, including19

in a large scale simulation experiment.20
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1. INTRODUCTION1

Whilst mainstream choice modelling has firm economic foundations (McFadden, 1974), the mod-2

elling of decision-making behaviour in other fields has been characterised by very different aims3

and objectives. Since work in the 1970s (Tversky, 1972; Tversky and Kahneman, 1973; Tver-4

sky, 1977), the field of behavioural economics has considered choice from an economic viewpoint5

whilst simultaneously demonstrating that decision-makers are subject to biases, heuristics and con-6

text effects that result in choices that are not the most likely under traditional choice models.7

Choice modellers have long had an interest in increasing the behavioural realism of their models,8

with recent methodological advances aimed at incorporating alternative behavioural ideas such as9

random regret minimisation (RRM) (Chorus et al., 2008; Chorus, 2010), heuristics (Swait, 2001),10

satisficing (González-Valdés and Ortúzar, 2017) and the incorporation of information processing11

strategies such as attribute non-attendance (for a detailed review, see Hensher (2010)).12

Moving away from the traditional random utility maximisation (RUM) framework however13

entails a number of disadvantages, most notably an inability to easily use the results in welfare14

analysis (Hess et al., 2018). This means that careful consideration is required before we move15

to alternative models. In this context, the question then arises whether, if we are willing to move16

away from RUM, we should move to models that are substantially different from it, rather than still17

staying within a logit framework as is the case for random regret minimisation. This observation18

leads us to look further afield in the present paper, and in particular at work in mathematical psy-19

chology, where researchers have developed mathematical and computational models that represent20

context effects such as attraction, compromise and similarity (Roe et al., 2001; Trueblood et al.,21

2013b; Noguchi and Stewart, 2014) as well as decision-making under time pressure (Busemeyer22

and Townsend, 1993).23

Two models in particular have attracted substantial attention in mathematical psychology,24

namely Decision Field Theory (DFT) (Busemeyer and Townsend, 1992, 1993; Roe et al., 2001)25

and the multi-attribute linear ballistic accumulator (MLBA) (Trueblood et al., 2013a, 2014). These26

models also represent the choice between mutually exclusive alternatives but differ from more27

traditional discrete choice models in one specific dimension. RUM and RRM models are charac-28

terised by their utility and regret functions respectively, which are used to calculate a single value29

function for each alternative, where comparison of this across alternatives then leads to probabili-30

ties of a given alternative being chosen. This value function is calculated once per choice situation.31

On the other hand, DFT and MLBA are members of a broad family of accumulator models, where32

the cumulative preference value for an alternative in a single choice context is updated (linearly in33

MLBA, stochastically in DFT) over time.34

Under DFT, the decision maker updates his/her preference for given alternatives by repeated35

comparisons between them, considering one attribute at a time, where the attribute values of the36

alternatives in that situation remain constant across these comparisons. Under MLBA, a ‘drift37

rate’ is generated at the outset for each alternative; this then drives the updating of the strength of38

preference of each alternative within the given choice context.39

At first, this description of the models might seem similar to choice modelling work that has40
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looked at preferences evolving over a sequence of choices, such as models incorporating value1

learning (McNair et al., 2012), state dependence (Bruno et al., 2015) or dynamic discrete choice2

models (Liu and Cirillo, 2018). However, accumulator models are structures for internal prefer-3

ence accumulation at the level of every single choice, not models that accumulate evidence over a4

sequence of choices. The accumulation models thus capture the mental deliberation from the time5

a particular choice is faced (or stated choice scenario is presented) to the point where the choice is6

made. The preferences are reset after that, so that the accumulation effect is not carried over to the7

next choice task, i.e. the accumulation made when considering choice set k does not affect choice8

set k+1 although such extensions are possible too if warranted by the choice context.9

As is common with work in mathematical psychology, much of the focus of using DFT and10

MLBA has been on testing for the presence of specific behavioural phenomena in data collected in11

lab-based experiments, with little or no focus on prediction or on using data from complex choice12

scenarios. However, the way in which preferences evolve over time and their inherent ability to13

accommodate a range of what economists might call behavioural anomalies make these models14

potentially very appealing for studying more complex decisions, including travel behaviour. This15

statement is not completely without exceptions. For example, Hawkins et al. (2014) applied the16

linear ballistic accumulator (LBA, Brown and Heathcote 2008), a precursor to MLBA, to consumer17

attitudes and patient preferences; Hawkins et al. (2019) provided LBA applications to multi-period18

stated preference for consumer products; and Berkowitsch et al. (2014) applied DFT to consumer19

choices for products such as computers, cameras and racing bicycles. In key comparisons against20

traditional choice models, DFT in particular has been found to outperform random utility and21

random regret based models (e.g. Berkowitsch et al. 2014; Hancock et al. 2018).22

Another distinction is that in mathematical psychology, accumulator models are typically used23

to jointly model the outcome of the choice process and the time it takes to reach that decision. In24

a traditional choice modelling context, it is the former that is of key interest, and this thus calls for25

further investigation of the potential advantages of these models in the context of data with choice26

outcomes only (as opposed to additional information on decision time), as well as investigating any27

mathematical adaptations required in such cases. In this context, it is worth noting that while some28

comparisons of MLBA and DFT have concluded that response time data is required to clearly dif-29

ferentiate the models (Evans et al., 2019b), applications within mathematical psychology typically30

do not study alternatives that are evaluated in qualitatively different ways by different participants31

and also tend to present tasks in which there are correct/incorrect answers. The work in this pa-32

per, by contrast, considers subjective preferential choice data, in which the complicated evaluation33

of alternatives makes choice-only data sufficiently rich to demonstrate differentiation of the pre-34

dictive capabilities of traditional choice models and the accumulation models from mathematical35

psychology.36

In a travel behaviour context, MLBA has thus far not been used, while the use of DFT to37

date has been limited due to the computational limitations (Otter et al., 2008). Our previous work38

on DFT has focused on methodological improvements that have made it possible to rigorously39

test DFT against typical choice models (Hancock et al., 2018). This motivates us to investigate40

the suitability of MLBA in modelling travel behaviour as well, as it has been found to outperform41

DFT in applications in the mathematical psychology literature (Trueblood et al., 2014; Cohen et al.,42



Hancock, Hess, Marley and Choudhury 4

2017; Turner et al., 2018). Furthermore, there has been increasing attention in transport and choice1

modelling in general on best-worst datasets (Giergiczny et al., 2013; Rose, 2014; Hawkins et al.,2

2019) and research in mathematical psychology has shown that linear ballistic accumulators, with3

each alternative having a mean drift rate equal to an alternative-specific constant, perform well for4

these datasets (Hawkins et al., 2014).5

Beyond simply comparing the two structures, we make a number of methodological improve-6

ments to both DFT and MLBA to facilitate their application to rich multi-alternative multi-attribute7

preferential choice datasets. The key contribution relates to allowing analysts to use DFT with8

attributes that have opposite effects on choice probabilities, and where this directionality is not9

known a priori. Previously, DFT models included ‘attention weights’ which could be used to cap-10

ture the relative importance of attributes. As these weights must be positive (and sum to one), a11

priori knowledge is required as to whether an attribute has a positive (e.g. comfort of journey) or12

negative (e.g. cost) impact on the likelihood of an alternative being chosen. This is particularly13

an issue for consumer attributes which some decision-makers may like and others dislike, such as14

the size of a car; we handle such effects with attribute-specific scaling coefficients, meaning that15

such a priori knowledge is no longer required. We show that these coefficients can also be added16

to MLBA to capture the relative importance as well as the directionality of different attributes, a17

feature not typically accounted for in standard MLBA implementations. Further improvements18

include the ability to capture the influence of socio-demographics and the presence of underlying19

preferences for specific alternatives, in a manner equivalent to alternative specific constants in typ-20

ical discrete choice models. We also look in detail at identification issues for both models, and21

present a number of empirical tests to help inform future applications.22

In our empirical work, we offer what we believe to be the first in-depth simultaneous compar-23

ison of DFT and MLBA with typical discrete choice models, and also for the first time test both24

DFT and MLBA on a revealed preference dataset. We find that each model outperforms RUM and25

RRM implementations for both estimation and out-of-sample prediction across our datasets, and26

in a large scale simulation experiment.27

The remainder of this paper is organised as follows. In the next section, we first provide an28

overview of the two models in their current form before presenting our various methodological29

improvements. This is followed by our empirical work on stated choice and revealed preference30

data, before some further tests on simulated data. The final section summarises the findings and31

presents some directions for future research.32

2. METHODOLOGY: CONTRASTING AND IMPROVING MODELS FROM MATHE-33

MATICAL PSYCHOLOGY34

In this section, we first provide an introduction to accumulator models. We then present state-of-35

the-art implementations before making methodological improvements for both DFT and MLBA.36
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2.1. Introduction to accumulator models1

Since the introduction of the drift diffusion model (Ratcliff, 1978), many different variations2

of accumulation models have been developed by mathematical psychologists (Busemeyer and3

Townsend, 1992; Usher and McClelland, 2001; Krajbich et al., 2012). Some of these accumu-4

lation models fall into the more specific category of sequential sampling models (see Busemeyer5

et al. (2019) for a review of these models). The idea of a sequential sampling model is that pref-6

erences for alternatives update over time depending on what information is being considered. An7

individual may consider, for example, cost, before then considering travel time. They might make8

comparisons across alternatives sequentially or randomly. By contrast, mainstream choice models9

such as random utility or random regret models construct just a single one-off preference or util-10

ity value for each alternative given a set of attribute values and then use those values, with error11

components, to calculate choice probabilities. Critically, sequential sampling models and more12

generally accumulation models instead assume that these preferences change over the course of13

the deliberation process whilst the decision-maker is choosing an alternative (even if the attributes14

of the alternatives stay the same). As already highlighted in the introduction, this preference accu-15

mulation is internal and happens at the level of every single choice, i.e. it is not an accumulation16

over a sequence of choices. Consequently, we can contrast the models with typical discrete choice17

structures.18

Accumulator models aim to ‘understand the motivational and cognitive mechanisms that19

guide the deliberation process involved in decisions’ (Busemeyer and Townsend, 1993). The20

assumed mechanisms have subsequently been shown to resemble those in neural circuits. For21

example, Gold and Shadlen (2000) found that during a motion perception task, there was an accu-22

mulation of sensory evidence in the neural circuits of a monkey’s brain, creating a behavioural re-23

sponse when the appropriate amount of information had been received. Furthermore, accumulator24

models have been developed that explain/describe context effects (Hotaling et al., 2010; Trueblood25

et al., 2014), capture risky choice behaviour (Busemeyer and Townsend, 1993; Stewart and Simp-26

son, 2008) and can predict preference reversals (Diederich, 2003). Additionally, dynamic models27

provide a naturalistic method for the modelling of decision making in dynamic choice settings28

(Holmes et al., 2016).29

One popular model from mathematical psychology that can easily be compared to traditional30

discrete choice models is decision field theory (DFT), first introduced by Busemeyer and Townsend31

(1992, 1993) and first operationalised in the context of travel behaviour by Hancock et al. (2018).32

In a DFT model, preference values for the alternatives update stochastically over time. At each33

moment, a single attribute is compared across alternatives and a valence (momentary preference)34

is added to the preference value for each alternative. At some point, the decision-maker comes to a35

conclusion, either as one of the alternatives reaches some threshold (similar to satisficing Kaufman,36

1990; Schwartz et al., 2002; González-Valdés and Ortúzar, 2017) or as an external cue forces the37

decision-maker to make a choice, in which case the decision-maker chooses the alternative with the38

highest preference value at that moment. As an example, the left panel in Figure 1 demonstrates39

that different alternatives may be chosen depending on which threshold is used. The alternative40

that first reaches the internal threshold value is not the one that first reaches the time threshold.41

Here, it should be noted that the value that evolves over comparison is a preference value, rather42
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than a probability, where the latter is calculated from the expectation of the former, a point we will1

return to later. The horizontal axis is measured in preference updating steps, which relate to the2

number of comparisons between alternatives, on each occasion using one attribute.3

FIGURE 1 : An example decision process under both accumulation models

The linear ballistic accumulator model (Brown and Heathcote, 2008) and its multi-attribute4

version MLBA (Trueblood et al., 2013a, 2014) have a similar accumulation process for the prefer-5

ence of alternatives, but, in contrast with DFT, the updating is not stochastic. Instead, under LBA,6

decision-makers start with some random amount of initial ‘evidence’ for each alternative, and a7

random value of a drift rate, with the evidence in each ’accumulator’ then increasing linearly with8

that sampled rate until one of the accumulators (alternatives) reaches a threshold. This sampled9

rate depends on the drift rate distributional and functional form, meaning that the preference values10

for each accumulator grow linearly at some drift rate dependent on the attribute levels of the alter-11

native. A particular form for the drift rates (detailed in Section 2.3) give the MLBA. Depending on12

the level of the threshold, different alternatives may be chosen. This is demonstrated in the right13

panel of Figure 1, in which each alternative (accumulator) starts with some random initial value,14

assumed to be in an interval a, and a different alternative is chosen when the threshold value is b115

than when it is b2. The linear drift rates imply that, unlike in DFT, once the alternative with the16

largest (sampled) drift rate value ‘gains the lead’ there is no way for another alternative to recover17

and be chosen. Whilst this would not be the case with a non-linear specification, the current model18

is specifically linear to allow for simple calculation of the probabilities of alternatives. As with19

DFT, the value that evolves over time is a preference value, while the horizontal axis in Figure 120

now relates to actual time, given that no additional comparisons are made.21

The mathematics underlying MLBA and DFT is vastly different. LBA was specifically de-22

signed such that it is ‘simple’ (Brown and Heathcote, 2008) and mathematically tractable, with23

MLBA subsequently developed such that it can also accurately capture and predict context effects.24

The simpler mathematical nature means that the probabilities of alternatives can easily be calcu-25

lated from a combination of normal and uniform cumulative density functions (see Section 2.3 for26

a full description of MLBA).27

It may be noted that there are numerous other accumulation models from mathematical psy-28

chology that seek to explain choice processes and predict choices. However, not all are currently29

suitable for transitioning into applied choice modelling. Given the complex nature of transport30

datasets, for example in terms of number of alternatives, even simple implementations will impose31
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large computational costs. This is then further increased if analysts wish to add random hetero-1

geneity in preferences, and models from mathematical psychology thus need to be efficient to run2

at a basic level if they are to compete. This means that models that do not have analytical solutions3

for calculating the choice probabilities will likely not be suitable options. For example, the leaky4

competing accumulator model (LCA, Usher and McClelland 2001) would require two levels of5

simulation in order to incorporate random parameters. Requirements for computer intensive sim-6

ulation are also issues for the associative accumulation model (Bhatia, 2013) and the attentional7

drift diffusion model (Krajbich et al., 2012).8

2.2. Decision field theory (DFT)9

In this section, we first look at the existing implementation of DFT before making a number of10

methodological improvements and finally turning to identification issues.11

2.2.1. Existing implementation12

2.2.1.1 Theoretical model13

Decision field theory, as an accumulator model, has preference values for each alternative that14

update over a number of preference updating steps1 (see left panel in Figure 1). For decision-maker15

n in choice task (set) s, the vector of preferences after τ preference updating steps is denoted PPPns,τ16

and is of size Jn where Jn is the number of alternatives in the choice set CSns. The preferences then17

update according to:18

PPPns,τ+1 = Sns ·PPPns,τ +VVV ns,τ+1, (1)

where the previous values, PPPns,τ , are multiplied by a feedback matrix, Sns, and a valence vector19

VVV ns,τ+1 is added. It is worth noting here that DFT is often formulated as a linear difference equation20

with step size h (see, for example, Busemeyer and Diederich (2002)). We follow Roe et al. (2001)21

in explicitly using step sizes of h = 1. This means that analytical solutions for calculating the22

probability of choosing each alternative still exist, whilst avoiding the fact that different step sizes23

(values of h) can result in different outcomes (Evans et al., 2019b). The feedback matrix has two24

parameters that influence the existence and/or strength of attraction, similarity and compromise25

effects (Roe et al., 2001; Hotaling et al., 2010; Noguchi and Stewart, 2014), and is defined as:26

Sns = Ins −φ2 × exp(−φ1 ×D2
ns) (2)

where φ1 is a sensitivity parameter, φ2 is a memory parameter, Ins is the identity matrix of size27

Jn × Jn and Dns is the distance between alternatives measured with respect to the attribute-levels.28

Whilst the relative importance of the different attributes can be taken into account with a psycho-29

logical distance function (Hotaling et al., 2010) and work on new distance functions is possible30

(e.g. Berkowitsch et al., 2015), the Euclidean distance between the attributes can also be used for31

simplicity (Qin et al., 2013). The sensitivity parameter, φ1, affects how much the alternatives com-32

pete with each other. Values very close to zero results in the distance between the attributes of33

1Note that whilst it is possible that separate choice tasks could be linked through parameters controlling for learning

effects, all of the DFT models in this paper assume that all choice tasks are entirely independent of each other to make

them comparable with the RUM and RRM models without state-dependence.



Hancock, Hess, Marley and Choudhury 8

alternatives becoming less important, whereas higher values result in more competition between1

similar alternatives. The memory parameter (also known as the decay parameter) determines the2

relative importance of attributes considered towards the end of the decision process relative to3

those considered at the start. A value of one results in zeros on the diagonals of the feedback ma-4

trix, which results in the preference already accumulated becoming irrelevant. As this value tends5

towards zero, the importance of the already accumulated preference increases.6

DFT assumes that, at each preference updating step, the decision-maker compares a single7

attribute across all of the alternatives. This results in a random valence vector at step τ , VVV ns,τ ,8

which can be calculated as:9

VVV ns,τ =Cns ·Mns ·WWW ns,τ + εεεns,τ (3)

where Cns is a contrast matrix used to rescale the values such that they total zero, Mns is the10

matrix of attribute values dependent on the specific choice task and WWW ns,τ = [0..1..0]′ with the kth11

entry, i.e. WWW ns,τ,k = 1 if and only if attribute xk is the attribute being attended to by the decision-12

maker at preference updating step τ . A DFT model thus typically estimates a weight, wk, for the13

likelihood of attribute xk being the single attribute attended to at a given step, where ∑k wk = 1.14

There is also a random error vector, εεετ = [ε1..εJn
]′, with εi ∼ N(0,s), distributed identically and15

independently across alternatives, steps, individuals and choice tasks. This allows for flexibility in16

the range of probability values that DFT predicts. This is in essence an error or noise parameter17

(Roe et al., 2001), for which higher values would be expected for more complex decision-making18

tasks (Hotaling et al., 2010).19

2.2.1.2 Calculating choice probabilities20

Under a DFT model, at the conclusion of the deliberation process, the alternative that is chosen21

is the one with the greatest preference value, regardless of whether the individual stopped deliber-22

ating due to a time threshold or due to the preference value for one of the alternatives reaching a23

preference threshold. Given that most choices do not have a strict time threshold, some applica-24

tions of DFT calculate the probability for each alternative’s preference value reaching a particular25

threshold first (see examples in Hotaling et al. (2010) and Turner et al. 2018). Given that this prob-26

ability has no closed-form solution for more than two alternatives, we rely on Roe et al. (2001)’s27

method to calculate a related set of choice probabilities - namely, the probability for each alter-28

native being chosen after τ preference accumulation steps. This uses the expected value and the29

covariance of the preference values (ξξξ ns,τ and Ωns,τ ) and results in the stochastic variation being30

averaged out such that the choice probabilities can be calculated without the computationally heavy31

simulation that is required for DFT applications by, for example, Turner et al. (2018); Evans et al.32

(2019b).33

To calculate the expected value of the preference values, we must first expand Equation 1,34

which results in:35

PPPns,τ =
τ−1

∑
r=0

Sr
ns ·VVV ns,τ−r +Sτ

ns ·PPPns,0 (4)

where PPPns,0 = [δns,1,δns,2, ..,δns,Jn
] is the initial preference vector, with values δns,i ∈ R. This is36

often assumed to be a vector of zeros (Busemeyer and Diederich, 2002) but can also be used to37
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capture underlying preferences for different alternatives (Hancock et al., 2018), where δns,i = δi,1

i.e. an estimated parameter that is fixed across individuals and choice tasks.2

The attribute weights wk are stationary, therefore WWW ns,τ can be considered a stationary stochas-3

tic process. This means that VVV ns,τ is also a stationary stochastic process with mean E[VVV ns,τ ]4

and a variance covariance matrix given by Cov[VVV ns,τ ]. We let εεεns,τ vary according to a nor-5

mal distribution with mean zero and variance σ2
ε . Given that µµµns = E[VVV ns,τ ], it can be calcu-6

lated as µµµns = Cns ·Mns ·www, where www is a vector containing the attribute attention weights, wk,7

which corresponds to the probability of each of the attributes being considered. We also have8

Cov[VVV ns,τ ] = Φns =Cns ·Mns ·Ψns ·M
′
ns ·C

′
ns +σ2

ε · I, where Ψns =Cov[WWW ns,τ ] and I is the identity9

matrix (Cns and Mns are matrices of constants). We can then calculate the expected value and the10

covariance of PPPns,τ . With Sns being a constant, E[PPPns,τ ] reduces to:11

E[PPPns,τ ] = ξξξ ns,τ =
τ−1

∑
r=0

Sr
ns ·µµµns +Sτ

ns ·PPPns,0 (5a)

= (Ins −Sns)
−1(Ins −Sτ

ns) ·µµµns +Sτ
ns ·PPPns,0 (5b)

We can also now calculate the covariance of the preference values:12

Cov[PPPns,τ ] = Ωns,τ =Cov

[

τ−1

∑
r=0

Sr
ns ·VVV ns,τ−r +Sτ

ns ·PPPns,0

]

(6a)

=
τ−1

∑
r=0

[

Sr
ns ·Φns ·S

r′

ns

]

(6b)

The resulting calculations are complex, but as shown in our earlier work (Hancock et al., 2018),13

we can further simplify Cov[PPPns,τ ] such that we can avoid the summation. We replace the feedback14

matrices with a matrix Zns of size J2
n × J2

n (where Jn is the number of alternatives) and reshape Φns15

(with entries pi, j) into a column matrix, Φns:16

Zns =











z1,1 z1,2 . . . z1,J2
n

z2,1 z2,2 . . . z2,J2
n

...
...

. . .
...

zJ2
n ,1

zJ2
n ,2

. . . zJ2
n ,J

2
n











,Φ =























p1,1

p1,2
...

p1,Jn

p2,1
...

pJn,Jn























(7)

As Sns is a symmetric matrix, we can then define Zns by setting it as the Kronecker product of Sns17

with itself: zi, j = s(i mod Jn, j mod Jn) · s(⌈i/Jn⌉,⌈ j/Jn⌉). The calculation of the covariance of PPPns,τ now18

simplifies to:19
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Cov[PPPns,τ ] = Ωns,τ =
τ−1

∑
r=0

[

Sr
ns ·Φns ·S

r′

ns

]

(8a)

=
τ−1

∑
r=0

[

Zr
ns ·Φns

]

(8b)

= (Ins −Zns)
−1 (Ins −Zτ

ns)Φns (8c)

These succinct forms for ξξξ ns,τ and Ωns,τ mean that we can now calculate the probability with which1

each alternative is chosen. On the basis of the multivariate central limit theorem, PPPns,τ converges2

to the multivariate normal distribution (Roe et al., 2001). This means that if a time (step) threshold3

is reached, the choice probability of choosing alternative j from the set CSns of Jn alternatives at4

step τ is:5

Prob

[

PPPns,τ [ j] = max
i∈CSns

PPPns,τ [i]

]

=

∫

XXXns,τ>0
exp

[

−(XXXns,τ −ΓΓΓns,τ)
′Λ−1

ns,τ(XXXns,τ −ΓΓΓns,τ)/2
]

/(2π|Λns,τ |
0.5)dX

(9)

with XXXns,τ = [PPPns,τ [ j]−PPPns,τ [1] , ...,PPPns,τ [ j]−PPPns,τ [Jn]]
′
, the set of differences between the pref-6

erence for the jth element and the preferences for each respective element i ∈Cns, i 6= j. Then we7

have ΓΓΓns,τ = Lns ·ξξξ ns,τ and Λns,τ = Lns ·Ωns,τ ·L
′
ns where8

Lns =

















1 −1 0 . . . . . . 0

1 0 −1
. . .

...

1
...

. . .
. . .

. . .
...

1
...

. . . −1 0

1 0 . . . . . . 0 −1

















(10)

with Lns being a matrix constructed with a column vector of 1s and a negative identity matrix of9

size Jn − 1 where Jn is the number of alternatives. The column vector of 1s is placed in the jth10

column where j is the chosen alternative.11

2.2.2. New developments12

2.2.2.1 Scaling of DFT13

In a typical linear additive RUM or RRM model, changing the units of a single attribute only14

affects the parameter for that attribute. For example, changing the unit of travel time from minutes15

to hours results in the corresponding marginal utility component being multiplied by 60, with no16

impact on other parameters.17

DFT on the other hand is scale-variant (Busemeyer and Diederich, 2002; Trueblood et al.,18

2013a), where the requirements that the attribute weights sum to one (∑k wk = 1) means that a19

change in the scale for one attribute, unless accounted for, might be incorrectly interpreted as a20
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change in the distribution of the attribute weights. The following material illustrates how to extend1

DFT (and related models) so that importance weights are unchanged by such scale changes (for2

the proof of how the new scaling parameters result in DFT become scale-invariant, please see3

Appendix C). Suppose we are studying a choice situation where the two attributes are cost and4

time, with cost measured in £ sterling and time measured in hours. Let c£ (resp., th) be the cost in5

£ (resp., duration in hours) of a particular choice alternative, and assume that we have been able to6

show that its value is given by:7

(0.6)c£ +(0.4)th, (11)

where the coefficient (0.6) [resp., (0.4)] measures the importance of cost in £ (resp., time in hours)8

to the decision maker.2 The above formulation is fine so long as one continues to work with cost9

measured in £ and time measured in hours, but will lead the researcher astray if they want to change10

their measurements to cost measured in Euros and time measured in minutes. Rather than go down11

that erroneous path, we simply note that there are implicit parameters in Equation 11 that indicate12

that c (cost) is measured in £ and t (time) is measured in hours. We make those parameters explicit13

by rewriting Equation 11 as:14

(0.6)kc£
c£ +(0.4)kthth, (12)

where kc£
= kth = 1. Such parameters have various names in the (measurement) literature, including15

dimensional parameters (Luce, 1962) and scale-dependent parameters (Luce et al. (1990), Section16

22.2.4 and page 308). The advantage - in fact, conceptual necessity - of including such parameters17

is that if we now change our measurement scales - say, from £ to Euros and from hours to minutes18

- then the importance weights will remain the same (as they should), and the (scale) parameters for19

cost and time change. For example, with 1£ = 1.18 Euro and one hour equal 60 minutes, Equation20

11 becomes:21

(0.6)kcE
cE +(0.4)ktmtm, (13)

where cE (resp. tm) is the cost in Euros (resp., time in minutes) and kcE
= 1

1.18
and ktm = 1

60
.22

It is possible that scaling functions can be applied to the attributes before they enter Equation23

3 (see Section 3.5 or also the ‘scaling of attributes’ section of Hancock et al. (2018)). However,24

it is not clear which method should be used a priori, thus we instead define a new scaling method25

which translates attribute values into ‘subjective’ values directly. This is achieved by multiplying26

the values by a vector of attribute-specific scaling coefficients,3 βββ DFT , with properties paralleling27

the scale-dependent parameters of Equations 11 and 12. This results in the following function for28

the random valence vector at step τ (dropping the indices for individual and choice task), VVV τ :29

VVV τ =C ·M ·β ·WWW τ + εεετ (14)

where M is the original attribute matrix, but with each attribute multiplied by its corresponding30

scaling value from the diagonal matrix β , which has the set of estimated scaling values, βββ DFT ,31

on the diagonal entries. With this specification, a decision-maker still attends to a given attribute32

at random in a given evaluation. In WWW t , as before, one element is equal to 1 with all others 0.33

2See Marley et al. (2008), Section 6 for a discussion of the conceptual and practical issues in obtaining such

(separable) information on importance and value.
3We use the term βββ DFT here as these values correspond to the marginal utility components, β , of RUM, but they

cannot be used equivalently in, for example, value of travel time calculations.
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Furthermore, we also multiply the attributes by their corresponding scaling coefficients before they1

are used to estimate the distances between alternatives in the feedback matrix (Dns in Equation 2).2

The distance between alternatives i and j is thus:3

D2
ns,i j =

K

∑
k=1

(βk · (xns,i,k − xns, j,k))
2 (15)

with xns,k,i the objective value for the kth attribute for alternative i and βk the relative importance4

of attribute k. The addition of these scaling parameters results in three possible versions of DFT5

models:6

1. A general model incorporating both attribute attribute-specific scaling coefficients and at-7

tribute weights.8

2. A model with attribute-specific scaling coefficients only. The attribute weights, wk, are not9

estimated, with the modeller simply fixing the weights equal to 1/K where K is the number of10

attributes. This implies that each attribute is just as likely to be attended to at each preference11

updating step. Whilst this would be unlikely to be the case in the presence of eye-tracking12

data, it is a reasonable assumption a priori with choice-only data.13

3. A model with attribute weights only. The scaling coefficients are all fixed to a value of 1.14

This is of course equivalent to the original multialternative DFT specification by Roe et al.15

(2001).16

We empirically test these different versions against each other and alternative scaling methods in17

Section 3.5. The addition of attribute scaling coefficients to DFT results in a number of important18

benefits.19

• First, the revised version of DFT is no longer scale-variant. Changing the unit of travel time20

from minutes to hours will now impact the estimate for the travel time scaling coefficient21

only. This means that for each marginal utility coefficient in a RUM model (or a marginal22

regret coefficient in a RRM model), there is a corresponding attribute scaling coefficient in23

the DFT model. This allows us to make comparisons across the different models in terms of24

relative importance of different attributes.25

• Second, the attributes are now adjusted accordingly for their relative importance before they26

enter the feedback matrix, meaning that we can calculate an appropriate psychological dis-27

tance by simply taking Euclidean distances in the calculation of the feedback matrix. Conse-28

quently, we do not need a separate ‘dominance’ parameter as defined by Berkowitsch et al.29

(2015) to take the relative importance of the attributes into account.30

• Third, we now separate out the effects of the frequency of considering individual attributes,31

through the weights, and the importance of different attributes in changing the preference32

values, through the scaling parameters. Conceptually, only the latter should be influenced by33

changes in units.34
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• Fourth, an even more important benefit of the proposed scaling approach relates to the pos-1

sibility of attributes having opposite impacts on probabilities, i.e. some attributes being2

desirable and others being undesirable. In the traditional DFT model, an analyst needs to3

make a priori assumptions about this directionality, and failing to correct for the sign of the4

impact of attributes can have undesired consequences, as illustrated in Table 3 of Hancock5

et al. (2018). With our new approach, we no longer require a priori knowledge or assump-6

tions about whether an attribute has a positive or negative impact on the likelihood of an7

alternative being chosen, as the attribute scaling parameters can be estimated to be either8

positive or negative. This not only results in it being possible to take all attributes into ac-9

count without any initial adjustments, but would also, in a random coefficients DFT model,10

allow for the possibility of different signs for a given parameter across different individuals.11

• Finally, this new scaling method allows for the importance of attributes to be a function of12

socio-demographic variables, leading to the possible requirement of alternative specific coef-13

ficients for certain attributes, and/or interactions such as income effects. Whilst our previous14

work (Hancock et al., 2018) demonstrated that DFT could incorporate socio-demographics15

through adjustments to the attention weights, the new system removes the non-linearity16

caused by shifts in Cov[WWW ns,τ ]. This means that one could, for example, include β -coefficients17

that vary substantially across decision-makers.18

2.2.2.2 Identification of parameters19

The literature on DFT (and other mathematical psychology models) often lacks crucial details20

in relation to model identification. As with any standard choice model, a DFT model requires a21

normalisation of location and scale. For DFT, this is a result of the multiplication of the expec-22

tation, ξξξ τ , and covariance, Ωτ , by L (see Equation 9, noting that throughout this section we drop23

the indices for individual and choice task). This results in only differences between alternatives, in24

terms of both expected values and covariances, mattering. In order to estimate the choice proba-25

bilities under a DFT model, we require estimates for four ‘process parameters’ (parameters which26

have no equivalent measure in a traditional model such as RUM or RRM) which are exclusive to27

DFT and inform the process by which alternatives accumulate preference. These are φ1 and φ2,28

the sensitivity and memory parameters respectively, the number of preference updating steps, τ ,29

and the variance of the error term, σ2
ε . As the choices we investigate in this paper do not have a30

strictly imposed time threshold, we make no assumptions on the relationship between the number31

of deliberation steps, τ , and the real world time, t, taken to make the choice.32

Theoretical identification33

To study identification, we write the expectation of the preference values after τ deliberation34

steps as ξξξ τ = aaa+ bbb and the covariance of the preference values as Ωτ = c(d + e). Consequently,35

we have:36

• aaa = (I −S)−1(I −Sτ) ·µµµ37

• bbb = Sτ ·PPP038
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• c = (I −Z)−1 (I −Zτ)1

• d =C ·β ·M ·Ψ ·M′ ·β ′ ·C′2

• e = σ2
ε · I.3

An overspecification occurs if we can have two sets of parameters such that exactly the same set of4

probabilities are generated for the full set of choice scenarios. This occurs if all means change by5

the same amount, or if the means and square root of the covariance matrix are scaled by the same6

factor. We thus consider the following three scenarios:7

1. aaa1 +bbb1 = δ +aaa2 +bbb28

2. aaa1 +bbb1 = (aaa2 +bbb2) · γ9

3. c1(d1 + e1) = (c2(d2 + e2)) · γ
210

An overspecification of location could exist if some value δ exists such that scenario 1 holds.11

This is a result of the specification of Equation 9, where ξξξ τ is multiplied by L, giving a vector of12

differences between the expected preference of the chosen alternative and each other alternative.13

Consequently, the addition of δ to each preference value results in no change in the value of Lξξξ τ .14

To avoid this overspecification, the simplest solution is to fix one of the alternative specific15

constants (asc) in the initial preference matrix PPP0. Under DFT, adding the same value to each16

alternative specific constant results in the same increase in expected preference value for each17

alternative when φ2 = 0 (as this results in the feedback matrix becoming an identity matrix, which18

means there is no impact on PPP0, see Equation 5).19

An overspecification of scale can exist if some value γ exists such that scenarios 2 and 3 both20

hold. This is a result of the probabilities under DFT being calculated with the use of multivariate21

normal distributions (see Equation 9). Critically, these scenarios result in ξξξ τ,1 = γ ·ξξξ τ,2 and Ωτ,1 =22

γ2 ·Ωτ,2. Then if we have a set of parameters, θ1 that results in probabilities, Pr1:23

Pr1 =
∫

XXX1>0
exp

[

−(XXX1 −ΓΓΓ1)
′Λ−1

1 (XXX1 −ΓΓΓ1)/2
]

/(2π|Λ1|
0.5)dX , (16)

with the corresponding parameter values θ2 resulting in probabilities, Pr2:24

Pr2 =
∫

XXX2>0
exp

[

−(XXX2 −ΓΓΓ2)
′Λ−1

2 (XXX2 −ΓΓΓ1)/2
]

/(2π|Λ2|
0.5)dX , (17)

we can now simply observe that the substitutions implied by scenarios 2 and 3, XXX1 = γ ·XXX2, ΓΓΓ1 =25

γ ·ΓΓΓ2 and Λ1 = γ ·Λ2, result in Pr1 = Pr2, as the γ terms all drop out of the equation. We thus26

obtain two distinct sets of parameters θ1 and θ2 that result in the same estimated probabilities of27

observing the full set of choices.28
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To avoid this overspecification, we need to understand the situations under which scenarios 21

and 3 hold. One example of when this is the case is when:2

θ1 = [www,βββ DFT ,PPP0,φ1,φ2,τ,σ
2
ε ] (18)

and:3

θ2 = [www,γ ·βββ DFT ,γ ·PPP0,φ1/(γ
2),φ2,τ,γ ·σ

2
ε ], (19)

with βββ DFT = [β1,β2, ..,βk], www = [w1,w2, ..,wk] and PPP0 = [δ1,δ2, ..,δn]. To avoid this overspecifi-4

cation, we need to fix a parameter such that γ = 1 and thus θ1 = θ2. In the absence of a priori5

knowledge on the directionality of the attributes or the directionality of the underlying preferences6

towards an alternative, the scaling parameters β1,β2, ..,βk and the alternative specific constants7

should not be fixed. Furthermore, φ2 could have an estimate of zero, resulting in φ1 having no8

impact in Equations 18 and 19. Consequently, the safest option4 is to fix σ2
ε = 1.9

It is easy to see a relationship between these two normalisations of location and scale and10

their corresponding normalisations in a RUM context.11

It is also worth noting at this point that whilst in choice-only datasets, the attribute attention12

weights and attribute scaling parameters may appear to capture the same feature (the relative im-13

portance of an attribute), these parameters are not theoretically confounded, as they have differing14

impacts within the calculation of choice probabilities under DFT. The attribute attention weights15

do not impact the feedback matrix, whilst the attribute scaling parameters do. This is a direct result16

of setting the distance between alternatives as D2
ns,i j =∑

K
k=1(βk ·(xns,i,k−xns, j,k))

2) in the definition17

for the feedback matrix. Additionally, the attribute scaling parameters do not impact Ψ =Cov[Wτ ]18

(the covariance of the attention weights), which is used directly in the calculation of the covariance19

of the preference values (see Equation 6, in which Ψ impacts Φ). This is instead calculated solely20

with the estimates for the attribute attention weights. As a result, only a model containing both will21

have the full flexibility to capture both effects. We test models with both these features in Section22

3.5.23

Empirical identification and restrictions24

The process parameters in DFT have important behavioural roles. However, DFT models are25

routinely estimated on data where the only observed outcome is the choice itself, with little in-26

formation about the process by which that choice was reached. If such process information was27

available, analysts could use it as additional indicators (i.e. additional dependent variables) in a28

joint estimation of process and outcome, and this would help inform the values of these parameters.29

In the absence of such data however, some of the parameters may become partially confounded.30

We additionally impose various restrictions to aid empirical identification of parameters under31

a DFT model. These, together with the restrictions identified in the previous section, are detailed32

in Table 1.33

4An analyst should however be aware of the fact that the required stochasticity in a DFT model could be generated

by the random attribute attendance alone, meaning that the estimate for σ2
ε = 0. This would result in the requirement

of an alternative normalisation. We explore this possibility in DFT model 3 in Table 4.
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TABLE 1 : Restrictions on DFT parameters

No. Parameter Description Restrictions Reason Estimated parameter Relation

1 δn asc for alternative n =0 Theoretical identification n/a n/a

2* σ2
ε error =1 Theoretical identification n/a n/a

3* βk scale for attribute k fixed Theoretical identification n/a n/a

4** φ2 decay =0 Empirical identification n/a n/a

5** φ1 sensitivity fixed Empirical identification n/a n/a

6 wi weights for attributes ∑
k
1 wk = 1 DFT assumption w∗

i wi = exp(w∗
i )/∑

k
1 exp(w∗

k)

7 w1 first attribute weight w∗
1 = 0 DFT assumption n/a n/a

8** φ1 sensitivity > 0 DFT assumption φ ∗
1 φ1 = exp(φ ∗

1 )

9 τ preference updating steps > 1 DFT assumption τ∗ τ = 1+ exp(τ∗)

10* σ2
ε error ≥ 0 Mathematical σε σ2

ε = (σε)
2

*Note that only one of restrictions 2 and 3 should be used, and that restriction 10 should be applied if 2 is not used.

** If the estimate for φ2 is equal to or close to zero, restrictions 4 and 5 may also be required to ensure standard errors can be estimated

for the other parameters (with restriction 8 no longer required).
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Some of these constraints are necessary to avoid identification issues, while others simply1

avoid sign issues. The following list details why each restriction is required.2

• (1, 2 and 3) There are two theoretical identifications (restriction 1 and either restriction 2 or3

3 in Table 1) detailed in the previous section, applied to avoid a theoretical overspecification.4

• (4 and 5) There is an empirical identification issue as a result of the decay parameter, φ2. In5

case there is no impact for the decay parameter, we obtain a value of φ2 equal to or close to6

zero. This results in the sensitivity parameter, φ1, having no impact on the probabilities of7

alternatives, thus resulting in an overspecified model. As a consequence, we try two spec-8

ifications of DFT for each dataset in our empirical applications: one with and one without9

estimated values for these two feedback parameters (see Tables 4, 5 and 6 in the empirical10

applications section of the paper).11

• (6 and 7) A DFT model assumes that a decision-maker attends one attribute at each pref-12

erence updating step, which implies that the attribute attention weights must all be positive13

and sum to one. Estimation of these attention weights is thus aided through the use of logis-14

tic transformations and identification is then ensured by fixing one of the adjusted attribute15

attention weights w∗
1 = 0 (which is required as adding the same value to every w∗

i results in16

no change to wi).17

• (8) An exponential transformation ensures that the sensitivity parameter is positive. This18

restriction results in alternatives that are more similar to each other competing more with19

each other than alternatives that are less similar, as assumed implicitly by DFT models.20

• (9) The number of preference updating steps must exceed a value of one. This can be also21

be solved through the use of an exponential transformation.22

• (10) The noise that is added on at each step to the valence (see Equation 3) is drawn from23

a normal distribution with mean 0 and variance σ2
ε . Consequently, as σ2

ε ≥ 0, we instead24

estimate the standard deviation, σε .25

2.3. The multi-attribute linear ballistic accumulator model (MLBA)26

In this section, we first look at the existing implementation of MLBA before making a number of27

methodological improvements and finally turning to identification issues. The latter section here28

is particularly important given that identifiability issues have been noted for LBA models in the29

context of simultaneously modelling choice outcome and response time (Evans, 2020).30

2.3.1. Existing implementation31

2.3.1.1 Theoretical model32

We begin our discussion by focussing on LBA, i.e. the single attribute model. Under LBA,33

each alternative has a preference strength that grows linearly towards a threshold (see right panel34

in Figure 1). The chosen alternative in an LBA model is the first alternative to pass a threshold35
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value, χ . There are two components to the LBA component of the model; the start points and the1

drift rates.2

Start points for each of the alternatives are drawn separately from a uniform distribution3

U [0,A], where A is estimated. For example, Figure 1 demonstrates what a decision might look4

like if the start points are drawn from a distribution U [0,2]. A different value A j could be esti-5

mated for each alternative j, although it is common practice (Trueblood et al., 2014) to assume6

that all alternatives have starting values that are drawn using the same estimate A. We thus also7

assume that the same value A is used for each alternative, in both the theoretical identification8

(2.3.2.3) and the applications of MLBA in this paper (3).9

The differences in the structure of the models in Trueblood et al. (2013a, 2014) illustrate the10

fact that many forms are possible for the drift rates when the basic LBA is extended to alternatives11

with multiple attributes. While it is thus reasonable to expect that there might be other suitable drift12

rate forms beside those of the final MLBA model, we choose to fit versions similar to the main-13

stream version of MLBA (Trueblood et al., 2014) as this outperforms the first version (described14

by Trueblood et al. (2013a)) for our choice datasets (see Appendix A).15

In the original MLBA work (Trueblood et al., 2014), the model translates attribute values into16

‘subjective values’. In their example, Trueblood et al. (2014) had two similar attributes: testimony17

strength of eyewitness P and testimony strength of eyewitness Q. To translate objective values into18

subjective values, a parameter was introduced such that an ‘indifference curve’ could be calculated19

to avoid issues of extremeness aversion (Chernev, 2004), where, for example, values of 50-5020

might be preferred to 70-30. This example is however very different from many real-world choice21

settings, including travel ones, where the individual attributes are not as closely related. To translate22

objective attribute values into subjective values in this case, we instead require some measure to23

translate the values appropriately such that the relative importance of the attributes is accounted for.24

We achieve this by using attribute importance parameters instead of m, the additional parameter in25

the original specification of MLBA (Trueblood et al., 2014), with more details in Section 2.3.2.2.26

MLBA assumes that the drift rate for each alternative is an independent draw from a normal27

distribution (truncated below zero), where, for individual n, choice task s, and alternative j, we28

have the drift rate Dns, j given as:29

Dns, j ∼ T N
(

dns, j,σns, j,ε

)

(20)

with mean drift rate dns, j and standard deviation σns, j,ε . Typically, and in all the applications in this30

paper, the standard deviation is set to be equal across alternatives, individuals and choice tasks, i.e.31

σns, j,ε = σε , ∀n,s, j, but a different value could be estimated for each drift rate (Trueblood et al.,32

2013b).33

In the current version of MLBA, mean drift rates follow the specification used by Trueblood34

et al. (2014):35

dns, j = vns, j + I0 (21)

where I0 is a positive constant (which can be specified such that all drift rates have a positive36

mean) and vns, j is a value function, similar to random regret minimisation in that it compares an37
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alternative j against all other alternatives i across each attribute x. Specifically, with K attributes1

and Jn alternatives, we have that:2

vns, j =
Jn

∑
i6= j

K

∑
k=1

(wxns,i j,k
· (xns, j,k − xns,i,k)). (22)

In this notation, xns,i,k is the objective value for the kth attribute for alternative i, and wxns,i j,k
is a3

weight for attribute k and alternative pairing i and j, which relates to the similarity between them,5.4

In particular, the similarity is assumed to be an exponential decaying function of distance, with:5

wxns,i j,k
= exp(−λ · |xns,i,k − xns, j,k|) (23)

Two different values of λ are used depending on whether the difference between xns,i,k and xns, j,k6

is positive or negative:7

λ =

{

λ1, if xns, j,k ≥ xns,i,k.

λ2, if xns, j,k < xns,i,k.
(24)

This feature can capture differences between the subjective similarity between A and B and the8

subjective similarity between B and A, which may not be equal (Tversky, 1977), with gains and9

losses regularly having been shown to be treated differently in a transport context (Hess et al.,10

2008; Masiero and Hensher, 2010; Stathopoulos and Hess, 2012). We consider possible values11

and interpretations of these parameters further in Appendix D. Additionally, it is worth noting here12

that work by Terry et al. (2015) suggests that the distributional form of LBA has limited impact.13

This implies that the formula for the mean drift rates (Equation 22) may be key. We return to this14

point in Section 2.3.3.15

Calculating choice probabilities16

If we have values for the drift rates of the alternatives and for the start point and threshold (A17

and χ respectively), we can calculate the probability of each alternative’s accumulator being the18

first to finish, i.e. for its value function to exceed the threshold χ before any others do (Brown and19

Heathcote, 2008).20

As that the starting evidence is drawn from a uniform distribution U [0,A], the amount of21

evidence that needs to be accumulated for an alternative to reach the threshold χ is U[χ-A,χ]22

(assuming χ > A). Given an alternative’s drift rate distribution, Dns, j, the cumulative distribution23

function for the time taken for the accumulator associated with alternative j is:24

Fns, j(t) = Prob

(

U [χ −A,χ]

Dns, j
< t

)

. (25)

Brown and Heathcote (2008) demonstrate that for a mean drift rate following a normal distribu-25

5Note that Equation 22 is equivalent to Equation 3 in Trueblood et al. (2014) but for objective values rather than

subjective values, and with a generalisation to multiple alternatives and multiple attributes.
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tion6, this reduces to:1

Fns, j(t) = 1+
χ −A− t ·dns, j

A
·Φ

(

χ −A− t ·dns, j

t ·σε

)

−
χ − t ·dns, j

A
·Φ

(

χ − t ·dns, j

t ·σε

)

+
t ·σε

A
·φ

(

χ −A− t ·dns, j

t ·σε

)

−
t ·σε

A
·φ

(

χ − t ·dns, j

t ·σε

)

,

(26)

where φ and Φ are the standardised normal distribution’s density and cumulative density functions,2

respectively. The associated probability density function is then:3

fns, j(t) =
1

A

[

−dns, j ·Φ

(

χ −A− t ·dns, j

t ·σε

)

+dns, j ·Φ

(

χ − t ·dns, j

t ·σε

)

+σε ·φ

(

χ −A− t ·dns, j

t ·σε

)

−σε ·φ

(

χ − t ·dns, j

t ·σε

)]

.

(27)

To then calculate the probability of a given alternative j being chosen7, we need to calculate the4

probability density function of alternative j (given individual n, choice task s, and the set of alter-5

natives CSns) reaching the threshold χ before all other alternatives i ∈CSns, i 6= j:6

Prob( j|CSns) =
∫ ∞

0
Fns, j(t)dt =

∫ ∞

0
fns, j(t)

Jn

∏
i 6= j

(1−Fns,i(t))dt. (28)

2.3.2. New developments7

2.3.2.1 Incorporating baseline preferences in MLBA8

A key feature of many discrete choice models is the concept of alternative specific constants that9

capture baseline preferences for specific alternatives. Hancock et al. (2018) discusses in detail how10

this can be implemented in a DFT model. Here, we extend this to the MLBA model.11

In particular, we rewrite Equation 21 as12

dns, j = max(0,δns, j + vns, j + I0), (29)

where δns, j is an additional alternative specific estimated constant capturing a baseline preference13

for alternative j given choice set s and individual n. Given that we have case studies where each14

individual completes each choice task a single time (as a contrast to many typical applications of15

MLBA), we do not have enough data to estimate context-specific baseline preferences, and thus16

set δns, j = δ j. The final adjustment we make is to ensure that each mean drift rate has a minimum17

value of zero (as opposed to fixing I0 such that this is the case). The use of truncated normals18

results in it being possible that adding the same constant to each drift rate can result in some more19

deterministic choices (when the mean drift rates are negative, for example) as well as some less20

deterministic choices. Adjusting the mean drift rates such that they are at least zero avoids this and21

aids the estimation of MLBA. For more details of this, please see Appendix B.22

6We follow the first adjustment made by Heathcote and Love (2012) to translate this for truncated normals.
7For full derivations of Equations 26, 27 and 28, refer to Appendix A of Brown and Heathcote (2008).
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2.3.2.2 Incorporating attribute specific weights in MLBA1

An additional limitation of the original implementation of MLBA is in the treatment of the dif-2

ferent attributes. Firstly, this applies in terms of directionality, noting that λ1 is used for a positive3

difference between objective values xns,i,k and xns, j,k independently of whether an increase in at-4

tribute xk increases or decreases the attractiveness of an alternative. This limitation is analogous to5

the issue with using weight parameters in DFT and would require an analyst to a priori change the6

sign for undesirable attributes. Secondly, the actual impact of differences between alternatives in7

a given attribute xk is constant across attributes. Whilst one possibility is to use different valuation8

and weighting functions (Cohen et al., 2017), Trueblood et al. (2014) suggest that attribute bi-9

ases can be dealt with by including attribute-specific ‘bias parameters’, βk (an approach analogous10

to the attribute-specific scaling coefficients that we defined for DFT) in Equation 23, which then11

becomes:12

wxns,i j,k
= exp(−λ ·βk · |xns,i,k − xns, j,k|). (30)

However, we can relax the limitations of attribute bias and directionality simultaneously by13

also making an adjustment to the value function (Equation 22), which now takes the same form14

as that of the original specification with the exception that we add in attribute-specific scaling15

coefficients, βk.8 This results in the value function from Equation 22 being redefined as:16

vns, j =
Jn

∑
i 6= j

K

∑
k=1

(wxns,i j,k
·βk · (xns, j,k − xns,i,k)). (31)

As with the scaling applied to DFT, this change allows us to also make inferences about the rela-17

tive importance of different attributes in MLBA, as well as incorporating interactions with socio-18

demographics at the level of individual attributes.19

2.3.2.3 Identification of parameters20

For the estimation of the probability of choosing alternatives in a MLBA model, we require21

estimates for K attribute scaling parameters, J alternative specific drift rate constants (we drop the22

indices for individual and choice task in this section) and estimates for six process parameters (A23

and χ , the start and threshold parameters respectively, a drift rate constant, I0, a parameter for the24

standard deviation of the drift rates, σε , and similarity parameters λ1 and λ2). Whilst different25

values for these process parameters could be used for different alternatives, we assume that the26

same value is used for each alternative (with the exception of the drift rate constants), for the27

applications in this paper and for the purposes of identification in the sections below. MLBA has28

closed forms for the choice probabilities and response times. However, using choice-only data29

requires a number of restrictions, both theoretical and empirical, to aid and improve estimation.30

Theoretical identification31

For choice-only data (i.e. where no additional process information is available), the start and32

8Note that for the applications in this paper, we assume that the values for the λ parameters are fixed across

attributes. Equivalently, the coefficients βk are used in both Equations 30 and 31. We relax this assumption when

using this function within choice models based on quantum probability in Hancock et al. (2020).
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threshold parameters A and χ are perfectly confounded. This is a consequence of the fact that1

multiplying A and χ by a scale factor f results in no change in the probabilities with which each2

alternative is chosen. Instead, this simply changes the time that alternative j finishes in from t j3

to f · t j. As all alternatives are impacted in the same way, the probability of a given alternative4

being chosen is not impacted. This can be demonstrated by multiplying A, χ and t by the factor5

f in the cumulative distribution function for the time taken by an accumulator (Equation 25). The6

factor f drops out, resulting in identical cumulative distribution functions being given by the set of7

parameters θ1 = [A,χ, t] and θ2 = [A · f ,χ · f , t · f ]. Consequently, when integrated over t = 0 → ∞8

(see Equation 28), the resulting probabilities are equal. This means that we need to fix either A or9

χ . In the applications in this paper, we choose (in line with previous applications, see Trueblood10

et al. 2014) to fix A = 1.11

Additionally, the choice probabilities are unchanged if all mean drift rates d j and the standard12

deviation σε are multiplied by the same factor, g. This is possible, for example, with the parameter13

sets θ1 and θ2:14

θ1 = [βββ MLBA,δδδ ,A,χ,σε , I0,λ1,λ2] (32)

and15

θ2 = [βββ MLBA ·g,δδδ ·g,A,χ,σε ·g, I0 ·g,λ1 · (1/g),λ2 · (1/g)], (33)

with βββ MLBA = [β1,β2, ..,βk] and δδδ = [δ1,δ2, ..,δJ]. As with the previous example for changing start16

and threshold parameters, this effect simply changes the time that alternative j finishes in. Again,17

all alternatives are impacted in the same way, and thus the choice probabilities remain the same (as18

we are integrating over t = 0 → ∞), with the only change being that each alternative j now takes19
t j

g
rather than t j time to finish. We must then fix either σε or one of the drift rates d j to ensure20

identification. As before, we follow Trueblood et al. (2014) in setting σε = 1.21

Furthermore, in contrast with RUM models, where the choice probabilities only depend on22

the differences between alternative specific constants δ j (see Equation 29), each mean drift rate23

can have a separately identified (alternative specific) constant, as the addition of such constants24

make the choices more deterministic. This is a result of each alternative taking less time to finish,25

meaning there is less time for the alternatives to ‘overtake’ each other. Consequently, the draw26

for the starting point of an alternative has a greater influence on the probability of that alternative27

finishing first. Note that if we additionally estimate I0 (which is desirable as this allows us to28

determine whether the baseline preferences for the alternatives differ significantly from each other),29

then one of the constants δ j must be fixed to ensure identification.30

Empirical identification and restrictions31

We additionally impose various restrictions to aid empirical identification of parameters under a32

MLBA model. These, together with the restrictions identified in the previous section, are detailed33

in Table 2. The following list details why each restriction is required.34

• (1) As detailed in the section on including baseline preference parameters for the different35
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TABLE 2 : Restrictions on the parameters within MLBA

No Parameter Description Restrictions Reason Estimated parameter Relation

1 δ j asc for alternative j =0 Theoretical identification n/a n/a

2 A start =1 Theoretical identification n/a n/a

3 σε drift rate standard deviation =1 Theoretical identification n/a n/a

4 λ1 similarity ≥ 0 MLBA assumption λ ∗
1 λ1 = exp(λ ∗

1 )
5 λ2 similarity ≥ 0 MLBA assumption λ ∗

2 λ2 = exp(λ ∗
2 )

6 χ threshold ≥ A MLBA assumption χ∗ χ = A∗ (1+ exp(χ∗))
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alternatives (see Section 2.3.2.1), one of these alternative specific constants must be fixed to1

avoid a theoretical overspecification.2

• (2 and 3) Further theoretical restrictions as discussed in Section 2.3.2.3.3

• (4 and 5) Exponential transformations ensure that the lambda parameters are positive. This4

is required if the similarity between alternatives is to be a decaying function of distance5

(Trueblood et al., 2014).6

• (6) A further restriction is required on the value of the threshold, χ , which must be greater7

than the start parameter (to avoid the possibility that more than one alternative reaches the8

threshold before any deliberation has taken place).9

2.3.3. Intermediaries between MLBA and econometric choice models10

LBA models have four components: start point distributions; thresholds; drift rate distributions;11

and parametric forms for the parameters (mean, usually) of the drift rate distributions. To date,12

closed forms have only been derived for uniform start point distributions, where this includes the13

case of no start point variability. Terry et al. (2015) present closed forms for the choice probabilities14

generated by several LBA models, each with uniform start point variability, but different drift rate15

distributions - that is, the probability of an alternative being chosen (Equation 28) can be calculated16

in closed form for LBA models with distributions other than truncated normals.17

We now present notation for the general case with no start point variability, before looking at18

variations of MLBA by changing the value function or the drift rate distribution. Since threshold19

parameters are included in psychological models (mainly) to deal with response time effects, we20

set all thresholds to one in this section (see the theoretical discussion of this in the previous section,21

2.3.2.3).22

Let n denote the individual; s the current choice task; j an option from the current choice set23

CSns for individual n; and t time. Also, let fns, j(t) (resp., Fns, j(t)) denote the drift rate probability24

density (resp., cumulative density) function. Then, with no start point variability (A = 0) and25

threshold χ = 1, the time taken for the accumulator associated with alternative j simplifies from26

Equation 25 to:27

Fns, j(t) = Prob

(

1

Dns, j
< t

)

. (34)

Then, assuming the drift rate distributions, Dns,i, are non-negative or truncated below zero, we28

obtain that the probability of alternative j being chosen given the set of alternatives CSns is:29

Prob( j|CSns) = Prob

[

1

Dns, j
= min

i∈CSns

1

Dns,i

]

, (35)

The following class of LBA models is of particular interest because it leads to choice probabilities30

that satisfy a context dependent Luce model (equivalently, a context dependent multinomial logit31
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model) - see Marley et al. (2008), and below, for definitions. Assume that the Dns, j are indepen-1

dently distributed with the form dns, j ·∆ j where each dns, j is non-negative, and for every j, 1/∆ j is2

Fréchet-distributed with shape and scale parameter equal to one - that is, for r > 0,3

Prob(
1

∆ j

< r) = e−( 1
r ), (36)

Then the cumulative distribution of the time for the accumulator associated with alternative j to4

reach the threshold of 1 has the form: for t > 0,5

Fns, j(t) = Prob(
1

dns, j ·∆ j

< t), (37)

Marley and Regenwetter (2017) demonstrates that the use of this distribution combined with6

zero start point variability leads to a context-dependent Luce model with:7

P( j|CSns) =
dns, j

∑
Jn

i dns,i

, (38)

where Jn is the number of alternatives and dns, j is a non-negative mean drift rate for alternative8

j that depends on the alternatives in the choice set CSns. Crucially, this context-dependent Luce9

model is equivalent to a context-dependent multinomial logit model (Marley et al., 2008) if we10

define utility Uns,i through: Uns,i = log(dns,i), i∀CSns.11

In addition, if we take MLBA’s value function (Equation 31) and adjust it such that it becomes12

linear (for example, by setting each wxns,i j,k
= 1), we obtain the linear value function13

vns, j =
Jn

∑
i 6= j

K

∑
k=1

βk · (xns, j,k − xns,i,k)

=
Jn

∑
i=1

K

∑
k=1

βk · (xns, j,k − xns,i,k)

= Jn

K

∑
k=1

βk · (xns, j,k)−
Jn

∑
i=1

K

∑
k=1

(βk · xns,i,k).

(39)

If we now assume an LBA with no start point variability (A = 0) and Fréchet-distributed drift14

rates, we can use the above value function to define the mean drift rate by mapping vns, j by a15

strictly monotonic increasing function onto the positive reals. In particular, if we define the drift16

rate by dns, j = exp(vns, j), and note that the second term in the above expression is a constant for17

the given choice set CSns, we obtain the following choice probabilities for option j:18

P( j|CSns) =
exp

[

Jn ∑
K
k=1 βk · (xns, j,k)

]

∑
Jn

i=1 exp
[

Jn ∑
K
k=1 βk · (xns,i,k)

] . (40)

As written, this is a scale dependent MNL model when there is a common choice set size across19

all choice tasks and individuals; it is a context dependent MNL model when there is more than one20
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choice set size (i.e. car availability may vary across individuals and thus Jn would not be a constant1

across the dataset). However, by the equivalence of context dependent MNL models and context2

dependent Luce models, it is also the latter. In particular, with the former (MNL) interpretation, Jn3

is the scale (1/variance) of the generating Gumbel distribution.4

Table 3 summarises the key difference between the models that we evaluate against each5

other. An LBA with Fréchet-distributed drift rates, zero start point variability and the drift rate6

function specified by Equation 39 gives us a model equivalent to MNL. The MLBA model that we7

test assumes truncated normal drift rate distributions; A 6= 0; and weights in the value functions8

(Equation 31) to translate from objective to subjective values.9

TABLE 3 : Context dependent LBA models

Drift rate distribution, start point variability

Fréchet (Eq.37) Truncated Normal (Eq.28)

A = 0 A = 1

Drift rate function

Eq.31 Specification 1 MLBA

Eq.39 MNL Specification 2

Eq.41 RRM Specification 3

We can also consider a (LBA) model equivalent to Chorus (2010)’s random regret minimisa-10

tion model (RRM), with drift rates equal to the exponential of the value function:11

vns, j =−
Jn

∑
i6= j

K

∑
k=1

ln(1+ exp(βk · (xns,i,k − xns, j,k))). (41)

In Section 3.6, we test whether it is the drift rate distribution (i.e. whether we use truncated normal12

drift rate distributions or Fréchet-distributed drift rates with start rate parameter A = 0) or the drift13

rate function that drives differences between MNL, RRM and MLBA. This test is possible as both14

MNL and RRM use Equation 38 to generate probabilities of different alternatives and we look at15

three additional specifications with features of both MLBA and MNL/RRM:16

• Specification 1 is effectively a ‘context-dependent’ logit model. It uses drift rates equal to the17

exponential of the value function specified by Equation 31 together with Fréchet distributions18

(Equation 37) and zero start point variability.19

• Specification 2 is effectively an MLBA model but with weights wxns,i j,k
= 1. It uses truncated20

normal distributions and ensures mean drifts that are positive through the use of Equation 2921

together with values that are generated by the linear value function (Equation 39).22

• Specification 3: is a multi-attribute LBA which still treats positive and negative attribute23

differences differently, but at the cost of no additional parameters. It sets mean drift rates24

based on Equations 29 and 41.25
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If our results align with those of Terry et al. (2015), where the type of distribution had lit-1

tle impact on model fit, and MLBA outperforms MNL and RRM, we would also expect to see2

specification 1 outperform specifications 2 and 3.3

3. EMPIRICAL APPLICATIONS ON REVEALED AND STATED CHOICE DATA4

In this section, we present empirical results from testing DFT and MLBA on three different5

datasets, two from stated choice (SC) surveys and one from a revealed preference (RP) survey,6

where the latter is the first DFT/MLBA application to RP data. For DFT, we investigate the em-7

pirical identification points detailed in Table 1. We also evaluate the impact of fixing further8

DFT/MLBA parameters that are insignificant in the first applications of the models, given that, in9

the context of choice-only data, some of the process parameters may become unimportant. We also10

compare the estimation results to typical MNL and RRM models. We finally present an empirical11

comparison between the different existing specifications of DFT and our proposed new scaling12

approach, as well as a section testing the impact of different distributions and value functions for13

LBA, as discussed in Section 2.3.3.14

The estimation of DFT and MLBA remains a non-trivial computational task even with our15

methodological developments, and efficient implementation as well as good starting values are16

essential. In all of our applications, we use the R packages maxLik (Henningsen and Toomet,17

2011) and Apollo (Hess and Palma, 2019) for estimation of the likelihood function and the RCPP18

package together with the Armadillo C++ linear algebra library for fast calculation of the matrices19

that are required for a DFT model to calculate the choice probabilities. (Eddelbuettel et al., 2011;20

Sanderson and Curtin, 2016). Additionally, we use an initial parameter search algorithm based on21

the heuristic for non-linear global optimisation developed by Bierlaire et al. (2010) in an attempt22

to reduce the risk of convergence to poor local optima or an excessively long estimation process.23

3.1. First stated choice survey24

Our first dataset is a subset of the data from the Danish value of time study (Fosgerau, 2006). This25

dataset comes from a typical stated choice survey, where 545 participants faced a total of 4,21426

choices between them. The choices were for car drivers and specifically the choice between two27

different routes, described only by travel cost (in Danish krone, DKK) and travel time (in minutes),28

where one route is cheaper, but the other is faster. The aim of such a setup is to understand trade-29

offs between time and money, leading to estimates of the value of travel time (VTT). While very30

simplistic in nature, this type of dataset is a useful first step in moving from the abstract settings in31

mathematical psychology towards more complex choices in a transport setting. In all models, we32

focussed on the time and cost attributes after earlier results confirmed there was no left-right bias33

that would require the inclusion of alternative specific constants.34

Table 4 shows the results for this dataset. Where appropriate, we used the constraints from35

Table 2 but then report the actual transformed estimates in Table 4, along with the transformed36

standard errors, obtained using the Delta method (cf. Daly et al., 2012).37
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We first have two MNL models. We initially have a purely linear specification, with the utility1

for alternative j for individual n in choice task s is:2

Uns j = δ j +βT T ·T Tns j +βF ·Fns j + εns j, (42)3

where the β parameters are taste coefficients to be estimated and T Tns j and Fns j give the travel time4

and fare of the alternative. For the second MNL model, we add terms for the logarithm of time and5

cost:6

Uns j = δ j +βT T ·T Tns j +βF ·Fns j + εns j +βLT T · log(T Tns j)+βLF · log(Fns j)+ εns j. (43)7

This latter model offers a significant improvement in fit over the first model, and all four8

coefficients remain negative, where the significant estimates for the log-time (βLT T ) and log-fare9

(βLF ) parameters indicate non-linear sensitivities.10

Whilst a number of different parameters within DFT could be fixed to solve the theoretical11

overspecification issue identified in Section 2.2.2.2, we follow restriction 2 from Table 1 where a12

priori information about the other attributes is not required. We initially evaluated different DFT13

models to test the impact of removing the effect of the feedback matrix (model 2 compared to14

model 1).15

The level of competition between alternatives is dependent on their similarity (the Euclidean16

distance between them) and φ1. In cases with three or more alternatives, context effects are pre-17

dicted for certain values of the parameter. When there are only two alternatives (as in the Danish18

dataset), a significant estimate for φ1 means a reduction in the overall preference for more similar19

pairs of alternatives, resulting in less deterministic choices. Additionally, φ2, the memory param-20

eter, has little meaning when the sequence of attribute attendance is not known. It however also21

contributes to the level of competition between alternatives as a value of φ2 = 0 results in the value22

of φ1 having no impact (see Equation 2). For this dataset, the use of an identity matrix in place of23

the feedback matrix (model 2) results in an insubstantial loss of model fit. Additionally, we find24

that if we fix σε = 0 (meaning that all of the variation in the DFT model comes from the random25

attribute attendance), there is again no substantial loss of model fit. Note that with σε = 0, we26

require a further normalisation (see Section 2.2.2.2). Given that we have negative coefficients for27

the scaling parameters, we follow restriction 3 from Table 4 by setting the first β to −1. As a28

consequence of the the noise parameter having an insignificant impact on model fit, fixing it to a29

value of 1 (as configured in models 1 and 2) results in insignificant parameter estimates for the30

β -coefficients. By appropriately fixing σε = 0 and also fixing the first β , we recover significant31

parameter estimates elsewhere.32

Similar to DFT, MLBA has many parameters that have little interpretable output when an an-33

alyst has choice data, only, and thus no additional psychometric or process data (such as response34

time). For example, a decision-maker could make a choice quickly because there is a small dif-35

ference between the start point and threshold or because there is a large difference between one or36

more drift rates. Consequently, if we only have choice data some of the MLBA parameters become37

confounded (see Section 2.3.2.3). As with DFT, we initially test MLBA using a full specification,38
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TABLE 4 : Estimation results and identifications tests on the first SC dataset, with the bold print

highlighting the best performing version (in terms of BIC) of each model

Model MNL DFT MLBA

Version 1 2 1 2 3 1 2 3

Free Pars. 3 5 6 4 3 7 6 6

Log-likelihood -2,301.25 -2,211.69 -2,015.57 -2,016.25 -2,016.28 -2,005.34 -2,036.36 -2,005.92

BIC 4,627.54 4,465.12 4,081.23 4,065.88 4,057.60 4,069.11 4,122.80 4,061.92

βT T

est. -0.1938 -0.1590 -0.3669 -1.2413 -1.0000 -3.2391 -3.0371 -3.2455

r. t-rat. -13.53 -8.85 -1.92 -1.31 fixed -16.23 -15.57 -7.18

βF
est. -2.4079 -1.7637 -5.8257 -19.8310 -16.0515 -51.2265 -45.1739 -51.2492

r. t-rat. -13.51 -9.20 -1.84 -1.28 -25.89 -17.63 -15.18 -7.68

βLT T
est. -1.0326

r. t-rat. -2.70

βLF

est. -1.9001

r. t-rat. -5.39

δ1

est. 0.0264 0.0326 0.2004 1.3972 1.1068 0.5037 0.4309 0.5193

r. t-rat. 1.08 1.29 1.42 1.15 2.51 0.46 1.79 3.36

φ1

est. 0.6172 0.0000 0.0000

r. t-rat. 2.06 fixed fixed

φ2
est. -0.3293 0.0000 0.0000

r. t-rat. -9.77 fixed fixed

σε
est. 1.0000 1.0000 0.0000

r. t-rat. fixed fixed fixed

τ
est. 44.1810 6.6153 6.4712

r. t-rat. (vs 1) 1.36 11.95 15.25

χ
est. 1.1936 2.0000 1.1618

r. t-rat. (vs 1) 8.98 fixed 6.29

I0
est. 2.1850 38.8858 1.5062

r. t-rat. 3.61 20.51 1.81

λ1
est. 0.0007 0.0025 0.0000

r. t-rat. 11.51 10.77 fixed

λ2

est. 0.1833 0.0374 0.1965

r. t-rat. 5.22 12.93 2.93

which implies only setting the values of the start parameter A and the drift rate standard deviation1

σε to 1.2

In model 2, we fix the threshold parameter χ , which is a common approach in mathematical3

psychology (Trueblood et al., 2014; Cohen et al., 2017; Cataldo and Cohen, 2018) (fixing it to a4

value of 2 as done in the original MLBA paper Trueblood et al. 2014), but find that this is not5

appropriate in this case, leading to a substantial loss of fit. On the other hand, our initial estimate6

for λ1 is so close to zero that fixing it to a value of zero does not lead to any significant loss of7

fit (model 3). A value of λ1 = 0 implies wxns,i j,k
= 1 resulting in mean drift rates that are linear8
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in the positive differences of attributes xns, j,k − xns,i,k. Previous work where both λ parameters1

approached zero resulted in applications of MLBA resorting to different valuation and weighting2

functions (Cohen et al., 2017). In our case, however, only one λ approaches zero, simply meaning3

that there is a small amount of non-linear sensitivity to attributes.4

In terms of model performance using BIC, we see that DFT and MLBA both outperform5

MNL. The difference in fit between DFT and MLBA is much smaller than between these two6

models and MNL, with a slight advantage for DFT in terms of BIC, and for MLBA in terms of7

log-likelihood.8

3.2. Second stated choice survey9

The second stated choice dataset we consider has a total of 368 participants, each completing 1010

choice tasks resulting in 3,680 choices. The participants are all public transport commuters living11

in the UK. Each task involves the choice between an invariant reference trip and two hypothetical12

alternatives, where each of the three alternatives is described by travel time (TT in Table 5), fare13

(LF), rate of crowded trips, rate of delays (CR and RE, respectively, both out of 10 trips), the14

average length of delays (entered into models both as the average extent of delays, RA, and as the15

expected delay, RB, by multiplying the length of delays by the rate of delays) and the provision16

of a delay information service (none used as the base, with parameters for a charged, ICH, and17

free, IFR, service). Following earlier results by Hess and Stathopoulos (2013), we applied a log-18

transform to the fare attribute (described as LF).19

Table 5 shows the results for the second SC dataset. In the presence of three alternatives,20

we can now include a RRM model (Chorus, 2010) alongside MNL, where we see fairly similar21

performance for these two models, with a slight advantage for MNL. All parameters have the22

expected sign in these models, and we are also able to include two alternative specific constants23

(ASCs), which results in improvements in log-likelihood of 46 and 61 units respectively for DFT24

and MLBA (demonstrating the benefits of the new scaling system for DFT from Section 2.2.2.125

and the new developments for MLBA from Section 2.3.2).26

For DFT, we follow the same specification tests as on our first SC dataset. However, this time27

constraining the feedback matrix to be an identity matrix (as in model 2) leads to a significant28

drop in model fit.9 This is a direct result of having more than two alternatives, meaning that the29

feedback matrix is needed for capturing the different similarities between alternatives.30

For MLBA, we again show that setting χ = 2 leads to a loss of fit for model 2. Nonetheless, we31

can set χ = 1 and I0 = 0 (model 3) without a significant loss of fit. With these constraints, we obtain32

larger values for λ2 than for λ1, which means that a greater importance weight is given to positive33

attribute differences xns, j,k ≥ xns,i,k compared to negative ones, xns, j,k < xns,i,k in the estimation of34

the mean drift rates. This results in subjective differences corresponding approximately to Graph D35

in Figure 6: meaning more non-linearity than was observed in SC-1 particularly around differences36

close to zero.37

9Note that in this case, a model with σε = 0 (as demonstrated to be effective for the first dataset) has a log-likelihood

of -3,306.61, thus results in worse fit than a model with σε = 1.
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TABLE 5 : Estimation results and identifications tests on the second SC dataset, with the bold

print highlighting the best performing version (in terms of BIC) of each model

Model MNL RRM DFT MLBA

Version 1 1 1 2 1 2 3

Free Pars. 10 10 13 11 14 13 12

Log-likelihood -3,360.43 -3,363.91 -3,299.82 -3,327.28 -3,321.57 -3,329.24 -3,322.26

BIC 6,802.97 6,809.92 6,706.38 6,744.88 6,758.09 6,765.21 6,743.04

βT T

est. -0.0471 -0.0320 -0.3746 -0.1321 -0.0675 -0.0369 -0.0753

r. t-rat. -9.50 -9.58 -3.28 -5.20 -2.97 -4.69 -3.76

βLF
est. -5.9990 -4.1090 -53.9106 -17.5870 -12.2432 -7.0789 -14.0066

r. t-rat. -18.87 -17.66 -3.27 -5.69 -1.26 -3.85 -4.79

βCR
est. -0.2230 -0.1457 -1.7210 -0.6618 -0.3088 -0.1918 -0.3600

r. t-rat. -8.58 -8.59 -3.18 -4.45 -3.08 -6.11 -3.92

βRA
est. -0.1870 -0.1212 -1.2241 -0.5488 -0.1772 -0.0859 -0.1864

r. t-rat. -5.96 -5.82 -2.80 -2.98 -4.17 -4.60 -2.08

βRE
est. -0.0619 -0.0441 -0.7323 -0.1750 -0.1429 -0.0693 -0.1678

r. t-rat. -2.64 -3.68 -2.15 -1.15 -3.30 -10.45 -1.22

βRB
est. -0.0293 -0.0186 -0.1108 -0.0683 -0.0193 -0.0128 -0.0220

r. t-rat. -3.25 -3.06 -1.64 -1.77 -0.97 -4.61 -3.47

βICH
est. -0.0910 -0.0510 -0.0009 -0.1825 -0.0545 -0.0276 -0.0669

r. t-rat. -1.13 -0.95 0.00 -0.98 -1.49 -4.14 -1.67

βIFR

est. 0.3305 0.2179 1.8340 0.7774 0.3023 0.1573 0.3180

r. t-rat. 4.95 4.85 3.15 4.18 2.54 2.13 4.93

δ1

est. 0.3902 0.2730 2.2529 2.0355 1.1832 0.6074 1.3043

r. t-rat. 5.85 4.17 4.86 7.82 1.24 11.51 5.41

δ2

est. 0.1633 0.1656 1.0726 0.6109 0.3762 0.1741 0.3543

r. t-rat. 3.30 3.38 3.01 3.30 0.39 4.53 1.13

φ1

est. 0.0003 0.0000

r. t-rat. 1.62 fixed

φ2
est. -0.5656 0.0000

r. t-rat. -4.91 fixed

σε
est. 1.0000 1.0000

r. t-rat. fixed fixed

τ
est. 5.1858 7.5332

r. t-rat. (vs 1) 10.31 7.65

χ
est. 1.0007 2.0000 1.0000

r. t-rat. (vs 1) 1.98 fixed fixed

I0
est. 0.6679 2.4447 0.0000

r. t-rat. 2.37 18.52 fixed

λ1
est. 0.1023 0.2873 0.0959

r. t-rat. 0.52 3.95 4.09

λ2

est. 0.7971 5.2198 1.1646

r. t-rat. 3.29 15.21 3.78
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In terms of model performance, we see that each of DFT and MLBA again outperform MNL1

and also RRM (which, for this dataset, is not identical to MNL). DFT fits better than MLBA,2

potentially because it is better able to deal with the differential competition between the three3

alternatives (in contrast to the earlier binary dataset).4

3.3. RP data5

Whilst both DFT and MLBA have been applied extensively on experimental data and have been6

shown to accurately explain choices in stated preference surveys, we do not know of applications7

to revealed preference (RP) data. In this section, we fit MNL, RRM, DFT and MLBA models to8

our full RP dataset and provide elasticities as well as out-of-sample predictions.9

Our RP data comes from the national UK value of travel time study (Arup, ITS Leeds and10

Accent, 2015). Questionnaires were completed by 2,646 individuals travelling by train from Birm-11

ingham, Stoke or Peterborough to London. After extensive data cleaning (see page 164 of Arup,12

ITS Leeds and Accent 2015), 725 observations were left, with either one or two observations for13

each of the 578 individuals. This means we have data that is panel data for some individuals, but14

not others. However, this only impacts the calculation of standard errors and does not effect the15

results of the models. For every decision recorded, the available alternatives are one or two of16

Chiltern railways, Northern rail and Midlands railways as well as one of Virgin Trains and East17

Coast. Travel time, travel cost and the time interval between services (headway) were used to18

describe the alternatives.19

We run a basic MNL model with its specification based on the model developed by Arup, ITS20

Leeds and Accent (2015); we estimate different travel time coefficients for each of four groups,21

which we now describe. Individuals are first segmented by travel purpose (employees’ business,22

commute (T TC in Table 6) or ‘other non-work’ (T TO)). Individuals on employees’ business where23

further segmented into those who were very sure (T TEB1) and those who were quite sure (T TEB2)24

about the attributes of the unchosen alternatives. We also estimated parameters associated with25

travel cost (TC), and headway (HW ). For all three attributes, log values are used (Arup, ITS Leeds26

and Accent, 2015). Additionally, Arup, ITS Leeds and Accent (2015) use three alternative specific27

constants for train services run by Chiltern railways (δC), Midlands railways (δM) and Northern rail28

(δN). Finally, two parameters are incorporated to capture income effects. Travel time coefficients29

(βT Tn
) are calculated for each individual n:30

βT Tn
= βT Ti,n ·

(

RIn
λinc · (1− zmiss,n)+λmiss · zmiss,n

)

(44)

where βT Ti,n is a travel time coefficient depending on the individual’s trip purpose, RIn is the rel-31

ative income of the individual, λinc is an income elasticity on the time sensitivity and λmiss is a32

multiplier on the time sensitivity used only if the individual did not provide their income in the33

questionnaire (in which case the dummy variable zmiss,n = 1). Given the developments of the new34

scaling system for DFT (Section 2.2.2.1) and scaling parameters for MLBA (Section 2.3.2.2), indi-35

vidual travel time coefficients can be estimated equivalently for DFT and MLBA. Table 6 provides36

model estimates for these parameters under MNL, RRM, DFT and MLBA.37
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TABLE 6 : Results, estimates and robust t-ratios from MNL, RRM, DFT and MLBA models on

the RP dataset

Model MNL RRM DFT MLBA

Version 1 1 1 2 1 2 3

Free Pars. 11 11 14 12 15 14 12

Log-likelihood -370.05 -371.04 -362.53 -363.31 -347.84 -351.13 -351.23

BIC 812.54 814.52 817.26 805.66 794.47 794.48 781.49

T TC

est. -4.4541 -4.3583 -5.4056 -5.2198 -34.0634 -26.1385 -25.9484

rob. t-rat. -3.88 -3.98 -1.43 -2.99 -3.34 -2.57 -1.88

T TO
est. -2.0021 -1.7285 -2.3913 -2.4187 -7.7031 -4.6251 -4.3787

rob. t-rat. -2.46 -2.40 -1.43 -2.00 -2.02 -3.24 -2.68

T TEB1
est. -3.7769 -3.5093 -3.6849 -3.6949 -12.3531 -8.2263 -7.8413

rob. t-rat. -4.63 -5.04 -1.73 -2.47 -2.37 -5.42 -5.30

T TEB2
est. -5.7016 -5.2096 -6.2639 -6.1879 -16.7342 -11.6216 -11.2330

rob. t-rat. -7.10 -7.45 -1.65 -2.28 -2.95 -7.77 -7.62

TC
est. -2.2127 -1.8575 -1.9096 -1.8503 -7.5232 -4.8263 -4.8143

rob. t-rat. -8.52 -7.96 -2.53 -2.99 -8.46 -6.42 -2.83

HW
est. -0.1267 -0.1343 -0.1083 -0.1037 -0.0065 -0.0952 -0.1066

rob. t-rat. -0.64 -0.84 -0.75 -0.73 -0.08 -0.98 -1.05

δC

est. 0.7549 0.6966 2.5746 3.2934 2.0538 1.5538 1.4988

rob. t-rat. 2.75 2.61 1.58 3.24 2.13 4.86 2.87

δM
est. -0.4882 -0.3740 -0.5472 -0.4284 -0.7663 -0.5365 -0.5925

rob. t-rat. -1.86 -1.55 -0.46 -0.41 -1.11 -2.31 -1.24

δN

est. -0.4879 -0.4669 -0.3529 -0.3703 -0.5019 -0.4477 -0.5120

rob. t-rat. -1.65 -1.71 -0.30 -0.31 -0.51 -8.85 -1.21

λinc

est. 0.4563 0.4533 0.5594 0.5411 0.5249 0.5690 0.5849

rob. t-rat. 4.43 4.37 4.48 4.48 4.10 5.17 3.92

λmiss

est. 0.4844 0.4564 0.8022 0.7948 2.7332 0.6065 0.5829

rob. t-rat. 1.13 1.04 1.04 1.09 2.29 0.66 0.73

φ1

est. 1.5331 0.0000

r. t-rat. 0.58 fixed

φ2
est. -0.0864 0.0000

r. t-rat. -1.72 fixed

σε
est. 1.0000 1.0000

r. t-rat. fixed fixed

τ
est. 8.2059 8.1592

r. t-rat. (vs 1) 3.22 3.49

χ
est. 1.5285 2.1366 2.0000

r. t-rat. (vs 1) 43.18 1.71 fixed

I0
est. -1.2501 -0.1195 0.0000

r. t-rat. -1.28 -4.23 fixed

λ1
est. 0.0774 0.1043 0.1046

r. t-rat. 6.10 9.07 9.86

λ2

est. 16.7063 Inf Inf

r. t-rat. 1.58 fixed fixed



Hancock, Hess, Marley and Choudhury 34

For DFT, we again test two versions. With 118 out of 725 observations having three alter-1

natives available and the rest having only two alternatives available, it is unsurprising that, in line2

with the results from the first SC dataset, the effect of the feedback parameters being removed3

(DFT model 2 relative to DFT model 1) has little impact on the log-likelihood.4

For MLBA, we see that fixing one of the similarity parameters, λ2, to infinity (which results5

in the corresponding weight, wxns,i j,k
= 0, when xns, j,k < xns,i,k) has no impact on model fit (model 26

compared to model 1). This implies that the model fits the data well with only positive differences7

included in the drift rates. Additionally fixing both I0 and χ results in an insignificant impact on8

model fit with a lower BIC value obtained for model 3 compared to model 2.9

For the model fit as measured by BIC, MLBA has a lower value than DFT, with both DFT10

and MLBA outperforming MNL and RRM.11

With a view to not just focussing on model fit, Table 7 contrasts the cost and time elasticities12

on the RP data for the four models. We see that the elasticities for MNL and RRM are quite similar13

to each other. MLBA obtains visibly higher time and cost elasticities than MNL and RRM. For14

DFT, the cost and time elasticities are between those for MNL/RRM and MLBA. These results15

again show that DFT and MLBA offer more significant departures from standard RUM models16

than RRM does.17

TABLE 7 : Cost and time elasticities on RP data

elasticities

cost time

MNL -0.537 -0.933

RRM -0.497 -0.933

DFT -0.604 -1.017

MLBA -0.670 -1.278

We finally test all four models for their ability to make out-of-sample predictions. For each of18

the five data subsets, we take choices corresponding to a random 80% of the individuals in the data19

to be used for estimation, with the remaining 20% used for validation. We fit each model to each20

estimation subset and then calculate log-likelihoods for the remaining 20% of the data using the21

parameter estimates obtained for the first 80%. Table 8 gives the log-likelihoods of the estimation22

and validation subsets of the data under each model.23

We see that DFT and MLBA outperform MNL and RRM across all five subsamples in both24

estimation and performance on the holdout sample except for DFT in holdout sample 4 and MLBA25

in holdout sample 1. MNL outperforms RRM in estimation and holdout across all samples, while26

MLBA typically outperforms DFT. Overall, these findings confirm the results on the full sample.27
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TABLE 8 : Out-of-sample estimation and holdout log-likelihoods for the RP data

MNL (11 pars) RRM (11 pars)

estimated forecast estimated forecast

Dataset 1 -302.88 -68.92 -303.22 -69.29

Dataset 2 -298.59 -72.76 -298.64 -73.76

Dataset 3 -296.70 -75.08 -295.66 -77.28

Dataset 4 -302.29 -68.18 -303.49 -68.17

Dataset 5 -296.64 -75.74 -297.66 -75.71

DFT (12 pars) MLBA (12 pars)

estimated forecast estimated forecast

Dataset 1 -296.90 -67.80 -285.20 -67.93

Dataset 2 -293.80 -70.63 -282.32 -69.93

Dataset 3 -293.12 -71.77 -281.37 -71.38

Dataset 4 -295.41 -68.29 -286.19 -65.94

Dataset 5 -293.23 -72.90 -282.06 -71.76

3.4. Comparison of results1

3.4.1. Model fit comparisons2

To summarise the results, Table 9 shows the BIC for the final recommended specification for each3

model type on each dataset. We see that DFT and MLBA consistently offer better performance4

than MNL and RRM. While DFT marginally outperforms MLBA on the Danish SC data, the5

differences are more substantial on the remaining two datasets, with DFT performing best on the6

UK SC data and MLBA best on the RP data.7

TABLE 9 : Model fit (BIC) comparison across models and datasets

MNL RRM DFT MLBA

Danish (SC-1) 4,465.12 4,465.12 4,057.60 4,061.92

UK (SC-2) 6,802.97 6,809.92 6,706.38 6,743.04

RP 812.54 814.52 805.66 781.49

We next consider choice task features that drive the differences in the above model fits. Table8

10 shows how the difference in the fare between the two alternatives impacts the log-likelihoods9

of the respective models for the Danish SC dataset. In this case, we observe a clear difference for10

choice tasks with a difference of less than 1 DKK, with DFT and MLBA outperforming MNL. For11

larger differences in fare, there are considerably smaller differences in model fit across the models.12

This suggests that DFT and MLBA perform better than MNL as a result of better predicting choices13

in situations where the alternatives are more similar to each other. This is also illustrated in Figure14

2, with the top left panel demonstrating that there are considerably more choice tasks in which the15

difference in fare is less than 1 DKK (represented by grey crosses) above the grey diagonal line16
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(the latter indicates when DFT and MNL give the same probability). In particular, these choice1

tasks have a greater spread of predicted probabilities under a DFT model, again suggesting that2

DFT differentiates between similar alternatives more than MNL does.3

TABLE 10 : Average log-likelihood contribution per observation in SC-1, with the choice tasks

categorised by the difference in fare between the two alternatives.

fare number of Dataset (SC-1)

difference (DKK) choice tasks MNL-2 DFT-3 MLBA-3

all 4214 -0.525 -0.478 -0.476

0-1 805 -0.531 -0.372 -0.369

1-2 690 -0.641 -0.633 -0.632

2-4 946 -0.599 -0.572 -0.571

4-10 862 -0.504 -0.492 -0.491

10+ 911 -0.373 -0.346 -0.340

This also appears to be the case for SC-2, with Table 11 showing that there are greater dif-4

ferences in the average log-likelihood contribution for choice tasks with smaller fare differences5

between the alternatives. However, the difference is less clear cut than for SC-1, with the top right6

panel of Figure 2 showing only small differences between MNL and DFT.7

TABLE 11 : Average log-likelihood contribution per observation in SC-2, with the choice tasks

categorised by the difference in fare between the two alternatives. The choice tasks are categorised

by the summed percentage of fare differences between pairs of alternatives.

fare number of Dataset (SC-2)

difference choice tasks MNL-1 RRM-1 DFT-1 MLBA-3

all 3680 -0.913 -0.914 -0.897 -0.903

0% 127 -1.027 -1.021 -0.977 -1.000

20% 528 -0.941 -0.938 -0.904 -0.920

40% 1425 -0.945 -0.948 -0.928 -0.932

60% 622 -0.874 -0.874 -0.869 -0.874

80% 978 -0.862 -0.864 -0.854 -0.857

For the RP dataset, the driver of the difference in model fit is the relative performance on8

choice tasks with two or three alternatives. The models have nearly identical log-likelihood con-9

tributions for choice tasks with two alternatives (see Table 12). However, DFT and MLBA (in10

particular) show much smaller contributions to the overall log-likelihood for choice tasks with11

three alternatives. This is also demonstrated in the lower panels of Figure 2, which shows a cluster12

of very-well predicted choices especially by MLBA when there are three alternatives.13
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FIGURE 2 : Comparisons of the predicted probability of the (observed) chosen alternatives under

different models for the different datasets. The upper left panel shows a comparison of MNL and

DFT for SC-1, with the grey crosses showing choice tasks in which the difference in fare between

the alternatives was less than 1 DKK. The upper right panel shows a comparison of MNL and DFT

for SC-2, with the grey crosses showing choice tasks where there was no difference in fare across

the three alternatives. The lower panels show comparisons of DFT and MLBA against MNL,

respectively, for the RP dataset. Grey crosses show choice tasks where there are three alternatives.

3.4.2. Model output comparisons1

We now pay closer attention to the model outputs. An additional benefit of the new scaling method2

we use for DFT is that it allows us to more directly compare parameter estimates across different3

models, notwithstanding the different meaning of the parameters. This is possible as a result4

of the new specifications of both MLBA and DFT having attribute-specific scaling coefficients5

(see Sections 2.2.2.1 and 2.3.2.2, respectively), which have a role analogous to marginal utility6

coefficients in RUM models. Although these scaling coefficients cannot be directly translated into7

measures such as the value of travel time, we can calculate ‘relative importance of travel time8
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TABLE 12 : Average log-likelihood contribution per observation in the RP dataset, with the choice

tasks categorised by whether they have 2 or 3 possible alternatives.

number of number of Dataset (RP)

alternatives choice tasks MNL-1 RRM-1 DFT-1 MLBA-3

all 725 -0.510 -0.512 -0.501 -0.484

2 607 -0.479 -0.479 -0.479 -0.475

3 118 -0.671 -0.682 -0.617 -0.533

with respect to fare’ and make comparisons across models (as long as we ensure that the units1

are equivalent across models). In Table 13, we set the calculated MNL ratios of time and fare2

parameters to a base rate of 1 (with the rates being based on the MNL value for commuters in3

the RP dataset). Consequently we can compare whether DFT and MLBA assign more or less4

importance to travel time with respect to fare.5

TABLE 13 : The relative importance of travel time compared to fare parameter coefficients across

different models in comparison to MNL, with standard errors provided in parenthesis (calculated

with the Delta method, as discussed by Daly et al. 2012).

MNL RRM DFT MLBA

SP Danish (SC-1) 1.000 (0.047) 1.000 (0.047) 0.774 (0.019) 0.787 (0.035)

UK (SC-2) 1.000 (0.105) 0.992 (0.103) 0.885 (0.094) 0.685 (0.090)

RP Commuters 1.000 (0.263) 1.166 (0.300) 1.401 (0.462) 2.678 (1.131)

Other Non-Work 0.449 (0.174) 0.462 (0.186) 0.649 (0.193) 0.451 (0.131)

Employees’ Business 1 0.848 (0.180) 0.992 (0.201) 0.992 (0.197) 0.809 (0.330)

Employees’ Business 2 1.280 (0.173) 1.393 (0.202) 1.661 (0.273) 1.159 (0.465)

Across the SP datasets, it appears that MNL tends to assign higher importance to travel time6

with respect to fare relative to DFT and MLBA, with significant differences found for the Danish7

dataset. RRM always estimates similar ratios to MNL, while DFT has some similar values to8

MLBA, with key exceptions being the UK data and commuters in the RP data, for which DFT is9

more similar to MNL.10

3.5. DFT model specifications: alternative scaling methods or weights11

In this section, we compare our new method (see Section 2.2.2.1) to scaling methods that have been12

used in previous DFT applications, where we do this for both SP datasets. As DFT is scale-variant13

(see Section 2.2.2.1), a failure to appropriately adjust the attribute values can result in inferior14

model fit (see Table 5 of Hancock et al. 2018). Crucially, all previous methods rely on a priori15

knowledge of the directionality of the attributes, whereas the new method does not. The different16

scaling methods tested are listed below.17
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1. Unity-based normalisation, as used by Berkowitsch et al. (2014), where we rescale the1

attribute-levels of each attribute, separately, to the range 0 to 1. For an undesirable attribute2

k, which has value xi,k for alternative i and a set of values Xk across the alternatives in all3

choice sets in the dataset, we define a normalised attribute value x′k = 1− xk−min(Xk)
max(Xk)−min(Xk)

,4

with desirable attribute values being normalised as x′k =
xk−min(Xk)

max(Xk)−min(Xk)
.5

2. No scaling method other than taking the negative value for all ‘negative’ attributes (as DFT6

can only capture ‘positive’ effects of attributes as the relative importance weights must be7

positive - see Section 4.3.1 of Hancock et al. (2018) for an illustration of the results of failing8

to do this for DFT models)9

3. Standard score normalisation, as previously found to be effective for DFT (see results in10

Hancock et al. 2018), where for undesirable attribute k, which has value xi,k for alternative i11

and a set of values Xk across the alternatives in all choice sets in the dataset, we define new12

attribute values x′k =− xk−mean(Xk)
sd(Xk)

. For desirable attributes, x′k =
xk−mean(Xk)

sd(Xk)
.13

4. Minimum rescaling (dividing each attribute by the smallest value for that attribute across the14

choice set), as previously shown to be effective for a previous version of MLBA (Trueblood15

et al., 2013a)16

5. Maximum rescaling (dividing each attribute by the largest value for that attribute across the17

choice set), as previously shown to be effective for a previous version of MLBA (Trueblood18

et al., 2013a)19

6. The new method detailed in Section 2.2.2.1, which removes the scale-variant nature of DFT.20

7. The new method detailed in Section 2.2.2.1, with estimated values for attribute scaling coef-21

ficients and attribute importance weights.22

To estimate the models, we require attribute matrices Mns and attention weights wk and scaling23

parameters βk for attribute k. For methods 1-5, Mns is adjusted depending on the method, wk are24

estimated and βk are fixed to a value of 1. For scaling method 6 and 7, Mns is unchanged and βk25

are estimated. The weights wk are fixed to 1/K (where K is the number of attributes) for scaling26

method 6, but are estimated for scaling method 7. All models adhere to the model identification27

restrictions detailed in Table 1.28

For both datasets, it appears that our new method (model 6 in Table 14) has the best model29

fit if either the scales or the weights are fixed parameters. This result holds regardless of whether30

we include DFT’s feedback matrix. Scaling method 6 appears to better capture the impact of the31

feedback matrix for the UK data, resulting in an improvement of 27 log-likelihood units, whereas32

this improvement is much smaller with the other scaling methods corresponding to models 1-5. On33

the other hand, with the Danish data, the feedback matrix is needed for some of the other scaling34

methods to obtain model fit more in line with the new scaling. Whilst these results support the35

incorporation of our new scaling method in DFT, the log-likelihood gain here is dataset-dependent.36

This means that the main benefit of incorporating this method relates to model configuration (i.e. a37
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TABLE 14 : Log-likelihood (LL) and BIC values for DFT models with different types of scaling

methods for the two stated choice datasets.

Danish (SC-1)

with feedback parameters without feedback parameters

No. wt est. scale est. free pars. LL BIC free pars. LL BIC

1 yes no 6 -2,018.52 4,087.12 4 -2,018.52 4,070.42

2 yes no 6 -2,032.70 4,115.48 4 -2,039.64 4,112.67

3 yes no 6 -2,020.19 4,090.45 4 -2,020.19 4,073.76

4 yes no 6 -2,111.81 4,273.70 4 -2,111.81 4,257.00

5 yes no 6 -2,119.33 4,288.73 4 -2,145.57 4,324.53

6 no yes 6 -2,015.57 4,081.23 4 -2,016.25 4,065.88

7 yes yes 7 -2,012.60 4,083.63 5 -2,012.60 4,066.93

UK (SC-2)

with feedback parameters without feedback parameters

No. wt est. scale est. free pars. LL BIC free pars. LL BIC

1 yes no 13 -3,355.59 6,817.91 11 -3,355.97 6,802.26

2 yes no 13 -3,364.00 6,834.75 11 -3,366.18 6,822.67

3 yes no 13 -3,337.26 6,781.26 11 -3,343.26 6,776.83

4 yes no 13 -3,396.28 6,899.30 11 -3,396.89 6,884.10

5 yes no 13 -3,403.58 6,913.90 11 -3,406.63 6,903.57

6 no yes 13 -3,299.82 6,706.38 11 -3,327.28 6,744.88

7 yes yes 20 -3,294.12 6,752.44 18 -3,312.30 6,772.39

priori knowledge of the sign of β -coefficients) rather than the model performance, although further1

applications across a wider variety of choice contexts are required to test how generalisable this2

finding is.3

For both datasets, further improvements in model fit are obtained when both weights and4

scales are estimated. Whilst this improvement is from just one extra parameter for the Danish5

dataset, the gain in fit comes at a heavy cost for the UK data, which has 7 extra parameters for a6

relatively insubstantial gain in model fit (and thus results in a worse BIC). This implies that for7

basic comparisons of DFT against alternative models, analysts may be better off fixing either the8

weights or the scales. Finally, these results here additionally demonstrate that scaling methods 49

and 5 lead to relatively poor performance for DFT; these results are compatible with the fact that10

scaling methods 4 and 5 resulted in MLBA outperforming DFT in previous studies (Trueblood11

et al., 2013a).12

3.6. LBA model specifications13

Table 15 shows the log-likelihoods for the models described in Section 2.3.3.14

In all cases, standard MLBA has the best model fit. However, the good performance of speci-15
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TABLE 15 : Log-likelihoods of models in between MNL, RRM and MLBA, where F indicates a

Fréchet distribution and TN indicates a Truncated Normal.

Model Distribution Value Function
Log-likelihood BIC

first SC second SC RP first SC second SC RP

Specification 1 F - Eq.37 Eq.31 -2,105.36 -3,326.43 -358.44 4,252.46 6,751.39 802.50

MNL F - Eq.37 Eq.39 -2,301.25 -3,360.43 -370.05 4,627.54 6,802.97 812.54

RRM F - Eq.37 Eq.41 -2,301.25 -3,363.91 -371.04 4,627.54 6,809.92 814.52

MLBA TN - Eq.28 Eq.31 -2,005.92 -3,322.26 -351.23 4,061.92 6,743.04 781.49

Specification 2 TN - Eq.28 Eq.39 -2,185.19 -3,355.14 -366.11 4,412.10 6,808.81 817.84

Specification 3 TN - Eq.28 Eq.41 -2,009.88 -3,348.16 -363.35 4,061.49 6,794.85 812.31

fication 1 implies that most of the improvement in model fit for MLBA over MNL and RRM comes1

from its value function rather than the form of its drift rate distributions (vis, truncated normal).2

This is perhaps unsurprising given that Terry et al. (2015) found little differences in fit between3

LBA models with different drift rate distributions. The substantial improvement from Specifica-4

tion 3 relative to RRM in the first SC is the one clear exception, where it appears that the choice of5

distribution does have a distinct impact. This suggests that the benefits obtained through the use of6

MLBA model are dataset-dependent. Whilst in some cases an analyst may wish to only adopt the7

value function (Equation 31) for ease of implementation, other cases may require the full model.8

These results are also displayed in Figure 3, which demonstrates that more substantial model fit9

differences are found for the first SC and RP dataset.10

FIGURE 3 : Relative model fit of alternative structures in comparison to MLBA across the three

datasets.
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4. SIMULATED DATA EXPERIMENTS1

The work in Section 3 has provided initial insights about the potential benefits of DFT and MLBA2

compared to more traditional structures. Of course, these results are dataset specific and the ad-3

vantages might be a result of the true (and unobserved) data generation process. In this section,4

we provide some further evidence based on simulated data, where we have a number of aims. In5

particular, we test the impacts of considering choices generated by different models, compare the6

ability of the different accumulator models at capturing various complexities in the data, and finally7

consider parameter recoverability.8

4.1. Generation of simulated data9

We use an efficient design to generate 5,000 mode choice observations where each choice task has10

four alternatives (car, air, rail and high-speed rail), each described by travel cost (TC) and travel11

time (TT). Additionally, all alternatives other than car have an access time (AT) attribute.12

We then generate choices for four models: an MNL model, a RRM, a DFT, and an MLBA.13

The aim of this exercise is to see how well each model fits data generated by each other model14

(including the generating model).15

For the MNL model, we define the utility a respondent n obtains from alternative j in choice16

task s as:17

Uns j = δ j +δFj
· zF,n +βT T ·αT Tj

·T Tns j +βTC ·TCns j ·αIE,n +βAT ·ATns j + εns j (45)

where δ j and δFj
are alternative specific constants, with the latter capturing the difference between18

male and female participants through the use of an appropriate dummy term, zF,n, which takes a19

value of 1 if individual n is female. T Tns j is the travel time, TCns j is the travel cost and ATns j is20

the access time, all for alternative j in choice situation s for respondent n. There are coefficients21

for travel cost, access time and mode-specific coefficients for travel time, which are defined as22

βT T ·αT Tj
. A general value βT T is estimated, with appropriate adjustments applied by multiplying23

by αT Tj
for mode j (for identification purposes we fix this coefficient for cars, αT Tcar

= 1). We24

additionally have an income effect, αIE,n, which is defined as αIE,n = ( incomen

2500
)

αI
, where incomen25

is the income for individual n and αI is an estimated income elasticity.26

These additional coefficients are simple to add to, and estimate in, the various psychological27

choice models. For the DFT simulated dataset, we incorporate underlying preferences by setting28

the jth element of Pns,0 to δ j + δFj
· zF,n, with this having been effective previously (see results in29

Hancock et al. 2018). The alternative specific travel time coefficients can be included in DFT and30

MLBA by multiplication of the attribute values, as we use our new scaling method (see Section31

2.2.2.1) which means that these coefficients will have an equivalent impact on the attributes in32

DFT and MLBA as they would in a RUM model. Finally, in the MLBA models, we incorporate33

alternative specific constants (δ j) by adding them to the mean drift rates as in Equation 29. All of34

the values used for the parameters to generate probabilities for each alternative are given in Table35

17.36
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4.2. Results for simulated data1

For each of the four datasets, We now study how well each model performs on data generated with2

a different model, thus giving an indication of the robustness of each model to the underlying data3

generation process. Table 16 shows the log-likelihood and BIC values for these comparisons.4

TABLE 16 : The log-likelihood and BIC values obtained from models for the simulated datasets

Model free pars.

dataset

MNL RRM DFT MLBA

LL BIC LL BIC LL BIC LL BIC

MNL 13 -4,842.60 9,795.92 -4,773.88 9,658.48 -4,907.49 9,925.70 -4,991.23 10,093.18

RRM 13 -4,853.38 9,817.48 -4,727.57 9,565.86 -4,923.43 9,957.58 -5,007.51 10,125.74

DFT 16 -4,847.94 9,832.16 -4,751.80 9,639.88 -4,853.03 9,842.33 -4,934.57 10,005.42

MLBA 17 -4,845.31 9,835.42 -4,741.07 9,626.92 -4,874.60 9,894.00 -4,930.17 10,005.12

The main difference between the RRM and MNL data generating models and the MLBA and5

DFT data generating models is that there are parameters for competition between psychologically6

similar alternatives in the MLBA and DFT models. From the results, it appears that neither MNL7

or RRM can capture this competition effect and thus have worse model fits of these models to the8

datasets. This is also suggested by the fact that the removal of DFT’s feedback matrix results in9

a loss of 10.28 log-likelihood units for the DFT dataset, but only 0.56 units for the MNL dataset.10

Crucially, DFT and MLBA also outperform RRM on the data set generated by the MNL and11

outperform MNL for the dataset generated by RRM.12

These results are highlighted by the comparison in Figure 4 of the fit of each of the four13

models to each dataset relative to the fit of the model used for data generation. These comparisons14

show, for each data set, that DFT and MLBA show much smaller differences in fit relative to the15

model consistent with the data generating process (DGP) than do the MNL and RRM, suggesting16

that DFT and MLBA are more robust to potential misspecification. MNL and RRM, by contrast,17

perform poorly on the datasets generated by DFT and MLBA, with MNL also having poor fit on18

the data generated by RRM.19

4.3. Recovery of parameters from simulated datasets20

We next consider how well the different models recover the parameter values that were used to21

generate the simulated datasets for the same model. Table 17 gives the parameters used in sim-22

ulating the data (labelled as ‘setup’) as well as the parameters produced in estimation, and the23

difference between those two. As each model is tested against a dataset generated by the same24

model, we can test the stability of the parameters. Using our new scaling method allows us to use25

similar parameter setup values across models, with the exception that parameters are adjusted such26

that the data generation process has similar amounts of noise across all datasets no matter which27

model is used to generate the choices.28

All four models appear to accurately recover the three β -coefficients associated with the ex-29

planatory variables. These appear to be more recoverable than the alternative specific constants,30

which are more susceptible to noise for DFT and MLBA. All four models, however, additionally31
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TABLE 17 : Parameter values used to generate datasets and estimates for full models for their respective datasets

MNL RRM DFT MLBA

Parameter Setup Estimate Bias Setup Estimate Bias Setup Estimate Bias Setup Estimate Bias

βT T -0.0050 -0.0044 -12% -0.0030 -0.0029 -3% -0.0050 -0.0049 -2% -0.0030 -0.0037 23%

βTC -0.0280 -0.0279 0% -0.0160 -0.0162 1% -0.0280 -0.0304 9% -0.0160 -0.0169 6%

βAT -0.0060 -0.0053 -12% -0.0040 -0.0046 15% -0.0060 -0.0057 -5% -0.0040 -0.0039 -3%

δcar -0.5000 -0.8238 65% -0.5000 -0.6965 39% -0.5000 -1.4179 184% -0.5000 0.68986 -238%

δair -1.5000 -1.8053 20% -1.5000 -1.8363 22% -1.5000 -2.7631 84% -1.5000 -1.5054 0%

δrail -1.0000 -0.9036 -10% -1.0000 -1.0067 1% -1.0000 -1.8977 90% -1.0000 0.62732 -163%

δcar f em
-0.5000 -0.4752 -5% -0.5000 -0.4020 -20% -0.5000 -0.6257 25% -0.5000 -0.6254 25%

δair f em
0.5000 0.6952 39% 0.5000 0.6822 36% 0.5000 0.8528 71% 0.5000 0.57662 15%

δrail f em
1.0000 1.1188 12% 1.0000 1.1855 19% 1.0000 -0.1264 -113% 1.0000 1.21153 21%

βT Tair
1.2500 1.1041 -12% 1.2500 1.7576 41% 1.2500 1.1109 -11% 1.2500 1.07889 -14%

βT Trail
2.0000 2.3845 19% 2.0000 2.2579 13% 2.0000 1.9182 -4% 2.0000 2.24317 12%

βT Thsr
1.5000 1.7723 18% 1.5000 1.3528 -10% 1.5000 1.8306 22% 1.5000 1.17701 -22%

αI -0.5000 -0.5106 2% -0.5000 -0.4962 -1% -0.5000 -0.3585 -28% -0.5000 -0.4553 -9%

φ1 0.0500 0.03646 -27%

φ2 0.1000 0.138 38%

σε 1.4142 1.4142 fixed

τ 10.0000 8.83029 -12%

A 1.0000 1.0000 fixed

χ 2.0000 2.009 0%

σε 2.0000 2.0000 fixed

I0 10.0000 11.0373 10%

λ1 0.1000 0.06936 -31%

λ2 0.2000 0.17905 -10%
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FIGURE 4 : Log-likelihood of estimated models compared to model consistent with data gener-

ating process (DGP)

perform well at recovering the attribute-specific travel time coefficients. Most importantly for DFT1

and MLBA, the process parameters are fairly well recovered too.2

5. CONCLUSIONS3

In this paper, we have considered two alternate accumulator choice models developed in math-4

ematical psychology and compared them against models typically used in discrete choice mod-5

elling. The models in question are decision field theory (DFT), a model where the preference6

strength for each alternative is stochastically updated over time, and the multi-attribute linear bal-7

listic accumulator (MLBA), where the preference strength for each alternative increases linearly8

and deterministically over time.9

We first made a number of methodological developments to improve the suitability of the10

models for studying travel behaviour and other non-laboratory based choices. For DFT, we imple-11

mented a new scaling method on the attributes, which results in a number of benefits such as the12

modeller not having to know the sign of the impact of the attributes before running the model. This13

has an immediate benefit for the UK dataset, for which one attribute (whether the delay informa-14

tion service is free) is a desirable attribute while the other attributes are undesirable. A comparison15

with other available scaling approaches in Section 3.5 also highlights the benefits of this approach.16

In particular, the new method significantly increases the impact of the feedback matrices on model17

fit, although the feedback matrix parameters do not influence model fit when there are only two18

alternatives (see the discussion in Section 3.5). However, regardless of whether the feedback ma-19

trix has an impact or not, DFT outperforms MNL and RRM for our SP and RP datasets. Whilst20

our empirical results suggest that the benefit the new scaling method brings is dataset-dependent,21

it is clear that future DFT models should always consider its implementation. This is particularly22
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the case when a researcher does not have a priori information on the directionality of an attribute.1

However, further research is required to establish the benefits of simultaneously estimating scale2

and weight parameters.3

We also considered the impact of including parameters to capture underlying preferences to-4

wards specific alternatives in MLBA and DFT. Results from our UK dataset suggest that MLBA5

and DFT make substantial gains when these parameters are included and can consequently capture6

status quo biases. We have, however, only considered one method for incorporating preferences in7

these models. Whilst we add parameters to the drift rate in MLBA, alternative specifications would8

allow for an adjustment of the starting point A or the threshold χ , such that alternatives have differ-9

ent values for these parameters. It is quite possible that some alternatives may not require as much10

evidence to be chosen (for example, a commuter’s usual route to work), meaning that an MLBA11

model including alternative specific thresholds may work well. This could be investigated in fu-12

ture research, with, for example, work on accumulator models with collapsing thresholds already13

proving popular (Bowman et al., 2012; Hawkins et al., 2015; Evans et al., 2019a). We addition-14

ally only test MLBA with truncated normal drift rate distributions (with start point variability) and15

Fréchet-distributed drift rates (with no start point variability, i.e., A = 0), while other drift rate16

distributions could also be considered (Terry et al., 2015). However, results from comparisons of17

models that have features of MLBA and those that have features of MNL/RRM suggest that the18

main improvement in model fit for MLBA relative to those standard choice models is due to its19

value function, and not the form of its (truncated normal) drift rate distributions. This suggests20

that in some cases, analysts may wish to simply utilise the value function (Equation 31) within a21

logit model for ease of implementation. Further research is required to understand cases in which22

moving from this simpler model to MLBA will bring clear advantages, as is the case for our first23

stated choice study.24

The operationalisation of the two models in this paper provides promising results and paves25

the way for the incorporation of data on the processes of decision-making in these models, such as26

eye-tracking information, response times and EEG data.27

We also investigate in detail the relative importance of different parameters of our models. In28

particular, we consider a number of important identification restrictions for both DFT and MLBA.29

Whilst our theoretical identification requirements in Tables 1 and 2 should always be followed,30

our results show that the empirical identification issues are dataset-specific. For example, the feed-31

back matrix in DFT has an impact in only some cases. Additionally, whilst setting the threshold32

parameter for MLBA to a particular value does not have a significant impact on its fits for our33

simulated datasets, it does have an impact for our SP data. The opposite is true for the drift rate34

constant, I0, which is important for our simulated datasets but is less important for our SP data. It35

is possible that the importance of these parameters varies according to how deterministic the data36

is and further work could test datasets with specified variations in the level of noise. This could37

help an analyst determine which parameters are important for MLBA for complex choice data.38

We tested the models extensively using simulated data, where the findings suggest that DFT39

and MLBA may be less sensitive to model misspecification (i.e. if the estimated model differs40

substantially from that used for data generation) than the corresponding RUM and RRM models.41
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Crucially, both DFT and MLBA outperform MNL and RRM across the two SP datasets and the1

RP dataset, including in out of sample validation for the latter, which is to the best of our knowl-2

edge the first use of either DFT or MLBA on RP data. The good fits of DFT and MLBA to our3

second stated survey dataset suggest that if there is competition between psychologically similar4

alternatives (when there are two alternatives that have attributes that are more similar than those of5

a third alternative), a move towards a choice model with psychological foundations becomes more6

appealing.7

Moving away from RUM has obvious pitfalls, especially in terms of the use of models for8

welfare analysis (see e.g. Hess et al., 2018). The evidence in this paper suggests that if an analyst is9

willing to accept these pitfalls, then moving further away from RUM than for example with a RRM10

model, may be beneficial, and models from mathematical psychology provide an interesting avenue11

for such work. Of course, more research is needed in terms of additional comparisons, including12

on larger datasets with more alternatives and attributes. Also, whilst we have considered DFT and13

MLBA, future research should also consider models from mathematical psychology that do not14

have closed-form likelihood functions. A large number of models from mathematical psychology15

such as the drift diffusion model (Wiecki et al., 2013; Ratcliff et al., 2016), the leaky competing16

accumulator (Usher and McClelland, 2001) and the feed-forward inhibition model (Turner et al.,17

2016) can be estimated using hierarchical Bayesian estimation combined with probability density18

approximation (Turner and Sederberg, 2014). This means that there is large scope for further19

comparisons between psychological and mainstream choice models using hierarchical Bayesian20

estimation, a method already popular in traditional choice modelling for mixed logit models (Train,21

2001; Burda et al., 2008; Dumont et al., 2015; Akinc and Vandebroek, 2018).22

Additionally, LBA models (Brown and Heathcote, 2008) have been developed that fit non-23

stationary data by assuming drift rates that change over time (Holmes et al., 2016); though with24

relatively simple stimuli. Similar processes could be added to DFT and MLBA, thus allowing for25

attributes and/or attribute values that change over time. Such extensions would allow DFT and26

MLBA to be applied to dynamic revealed preference datasets such as the lane merging decisions27

made by drivers, where typical choice models may not do so well due to their static nature. Com-28

plex datasets such as these, as well as datasets with additional process or psychometric measures,29

would also be useful for further testing the functionality and usefulness of the process parameters30

within both DFT and MLBA. Additionally, given that in Hancock et al. (2018), we demonstrate31

that DFT can efficiently incorporate random parameters, it is possible that similar adjustments32

could also be made for MLBA. All of these potential extensions of DFT and MLBA, combined33

with the results in this paper, demonstrate that accumulator models such as DFT and MLBA are at-34

tractive alternative approaches to random utility models, particularly when it comes to forecasting.35

It therefore appears that these models, as well as others, may hold significant promise in improving36

the behavioural realism in choice models, in both transport and beyond.37
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A. APPENDIX: ALTERNATIVE VERSIONS OF MLBA1

Whilst we use the mainstream version of MLBA (Trueblood et al., 2014) in this paper, it should2

be noted that the original version of MLBA (Trueblood et al., 2013a) has also not been tested on3

large-scale consumer choice data. Whilst this version of MLBA, here denoted ’MLBA0’, uses the4

same start, threshold and standard deviation for its drift rates, it differs in the specification for the5

value of the mean drift rate:6

dns, j =
10

1+ exp(−γ · vns, j)
(46)

where vns, j is given by a valence function and γ is a logistic parameter. Small values of the logistic7

parameter γ would result in exp(−γ · vns, j)→ 1, meaning that the valences, vns, j, are less influen-8

tial and the probabilities of the alternatives become more similar, resulting in a less deterministic9

choice. The valences are similar to a decision field theory model’s valences with the exception that10

they attempt to additionally capture the comparison process achieved by DFT’s feedback matrix.11

We thus have12

Vns =Cns ·Mns ·WWW (47)

where WWW is a vector comprising of a set of attribute importance weights that sum to 1, Mns is the13

attribute matrix and Cns is a Jn × Jn comparison matrix (Jn being the number of alternatives) with14

diagonal entries of 1 and off-diagonal elements:15

Cns,i, j 6=i =
exp(−φ ·Distns,i, j)−1

n−1
· (48)

Finally, φ is a sensitivity parameter such that high values result in the distance between the at-16

tributes of the alternatives becoming insignificant. Low values allow for more similar alternatives17

to compete more with each other relative to less similar alternatives.18

Results from applying the previous version of MLBA to both of the SP datasets and the RP19

dataset are given in Table 18 below.20

TABLE 18 : Comparison of different versions of MLBA

Dataset MLBA0 MLBA Difference

Danish -2,189.78 -2,005.92 -183.86

UK -3,394.36 -3,322.26 -72.10

RP -375.24 -351.23 -24.01

From these results, it appears that the old version of MLBA has far inferior fits compared to21

that of the mainstream MLBA. Consequently, it would appear that modellers should focus on the22

mainstream version of MLBA.23
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B. APPENDIX: A MINIMUM MEAN DRIFT RATE1

Originally, the mean drift rate in MLBA was specified as:2

dns, j = vns, j + I0. (49)

As well as choosing to add an alternative specific component here, we also choose to truncate the3

mean drift rate such that it is always positive:4

dns, j = max(0,δ j + vns, j + I0), (50)

To consider the impact of not restricting mean drift rates to be positive, we consider the probabil-5

ities generated by drift rates i and j where these have values of −5 < i < 5 and i < j < i+ 10.6

Figure 5 gives the probability of choosing alternative i given the use of these drift rate values as7

well as values of A = 1, χ = 2 and σε = 1.8

FIGURE 5 : The probability of picking alternative i as the mean drift rate values change

In this figure, the contours demonstrate the points at which probabilities remain the same.9

If these lines were horizontal, it would indicate that for MLBA, only differences in drift rates10

matter (much as only differences in utility matter in RUM). However, the presence of curved lines11

indicates that at some points adding I0 will increase the choice probability of alternative i, whereas12

it will decrease the probability at other points. This can cause convergence issues for MLBA. We13

find that fixing the mean drift rates to have a minimum value of zero reduces the impact of this14

issue and improves estimation of MLBA models.15
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C. APPENDIX: PROOF OF SCALE-INVARIANCE OF DFT WITH SCALING PARAME-1

TERS2

Assume a single choice scenario where we have N alternatives each with K attributes. This gives3

some attribute matrix M1. Now suppose we have a set of importance weights www and scaling values4

βββ DFT that give the diagonal matrix β1 (these could be theoretical values, or based on estimation).5

To calculate the probability of choosing each alternative, we require the expectation, ξξξ τ :6

ξξξ τ = (I −S)−1 · (1−Sτ) ·C ·M1 ·β1 ·www+Sτ ·PPP0, (51)

and covariance, Ωτ :7

Ωτ = (I −Z)−1 (I −Zτ)C ·M1 ·β1 ·Ψ ·β ′
1 ·M

′
1 ·C

′+σ2
ε · I, (52)

where the expanded forms show us where the attribute matrix M1 enters the calculations.8

If we now assume that the attribute matrix is adjusted through the use of, for example, different9

units for the attributes, we obtain a new matrix, M2. Crucially, M2 can be written as M2 = M1 ·10

γ , where γ is a matrix created with dimensional parameters (see Section 2.2.2.1), arranged in a11

diagonal matrix such that each attribute k has an associated dimensional parameter γk, on the kth12

diagonal element, which gives the appropriate unit change. With this change, we now have:13

ξξξ
′
τ = (I −S)−1 · (1−Sτ) ·C ·M1 · γ ·β2 ·www+Sτ ·PPP0, (53)

and:14

Ω′
τ = (I −Z)−1 (I −Zτ)C ·M1 · γ ·β2 ·Ψ ·β2 · γ ·M

′
1 ·C

′+σ2
ε · I, (54)

where S, τ , C, www, PPP0, Z, σ2
ε and Ψ all remain unchanged from Equations 51 and 52.15

As our new version of DFT includes βDFT scaling parameters, we can set ξτ = ξ ′
τ and Ωτ =16

Ω′
τ simply by setting β2 = β1/γ . This results in βDFT parameters that correspond to marginal17

utility parameters in a random utility model, with the probabilities of choosing each alternative18

unchanged.19

If we do not have scaling parameters (i.e. β1 = β2 = I in the above equations), DFT becomes20

scale-variant. This is because the importance weights w adjust (under estimation) to accommodate21

the change from M1 in such a way that the relative importance of the different attributes remains the22

same. Theoretically, this change would would give us a new vector w′, with elements w′
i = (wi/γi).23

However, there is no guarantee that these new weights satisfy ∑
K
1 w′

k = 1, as we already have24

∑
K
1 wk = 1, and the elements of γ ∈R. More crucially, this changes the value of Ψ (with diagonal25

elements Ψii = (wi) · (1−wi) and off-diagonal elements Ψi j =−(wi) · (w j)). The non-linearity of26

Ψ results in different probabilities being generated should w change.27

For example, if we consider the case described in Section 2.2.2.1, we initially have w =28
(

0.6
0.4

)

. Incorporating the scale change into the weights instead of the dimensional parameters29

gives w′ =

(

0.6/1.18

0.4/60

)

. These values however must sum to 1. Multiplying both by a factor of30
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1.94 gives w′′ =

(

0.987

0.013

)

. This implies that the time attribute is only considered in 1% of pref-1

erence updating steps. As a result, the probabilities of choosing the different alternatives changes2

significantly if there is a low number of preference updating steps. For example, with a single3

updating step, a slower but cheaper alternative would be chosen with a probability of 60% before4

the unit change, but 99% after the unit change.5

D. APPENDIX: POSSIBLE INTERPRETATIONS OF MLBA PARAMETERS6

In this appendix, we consider possible estimated values of the λ parameters in MLBA (Equation7

24) and how they could be interpreted.8

In the first case, values of λ1 = 0.2 and λ2 = 0.1 give us Graph A in Figure 6, which looks9

similar to a graph of utilities under prospect theory, with decreasing marginal utilities and loss10

aversion. The ability to capture such effects was the original aim of developing MLBA (Trueblood11

et al., 2014).12

FIGURE 6 : Different possible transformations from objective to subjective differences depending

on the value of the lambda parameters under MLBA.

However, a key difference here is that MLBA models count each attribute difference between13

alternatives twice, as each alternative has a separate evaluation of its drift rate (Equation 22 is14

calculated separately for each alternative). This means that values of λ1 = 0 and λ2 = ∞ (Graph B)15

correspond to each difference only being added to one drift rate (linearly) rather than to two drift16

rates. Additionally, some values of λ result in psychologically unrealistic subjective differences,17

with for example λ1 = 0.5 and λ2 = 1 (Graph C) resulting in only certain (close to zero) differences18
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being added to the drift rates. This may be unrealistic if this is the only contribution to drift1

rates. However, paired individual estimates for the λ parameters may not always be unrealistic-2

for example, Graph D with λ1 = 0.1 and λ2 = 1 (which was unrealistic in Graph C) demonstrates a3

slightly non-linear evaluation of positive objective differences with an extra cost against the worst4

of two very similar alternatives (through the negative addition to drift rates for very small negative5

objective differences).6

As these parameters are also what allows MLBA to capture the similarity effect, it is in appli-7

cation difficult to establish what features the model may be capturing. Notably, an MLBA model8

which does not find a similarity effect nor any non-linear sensitivities will result in λ parameters9

approaching zero. This issue resulted in previous applications of MLBA resorting to different10

valuation and weighting functions (Cohen et al., 2017).11
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